

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at <u>www.onsemi.com</u>. Please email any questions regarding the system integration to <u>Fairchild_questions@onsemi.com</u>.

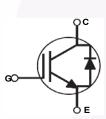
ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized applications, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an ad experson

March 2016

FGY40T120SMD 1200 V, 40 A Field Stop Trench IGBT

Features

- FS Trench Technology, Positive Temperature Coefficient
- · High Speed Switching
- Low Saturation Voltage: V_{CE(sat)} =1.8 V @ I_C = 40 A
- 100% of the Parts tested for I_{LM}(1)
- High Input Impedance
- RoHS Compliant


General Description

Using innovative field stop trench IGBT technology, Fairchild's new series of field stop trench IGBTs offer the optimum performance for hard switching application such as solar inverter, UPS, welder and PFC applications.

Applications

• Solar Inverter, Welder, UPS & PFC applications.

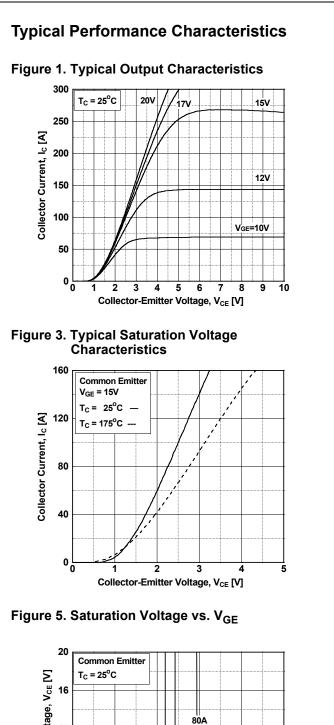
Absolute Maximum Ratings T_C = 25°C unless otherwise noted

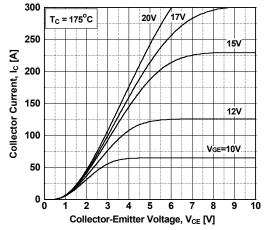
Symbol	Description		FGY40T120SMD	Unit	
V _{CES}	Collector to Emitter Voltage		1200	V	
V _{GES}	Gate to Emitter Voltage		±25	V	
GES	Transient Gate to Emitter Voltage		±30	V	
lc	Collector Current	@ T _C = 25°C	80	A	
10	Collector Current	@ T _C = 100°C	40	A	
I _{LM} (1)	Clamped Inductive Load Current	@ T _C = 25°C	160	A	
I _{CM} (2)	Pulsed Collector Current		160	A	
I _F	Diode Continuous Forward Current	@ T _C = 25°C	80	A	
	Diode Continuous Forward Current	@ T _C = 100°C	40	A	
I _{FM}	Diode Maximum Forward Current		240	A	
Pa	Maximum Power Dissipation		882	W	
	441	W			
TJ	Operating Junction Temperature		-55 to +175	°C	
T _{stg}	Storage Temperature Range		-55 to +175	°C	
TL	Maximum Lead Temp. for soldering Purposes, 1/8" from case for 5 seconds	6	300	°C	

Thermal Characteristics

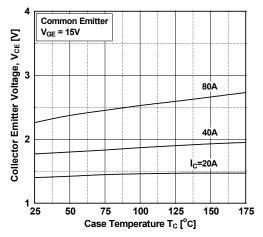
Symbol	Parameter	Тур.	Max.	Unit
$R_{\theta JC}(IGBT)$	Thermal Resistance, Junction to Case		0.17	°C/W
$R_{\theta JC}$ (Diode)	Thermal Resistance, Junction to Case		0.55	°C/W
$R_{ extsf{ heta}JA}$	Thermal Resistance, Junction to Ambient		40	°C/W

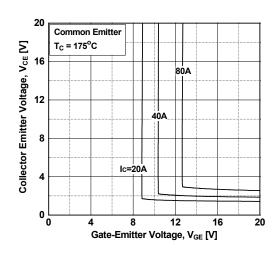
Notes:

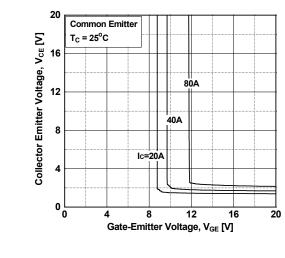

1. Vcc = 600 V,V_{GE} = 15 V, I_C = 160 A, R_G = 10 $\, \odot \, , \,\,$ Inductive Load 2. Limited by Tjmax


Device Marking Device		Package	Package Reel Size		Tape Width		Quantity	
FGY40T1	FGY40T120SMD FGY40T120SMD		TP-247	-	-		30	
Electric	al Char	acteristics of th	e IGBT _{Tc} = 25°C	unless otherwise noted				
Symbol		Parameter	Test Co	onditions	Min.	Тур.	Max.	Unit
Off Charac	toriotico		·					
BV _{CES}		o Emitter Breakdown Volt	age V _{GE} = 0 V, I _C =	250 µA	1200	-	-	V
I _{CES}		Cut-Off Current	$V_{CE} = V_{CES}, V_{CE}$		-	_	250	uA
I _{GES}		age Current	$V_{GE} = V_{GES}, V_{CES}$	-	-	_	±400	nA
GES	O E Eduk		GE GES,	CE CF			1100	
On Charac	teristics							
V _{GE(th)}	G-E Three	shold Voltage	I _C = 40 mA, V _C	_E = V _{GE}	4.9	6.2	7.5	V
		I _C = 40 A, V _{GE} = T _C = 25 ^o C	= 15 V	-	1.8	2.4	V	
V _{CE(sat)}	Collector	to Emitter Saturation Volta	I _C = 40 A, V _{GE} = T _C = 175 ^o C	= 15 V,	-	2.0	-	V
Dynamic C	haracteris	tics						
C _{ies}	Input Cap	acitance			-	4300	-	pF
C _{oes}	Output Ca	pacitance	V _{CE} = 30 V _, V _G f = 1MHz	_E = 0 V,	-	180	-	pF
C _{res}	Reverse 1	ransfer Capacitance	1 110112		-	100	-	pF
Switching	Characcte	ristics						
t _{d(on)}	Turn-On E	Delay Time			-	40	-	ns
t _r	Rise Time	!		-	-	47	-	ns
t _{d(off)}	Turn-Off E	Delay Time	V _{CC} = 600 V, I _C	s = 40 A,	-	475	-	ns
t _f	Fall Time		R _G = 10 Ω, V _{GI}	_E = 15 V,	-	10	-	ns
Eon	Turn-On S	Switching Loss	Inductive Load	, T _C = 25°C	-	2.7	-	mJ
E _{off}	Turn-Off S	Switching Loss			-	1.1	-	mJ
E _{ts}	Total Swit	ching Loss			-	3.8	-	mJ
t _{d(on)}	Turn-On [Delay Time			-	40	-	ns
t _r	Rise Time	1			-	55	-	ns
t _{d(off)}	Turn-Off E	Delay Time	V _{CC} = 600 V, I _C		-	520	-	ns
t _f	Fall Time		R _G = 10 Ω, V _{GI}	_E = 15 V,	-	50	-	ns
Eon	Turn-On S	Switching Loss	Inductive Load	$1_{\rm C} = 175^{\circ}{\rm C}$	-	3.4	-	mJ
E _{off}	Turn-Off S	Switching Loss			-	2.5	-	mJ
E _{ts}	Total Swit	ching Loss			-	5.9	-	mJ
Qg	Total Gate	e Charge			-	370	-	nC
Q _{ge}	Gate to E	mitter Charge	$V_{CE} = 600 \text{ V}, I_{C}$	_c = 40 A,	-	23	-	nC
Q _{gc}	Gate to C	ollector Charge	*GE - 15 V	V _{GE} = 15 V		210	-	nC

FGY40T120SMD
— 1200 V, 40 A
A Field Stop
A Field Stop Trench IGBT


Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{FM}	Diode Forward Voltage	I _F = 40 A, T _C = 25°C	-	3.8	4.8	V
		I _F = 40 A, T _C = 175 ^o C	-	2.7	-	V
t _{rr}	Diode Reverse Recovery Time	$V_R = 600 \text{ V}, \text{ I}_F = 40 \text{ A},$ $\text{di}_F/\text{dt} = 200 \text{ A/us}, \text{ T}_C = 25^{\circ}\text{C}$	-	65	-	ns
Q _{rr}	Diode Reverse Recovery Charge		-	234	-	nC
E _{rec}	Reverse Recovery Energy	$V_R = 600 V, I_F = 40 A,$ di _F /dt = 200 A/us, T _C = 175 ^o C	-	97	-	uJ
t _{rr}	Diode Reverse Recovery Time		-	200	-	ns
Q _{rr}	Diode Reverse Recovery Charge		-	1800	-	nC


Figure 2. Typical Output Characteristics



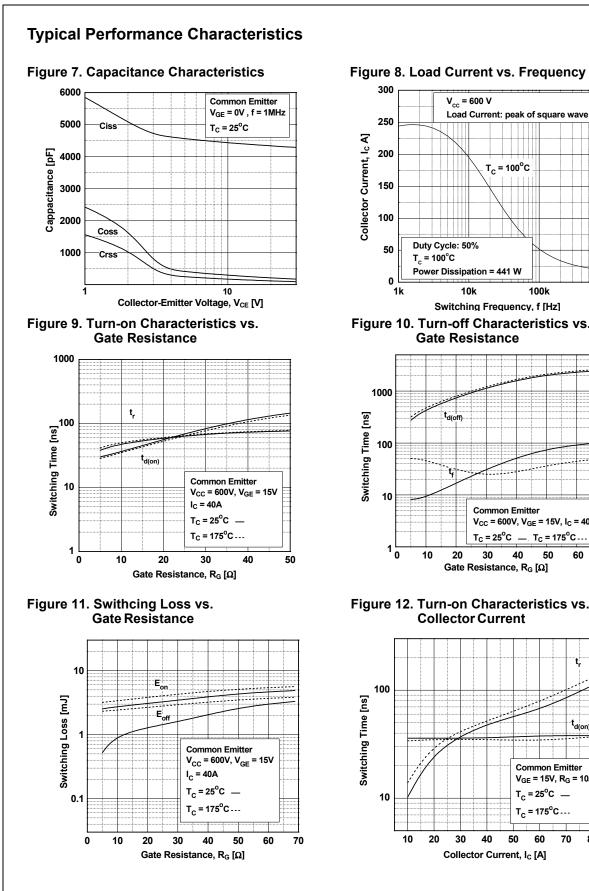
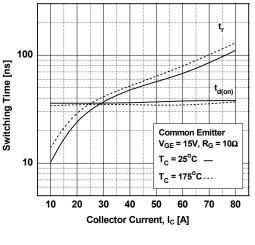


Figure 8. Load Current vs. Frequency

10k


T_C = 100^oC

100k

1M

Switching Frequency, f [Hz] Figure 10. Turn-off Characteristics vs. **Gate Resistance** td(off) Common Emitter V_{CC} = 600V, V_{GE} = 15V, I_C = 40A $T_{C} = 25^{\circ}C$ ____ $T_{C} = 175^{\circ}C$... 20 30 40 50 60 70 Gate Resistance, R_G [Ω]

Typical Performance Characteristics

Figure 13. Turn-off Characteristics vs. Collector Current

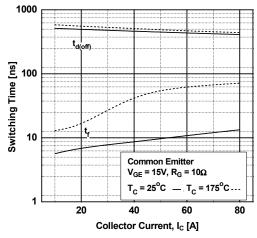
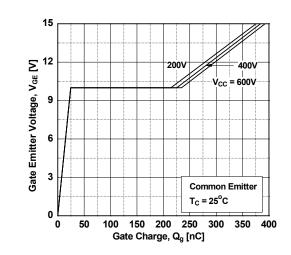
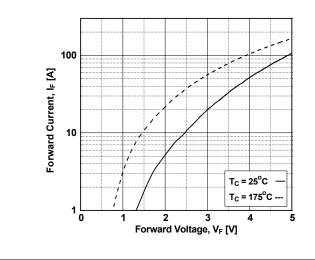
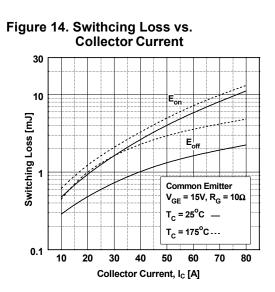





Figure 15. Gate Charge Characteristics

Figure 16. SOA Characteristics

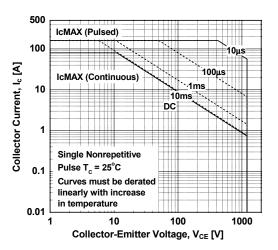
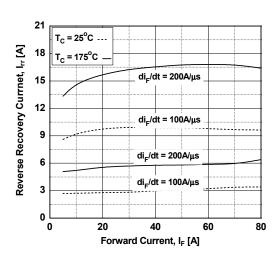
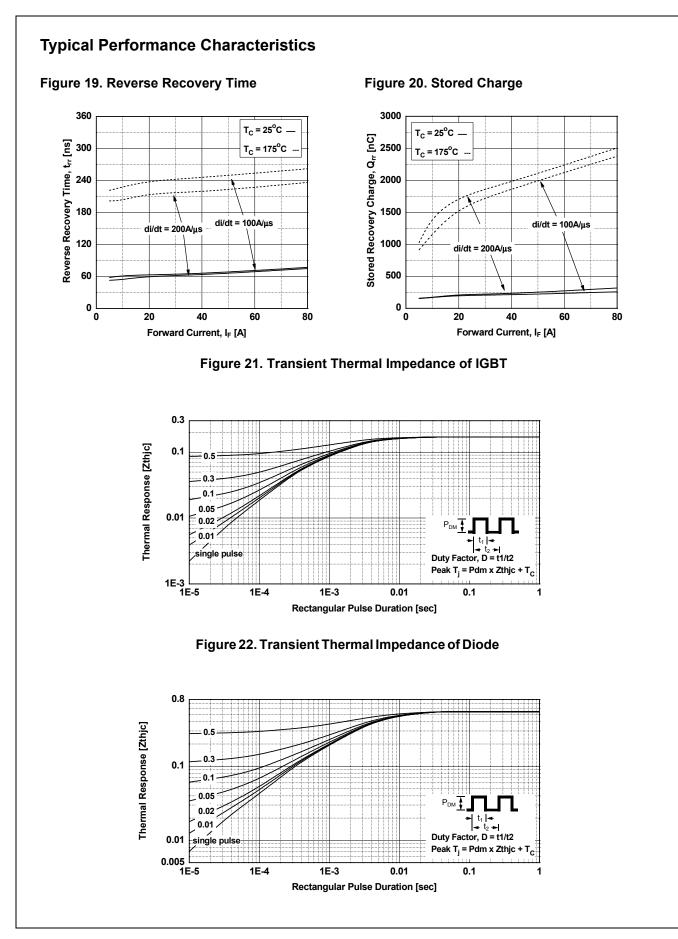
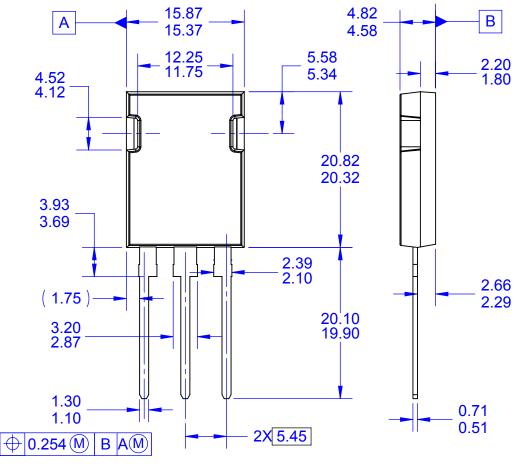





Figure 18. Reverse Recovery Current

13.80 13.40 1.35 0.51 17.03 16.63 1.35 0.51

FRONT VIEW

SIDE VIEW

BOTTOM VIEW

NOTES:

- A. THIS PACKAGE DOES NOT CONFORM TO ANY STANDARDS.
- B. ALL DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH AND TIE BAR PROTRUSIONS.
- MOLD FLASH AND TIE BAR PROTRUSIONS. D. DIMENSION AND TOLERANCE AS PER ASME Y14.5-2009.
- E. DRAWING FILE NAME: TO247H03REV1

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC