Atmel SAM4SP32A

CORTEX-M4 PRIME SoC

PRELIMINARY DATASHEET

Features

Core

- ARM® Cortex™-M4 with a 2Kbytes cache running at 120MHz
- Memory Protection Unit (MPU)
- DSP Instruction Set
- Thumb®-2 instruction set

Memories

- 2048 Kbytes embedded Flash with optional dual bank and cache memory
- 160 Kbytes embedded SRAM
- 16 Kbytes ROM with embedded boot loader routines (UART, USB) and IAP routines

System

- Embedded voltage regulator for single supply operation
- Power-on-Reset (POR), Brown-out Detector (BOD) and Watchdog for safe operation
- Quartz or ceramic resonator oscillators: 3 to 20 MHz main power with Failure Detection and optional low-power 32.768 kHz for RTC or device clock
- RTC with Gregorian and Persian Calendar mode, waveform generation in low power modes
- RTC clock calibration circuitry for 32.768 kHz crystal frequency compensation
- High precision 8/12 MHz factory trimmed internal RC oscillator with 4 MHz default frequency for device startup. In-application trimming access for frequency adjustment
- Slow Clock Internal RC oscillator as permanent low-power mode device clock
- Two PLLs up to 240 MHz for device clock and for USB
- Temperature Sensor
- Up to 22 Peripheral DMA (PDC) Channels

Low Power Modes

- Sleep and Backup Modes, down to 1 μA in Backup Mode
- Ultra low-power RTC

Peripherals

- USB 2.0 Device: 12 Mbps, 2668 byte FIFO, up to 8 bidirectional Endpoints. On-Chip Transceiver
- 2 USARTs with ISO7816, IrDA ®, RS-485, Manchester and Modem Mode
- Two 2-wire UARTs
- 2 Two Wire Interface (I2C compatible), 1 Synchronous Serial Controller (SSC)
- 2 Three-Channel 16-bit Timer/Counter with capture, waveform, compare and PWM mode. Quadrature Decoder Logic and 2-bit Gray Up/Down Counter for Stepper Motor
- 4-channel 16-bit PWM with Complementary Output, Fault Input, 12-bit Dead Time Generator Counter

- 32-bit Real-time Timer and RTC with calendar and alarm features
- One Analog Comparator with flexible input selection
- 32-bit Cyclic Redundancy Check Calculation Unit (CRCCU)
- Write Protected Registers

I/O

- Up to 38 I/O lines with external interrupt capability (edge or level sensitivity), debouncing, glitch filtering and on-die Series Resistor Termination
- Three 32-bit Parallel Input/Output Controllers, Peripheral DMA assisted Parallel Capture Mode

PRIME PLC Modem

- Power Line Carrier Modem for 50 and 60 Hz mains
- 97-carrier OFDM PRIME compliant
- Baud rate Selectable: 21400 to 128600 bps
- Differential BPSK, QPSK, 8-PSK modulations
- Automatic Gain Control and signal amplitude tracking
- Embedded on-chip DMAs
- Media Access Control
- Viterbi decoding and CRC PRIME compliant
- 128-bit AES encryption
- · Channel sensing and collision pre-detection

Package

- 128-Lead LQFP
- · Pb-free and RoHS compliant

Typical Applications

- PRIME Smart Meters
- PRIME Data Concentrator

Description

The SAM4SP32A is a new evolution of SAM4SD32 Flash microcontroller based on the high performance 32-bit ARM Cortex-M4 RISC processor with a PRIME Power Line Communication Modem SoC integrated.

The SAM4SP32A operates at a maximum speed of 120 MHz and features with a 2048 Kbytes of Flash, with optional dual bank implementation and 2Kbytes of cache memory, 160 Kbytes of SRAM, and 32Kbytes embedded SRAM memory available for PRIME specification requirements.

The peripheral set mainly includes a Certified PRIME Power line communication transceiver with a featured Class D power amplifier and a set of hardware accelerators blocks to execute the heavy tasks of the PRIME protocol without the interruption of the Cortex-M4 CPU. Furthermore, the SAM4SP32A includes a Full Speed USB Device port with embedded transceiver, , 2x USARTs, 2x UARTs, 2x TWIs, an I2S, as well as 1 PWM timer, 2x three channel general-purpose 16-bit timers (with stepper motor and quadrature decoder logic support), an RTC, a Synchronous Serial Controller (SSC) and an analog comparator.

The Atmel SAM4SP32A SoC device combines robust and high performances PRIME PLC Modem with a powerfull Cortex-M4 microcontroller with the best ratio in terms of reduced power consumption, processing power and peripheral set. This enables the SAM4SP32A to sustain a wide range of applications including PRIME Smart Grid and data concentrator solutions.

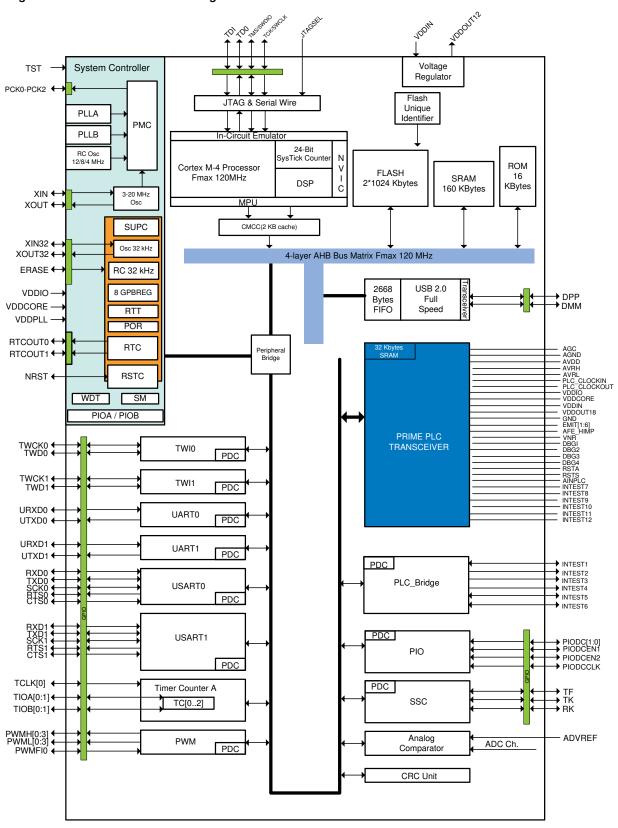
SAM4SP32A operates from 3.0V to 3.6V

Table of Contents

1.	Block	Diagra	am		8
2.	Packa 2.1 2.2	128-Lea	d LQFP Pa	ackage Outlinenout	9
3.	Signa	al Desci	ription		11
4.	Pin D	escripti	ion		15
5.	Powe	er Cons	ideration	s	26
			-	Schematics	
	5.5	5.5.1		lode	
		5.5.2		00e e	
		5.5.3		de	_
		5.5.4	Low Powe	er Mode Summary Table	30
	5.7	Fast Sta	ırtup		33
6.	Input/	/Output	Lines		34
	6.1	General	Purpose I/	O Lines	34
	6.2	System	I/O Lines		34
		6.2.2		e JTAG Debug Port (SWJ-DP) Pins	
	6.5	ERASE	PIN		36
7.	Proce	essor a	nd Archit	ecture	37
	7.1	ARM Co	rtex-M4 Pr	ocessor	37
	7.2	APB/AH	B Bridge		37
	7.3	Matrix M	laster		37
	7.4				_
	7.5			cess	
				Controller	
	7.7	Debug a	ind Test Fe	eatures	39
8.	SAM	4SP32 <i>F</i>	A Produc	t Mapping	40
9.	Mama	orios			41
Э.					• •
	9.1			es RAM	
		9.1.1 9.1.2		MAIVIOM	
		9.1.3		d Flash	
		0.1.0	9.1.3.1	Flash Overview	
			9.1.3.2	Enhanced Embedded Flash Controller	
			9.1.3.3	Flash Speed	
			9.1.3.4	Lock Regions	44
			9.1.3.5 9.1.3.6	Security Bit Feature	
			9.1.3.6	Unique Identifier	
			9.1.3.8	User Signature	
			9 1 3 9	Fast Flash Programming Interface	

		9.1.3.10 SAM-BA Boot	
	0.4.4	9.1.3.11 GPNVM Bits	
	9.1.4	Boot Strategies	45
10. Svs	stem Cor	ntroller	46
10.1		Controller and Peripherals Mapping	
10.2		on-Reset, Brownout and Supply Monitor	
	10.2.1		
	10.2.2	Brownout Detector on VDDCORE	47
	10.2.3	= - - - - - - - - - -	
10.3		Controller	
10.4		Controller (SUPC)	
10.5		Generator	
10.6		Management Controller	
10.7		log Timer	
10.8 10.9		c Timerme Timer	
		me Clock	
		I-Purpose Backup Registers	
		Vectored Interrupt Controller	
		entification	
		STRII GUIOTI	
		ntrollers	
		ral Identifiers	
		eral Signal Multiplexing on I/O Lines	
		PIO Controller A Multiplexing	
	10.17.2	PIO Controller B Multiplexing	55
	10.17.3	PIO Controller C Multiplexing	55
11 Em	hoddod	Peripherals Overview	56
11111	bedued		50
	T \A/'		
11.1		re Interface (TWI)	
11.2	2 Univers	re Interface (TWI)al Asynchronous Receiver Transceiver (UART)	56
11.2 11.3	2 Univers 3 USART	re Interface (TWI)al Asynchronous Receiver Transceiver (UART)	56 56
11.2 11.3 11.4	Univers USART Synchro	re Interface (TWI)al Asynchronous Receiver Transceiver (UART)	56 57
11.2 11.3 11.4 11.5	UniversUSARTSynchroTimer C	re Interface (TWI) al Asynchronous Receiver Transceiver (UART) conous Serial Controller (SSC) Counter (TC)	56 56 57
11.2 11.3 11.4 11.5	Univers USART Synchro Timer C Pulse W	re Interface (TWI) al Asynchronous Receiver Transceiver (UART) conous Serial Controller (SSC) Counter (TC) Vidth Modulation Controller (PWM)	56 57 57
11.2 11.3 11.4 11.5 11.6	Univers USART Synchro Timer C Pulse W USB De	re Interface (TWI) al Asynchronous Receiver Transceiver (UART) onous Serial Controller (SSC) Counter (TC). Vidth Modulation Controller (PWM) evice Port (UDP)	56 57 57 57
11.2 11.3 11.4 11.5	Univers USART USAR	re Interface (TWI) al Asynchronous Receiver Transceiver (UART) conous Serial Controller (SSC) counter (TC). Vidth Modulation Controller (PWM) evice Port (UDP) Comparator.	56 56 57 57 58 58
11.2 11.3 11.4 11.5 11.6 11.7 11.8	Univers USART USAR	re Interface (TWI) cal Asynchronous Receiver Transceiver (UART) conous Serial Controller (SSC) counter (TC) Vidth Modulation Controller (PWM) evice Port (UDP) Comparator Redundancy Check Calculation Unit (CRCCU)	56 57 57 57 58 58
11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9	Univers USART Synchro Timer C Pulse W USB De Analog Cyclic F	re Interface (TWI) cal Asynchronous Receiver Transceiver (UART) conous Serial Controller (SSC) counter (TC) Vidth Modulation Controller (PWM) evice Port (UDP) Comparator Redundancy Check Calculation Unit (CRCCU)	56 57 57 57 58 58 59
11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9	Univers USART Synchro Timer C Pulse W USB De Analog Cyclic F	re Interface (TWI) cal Asynchronous Receiver Transceiver (UART) conous Serial Controller (SSC) counter (TC) Vidth Modulation Controller (PWM) evice Port (UDP) Comparator Redundancy Check Calculation Unit (CRCCU)	56 57 57 57 58 58 59
11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9	2 Univers 3 USART 4 Synchro 5 Timer C 6 Pulse W 7 USB De 8 Analog 9 Cyclic F 10 PLC Bri	re Interface (TWI) cal Asynchronous Receiver Transceiver (UART) conous Serial Controller (SSC) counter (TC) Vidth Modulation Controller (PWM) evice Port (UDP) Comparator Redundancy Check Calculation Unit (CRCCU)	56 55 55 55 600
11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 11.1	2 Univers 3 USART 4 Synchro 5 Timer C 6 Pulse W 7 USB De 8 Analog 9 Cyclic F 10 PLC Bri	re Interface (TWI) al Asynchronous Receiver Transceiver (UART) conous Serial Controller (SSC) Counter (TC) Vidth Modulation Controller (PWM) evice Port (UDP) Comparator Redundancy Check Calculation Unit (CRCCU) igde C Transceiver P32A PRIME PHY Layer SAM4SP32A PHY Layer	560 57 57 58 58 59 59 59 59 59 59 59 59 60 61 61 61
11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 11.1	2 Univers 3 USART 4 Synchro 5 Timer C 6 Pulse W 7 USB De 8 Analog 9 Cyclic F 0 PLC Bri IME PLC SAM4S	re Interface (TWI) al Asynchronous Receiver Transceiver (UART) conous Serial Controller (SSC) Counter (TC) Vidth Modulation Controller (PWM) evice Port (UDP) Comparator Redundancy Check Calculation Unit (CRCCU) igde C Transceiver P32A PRIME PHY Layer SAM4SP32A PHY Layer 12.1.1.2 Transmission and Reception branches	560 57 57 58 58 59 59 60 61 61 62 62 61 62 62 61 62 62 61 62 61 62 62 61 62 62 61 62 62 61 62 62 61 62 62 61 62 62 61 62 62 61 62 62 62 61 62 62 62 61 62 62 62 61 62 62 62 61 62 62 62 62 61 62 62 62 62 62 62 62 62 62 62 62 62 62
11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 11.1	2 Univers 3 USART 4 Synchro 5 Timer C 6 Pulse W 7 USB De 8 Analog 9 Cyclic F 0 PLC Bri IME PLC SAM4S	re Interface (TWI) al Asynchronous Receiver Transceiver (UART) conous Serial Controller (SSC) Counter (TC) Vidth Modulation Controller (PWM) evice Port (UDP) Comparator Redundancy Check Calculation Unit (CRCCU) igde C Transceiver P32A PRIME PHY Layer SAM4SP32A PHY Layer 12.1.1.2 Transmission and Reception branches 12.1.1.3 Carrier Detection	560 57 57 58 58 59 59 59 60 61 62 62 62 62
11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 11.1	2 Univers 3 USART 4 Synchro 5 Timer C 6 Pulse W 7 USB De 8 Analog 9 Cyclic F 0 PLC Bri IME PLC SAM4S	re Interface (TWI) al Asynchronous Receiver Transceiver (UART) conous Serial Controller (SSC) Counter (TC) Vidth Modulation Controller (PWM) evice Port (UDP) Comparator Redundancy Check Calculation Unit (CRCCU) igde C Transceiver P32A PRIME PHY Layer SAM4SP32A PHY Layer 12.1.1.2 Transmission and Reception branches 12.1.1.3 Carrier Detection 12.1.1.4 Analog Front End control.	560 57 57 58 58 59 59 60 61 62 62 63 63
11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 11.1	2 Univers 3 USART 4 Synchro 5 Timer C 6 Pulse W 7 USB De 8 Analog 9 Cyclic F 0 PLC Bri IME PLC SAM4S	re Interface (TWI) al Asynchronous Receiver Transceiver (UART) conous Serial Controller (SSC) Counter (TC) Vidth Modulation Controller (PWM) evice Port (UDP) Comparator Redundancy Check Calculation Unit (CRCCU) igde C Transceiver P32A PRIME PHY Layer SAM4SP32A PHY Layer 12.1.1.2 Transmission and Reception branches 12.1.1.3 Carrier Detection 12.1.1.4 Analog Front End control 12.1.1.5 Power Supply Sensing: VSENSE and PSENSE	560 57 57 57 58 58 59 59 60 61 62 62 63 63 63
11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 11.1	2 Univers 3 USART 4 Synchro 5 Timer C 6 Pulse W 7 USB De 8 Analog 9 Cyclic F 0 PLC Bri IME PLC SAM4S	re Interface (TWI) al Asynchronous Receiver Transceiver (UART) conous Serial Controller (SSC) Counter (TC) Vidth Modulation Controller (PWM) evice Port (UDP) Comparator Redundancy Check Calculation Unit (CRCCU) igde C Transceiver P32A PRIME PHY Layer SAM4SP32A PHY Layer 12.1.1.2 Transmission and Reception branches 12.1.1.3 Carrier Detection 12.1.1.4 Analog Front End control 12.1.1.5 Power Supply Sensing: VSENSE and PSENSE 12.1.1.6 Gain Control	560 57 57 57 57 58 58 59 59 60 61 62 62 63 63 64
11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 11.1	2 Univers 3 USART 4 Synchro 5 Timer C 6 Pulse W 7 USB De 8 Analog 9 Cyclic F 0 PLC Bri IME PLC SAM4S	re Interface (TWI) al Asynchronous Receiver Transceiver (UART) conous Serial Controller (SSC) Counter (TC) Vidth Modulation Controller (PWM) evice Port (UDP) Comparator Redundancy Check Calculation Unit (CRCCU) igde C Transceiver P32A PRIME PHY Layer SAM4SP32A PHY Layer 12.1.1.2 Transmission and Reception branches 12.1.1.3 Carrier Detection 12.1.1.4 Analog Front End control 12.1.1.5 Power Supply Sensing: VSENSE and PSENSE 12.1.1.6 Gain Control 12.1.1.7 Line Impedance Control 12.1.1.8 TxRx Control 12.1.1.8 TxRx Control 12.1.1.8	560 57 57 57 58 58 59 59 60 61 62 62 63 64 64 65 65
11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 11.1	2 Univers 3 USART 4 Synchro 5 Timer C 6 Pulse W 7 USB De 8 Analog 9 Cyclic F 10 PLC Bri 1ME PLC SAM4S 12.1.1	re Interface (TWI) al Asynchronous Receiver Transceiver (UART) conous Serial Controller (SSC) Counter (TC) Vidth Modulation Controller (PWM) evice Port (UDP) Comparator Redundancy Check Calculation Unit (CRCCU) igde C Transceiver P32A PRIME PHY Layer SAM4SP32A PHY Layer 12.1.1.2 Transmission and Reception branches 12.1.1.3 Carrier Detection 12.1.1.4 Analog Front End control 12.1.1.5 Power Supply Sensing: VSENSE and PSENSE 12.1.1.6 Gain Control 12.1.1.7 Line Impedance Control 12.1.1.8 TxRx Control PHY parameters	560 57 57 57 58 58 59 59 60 61 62 62 63 63 64 64 65 65 65
11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 11.1	2 Univers 3 USART 4 Synchro 5 Timer C 6 Pulse W 7 USB De 8 Analog 9 Cyclic F 10 PLC Bri 1ME PLC SAM4S 12.1.1	re Interface (TWI) al Asynchronous Receiver Transceiver (UART) conous Serial Controller (SSC) Counter (TC) Vidth Modulation Controller (PWM) evice Port (UDP) Comparator Redundancy Check Calculation Unit (CRCCU) igde C Transceiver P32A PRIME PHY Layer 12.1.1.2 Transmission and Reception branches 12.1.1.3 Carrier Detection 12.1.1.4 Analog Front End control 12.1.1.5 Power Supply Sensing: VSENSE and PSENSE 12.1.1.6 Gain Control 12.1.1.7 Line Impedance Control 12.1.1.8 TxRx Control PHY parameters PHY Protocal Data Unit (PPDU) Format	560 57 57 57 58 58 59 59 60 61 62 62 63 63 64 64 65 65 66 66 66 66 66 66 66 66 66 66 66
11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 11.1	2 Univers 3 USART 4 Synchro 5 Timer C 6 Pulse W 7 USB De 8 Analog 9 Cyclic F 10 PLC Bri 1ME PLC SAM4S 12.1.1	re Interface (TWI) al Asynchronous Receiver Transceiver (UART) conous Serial Controller (SSC) Counter (TC). Vidth Modulation Controller (PWM) evice Port (UDP) Comparator. Redundancy Check Calculation Unit (CRCCU) igde. C Transceiver P32A PRIME PHY Layer 12.1.1.2 Transmission and Reception branches 12.1.1.3 Carrier Detection. 12.1.1.4 Analog Front End control. 12.1.1.5 Power Supply Sensing: VSENSE and PSENSE. 12.1.1.6 Gain Control. 12.1.1.7 Line Impedance Control. 12.1.1.8 TxRx Control. PHY parameters PHY Protocal Data Unit (PPDU) Format. PHY Service Specification.	56 57 57 58 58 59 59 60 61 62 63 63 64 64 65 66 66 66 66 66 66 66 66 66 66 66 66
11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 11.1	2 Univers 3 USART 4 Synchro 5 Timer C 6 Pulse W 7 USB De 8 Analog 9 Cyclic F 10 PLC Bri 1ME PLC SAM4S 12.1.1	re Interface (TWI) al Asynchronous Receiver Transceiver (UART) conous Serial Controller (SSC) Counter (TC). Vidth Modulation Controller (PWM) evice Port (UDP) Comparator. Redundancy Check Calculation Unit (CRCCU) igde. C Transceiver P32A PRIME PHY Layer 12.1.1.2 Transmission and Reception branches 12.1.1.3 Carrier Detection. 12.1.1.4 Analog Front End control. 12.1.1.5 Power Supply Sensing: VSENSE and PSENSE. 12.1.1.6 Gain Control. 12.1.1.7 Line Impedance Control. 12.1.1.8 TxRx Control. PHY parameters PHY Protocal Data Unit (PPDU) Format. PHY Service Specification. PHY Service Specification. PHY Layer registers.	56 57 57 58 58 59 59 60 61 62 62 63 64 64 65 66 66 66 66 66 66 66 66 66 66 66 66
11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 11.1	2 Univers 3 USART 4 Synchro 5 Timer C 6 Pulse W 7 USB De 8 Analog 9 Cyclic F 10 PLC Bri 1ME PLC SAM4S 12.1.1	re Interface (TWI) al Asynchronous Receiver Transceiver (UART) conous Serial Controller (SSC) Counter (TC) Vidth Modulation Controller (PWM) evice Port (UDP) Comparator Redundancy Check Calculation Unit (CRCCU) igde C Transceiver P32A PRIME PHY Layer 12.1.1.2 Transmission and Reception branches 12.1.1.3 Carrier Detection 12.1.1.4 Analog Front End control 12.1.1.5 Power Supply Sensing: VSENSE and PSENSE 12.1.1.6 Gain Control 12.1.1.7 Line Impedance Control 12.1.1.8 TxRx Control PHY parameters PHY Protocal Data Unit (PPDU) Format PHY Service Specification PHY Layer registers 12.1.5.1 PHY_SFR Register	56 57 57 58 58 59 59 60 61 62 62 63 63 64 64 65 66 66 66 66 66 66 66 66 66 66 66 66
11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 11.1	2 Univers 3 USART 4 Synchro 5 Timer C 6 Pulse W 7 USB De 8 Analog 9 Cyclic F 10 PLC Bri 1ME PLC SAM4S 12.1.1	re Interface (TWI) al Asynchronous Receiver Transceiver (UART) conous Serial Controller (SSC) Counter (TC) Vidth Modulation Controller (PWM) evice Port (UDP) Comparator Redundancy Check Calculation Unit (CRCCU) igde C Transceiver P32A PRIME PHY Layer SAM4SP32A PHY Layer 12.1.1.2 Transmission and Reception branches 12.1.1.3 Carrier Detection 12.1.1.4 Analog Front End control 12.1.1.5 Power Supply Sensing: VSENSE and PSENSE 12.1.1.6 Gain Control 12.1.1.7 Line Impedance Control 12.1.1.8 TxRx Control PHY parameters PHY Protocal Data Unit (PPDU) Format PHY Service Specification PHY Layer registers 12.1.5.1 PHY_SFR Register 12.1.5.2 SYS_CONFIG Register	56 57 57 58 58 59 59 60 61 62 62 63 63 64 64 65 66 66 66 66 66 66 66 66 66 66 66 66
11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 11.1	2 Univers 3 USART 4 Synchro 5 Timer C 6 Pulse W 7 USB De 8 Analog 9 Cyclic F 10 PLC Bri 1ME PLC SAM4S 12.1.1	re Interface (TWI) al Asynchronous Receiver Transceiver (UART) conous Serial Controller (SSC) Counter (TC) Vidth Modulation Controller (PWM) evice Port (UDP) Comparator Redundancy Check Calculation Unit (CRCCU) igde C Transceiver P32A PRIME PHY Layer SAM4SP32A PHY Layer 12.1.1.2 Transmission and Reception branches 12.1.1.3 Carrier Detection 12.1.1.4 Analog Front End control 12.1.1.5 Power Supply Sensing: VSENSE and PSENSE 12.1.1.6 Gain Control 12.1.1.7 Line Impedance Control 12.1.1.8 TxRx Control PHY parameters PHY Protocal Data Unit (PPDU) Format PHY Service Specification PHY Layer registers 12.1.5.1 PHY_SFR Register 12.1.5.2 SYS_CONFIG Register	56 56 56 66 66 66 66 66 66 66 66 66 66 6

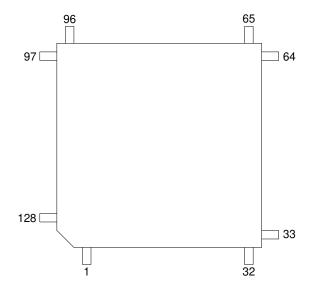
	12.1.5.6	ATT_SIGNAL Register	73
	12.1.5.7	TX_TIME Registers	74
	12.1.5.8	TIMER_FRAME Registers	/5 76
	12.1.5.9 12.1.5.10	TIMER_BEACON_REF RegistersRX_LEVEL Registers	70 77
	12.1.5.10	RSSI_MIN Register	
	12.1.5.12	RSSI_AVG Register	
	12.1.5.13	RSSI_MAX Register	
	12.1.5.14	CINR_MIN Register	81
	12.1.5.15	CINR_AVG Register	82
	12.1.5.16	CINR_MAX Register	
	12.1.5.17	EVM_HEADER Registers EVM_PAYLOAD Registers	
		EVM_HEADER_ACUM Registers	
	12.1.5.20	EVM_PAYLOAD_ACUM Registers	
	12.1.5.21	RMS_CALC Register	88
		VSENSE_CONFIG Register	89
	12.1.5.23	NUM_FAILS Register	
	12.1.5.24	TTRANS Register	
	12.1.5.25	AGC0_KRSSI Register	
	12.1.5.26	AGC1 KRSSI Register	93
	12.1.5.27 12.1.5.28	ZERO_CROSS_TIME RegistersZERO_CROSS_CONFIG Register	
	12.1.5.29	PSENSECYCLES Registers	
	12.1.5.30	MEAN Registers	97
	12.1.5.31	PMAX Registers	
	12.1.5.32	TRANS_PSENSE Register	
	12.1.5.33	P_TH Registers	100
	12.1.5.34	MAXPOT Registers	
	12.1.5.35	NUMCYCLES Register	
	12.1.5.36	A_NUMMILIS Register	
	12.1.5.37 12.1.5.38	EMIT_CONFIG RegisterAFE_CTL Register	
	12.1.5.39	R Registers	
	12.1.5.40	PHY_ERRORS Registers	107
	12.1.5.41	FFT_MODE Registers	
	12.1.5.42	AGC_CONFIG Register	
	12.1.5.43	SAT_TH Registers	
	12.1.5.44	AGC1_TH Registers	
	12.1.5.45	AGC0_TH Registers	113
100 0414	12.1.5.46	AGC_PADS Register	
	ISP32A MAC	Layer	115
12.2.1 12.2.2	Oyclic Rec	dundancy Check (CRC) Encryption Standard (AES)	117
12.2.3	R MAC Lave	er Registers	118
12.2.0	12.2.3.1	SNA Registers	
	12.2.3.2	VITERBI_BER_HARD Register	119
	12.2.3.3	VITERBI_BER_SOFT Register	
	12.2.3.4	ERR_CRC32_MAC Registers	
	12.2.3.5	ERR_CRC8_MAC Registers	
	12.2.3.6	ERR_CRC8_AES Registers	
	12.2.3.7	ERR_CRC8_MAC_HD Registers	
	12.2.3.8 12.2.3.9	ERR_CRC8_PHY RegistersFALSE DET CONFIG Register	
	12.2.3.10	FALSE_DET Registers	
	12.2.3.11	MAX LEN DBPSK Register	
	12.2.3.12	MAX_LEN_DBPSK_VTB Register	129
	12.2.3.13	MAX_LEN_DQPSK Register	130
	12.2.3.14	MAX_LEN_DQPSK_VTB Registers	131
	12.2.3.15	MAX_LEN_D8PSK Registers	
	12.2.3.16	MAX_LEN_D8PSK_VTB Register	
	12.2.3.17	AES_PAD_LEN Register	
	12.2.3.18 12.2.3.19	AES_DATA_IN Registers	
	12.2.3.13	TEO_DATA_OUT Tregisters	100



			12.2.3.20 KEY_PERIPH Registers	
			12.2.3.21 KEY_PHY Registers	138
			12.2.3.22 AES_SFR Register	139
13.	Elect	rical Ch	haracteristics	140
	13.1	Absolute	e Maximum Ratings	140
	13.2	DC Cha	aracteristics	141
	13.3		Consumption	
		13.3.1	Backup Mode Current Consuption	
			13.3.1.1 Configuration A	
			13.3.1.2 Configuration B	
		13.3.2	Sleep and Wait Mode Current Consumption	149
			13.3.2.1 Sleep Mode	149
			13.3.2.2 Wait Mode	151
		13.3.3	Active Mode Power Consumption	152
		13.3.4	Peripheral Power Consumption in Active Mode	154
	13.4	Oscillato	or Characteristics	156
		13.4.1	32 kHz RC Oscillator Characteristics	156
		13.4.2	4/8/12 MHz RC Oscillators Characteristics	
		13.4.3	32.768 kHz Crystal Oscillator Characteristics	
		13.4.4	32.768 kHz Crystal Characteristics	159
		13.4.5	3 to 20 MHz Crystal Oscillator Characteristics	159
		13.4.6	3 to 20 MHz Crystal Characteristics	160
		13.4.7	Crystal Oscillator Design Considerations Information	
			13.4.7.1 Choosing a Crystal	
			13.4.7.2 Printed Circuit Board (PCB)	
	13.5		PLLB Characteristics	
	13.6	USB Tra	ansceiver Characteristics	
		13.6.1	Typical Connections	
		13.6.2	Electrical Characteristics	
		13.6.3	Switching Characteristics	
	13.7		Comparator Characteristics	
	13.8		ature Sensor	
	13.9	AC Cha	aracteristics	
		13.9.1	Master Clock Characteristics	
		13.9.2	I/O Characteristics	
		13.9.3	SSC Timings	169
			13.9.3.2 SSC Timings	
		13.9.4	SMC Timings	
			13.9.4.1 Read Timings	
			13.9.4.2 Write Timings	
		13.9.5	USART in SPI Mode Timings	180
		4000	13.9.5.2 USART SPI TImings	
		13.9.6	Two-wire Serial Interface Characteristics	
		13.9.7	Embedded Flash Characteristics	
	13.10	Recomr	mended Operating Conditions	189
14.	Mech	nanical	Characteristics	190
15.	Orde	ring Inf	ormation	191
16	Revis	sion His	story	192

1. Block Diagram

Figure 1-1. SAM4SP32A Block Diagram



2. Package and Pinout

2.1 128-Lead LQFP Package Outline

Figure 2-1. Orientation of the 128-Lead Package

2.2 128-Lead LQFP Pinout

Table 2-1. SAM4SP32A 128-Lead LQFP pinout

1	ADVREF
2	GND
3	GND
4	AGC
5	GND
6	VDDIO
7	AGND
8	PB0
9	AVDD
10	PB1
11	AGND
12	AVDD
13	VRH
14	PB2
15	AINPLC
16	PB3
17	VRL
18	VDDIN
19	VDDOUT12
20	PA17/PGMD5
21	PC26
22	PA18/PGMD6
23	PA21/PGMD9
24	VDDCORE
25	PA19/PGMD7
26	PA22/PGMD10
27	PA23/PGMD11
28	PA20/PGMD8
29	GND
30	VDDIO
31	NC
32	NC

33	PC0					
34	GND					
35	VDDIO					
36	PA16/PGMD4					
37	NC					
38	PA15/PGMD3					
39	INTEST1					
40	INTEST2					
41	PA24/PGMD12					
42	PC5					
43	NC					
44	NC					
45	VDDCORE					
46	GND					
47	PA25/PGMD13					
48	VDDOUT18					
49	NC					
50	INTEST3					
51	INTEST4					
52	INTEST5					
53	PA10/PGMM2					
54	GND					
55	PA9/PGMM1					
56	INTEST6					
57	GND					
58	VDDIO					
59	PA8/XOUT32/ PGMM0					
60	INTEST9					
61	GND					
62	PA7/XIN32/ PGMNVALID					
63	INTEST8					
64	VDDIO					

INTEST7
IN ITECT (C
INTEST10
INTEST12
INTEST11
TDI/PB4
VDDIO
PA6/PGMNOE
PA5/PGMRDY
PA4/PGMNCMD
GND
EMIT1
VDDIO
NRST
TST
EMIT2
EMIT3
PA3
EMIT4
PA2/PGMEN2
GND
VDDIO
EMIT5
VDDIO
VDDIO
NC
EMIT6
GND
VDDIO
AFE_HIMP
PA1/PGMEN1
PA0/PGMEN0
VNR

97	TDO/TRACESWO/ PB5
98	DBG0
99	JTAGSEL
100	DBG1
101	DBG2
102	GND
103	VDDIO
104	DBG3
105	TMS/SWDIO/PB6
106	DBG4
107	RSTA
108	RSTS
109	TCK/SWCLK/PB7
110	GND
111	VDDOUT18
112	GND
113	VDDCORE
114	VDDIN
115	ERASE/PB12
116	VDDIN
117	DDM/PB10
118	DDP/PB11
119	VDDIO
120	VDDIO
121	PLC_CLOCKIN
122	PB13/DAC0
123	PLC_CLOCKOUT
124	GND
125	PB8/XOUT
126	GND
127	PB9/PGMCK/XIN
128	VDDPLL
	l

3. Signal Description

Table 3-1. Signal Description List

			Active	Voltage	
Signal Name	Function	Туре	Level	Reference	Comments
	Powe	er Supplies			
VDDIO	Peripherals I/O Lines and USB transceiver Power Supply	Power			3.0V to 3.6V
VDDIN	Voltage Regulator Input, ADC, DAC and Analog Comparator Power Supply	Power			3.0V to 3.6V
VDDCORE	Power the core, the embedded memories and the peripherals	Power			1.08V to 1.32V
VDDPLL	Oscillator and PLL Power Supply	Power			1.08V to 1.32V
VDDOUT18	LDO Output Power Supply	Power			1.8V Ouput
VDDOUT12	Voltage Regulator Output	Power			1.2V Output
AVDD	Analog Converter Power Supply	Power			3.0V to 3.6V
AGND	Analog Ground	Ground			
GND	Digital Ground	Ground			
	Clocks, Osc	illators and PL	Ls		
XIN	Main Oscillator Input	Input			Reset State:
XOUT	Main Oscillator Output	Output			-PIO Input
XIN32	Slow Clock Oscillator Input	Input			-Internal Pull-up disabled
XOUT32	Slow Clock Oscillator Output	Output		VDDIO	-Schmitt Trigger enabled ⁽¹⁾
PCK0 - PCK2	Programmable Clock Output	Output		VDDIO	Reset State: -PIO Input -Internal Pull-up enabled -Schmitt Trigger enabled ⁽¹⁾
PLC_CLOCKIN	External clock Input reference	Input			
PLC_CLOCKOUT	External clock Output reference	Output			
	Analog Input	Voltage Refer	ence		
AINPLC	Direct-analog input voltage	Analog			
AVRH	Analog input high voltage reference	Analog			
AVRL	Analog input low voltage reference	Analog			
ADVERF	Analog Comparator Reference	Analog			

Table 3-1. Signal Description List (Continued)

			Active	Voltage	
Signal Name	Function	Туре	Level	Reference	Comments
	Real	Time Clock		l	
RTCOUT0	Programmable RTC waveform output	Output			Reset State:
RTCOUT1	Programmable RTC waveform output			1,000	-PIO Input
		Output		VDDIO	-Internal Pull-up disabled
					-Schmitt Trigger enabled ⁽¹⁾
	Serial Wire/JTA	G Debug Port - S	SWJ-DP		
TCK/SWCLK	Test Clock/Serial Wire Clock	Input			Reset State:
TDI	Test Data In	Input			- SWJ-DP Mode
TDO/TRACESWO	Test Data Out / Trace Asynchronous Data Out	Output		VDDIO	- Internal pull-up disabled
TMS/SWDIO	Test Mode Select /Serial Wire Input/Output	Input/I/O			- Schmitt Trigger enabled ⁽¹⁾
JTAGSEL	JTAG Selection	Input	High		Permanent Internal pull-down
	Floo	h Memory			pull-down
	1183				Reset State:
	Flash and NVM Configuration Bits Erase Command	Input	High	VDDIO	- Erase Input
ERASE					- Internal pull-down enabled
					- Schmitt Trigger enabled ⁽¹⁾
	Re	eset/Test	<u> </u>		
					Permanent Internal
NRST	Synchronous Microcontroller Reset	1/0	Low		pull-up
TST	Test Select			VDDIO	Permanent Internal
		Input			pull-down
	PRIME PLC TRANS	CEIVER Signal C	Controller		
AGC	Automatic Gain Control	Output			
EMITx	PLC Transmission ports	Output			See footnote (2)
VNR	PLC Zero Crossing Detection Signal	Input			
AFE_HIMP	Analog Front-End High-Impedance	Output			
RSTA	PLC Asynchronous reset	Input			Internal configuration: 33kΩ
RSTS	Initialization Signal	Input			typ. pull-down resistor

Table 3-1. Signal Description List (Continued)

			Active	Voltage	
Signal Name	Function	Туре	Level	Reference	Comments
	PRIME PLC TRANS	CEIVER Configur	ation Pins		
DBGx	External Configuration Pins	1/0			See Pin Description for details
INTEST7 – INTEST12	External Configuration Pins	1/0			
	Universal Asynchronou	s Receiver Trans	sceiver - UA	RTx	
URXDx	UART Receive Data	Input			
UTXDx	UART Transmit Data	Output			
	PIO Controlle	r - PIOA - PIOB -	PIOC		
PA0 - PA31	Parallel IO Controller A	1/0			Reset State:
PB0 - PB14	Parallel IO Controller B	1/0		VDDIO	- PIO or System IOs(2)
PC0 - PC31	Parallel IO Controller C	I/O		VDDIO	- Internal pull-up enabled
		1/0			- Schmitt Trigger enabled ⁽¹⁾
	Universal Synchronous Asynch	ronous Receive	r Transmitt	er USARTx	1
SCKx	USARTx Serial Clock	1/0			
TXDx	USARTx Transmit Data	1/0			
RXDx	USARTx Receive Data	Input			
RTSx	USARTx Request To Send	Output			
CTSx	USARTx Clear To Send	Input			
	Synchronous S	Serial Controller	· - SSC		
TK	SSC Transmit Clock	1/0			
RK	SSC Receive Clock	1/0			
TF	SSC Transmit Frame Sync	1/0			
	Timer	/Counter - TC			
TCLKx	TC Channel x External Clock Input	Input			
TIOAx	TC Channel x I/O Line A	1/0			
TIOBx	TC Channel x I/O Line B	1/0			
	Pulse Width Modu	ulation Controlle	er- PWMC		
PWMHx	PWM Waveform Output High for channel x	Output			
PWMLx	PWM Waveform Output Low for channel x	Output			Only output in complementary mode when dead time insertion is enabled.
PWMFI0	PWM Fault Input	Input			

Table 3-1. Signal Description List (Continued)

			Active	Voltage			
Signal Name	Function	Туре	Level	Reference	Comments		
	PLC Brigde						
INTEST1 – INTEST6	External Configuration pins	1/0					
	Two-Wire	Interface- TWI					
TWDx	TWIx Two-wire Serial Data	1/0					
TWCKx	TWIx Two-wire Serial Clock	1/0					
	Analog Co	mparator - ACC					
AC0 - AC7	Analog Comparator Inputs	Analog					
	USB Full	Speed Device					
DMM	USB Full Speed Data -				Reset State:		
DPP	USB Full Speed Data +	Analog, Digital		VDDIO	- USB Mode		
DFF					- Internal Pull-down ⁽³⁾		

Note:

- 1. Schmitt Triggers can be disabled through PIO registers.
- 2. Different configurations allowed depending on external topology and net behavior.
- 3. Refer to USB Section of the product Electrical Characteristics for information on Pull-down value in USB Mode.

4. Pin Description

Table 4-1. Pin Description List

Pin	Din Nama	Functions	Turna	Community
Number	Pin Name	Functions	Туре	Comments
1	ADVREF		Analog	Analog Voltage Comparator reference
2, 3, 5, 29, 34, 46, 54, 57, 61, 74, 84, 91, 102, 110, 112, 124, 126	GND		Power	Digital Ground
4	AGC		Output	Automatic Gain Control This digital output is managed by AGC hardware logic to drive external circuitry if input signal attenuation is needed
6, 30, 58, 64, 70, 76, 85, 88, 87, 92, 103, 119, 120,	VDDIO		Power	Digital power supply. Voltage range: 3.0V - 3.6 V Must be decoupled by external capacitors
7, 11	AGND		Power	Analog ground
8	PB0	PWMH0 AC4 RTCOUT0	I/O	PIO Controller B Multiplexing (PB0): PWM Waveform Output High for channel 0 Analog Comparator Input channel 4 Programmable RTC waveform output See Signal Description for details.
9, 12	AVDD		Power	Analog converter power supply. Voltage range: 3.0V - 3.6 V
10	PB1	PWMH1 AC5 RTCOUT1	I/O	PIO Controller B Multiplexing (PB1): PWM Waveform Output High for channel 1 Analog Comparator Input channel 5 Programmable RTC waveform output See Signal Description for details.
13	AVRH		Input	Analog input high voltage reference
		I.		

Table 4-1. Pin Description List (Continued)

Pin Number	Pin Name	Functions	Туре	Comments		
14	PB2	URXD1 AC6 WKUP12	I/O	PIO Controller B Multiplexing (PB2): UART1 Receive Input Data Analog Comparator Input channel 6 Wake-up Source 12 Fast start up of the Processor Active level: Low		
15	AINPLC		Input	Direct-analog input voltage		
16	PB3	UTXD1 PCK2 AC7	I/O	PIO Controller B Multiplexing (PB3): UART1 Transmit Output Data Programmable clock output 2 Analog Comparator Input channel 7 See Signal Description for details.		
17	AVRL		Input	Analog input low voltage reference		
18, 35, 114, 116	VDDIN		Р	Voltage Regulator Input, Analog Comparator Power Supply. Voltage range: 3.0V – 3.6 V		
19	VDDOUT12		Р	Voltage output regulator of 1.2 volts		
20	PA17/PGMD5	TD PCK1 PWMH3 AC0	I/O	PIO Controller A Multiplexing (PA17): Synchronous Serial Controller (SSC) Transmit Output Data Programmable clock output 1 PWM Waveform Output High for channel 3 Analog Comparator Input channel 0 See Signal Description for details.		
21	PC26	TIOA4	I/O	PIO Controller C Multiplexing (PC26): Tmer/Counter Channel 4 I/O Line A General purpose I/O		
22	PA18/PGMD6	RD PCK2 AC1	I/O	PIO Controller A Multiplexing (PA18): Synchronous Serial Controller (SSC) Receive Input Data Programmable clock output 2 Analog Comparator Input channel 1 See Signal Description for details.		

Table 4-1. Pin Description List (Continued)

Pin Number	Pin Name	Functions	Туре	Comments
23	PA21/PGMD9	RXD1 PCK1	I/O	PIO Controller A Multiplexing (PA21): USART1 Receive Input Data Programmable clock output 1 See Signal Description for details.
24, 45, 113	VDDCORE		Р	Core, embedded memories and the peripherals power supply: Voltage range of 1.08V to 1.32V
25	PA19/PGMD7	RK PWML0 AC2WKUP 9	I/O	PIO Controller A Multiplexing (PA19): Synchronous Serial Controller (SSC) I/O Receive Clock PWM Waveform Output Low for channel 0 Analog Comparator Input channel 2 Wake-up Source 9 Fast start up of the Processor Active level: Low
26	PA22/PGMD10	TXD1	I/O	PIO Controller A Multiplexing (PA22): • USART1 Transmit I/O Data
27	PA23/PGMD11	SCK1 PWMH0 PIODCLLK	I/O	PIO Controller A Multiplexing (PA23): USART1 I/O Serial Clock PWM Waveform Output High for channel 0 Parallel Capture Mode Input Clock Voltage reference: VDDIO
28	PA20/PGMD8	RF PWML1 AC3 WKUP10	I/O	PIO Controller A Multiplexing (PA20): Synchronous Serial Controller (SSC) I/O Receive Frame Sync PWM Waveform Output Low for channel 1 Analog Comparator Input channel 3 Wake-up Source 10 Fast start up of the Processor Active level: Low
31, 32, 37, 43, 44,	NC		-	No connect

Table 4-1. Pin Description List (Continued)

Pin Number	Pin Name	Functions	Туре	Comments
				PIO Controller C Multiplexing (PC0):
33	PC0	PWML0	I/O	 PWM Waveform Output Low for channel 0
				General purpose I/O
				PIO Controller A Multiplexing (PA16):
				 Synchronous Serial Controller (SSC) I/O Transmit Clock
		TIZ		 Timer/Counter (TC) Channel 1 I/O Line B
36	PA16/PGMD4	TK TIOB1 PWML2	I/O	 PWM Waveform Output Low for channel 2
		WKUP15 PIODCEN2		Wake-up Source 15
		I IODOLNE		Fast start up of the Processor
				Active level: Low
				 PIO Controller - Parallel Capture Mode Enable 2
				Voltage reference: VDDIO
	PA15/PGMD3	TF TIOA1 PWML3 WKUP14 PIODCEN1	I/O	PIO Controller A Multiplexing (PA15):
				 Synchronous Serial Controller (SSC) I/O Transmit Frame Sync
				 Timer/Counter (TC) Channel 1 I/O Line A
38				 PWM Waveform Output Low for channel 3
				Wake-up Source 14
				Fast start up of the ProcessorActive level: Low
				 PIO Controller - Parallel Capture Mode Enable 1
				Voltage reference: VDDIO
39	INTEST1		0	External configuration pin. This pin must connect to INTEST7 (pin 65)
40	INTEST2		0	External configuration pin. This pin must connect to INTEST8 (pin 63)
				PIO Controller A Multiplexing (PA24):
		DTO4		USART1 Request To Send
41	PA24/PGMD12	RTS1 PWMH1 PIODC0	I/O	 PWM Waveform Output High for channel 1
				PIO Controller-Parallel Capture Mode Data 0

Table 4-1. Pin Description List (Continued)

Pin Number	Pin Name	Functions	Туре	Comments		
42	PC5		I/O	PIO Controller C Multiplexing (PC5):		
				General purpose I/O		
				PIO Controller A Multiplexing (PA25):		
		CTS1		USART1 Clear To Send		
47	PA25/PGMD13	PWMH2 PIODC1	I/O	 PWM Waveform Output High for channel 2 		
				 PIO Controller-Parallel Capture Mode Data 1 		
48, 111	VDDOUT18		Power	1.8V LDO Output Power Supply. Just Requires output capacitor. Not intended for external use		
50	INTEST3		0	External configuration pin. This pin must connect to INTEST9 (pin 60)		
51	INTEST4		0	External configuration pin. This pin must connect to INTEST10 (pin 66)		
52	INTEST5		0	External configuration pin. This pin must connect INTEST11 (pin 68)		
				PIO Controller A Multiplexing (PA10):		
53	PA10/PGMM2	UTXD0	I/O	UART Transmit Output Data		
				PIO Controller A Multiplexing (PA9):		
	PA9/PGMM1			UART Receive Input Data		
55		URXD0 PWMFI0	I/O	PWM Fault Input		
	. , , , , , , , , , , , , , , , , , , ,	WKUP6	., 0	Wake-up Source 6		
				Fast start up of the ProcessorActive level: Low		
56	INTEST6		0	External configuration pin. This pin must connect to INTEST12 (pin 67)		
				PIO Controller A Multiplexing (PA8):		
				USART0 Clear To Send		
		CTS0		Wake-up Source 5		
59	PA8/ XOUT32/PGMM0	WKUP5 XOUT32	I/O	Fast start up of the ProcessorActive level: Low		
				Slow Clock Oscillator Output		
				See Signal Description for details.		
60	INTEST9		I	External configuration pin. This pin must connect to INTEST3 (pin 50)		

Table 4-1. Pin Description List (Continued)

Pin Number	Pin Name	Functions	Туре	Comments		
62	PA7/ XIN32/PGMNVALID	RTS0 PWMH3 XIN32	I/O	PIO Controller A Multiplexing (PA7): USART0 Request To Send PWM Waveform Output High for channel 3 Slow Clock Oscillator Input See Signal Description for details.		
63	INTEST8		I	External configuration pin. This pin must connect to INTEST2 (pin 40)		
65	INTEST7		I	External configuration pin. This pin must connect to INTEST1 (pin 39)		
66	INTEST10		I	External configuration pin. This pin must connect INTEST4 (pin 51)		
67	INTEST12		I	External configuration pin. This pin must connect to INTEST6 (pin 56)		
68	INTEST11		I	External configuration pin. This pin must connect to INTEST5 (pin 52)		
69	TDI/PB4	TWD1 PWMH2 TDI	I/O	PIO Controller B Multiplexing (PB4): Two-Wire Interface – TWI1 Two-wire I/O Serial Data PWM Waveform Output High for channel 2 Serial Wire/JTAG Debug Port (SWJ-DP) Test Data In See Signal Description for details.		
71	PA6/PGMNOE	TXD0 PCK0	I/O	PIO Controller A Multiplexing (PA6): USART0 Transmit I/O Data Programmable Clock Output See Signal Description for details.		
72	PA5/PGMRY	RXD0 WKUP4	I/O	PIO Controller A Multiplexing (PA5): USART0 Receive Input Data Wake-up Source 4 Fast start up of the Processor Active level: Low		

Table 4-1. Pin Description List (Continued)

Pin Number	Pin Name	Functions	Туре	Comments
				PIO Controller A Multiplexing (PA4):
				 Two-Wire Interface-TWI0 Two- wire I/O Serial Clock
73	PA4/PGMNCMD	TWCK0 TCLK0	I/O	 Timer/Counter (TC) Channel 0 External Clock Input
		WKUP3		Wake-up Source 3
				 Fast start up of the Processor
				Active level: Low
75, 79,				PLC Transmission ports.
80, 82, 86, 90,	EMIT(1:6)		Output	 See Signal Description for details.
	NRST		I/O	Synchronous PRIME PLC Reset
77				 See Signal Description for details.
				Test Select
78	TST		I	 See Signal Description for details.
		TWD0		PIO Controller A Multiplexing (PA3):
81	PA3	TVVDO	I/O	 Two-Wire Interface - TWI0 Two- wire I/O Serial Data
				PIO Controller A Multiplexing (PA2):
				 PWM Waveform Output High for channel 2
83	PA2/PGMEN2	PWMH2 SCK0	I/O	USART0 I/O Serial Clock
		WKUP2		Wake-up Source 2
				 Fast start up of the Processor
				Active level: Low

Table 4-1. Pin Description List (Continued)

Pin Number	Pin Name	Functions	Туре	Comments
93	AFE_HIMP		Output	This digital output is used by the chip to select between low-impedance and high-impedance transmission branch (when working with a "two half-H-bridge branches" analog front end configuration). This way, the system adapts its transmission external circuitry to the net impedance, improving transmission behavior. The polarity of this pin can be inverted by hardware. Please refer to the Reference Design for further information.
94	PA1/PGMEN1	PWMH1 TIOB0 WKUP1	I/O	PIO Controller A Multiplexing (PA1): PWM Waveform Output High for channel 1 Timer/Counter (TC) Channel 0 I/O Line B Wake-up Source 1 Fast start up of the Processor Active level: Low
95	PA0/PGMEN0	PWMH0 TIOA0 WKUP0	I/O	PIO Controller A Multiplexing (PA0): PWM Waveform Output High for channel 0 Timer/Counter (TC) Channel 0 I/O Line A Wake-up Source 0 Fast start up of the Processor Active level: Low
96	VNR		Input	PLC Zero Crossing Detection Signal This input detects the zero-crossing of the mains voltage, needed to determine proper switching times. Depending on whether an isolated or a non-isolated power supply is being used, isolation of this pin should be taken into account in the circuitry design. Please refer to the Reference Design for further information.

Table 4-1. Pin Description List (Continued)

Pin Number	Pin Name	Functions	Туре	Comments		
97	TDO/ TRACESWO/PB5	TWCK1 PWML0 WKUP13 TDO TRACESWO	I/O	PIO Controller B Multiplexing (PB5): Two-Wire Interface - TWI1 Two-wire I/O Serial Clock PWM Waveform Output Low for channel 0 Wake-up Source 13 Fast start up of the Processor Active level: Low TDO - Test Data Out / Trace Asynchronous DataOut (TRACESWO) See Signal Description for details.		
98	DBG0		Input	Internal configuration: must connect 33kΩ typ. pull-up resistor		
99	JTAGSEL		A-I	Analog input used to select the JTAG boundary scan when asserted at a high level. See Signal Description for details.		
100	DBG1		Input	Internal configuration: must 33kΩ typ. pull-up resistor		
101	DBG2		Output	No connect		
104	DBG3		Input	Internal configuration: must 33kΩ typ. pull-up resistor		
105	TMS/ SWDIO/PB6	TMS SWDIO	I/O	PIO Controller B Multiplexing (PB6): TMS - Test Mode Input Select / (SWDIO) Serial Wire I/O See Signal Description for details.		
106	DBG4		Input	No connect		
107	RSTA		Input	PLC Asynchronous reset RSTA is a digital input pin used to perform a hardware reset of the ASIC RSTA is active high		

Table 4-1. Pin Description List (Continued)

Pin Number	Pin Name	Functions	Туре	Comments
108	RSTS		Input	During power-on, D_INIT should be released before asynchronous reset signal RSTA, in order to ensure proper system start up. Not minimum time is required between both releases, △t>0 D_INIT is active high
				PIO Controller B Multiplexing (PB7):
109	TCK/SWCLK/ PB7	TCK SWCLK	I/O	TCK -Test Clock/(SWCLK) Serial Wire Clock
		SWOLK		See Signal Description for details.
	ERASE/PB12	PWML1 ERASE	I/O	PIO Controller B Multiplexing (PB12):
				PWM Waveform Output Low for channel 0
115				 Flash and NVM Configuration Bits Erase Command
				See Signal Description for details.
				PIO Controller B Multiplexing (PB10):
117	DDM/PB10	DMM	A-I/O	USB Full Speed Data –
				 See Signal Description for details.
				PIO Controller B Multiplexing (PB11):
118	DDP/PB11	DPP	A-I/O	USB Full Speed Data +
				 See Signal Description for details.
				External clock reference
121	PLC_CLOCKIN		Input	PLC_CLOCKIN must be connected to one terminal of a crystal (when a crystal is being used) or tied to ground if a compatible oscillator is being used

Table 4-1. Pin Description List (Continued)

Pin Number	Pin Name	Functions	Туре	Comments
123	PLC_CLOCKOUT		I/O	PLC_CLOCKOUT must be connected to one terminal of a crystal (when a crystal is being used) or to one terminal of a compatible oscillator (when a compatible oscillator is being used)
125	PB8/XOUT	XOUT	Output	PIO Controller B Multiplexing (PB8): • Main Oscilator Output
127	PB9/PGMCK/XIN	XIN	Input	PIO Controller B Multiplexing (PB9): • Main Oscilator Input
128	VDDPLL		Power	Oscillator and PLL Power Supply • 1.08V to 1.32V

5. Power Considerations

5.1 **Power Supplies**

The SAM4SP32A has several types of power supply pins:

- VDDCORE pins: Power the core, the embedded memories and the peripherals. Voltage ranges from 1.08V to 1.32V.
- VDDIO pins: Power the Peripherals I/O lines (Input/Output Buffers), USB transceiver, Backup part, 32 kHz crystal oscillator and oscillator pads. Voltage ranges from 3.0V to 3.6V.
- VDDIN pin: Voltage Regulator Input, and Analog Comparator Power Supply. Voltage ranges from 3.0V to 3.6V.
- VDDPLL pin: Powers the PLLA, PLLB, the Fast RC and the 3 to 20 MHz oscillator. Voltage ranges from 1.08V to 1.32V.
- AVDD pin: PRIME PLC Analog Converter Power Supply. Voltage ranges from 3.0V to 3.6V.

5.2 Voltage Regulator

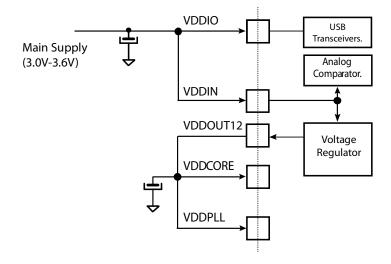
The SAM4SP32A embeds two voltage regulators that are managed by the Supply Controller.

The first internal regulator is designed to supply the internal core of SAM4SP32A It features two operating modes:

- In Normal mode, the voltage regulator consumes less than 500 μA static current and draws 80 mA of output current. Internal adaptive biasing adjusts the regulator quiescent current depending on the required load current. In Wait Mode quiescent current is only 5 μA.
- In Backup mode, the voltage regulator consumes less than 1 μA while its output (VDDOUT12) is driven internally to GND. The default output voltage is 1.20V and the start-up time to reach Normal mode is less than 300 μs.

The second internal regulator is designed to supply the internal PRIME PLC Transceiver. Its output (VDDOUT18) is driven internally to GND and the default output voltage is 1.8V. The VDDOUT18 pin just requires an output capacitor in the range of $0.1\mu\text{F}-10\mu\text{F}$ and it is not intended for external use.

For adequate input and output power supply decoupling/bypassing, refer to the "Voltage Regulator" section in the "Electrical Characteristics" section of the datasheet.


5.3 Typical Powering Schematics

The SAM4SP32A supports a 3.0V-3.6V single supply mode. The internal regulator input is connected to the source and its output feeds VDDCORE. Figure 5-1 shows the power schematics.

As VDDIN powers the voltage regulator, and the analog comparator, when the user does not want to use the embedded voltage regulator, it can be disabled by software via the SUPC (note that this is different from Backup mode).

Figure 5-1. Single Supply

Note: Restrictions

For USB, VDDIO needs to be greater than 3.0V.

Figure 5-2. Core Externally Supplied

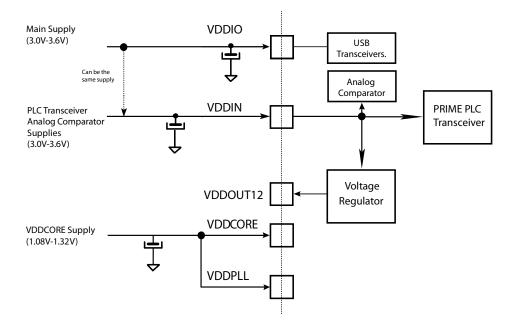
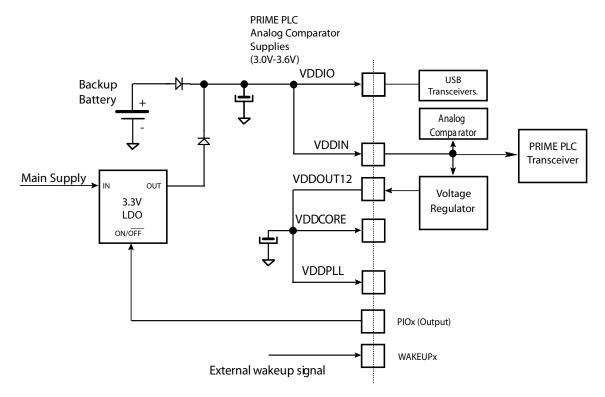



Figure 5-3. Backup Baterry

Note: The two diodes provide a "switchover circuit" (for illustration purpose) between the backup battery and the main supply when the system is put in backup mode.

5.4 **Active Mode**

Active mode is the normal running mode with the core clock running from the fast RC oscillator, the main crystal oscillator or the PLLA. The power management controller can be used to adapt the frequency and to disable the peripheral clocks.

5.5 Low-power Modes

In low-power mode, the 3.3 Volts power source must be shut down before running in any low-power mode. The PRIME PLC transceiver peripheral is turned off during a low-power mode configuration. The various low-power modes of the SAM4SP32A are described below:

5.5.1 Backup Mode

The purpose of backup mode is to achieve the lowest power consumption possible in a system which is performing periodic wake-ups to perform tasks but not requiring fast startup time.

The Supply Controller, zero-power power-on reset, RTT, RTC, Backup registers and 32 kHz oscillator (RC or crystal oscillator selected by software in the Supply Controller) are running. The regulators, PRIME PLC transceiver and the core supply are off.

Backup mode is based on the Cortex-M4 deep sleep mode with the voltage regulators disabled.

The SAM4SP32A can be awakened from this mode through WUP0-15 pins, the supply monitor (SM), the RTT or RTC wake-up event.

Backup mode is entered by using bit VROFF of Supply Controller (SUPC_CR) and with the SLEEPDEEP bit in the Cortex-M4 System Control Register set to 1.

Entering Backup mode:

- Set the SLEEPDEEP bit of Cortex M4, set to 1.
- Set the VROFF bit of SUPC CR at 1

Exit from Backup mode happens if one of the following enable wake up events occurs:

- WKUPEN0-15 pins (level transition, configurable debouncing)
- Supply Monitor alarm
- RTC alarm
- RTT alarm

5.5.2 Wait Mode

The purpose of the wait mode is to achieve very low power consumption while maintaining the whole device in a powered state for a startup time of less than few hundred μ s. Current Consumption in Wait mode is typically few μ A (total current consumption) if the internal voltage regulator is used.

In this mode, the clocks of the core, peripherals and memories are stopped. However, the core, peripherals and memories power supplies are still powered except for the PRIME PLC transceiver which remains turned off. From this mode, a fast start up is available.

This mode is entered via WAITMODE =1 (Waitmode bit in CKGR_MOR) and with LPM = 1 (Low Power Mode bit in PMC_FSMR) and with FLPM = 00 or FLPM=01 (Flash Low Power Mode bits in PMC_FSMR).

The Cortex-M4 is able to handle external events or internal events in order to wake-up the core. This is done by configuring the external lines WUP0-15 as fast startup wake-up pins (refer to 0). RTC or RTT Alarm and USB wake-up events can be used to wake up the CPU.

Entering Wait Mode:

- Select the 4/8/12 MHz fast RC oscillator as Main Clock
- Set the LPM bit in the PMC Fast Startup Mode Register (PMC_FSMR)
- Set the FLPM bitfield in the PMC Fast Startup Mode Register (PMC_FSMR)
- Set Flash Wait State at 0
- Set the WAITMODE bit = 1 in PMC Main Oscillator Register (CKGR_MOR)
- Wait for Master Clock Ready MCKRDY=1 in the PMC Status Register (PMC_SR)

Note:

Internal Main clock resynchronization cycles are necessary between the writing of MOSCRCEN bit and the effective entry in Wait mode. Depending on the user application, waiting for MOSCRCEN bit to be cleared is recommended to ensure that the core will not execute unde-sired instructions.

5.5.3 Sleep Mode

The purpose of sleep mode is to optimize power consumption of the device versus response time. In this mode, only the core clock is stopped. The peripheral clocks can be enabled. The current consumption in this mode is application dependent.

This mode is entered via Wait for Interrupt (WFI) with LPM = 0 in PMC_FSMR.

The processor can be awakened from an interrupt if WFI instruction of the Cortex M4 is used.

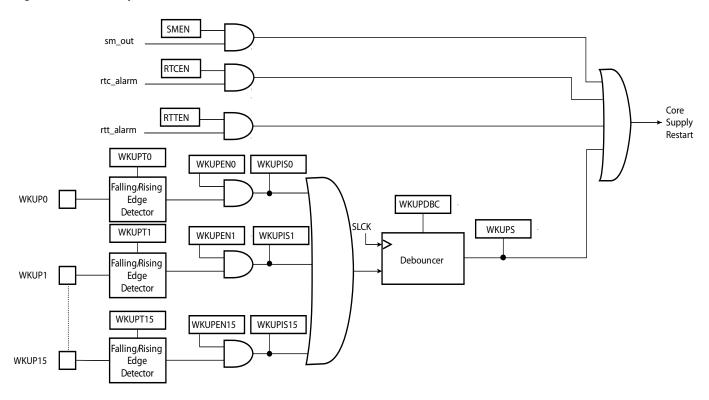
5.5.4 Low Power Mode Summary Table

The modes detailed above are the main low-power modes. Each part can be set to on or off separately and wake up sources can be individually configured. Table 5-1 shows a summary of the configurations of the low-power modes.

Table 5-1. Low Power Mode Configuration Summary

Mode	SUPC, 32 kHz Oscillator, RTC, RTT Backup Registers, POR (Backup Region)	Regulator	Core Memory Periphericals	Mode Entry	Potential Wake Up Sources	Core at Wake Up	PIO State while in Low Power Mode	PIO State at Wake Up	Consumption (2) (3)	Wake-up Time ⁽¹⁾
Backup Mode	ON	OFF	OFF (Not powered)	VROFF = 1 +SLEEPDEEP bit = 1	WUPO-15 pins SM alarm RTC alarm RTT alarm	Reset	Previous state saved	PIOA & PIOB & PIOC Inputs with pull ups	1.5 μA typ ⁽⁴⁾	< 0.5 ms
Wait Mode	ON	ON	Powered (Not clocked)	Waitmode=1 +SLEEPDEEP bit = 0 +LPM bit = 1	Any Event from: Fast startup through WUP0-15 pins RTC alarm RTT alarm USB wake-up	Clocked back	Previous state saved	Unchanged	15 μA/ 25 μA (5)	< 10 μs
Sleep Mode	ON	ON	Powered ⁽¹⁾ (Not clocked)	WFE or WFI +SLEEPDEEP bit = 0 +LPM bit = 0	Entry mode =WFI Interrupt Only; Any Enabled Interrupt	Clocked back	Previous state saved	Unchanged	(6)	(6)

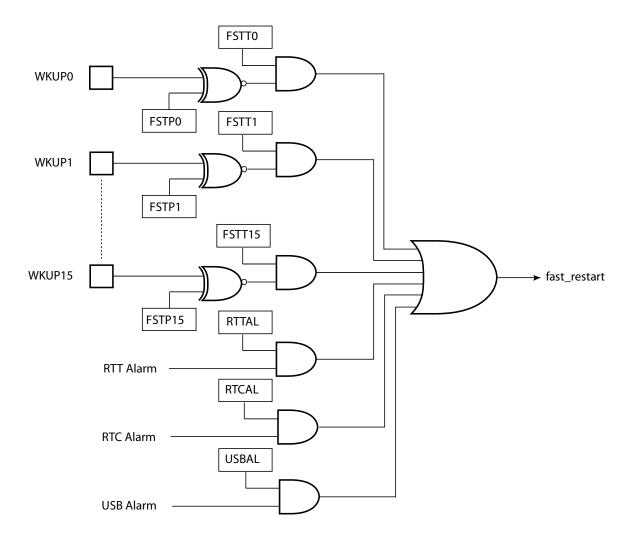
Note:


- 1. When considering wake-up time, the time required to start the PLL is not taken into account. Once started, the device works with the 4/8/12 MHz fast RC oscillator. The user has to add the PLL start-up time if it is needed in the system. The wake-up time is defined as the time taken for wake up until the first instruction is fetched.
- 2. The external loads on PIOs are not taken into account in the calculation.
- 3. Supply Monitor current consumption is not included.
- 4. Total Current consumption.
- 5. 15 μ A on VDDCORE, 25 μ A for total current consumption (using internal voltage regulator), 18 μ A for total current consumption (without using internal voltage regulator).
- 6. Depends on MCK frequency.
- 7. In this mode the core is supplied and not clocked but some peripherals can be clocked.

5.6 Wake-up Sources

The wake-up events allow the device to exit the backup mode. When a wake-up event is detected, the Supply Controller performs a sequence which automatically re-enables the core power supply and the SRAM power supply, if they are not already enabled.

Figure 5-4. Wake-up Sources



5.7 Fast Startup

The SAM4SP32A allows the processor to restart in a few microseconds while the processor is in wait mode or in sleep mode. A fast start up can occur upon detection of a low level on one of the 19 wake-up inputs (WKUP0 to 15 + SM + RTC + RTT).

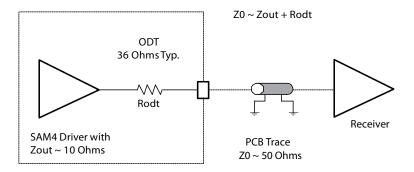
The fast restart circuitry, as shown in Figure 5-5, is fully asynchronous and provides a fast start-up signal to the Power Management Controller. As soon as the fast start-up signal is asserted, the PMC automatically restarts the embedded 4/8/12 MHz Fast RC oscillator, switches the master clock on this 4 MHz clock and reenables the processor clock.

Figure 5-5. Fast Start-Up Sources

6. Input/Output Lines

The SAM4SP32A has several kinds of input/output (I/O) lines such as general purpose I/Os (GPIO) and system I/Os. GPIOs can have alternate functionality due to multiplexing capabilities of the PIO controllers. The same PIO line can be used whether in I/O mode or by the multiplexed peripheral. System I/Os include pins such as test pins, oscillators, erase or analog inputs.

6.1 General Purpose I/O Lines


GPIO Lines are managed by PIO Controllers. All I/Os have several input or output modes such as pull-up or pull-down, input Schmitt triggers, multi-drive (open-drain), glitch filters, debouncing or input change interrupt. Programming of these modes is performed independently for each I/O line through the PIO controller user interface. For more details, refer to the product "PIO Controller" section.

The input/output buffers of the PIO lines are supplied through VDDIO power supply rail.

The SAM4SP32A embeds high speed pads able to handle up to 45 MHz for PLC bridge clock lines and 35 MHz on other lines. See AC Characteristics Section of the datasheet for more details. Typical pull-up and pull-down value is $100 \text{ k}\Omega$ for all I/Os.

Each I/O line also embeds an ODT (On-Die Termination), (see Figure 6-1 below). It consists of an internal series resistor termination scheme for impedance matching between the out-put (SAM4SP32A) driver and the PCB trace impedance preventing signal reflection. The series resistor helps to reduce IOs switching current (di/dt) thereby reducing in turn, EMI. It also decreases overshoot and undershoot (ringing) due to inductance of interconnect between devices or between boards. In conclusion ODT helps diminish signal integrity issues.

Figure 6-1. On-Die Termination

6.2 System I/O Lines

System I/O lines are pins used by oscillators, test mode, reset, JTAG, and the like. Described below in Table 6-1 are the SAM4SP32A system I/O lines shared with PIO lines.

These pins are software configurable as general purpose I/O or system pins. At startup the default function of these pins is always used.

Table 6-1. System I/O Configuration Pin List

SYSTEM_IO bit number	Default function after reset	Other Functions	Constraints for normal start	Configuration
12	ERASE	PB12	Low level at startup ⁽¹⁾	In Matrix User Interface Registers (Refer to the System I/O Configuration Register in the "Bus Matrix" section of the datasheet.)
10	DMM	PB10	-	
11	DPP	PB11	-	
7	TCK/SWCLK	PB7	-	
6	TMS/SWDIO	PB6	-	
5	TDO/TRACEESWO	PB5	-	
4	TDI	PB4	-	
-	PA7	XIN32	-	See footnote (2) below
-	PA8	XOUT32	-	
-	PB9	XIN	-	See footnote ⁽³⁾ below
-	PB8	XOUT	-	

Note:

- 1. If PB12 is used as PIO input in user applications, a low level must be ensured at startup to prevent Flash erase before the user application sets PB12 into PIO mode,
- 2. In the product Datasheet Refer to: "Slow Clock Generator" of the "Supply Controller" section.
- 3. In the product Datasheet Refer to: "3 to 20 MHZ Crystal Oscillator" information in the "PMC" section

6.2.2 Serial Wire JTAG Debug Port (SWJ-DP) Pins

The SWJ-DP pins are TCK/SWCLK, TMS/SWDIO, TDO/SWO, TDI and commonly provided on a standard 20-pin JTAG connector defined by ARM. For more details about voltage reference and reset state, refer to Table 3-1.

At startup, SWJ-DP pins are configured in SWJ-DP mode to allow connection with debugging probe. Please refer to the "Debug and Test" Section of the product datasheet.

SWJ-DP pins can be used as standard I/Os to provide users more general input/output pins when the debug port is not needed in the end application. Mode selection between SWJ-DP mode (System IO mode) and general IO mode is performed through the AHB Matrix Special Function Registers (MATRIX_SFR). Configuration of the pad for pull-up, triggers, debouncing and glitch filters is possible regardless of the mode.

The JTAGSEL pin is used to select the JTAG boundary scan when asserted at a high level. It integrates a permanent pull-down resistor of about 15 k Ω to GND, so that it can be left unconnected for normal operations.

By default, the JTAG Debug Port is active. If the debugger host wants to switch to the Serial Wire Debug Port, it must provide a dedicated JTAG sequence on TMS/SWDIO and TCK/SWCLK which disables the JTAG-DP and enables the SW-DP. When the Serial Wire Debug Port is active, TDO/TRACESWO can be used for trace.

The asynchronous TRACE output (TRACESWO) is multiplexed with TDO. So the asynchro-nous trace can only be used with SW-DP, not JTAG-DP. For more information about SW-DP and JTAG-DP switching, please refer to the "Debug and Test" Section.

6.3 **Test Pin**

The TST pin is used for JTAG Boundary Scan Manufacturing Test or Fast Flash programming mode of the SAM4SP32A series. The TST pin integrates a permanent pull-down resistor of about 15 k Ω to GND, so that it can be left unconnected for normal operations. To enter fast programming mode, see the Fast Flash Programming Interface (FFPI) section. For more on the manufacturing and test mode, refer to the "Debug and Test" section of the product datasheet.

6.4 NRST Pin

The NRST pin is bidirectional. It is handled by the on-chip reset controller and can be driven low to provide a reset signal to the external components or asserted low externally to reset the microcontroller. It will reset the Core and the peripherals except the Backup region (RTC, RTT and Supply Controller). There is no constraint on the length of the reset pulse and the reset controller can guarantee a minimum pulse length. The NRST pin integrates a permanent pull-up resistor to VDDIO of about 100 k Ω . By default, the NRST pin is configured as an input.

6.5 **ERASE Pin**

The ERASE pin is used to reinitialize the Flash content (and some of its NVM bits) to an erased state (all bits read as logic level 1). It integrates a pull-down resistor of about 100 k Ω to GND, so that it can be left unconnected for normal operations.

This pin is debounced by SCLK to improve the glitch tolerance. When the ERASE pin is tied high during less than 100 ms, it is not taken into account. The pin must be tied high during more than 220 ms to perform a Flash erase operation.

The ERASE pin is a system I/O pin and can be used as a standard I/O. At startup, the ERASE pin is not configured as a PIO pin. If the ERASE pin is used as a standard I/O, startup level of this pin must be low to prevent unwanted erasing. Refer to Peripheral Signal Multiplexing on I/O Lines Also, if the ERASE pin is used as a standard I/O output, asserting the pin to low does not erase the Flash.

7. Processor and Architecture

7.1 ARM Cortex-M4 Processor

- Thumb-2 (ISA) subset consisting of all base Thumb-2 instructions, 16-bit and 32-bit.
- Harvard processor architecture enabling simultaneous instruction fetch with data load/store.
- Three-stage pipeline.
- Single cycle 32-bit multiply.
- Hardware divide.
- Thumb and Debug states.
- Handler and Thread modes.
- Low latency ISR entry and exit.

7.2 APB/AHB Bridge

The SAM4SP32A embeds One Peripheral bridge:

The peripherals of the bridge are clocked by MCK.

7.3 Matrix Master

The Bus Matrix of the SAM4SP32A manages 4 masters, which means that each master shall perform an access concurrently with others, to an available slave.

Each master has its own decoder, which is defined specifically for each master. In order to simplify the addressing, all the masters have the same decodings.

Table 7-1. List of Bus Matrix Masters

Master 0	Cortex-M4 Instruction/Data
Master 1	Cortex-M4 System
Master 2	Peripheral DMA Controller (PDC)
Master 3	CRC Calculation Unit

7.4 Matrix Slaves

The Bus Matrix of the SAM4SP32A manages 5 slaves. Each slave has its own arbiter, allowing a different arbitration per slave.

Table 7-2. List of Bus Matrix Slaves

Slave 0	Internal SRAM
Slave 1	Internal ROM
Slave 2	Internal Flash
Slave 3	External Bus Interface
Slave 4	Peripheral Bridge

7.5 Master to Slave Access

All the Masters can normally access all the Slaves. However, some paths do not make sense, for example allowing access from the Cortex-43 S Bus to the Internal ROM. Thus, these paths are forbidden or simply not wired, and shown as "-" in the following table.

Table 7-3. SAM4SP32A Master to Slave Access

		0	0 1		3
Slaves	Masters	Cortex-M4	Cortex-M4 S	PDC	CRCCU
		I/D Bus	Bus		
0	Internal SRAM	-	X	Χ	Х
1	Internal ROM	Х	-	Χ	Х
2	Internal Flash	Х	-	-	Х
3	External Bus Interface	-	X	Х	X
4	Peripherical Bridge	-	X	Х	-

7.6 Peripherical DMA Controller

- Handles data transfer between peripherals and memories
- Low bus arbitration overhead
 - One Master Clock cycle needed for a transfer from memory to peripheral
 - Two Master Clock cycles needed for a transfer from peripheral to memory
- Next Pointer management for reducing interrupt latency requirement

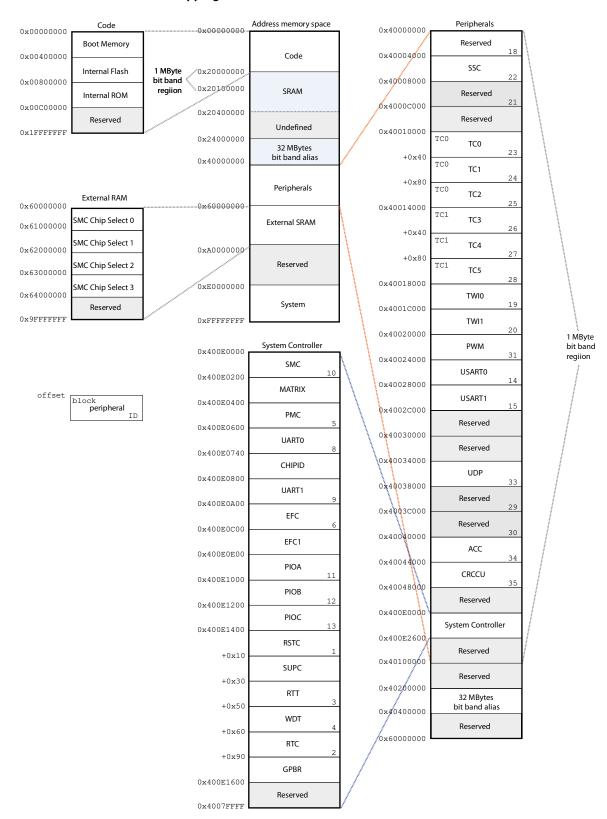
The Peripheral DMA Controller handles transfer requests from the channel according to the following priorities (Low to High priorities):

Table 7-4. Peripherical DMA Controller

Instance name	Channel T/R
PWM	Transmit
TWI1	Transmit
TWI0	Transmit
UART1	Transmit
UART0	Transmit
USART1	Transmit
USART0	Transmit
PLC bridge	Transmit
SSC	Transmit

Table 7-5. Peripherical DMA Controller

Instance name	Channel T/R
PIOA	Receive
TWI1	Receive
TWI0	Receive
UART1	Receive
UART0	Receive
USART1	Receive
USART0	Receive
PLC bridge	Receive
SSC	Receive


7.7 **Debug and Test Features**

- Debug access to all memory and registers in the system, including Cortex-M4 register bank when the core is running, halted, or held in reset.
- Serial Wire Debug Port (SW-DP) and Serial Wire JTAG Debug Port (SWJ-DP) debug access
- Flash Patch and Breakpoint (FPB) unit for implementing breakpoints and code patches
- Data Watchpoint and Trace (DWT) unit for implementing watch points, data tracing, and system profiling
- Instrumentation Trace Macrocell (ITM) for support of printf style debugging
- IEEE®1149.1 JTAG Boundary scan on All Digital Pins

8. SAM4SP32A Product Mapping

Figure 8-1. SAM4SP32A Product Mapping

9. Memories

9.1 Embedded Memories

9.1.1 Internal SRAM

The SAM4SP32A device embeds a total of 160-Kbytes high-speed SRAM.

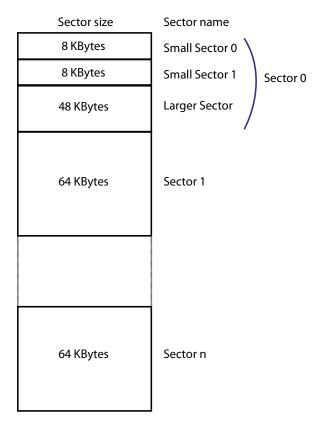
The SRAM is accessible over System Cortex-M4 bus at address 0x2000 0000. The SRAM is in the bit band region. The bit band alias region is from 0x2200 0000 to 0x23FF FFFF.

9.1.2 Internal ROM

The SAM4SP32A embeds an Internal ROM, which contains the SAM Boot Assistant (SAM-BA®), In Application Programming routines (IAP) and Fast Flash Programming Interface (FFPI).

At any time, the ROM is mapped at address 0x0080 0000.

9.1.3 Embedded Flash

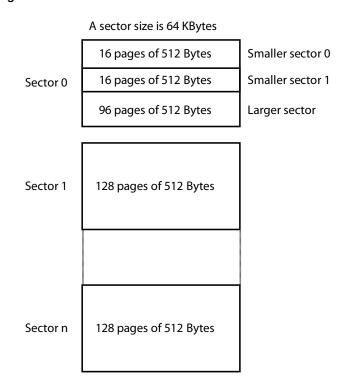

9.1.3.1 Flash Overview

Flash size is 2x1024 Kbytes.

The memory is organized in sectors. Each sector has a size of 64 KBytes. The first sector of 64 Kbytes is divided into 3 smaller sectors.

The three smaller sectors are organized to consist of 2 sectors of 8 KBytes and 1 sector of 48 KBytes. Refer to 41 below.

Figure 9-1. Global Flash Organization


Each Sector is organized in pages of 512 Bytes. For sector 0:

- The smaller sector 0 has 16 pages of 512Bytes
- The smaller sector 1 has 16 pages of 512 Bytes
- The larger sector has 96 pages of 512 Bytes

From Sector 1 to n:

The rest of the array is composed of 64 KBytes sector of each 128 pages of 512bytes. Refer to Figure 9-2 below.

Figure 9-2. Flash Sector Organization

- SAM4SP32A: the Flash size is 2 x 1024 KBytes
 - Internal Flash0 address is 0x0040 0000
 - Internal Flash1 address is 0x0050_0000

Refer to Figure 9-3 below for the organization of the Flash following its size.

Figure 9-3. Flash Size

Flash 1 MBytes

2 x 8kBytes

1 x 48kBytes

15 x 64kBytes

Erasing the memory can be performed as follows:

on a 512-byte page inside a sector, of 8K Bytes (1)

Note: EWP and EWPL commands can be only used in 8 KBytes sectors.

- on a 4-Kbyte Block inside a sector of 8 KBytes/48 Kbytes/64 Kbytes
- on a sector of 8 KBytes/48 KBytes/64 KBytes
- on chip

The memory has one additional reprogrammable page that can be used as page signature by the user. It is accessible through specific modes, for erase, write and read operations. Erase pin assertion will not erase the User Signature page.

Erase memory by page is possible only in Sector of 8 Kbytes.

(1) EWP and EWPL commands can be only used in sector 8KBytes sectors.

9.1.3.2 Enhanced Embedded Flash Controller

The Enhanced Embedded Flash Controller (HEFC4) manages accesses performed by the masters of the system. It enables reading the Flash and writing the write buffer. It also contains a User Interface, mapped on the APB.

The Enhanced Embedded Flash Controller ensures the interface of the Flash block.

It manages the programming, erasing, locking and unlocking sequences of the Flash using a full set of commands.

One of the commands returns the embedded Flash descriptor definition that informs the sys-tem about the Flash organization, thus making the software generic.

9.1.3.3 Flash Speed

The user needs to set the number of wait states depending on the frequency used:

For more details, refer to the "AC Characteristics" sub-section of the product "Electrical Characteristics".

9.1.3.4 Lock Regions

Several lock bits are used to protect write and erase operations on lock regions. A lock region is composed of several consecutive pages, and each lock region has its associated lock bit.

Table 9-1. Lock bit number

Product	Number of lock bits	Lock region size
SAM4SP32A	256 (128 + 128)	8 Kbytes

If a locked-region's erase or program command occurs, the command is aborted and the EEFC triggers an interrupt.

The lock bits are software programmable through the EEFC User Interface. The command "Set Lock Bit" enables the protection. The command "Clear Lock Bit" unlocks the lock region.

Asserting the ERASE pin clears the lock bits, thus unlocking the entire Flash.

9.1.3.5 Security Bit Feature

The SAM4SP32A features a security bit, based on a specific General Purpose NVM bit (GPNVM bit 0). When the security is enabled, any access to the Flash, SRAM, Core Registers and Internal Peripherals either through the ICE interface or through the Fast Flash Programming Interface, is forbidden. This ensures the confidentiality of the code programmed in the Flash.

This security bit can only be enabled, through the command "Set General Purpose NVM Bit 0" of the EEFC User Interface. Disabling the security bit can only be achieved by asserting the ERASE pin at 1, and after a full Flash erase is performed. When the security bit is deactivated, all accesses to the Flash, SRAM, Core registers, Internal Peripherals are permitted.

It is important to note that the assertion of the ERASE pin should always be longer than 200 ms.

As the ERASE pin integrates a permanent pull-down, it can be left unconnected during normal operation. However, it is safer to connect it directly to GND for the final application.

9.1.3.6 Calibration Bits

NVM bits are used to calibrate the brownout detector and the voltage regulator. These bits are factory configured and cannot be changed by the user. The ERASE pin has no effect on the calibration bits.

9.1.3.7 Unique Identifier

SAM4SP32A device integrates its own 128-bit unique identifier. These bits are factory configured and cannot be changed by the user. The ERASE pin has no effect on the unique identifier.

9.1.3.8 User Signature

Each part contains a User Signature of 512 bytes. It can be used by the user to store user information such as trimming, keys, etc., that the customer does not want to be erased by asserting the ERASE pin or by software ERASE command. Read, write and erase of this area are allowed.

9.1.3.9 Fast Flash Programming Interface

The Fast Flash Programming Interface allows programming the device through either a serial JTAG interface or through a multiplexed fully-handshaked parallel port. It allows gang programming with market-standard industrial programmers.

The FFPI supports read, page program, page erase, full erase, lock, unlock and protect commands.

The Fast Flash Programming Interface is enabled and the Fast Programming Mode is entered when TST and PA0 and PA1are tied low.

9.1.3.10 SAM-BA Boot

The SAM-BA Boot is a default Boot Program which provides an easy way to program in-situ the on-chip Flash memory.

The SAM-BA Boot Assistant supports serial communication via the UART and USB.

The SAM-BA Boot provides an interface with SAM-BA Graphic User Interface (GUI).

The SAM-BA Boot is in ROM and is mapped in Flash at address 0x0 when GPNVM bit 1 is set to 0.

9.1.3.11 GPNVM Bits

The GPNVM bits of the SAM4SP32A are only available on FLash0. There is no GPNVM bit on Flash1. The GPNVM0 is the security bit. The GPNVM1 is used to select the boot mode (boot always at 0x00) on ROM or FLASH. The SAM4SP32A embeds an additional GPNVM bit: GPNVM2. This GPNVM bit is used only to swap the Flash0 and Flash1. If GPNVM bit 2 is:

ENABLE: If the Flash1 is mapped at address 0x0040 0000 (Flash1 and Flash0 are continuous).

DISABLE: If the Flash0 is mapped at address 0x0040 0000 (Flash0 and Flash1 are continuous).

Table 9-2. General Purpose Non volatile Memory Bits

GPNVMBit[#]	Function
0	Security bit
1	Boot mode selection
2	Flash selection (Flash 0 or Flash 1)

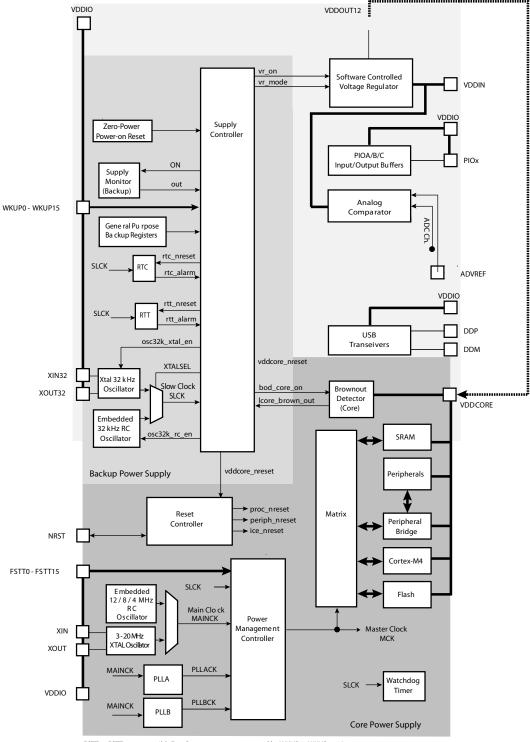
9.1.4 Boot Strategies

The system always boots at address 0x0. To ensure maximum boot possibilities, the memory layout can be changed via GPNVM.

A general purpose NVM (GPNVM) bit is used to boot either on the ROM (default) or from the Flash.

The GPNVM bit can be cleared or set respectively through the commands "Clear General-purpose NVM Bit" and "Set General-purpose NVM Bit" of the EEFC User Interface.

Setting GPNVM Bit 1 selects the boot from the Flash, clearing it selects the boot from the ROM. Asserting ERASE clears the GPNVM Bit 1 and thus selects the boot from the ROM by default.


Setting the GPNVM Bit 2 selects bank 1, clearing it selects the boot from bank 0. Asserting ERASE clears the GPNVM Bit 2 and thus selects the boot from bank 0 by default.

10. System Controller

The System Controller is a set of peripherals, which allow handling of key elements of the system, such as power, resets, clocks, time, interrupts, watchdog, etc

Figure 10-1. System Controller Block Diagram

 ${\tt FSTT0-FSTT15} \ are \ possible Fast \ Startup \ sources, generated \ by \ WKUP0-WKUP15 \ pins, but are not physical pins.$

10.1 System Controller and Peripherals Mapping

Please refer to SAM4SP32A Product Mapping.

All the peripherals are in the bit band region and are mapped in the bit band alias region.

10.2 Power-on-Reset, Brownout and Supply Monitor

The SAM4SP32A embeds three features to monitor, warn and/or reset the chip:

- Power-on-Reset on VDDIO
- Brownout Detector on VDDCORE
- Supply Monitor on VDDIO

10.2.1 Power-On-Reset

The Power-on-Reset monitors VDDIO. It is always activated and monitors voltage at start up but also during power down. If VDDIO goes below the threshold voltage, the entire chip is reset. For more information, refer to the Electrical Characteristics section of the datasheet.

10.2.2 Brownout Detector on VDDCORE

The Brownout Detector monitors VDDCORE. It is active by default. It can be deactivated by software through the Supply Controller (SUPC_MR). It is especially recommended to disable it during low-power modes such as wait or sleep modes.

If VDDCORE goes below the threshold voltage, the reset of the core is asserted. For more information, refer to the Supply Controller (SUPC) and Electrical Characteristics sections of the datasheet.

10.2.3 Supply Monitor on VDDIO

The Supply Monitor monitors VDDIO. It is not active by default. It can be activated by software and is fully programmable with 16 steps for the threshold (between 3.0 V to 3.6 V). It is controlled by the Supply Controller (SUPC). A sample mode is possible. It allows dividing the supply monitor power consumption by a factor of up to 2048. For more information, refer to the SUPC and Electrical Characteristics sections of the datasheet.

10.3 Reset Controller

The Reset Controller is based on a Power-on-Reset cell, and a Supply Monitor on VDDCORE. The Reset Controller is capable to return to the software the source of the last reset, either a general reset, a wake-up reset, a software reset, a user reset or a watchdog reset. The Reset Controller controls the internal resets of the system and the NRST pin input/output. It is capable to shape a reset signal for the external devices, simplifying to a minimum connection of a push-button on the NRST pin to implement a manual reset. The configuration of the Reset Controller is saved as supplied on VDDIO.

10.4 Supply Controller (SUPC)

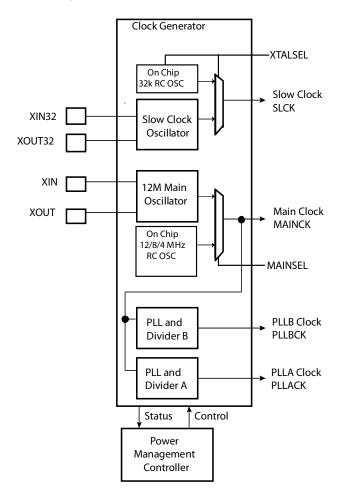
The Supply Controller controls the power supplies of each section of the processor and the peripherals (via Voltage regulator control).

The Supply Controller has its own reset circuitry and is clocked by the 32 kHz Slow Clock generator.

The reset circuitry is based on a zero-power power-on reset cell and a brownout detector cell. The zero-power power-on reset allows the Supply Controller to start properly, while the soft-ware-programmable brownout detector allows detection of either a battery discharge or main voltage loss.

The Slow Clock generator is based on a 32 kHz crystal oscillator and an embedded 32 kHz RC oscillator. The Slow Clock defaults to the RC oscillator, but the software can enable the crystal oscillator and select it as the Slow Clock source.

The Supply Controller starts up the device by sequentially enabling the internal power switches and the Voltage Regulator, then it generates the proper reset signals to the core power supply.


It also enables to set the system in different low-power modes and to wake it up from a wide range of events.

10.5 Clock Generator

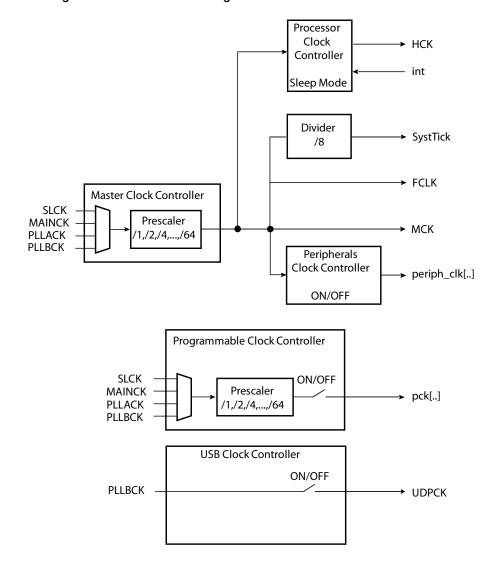
The Clock Generator is made up of:

- One Low-power 32768Hz Slow Clock Oscillator with bypass mode
- One Low-power RC Oscillator
- One 3-20 MHz Crystal Oscillator, which can be bypassed
- One Fast RC Oscillator, factory programmed. Three output frequencies can be selected: 4, 8 or 12 MHz. By default 4 MHz is selected.
- One 80 to 240 MHz PLL (PLLB) providing a clock for the USB Full Speed Controller
- One 80 to 240 MHz programmable PLL (PLLA), provides the clock, MCK to the processor and peripherals.
 The PLLA input frequency is from 3 MHz to 32 MHz.

Figure 10-2. Clock Generator Block Diagram

10.6 **Power Management Controller**

The Power Management Controller provides all the clock signals to the system. It provides:


- the Processor Clock, HCLK
- the Free running processor clock, FCLK
- the Cortex SysTick external clock
- the Master Clock, MCK, in particular to the Matrix and the memory interfaces
- the USB Clock, UDPCK
- independent peripheral clocks, typically at the frequency of MCK
- three programmable clock outputs: PCK0, PCK1 and PCK2

The Supply Controller selects between the 32 kHz RC oscillator and the crystal oscillator. The unused oscillator is disabled automatically so that power consumption is optimized.

By default, at startup the chip runs out of the Master Clock using the fast RC oscillator running at 4 MHz.

The user can trim the 8 and 12 MHz RC Oscillator frequency by software.

Figure 10-3. Power Management Controller Block Diagram

The SysTick calibration value is fixed at 12500, which allows the generation of a time base of 1 ms with SysTick clock at 12.5 MHz (max HCLK/8 = 100 MHz/8 = 12500, so STCALIB = 0x30D4).

10.7 Watchdog Timer

- 16-bit key-protected only-once Programmable Counter
- Windowed, prevents the processor to be in a deadlock on the watchdog access

10.8 SysTick Timer

- 24-bit down counter
- Self-reload capability
- Flexible System timer

10.9 Real Time Timer

- Real-Time Timer, allowing backup of time with different accuracies
 - 32-bit Free-running backup Counter
 - Integrates a 16-bit programmable prescaler running on slow clock
 - Alarm Register capable to generate a wake-up of the system through the Shut Down Controller

10.10 Real Time Clock

- Low power consumption
- Full asynchronous design
- Two hundred year Gregorian and Persian calendar
- Programmable Periodic Interrupt
- Trimmable 32.7682 kHz crystal oscillator clock source
- Alarm and update parallel load
- Control of alarm and update Time/Calendar Data In
- Waveform output capability on GPIO pins in low power modes

10.11 General-Purpose Backup Registers

Eight 32-bit backup general-purpose registers

10.12 **Nested Vectored Interrupt Controller**

- Thirty maskable external interrupts
- Sixteen priority levels
- Processor state automatically saved on interrupt entry, and restored on
- Dynamic reprioritizing of interrupts
- Priority grouping.
 - selection of pre-empting interrupt levels and non pre-empting interrupt levels.
- Support for tail-chaining and late arrival of interrupts.
 - back-to-back interrupt processing without the overhead of state saving and restoration between interrupts.
- Processor state automatically saved on interrupt entry, and restored on interrupt exit, with no instruction overhead.

10.13 Chip Identification

Chip Identifier (CHIPID) registers permit recognition of the device and its revision.

Table 10-1. SAM4SP32A Chip ID's Register

Chip Name	Flash Size (KBytes)	RAM Size (KBytes)	Pin Count	CHIPID_CIDR	CHIPID_EXID		
SAM4SP32A	2*1024	160	128	0X29A7_0EE8	ı		
JTAG ID: 05B3_203F							

10.14 **UART**

- Two-pin UART
 - Implemented features are 100% compatible with the standard Atmel USART
 - Independent receiver and transmitter with a common programmable Baud Rate Generator
 - Even, Odd, Mark or Space Parity Generation
 - Parity, Framing and Overrun Error Detection
 - Automatic Echo, Local Loopback and Remote Loopback Channel Modes
 - Support for two PDC channels with connection to receiver and transmitter

10.15 PIO Controllers

- 3 PIO Controllers, PIOA, PIOB and PIOC controlling a maximum of 37 I/O Lines
- Each PIO Controller controls up to 22 programmable I/O Lines
- Fully programmable through Set/Clear Registers

Table 10-2. PIO available on SAM4SP32A

Version	Pins
PIOA	22
PIOB	12
PIOC	3

- Multiplexing of four peripheral functions per I/O Line
- For each I/O Line (whether assigned to a peripheral or used as general purpose I/O)
 - Input change interrupt
 - Programmable Glitch filter
 - Programmable debouncing filter
 - Multi-drive option enables driving in open drain
 - Programmable pull-up on each I/O line
 - Pin data status register, supplies visibility of the level on the pin at any time
 - Additional interrupt modes on a programmable event: rising edge, falling edge, low level or high level
 - Lock of the configuration by the connected peripheral
- Synchronous output, provides set and clear of several I/O lines in a single write
- Write Protect Registers
- Programmable Schmitt trigger inputs
- Parallel capture mode

- Can be used to interface a CMOS digital image sensor, etc....
- One clock, 8-bit parallel data and two data enable on I/O lines
- Data can be sampled one time out of two (for chrominance sampling only)
- Supports connection of one Peripheral DMA Controller channel (PDC) which offers buffer reception without processor intervention

10.16 Peripheral Identifiers

Table 10-3 defines the Peripheral Identifiers of the SAM4SP32A. A peripheral identifier is required for the control of the peripheral interrupt with the Nested Vectored Interrupt Controller and control of the peripheral clock with the Power Management Controller.

Table 10-3. Peripherical Identifiers

			PMC	
Instance ID	Instance Name	NVIC Interrupt	Clock Control	Instance Description
0	SUPC	Х		Supply Controller
1	RSTC	Х		Reset Controller
2	RTC	Х		Real Time Clock
3	RTT	Х		Real Time Timer
4	WDT	Х		Watchdog Timer
5	PMC	Х		Power Management Controller
6	EFC0	X		Enhanced Embedded Flash Controller 0
7	EFC1	X		Enhanced Embedded Flash Controller 1
8	UART0	Х	Х	UART 0
9	UART1	Х	Х	UART 1
10	SMC	Х	Х	Static Memory Controller
11	PIOA	Х	Х	Parallel I/O Controller A
12	PIOB	X	X	Parallel I/O Controller B
13	PIOC	X	X	Parallel I/O Controller C
14	USART0	X	X	USART 0
15	USART1	Х	Х	USART 1
16	-	-	-	Reserved
17	-	-	-	Reserved
18	-	Х	Х	Reserved
19	TWI0	Х	Х	Two Wire Interface 0
20	TWI1	X	X	Two Wire Interface 1
21	-	-	ı	Reserved
22	SSC	X	X	Synchronous Serial Controller
23	TC0	X	X	Timer/Counter 0
24	TC1	Х	Х	Timer/Counter 1
25	-	-	-	Reserved
26	-	-	-	Reserved
27	-	-	-	Reserved
28	-	-	-	Reserved
29	-			Reserved
30	-			Reserved
31	PWM	Х	Х	Pulse Width Modulation
32	CRCCU	Х	Х	CRC Calculation Unit
33	ACC	Х	Х	Analog Comparator
34	UDP	Х	Х	USB Device Port

10.17 Peripheral Signal Multiplexing on I/O Lines

The SAM4SP32A features 3 PIO controllers (PIOA, PIOB and PIOC), that multiplex the I/O lines of the peripheral set.

The SAM4SP32A controls up to 22 lines. Each line can be assigned to one of three peripheral functions: A, B or C. The multiplexing tables in the following paragraphs define how the I/O lines of the peripherals A, B and C are multiplexed on the PIO Controllers. The column "Comments" has been inserted in this table for the user's own comments; it may be used to track how pins are defined in an application.

Note that some peripheral functions which are output only, might be duplicated within the tables.

10.17.1 PIO Controller A Multiplexing

Table 10-4. Multiplexing on PIO Controller A (PIOA)

1/0						
,	Peripherical A	Peripherical B	Peripherical C	Extra Function	System Function	Comment
Line						
PA0	PWMH0	TIOA0	A17	WKUP0		
PA1	PWMH1	TIOB0	A18	WKUP1		
PA2	PWMH2	SCK0	DATRG	WKUP2		
PA3	TWD0	NPCS3				
PA4	TWCK0	TCLK0		WKUP3		
PA5	RXD0	NPCS3		WKUP4		
PA6	TXD0	РСКО				
PA7	RTS0	PWMH3			XIN32	
PA8	CTS0	ADTRG		WKUP5	XOUT32	
PA9	URXD0	NPCS1	PWMFI0	WKUP6		
PA10	UTXD0	NPCS2				
PA15	TF	TIOA1	PWML3	WKUP14/PIODCEN1		
PA16	TK	TIOB1	PWML2	WKUP15/PIODCEN2		
PA17	TD	PCK1	PWMH3	AC0		
PA18	RD	PCK2	A14	AC1		
PA19	RK	PWML0	A15	AC2/WKUP9		
PA20	RF	PWML1	A16	AC3/WKUP10		
PA21	RXD1	PCK1				
PA22	TXD1	NPCS3	NCS2			
PA23	SCK1	PWMH0	A19	PIODCCLK		
PA24	RTS1	PWMH1	A20	PIODC0		
PA25	CTS1	PWMH2	A23	PIODC1		

10.17.2 PIO Controller B Multiplexing

Table 10-5. Multiplexing on PIO Controller B (PIOB)

I/O Line	Peripherical A	Peripherical B	Peripherical C	Extra Function	System Function	Comment
PB0	PWMH0			AC4/RTCOUT0		
PB1	PWMH1			AC5/RTCOUT1		
PB2	URXD1	NPCS2		AC6/WKUP12		
PB3	UTXD1	PCK2		AC7		
PB4	TWD1	PWMH2			TDI	
PB5	TWCK1	PWML0		WKUP13	TDO/TRACESWO	
PB6					TMS/SWDIO	
PB7					TCK/SWCLK	
PB8					XOUT	
PB9					XIN	
PB10					DMM	
PB11					DPP	
PB12	PWML1				ERASE	

10.17.3 PIO Controller C Multiplexing

Table 10-6. Multiplexing on PIO Controller C (PIOC)

I/O Line	Peripherical A	Peripherical B	Peripherical C	Extra Function	System Function	Comment
PC0	D0	PWML0				
PC5	D5					
PC26	A8	TIOA4				

11. Embedded Peripherals Overview

11.1 Two Wire Interface (TWI)

- Master, Multi-Master and Slave Mode Operation
- Compatibility with Atmel two-wire interface, serial memory and I2C compatible devices
- One, two or three bytes for slave address
- Sequential read/write operations
- Bit Rate: Up to 400 kbit/s
- General Call Supported in Slave Mode
- Connecting to PDC channel capabilities optimizes data transfers in Master Mode only
 - One channel for the receiver, one channel for the transmitter
 - Next buffer support

11.2 Universal Asynchronous Receiver Transceiver (UART)

- Two-pin UART
 - Independent receiver and transmitter with a common programmable Baud Rate Generator
 - Even, Odd, Mark or Space Parity Generation
 - Parity, Framing and Overrun Error Detection
 - Automatic Echo, Local Loopback and Remote Loopback Channel Modes
 - Support for two PDC channels with connection to receiver and transmitter

11.3 **USART**

- Programmable Baud Rate Generator
- 5- to 9-bit full-duplex synchronous or asynchronous serial communications
 - 1, 1.5 or 2 stop bits in Asynchronous Mode or 1 or 2 stop bits in Synchronous Mode
 - Parity generation and error detection
 - Framing error detection, overrun error detection
 - MSB- or LSB-first
 - Optional break generation and detection
 - By 8 or by-16 over-sampling receiver frequency
 - Hardware handshaking RTS-CTS
 - Receiver time-out and transmitter timeguard
 - Optional Multi-drop Mode with address generation and detection
 - Optional Manchester Encoding
 - Full modem line support on USART1 (DCD-DSR-DTR-RI)
- RS485 with driver control signal
- ISO7816, T = 0 or T = 1 Protocols for interfacing with smart cards
 - NACK handling, error counter with repetition and iteration limit
- SPI Mode
 - Master or Slave
 - Serial Clock programmable Phase and Polarity
 - SPI Serial Clock (SCK) Frequency up to MCK/4
- IrDA modulation and demodulation

- Communication at up to 115.2 Kbps
- Test Modes
 - Remote Loopback, Local Loopback, Automatic Echo

11.4 Synchronous Serial Controller (SSC)

- Provides serial synchronous communication links used in audio and telecom applications (with CODECs in Master or Slave Modes, I2S, TDM Buses, Magnetic Card Reader)
- Contains an independent receiver and transmitter and a common clock divider
- Offers configurable frame sync and data length
- Receiver and transmitter can be programmed to start automatically or on detection of different event on the frame sync signal
- Receiver and transmitter include a data signal, a clock signal and a frame synchronization signal

11.5 Timer Counter (TC)

- Two 16-bit Timer Counter Channels
- Wide range of functions including:
 - Frequency Measurement
 - Event Counting
 - Interval Measurement
 - Pulse Generation
 - Delay Timing
 - Pulse Width Modulation
 - Up/down Capabilities
- Each channel is user-configurable and contains:
 - One external clock input
 - Five internal clock inputs
 - Two multi-purpose input/output signals
- Two global registers that act on all three TC Channels
- Quadrature decoder
 - Advanced line filtering
 - Position / revolution / speed
- 2-bit Gray Up/Down Counter for Stepper Motor

11.6 Pulse Width Modulation Controller (PWM)

- One Four-channel 16-bit PWM Controller, 16-bit counter per channel
- Common clock generator, providing Thirteen Different Clocks
 - A Modulo n counter providing eleven clocks
 - Two independent Linear Dividers working on modulo n counter outputs
 - High Frequency Asynchronous clocking mode
- Independent channel programming
 - Independent Enable Disable Commands
 - Independent Clock Selection
 - Independent Period and Duty Cycle, with Double Buffering
 - Programmable selection of the output waveform polarity

- Programmable center or left aligned output waveform
- Independent Output Override for each channel
- Independent complementary Outputs with 12-bit dead time generator for each channel
- Independent Enable Disable Commands
- Independent Clock Selection
- Independent Period and Duty Cycle, with Double Buffering
- Synchronous Channel mode
 - Synchronous Channels share the same counter
 - Mode to update the synchronous channels registers after a programmable number of periods
- Connection to one PDC channel
 - Provides Buffer transfer without processor intervention, to update duty cycle of synchronous channels
- One programmable Fault Input providing an asynchronous protection of outputs
- Stepper motor control (2 Channels)

11.7 USB Device Port (UDP)

- USB V2.0 full-speed compliant, 12 Mbits per second.
- Embedded USB V2.0 full-speed transceiver
- Embedded 2688-byte dual-port RAM for endpoints
- Eight endpoints
 - Endpoint 0: 64bytes
 - Endpoint 1 and 2: 64 bytes ping-pong
 - Endpoint 3: 64 bytes
 - Endpoint 4 and 5: 512 bytes ping-pong
 - Endpoint 6 and 7: 64 bytes ping-pong
 - Ping-pong Mode (two memory banks) for Isochronous and bulk endpoints
- Suspend/resume logic
- Integrated Pull-up on DDP
- Pull-down resistor on DDM and DDP when disabled

11.8 **Analog Comparator**

- One analog comparator
- High speed option vs. low-power option
 - 170 μA/xx ns active current consumption/propagation delay
 - 20 μA/xx ns active current consumption/propagation delay
- Selectable input hysteresis
 - 0, 15 mV, 30mV (Typ)
- Minus input selection:
 - Temperature Sensor
 - ADVREF
- Plus input selection:
 - All analog inputs
- output selection:
 - Internal signal

- external pin
- selectable inverter
- window function
- Interrupt on:
 - Rising edge, Falling edge, toggle
 - Signal above/below window, signal inside/outside window

11.9 Cyclic Redundancy Check Calculation Unit (CRCCU)

- 32-bit cyclic redundancy check automatic calculation
- CRC calculation between two addresses of the memory

11.10 PLC Brigde

• Six I/O lines to connect to PRIME PLC Transceiver for external configurations

12. PRIME PLC Transceiver

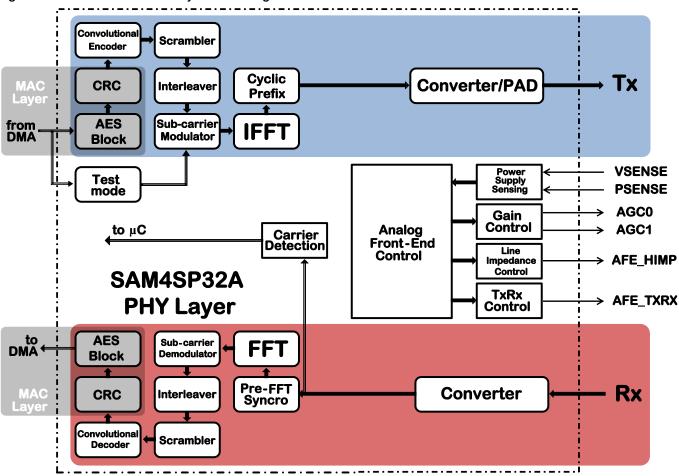
The SAM4SP32A MCU embeds a Certified PRIME Power line communication transceiver with a featured Class D power amplifier and a set of hardware accelerators blocks to execute the heavy tasks of the PRIME protocol without the interruption of the Cortex-M4 CPU.

The PRIME PLC Transceiver peripheral integrates:

- Power Line Carrier Modem for 50 and 60 Hz mains
- 97-carrier OFDM PRIME compliant
- Baud rate Selectable: 21400 to 128600 bps
- Differential BPSK, QPSK, 8-PSK modulations
- Automatic Gain Control and signal amplitude tracking
- Embedded on-chip DMAs
- Media Access Control
- Viterbi decoding and CRC PRIME compliant
- 128-bit AES encryption
- Channel sensing and collision pre-detection

12.1 SAM4SP32A PRIME PHY Layer

12.1.1 SAM4SP32A PHY Layer


The physical layer of SAM4SP32A consists of a hardware implementation of the PRIME Physical Layer Entity, which is an Orthogonal Frequency Division Multiplexing (OFDM) system in the CENELEC A-band. This PHY layer transmits and receives MPDUs (MAC Protocol Data Unit) between neighbor nodes.

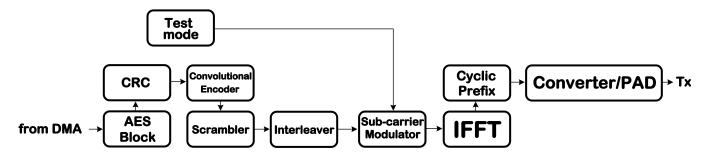
From the transmission point of view, the PHY layer receives its inputs from the MAC (Medium Access Control) layer, via DMA. At the end of transmission branch, data is output to the physical channel.

On the reception side, the PHY layer receives its inputs from the physical channel, and at the end of reception branch, the data flows to the MAC layer, via DMA.

A PHY layer block diagram is shown below:

Figure 12-1. SAM4SP32A PHY Layer Block Diagram

The diagram can be divided in four sub-blocks: Transmission branch, Emission branch, Analog Front End control and Carrier Detection.

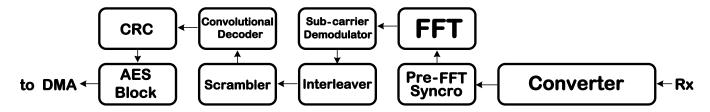


12.1.1.2 Transmission and Reception branches

Phy layer takes data to be sent from dedicated DMA channel (PHY_TX). 128-bit AES encryption is done "on the fly", and the Clyclic Redundancy Check (CRC) fields are hardware-generated in real time. These CRCs are properly appended to the transmission data. The rest of the chain is hardware-wired, and performs automatically all the tasks needed to send data according to PRIME specifications.

In Figure 12-2, the block diagram of the transmission brach Is shown.

Figure 12-2. Transmission branch


The output is differentially modulated using a BPSK/DQPSK/D8PSK scheme. After modulation, IFFT (Inverse Fourier Transform) block and cyclic prefix block allows to implement an OFDM scheme.

A Converter and a Power Amplifier Driver is the last block in the transmission branch. This block is responsible for adjusting the signal to reach the best transmission efficiency, thus reducing consumption and power dissipation.

Test mode: When selected, test mode injects data directly to Sub-carrier modulation block. When in test mode, data can be injected continuously to the line using only a set of selected frequencies, in order to test channel behavior.

The reception branch performs automatically all the tasks needed to process received data. Phy layer delivers data to MAC layer through the dedicated DMA channel (PHY_RX).

Figure 12-3. Reception branch

12.1.1.3 Carrier Detection

Looking for an easy detection of incoming messages, PRIME specification defines a chirp signal located at the beginning of the PRIME frames devised to ease synchronization in the receptor. By means of detection techniques, the receiver can know accurately when the chirp has been completely received and then the correct instant when the frame begins.

Before starting a transmission, it is also necessary to use carrier detection in order to check if another device is already emitting, thus avoiding collisions. If any device is emitting, the carrier detection triggers a microcontroller interruption and sets an internal flag, thus the transmission will be stopped.

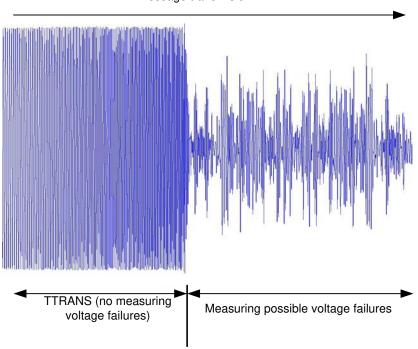
The main drawback of this process is that chirp signal length (2.4 milliseconds) is not short enough to guarantee very low collision ratio.

To improve this drawback, the OFDM PLC Modern implements two different algorithms to detect the carrier as soon as possible, aiming to reduce collisions and improving the medium access behavior. By these early detection techniques, the system achieves low collision ratio, and the communication throughput increases significantly.

12.1.1.4 Analog Front End control

The Phy layer controls the Analog Front End by means of four sub-blocks:

- Power Supply sensing
- Gain control
- Line Impedance control
- TxRx control

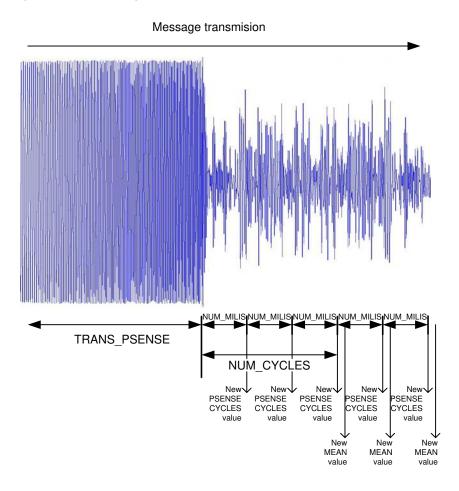

12.1.1.5 Power Supply Sensing: VSENSE and PSENSE

The power supply is continuously monitored to avoid power supply failures that could damage the supply device. This block senses the power channel using two different inputs:

VSENSE: VSENSE detects whether voltage falls below 3.3v during a number of cycles while a message is being transmitted. This measurement is done after a transitory guard time (TTRANS in figure below). If a Voltage failure occurs, the transmission is shut down and sending messages again will be not possible if an internal flag (VFAILURE) is not previously cleared.

Message transmision

Figure 12-4. Transitory guard time in message transmission


PSENSE: PSENSE measures the power source current consumption, shutting down the transmission if the consumption exceeds a defined threshold (stored in MAXPOT phy layer registers, see 12.1.5.34). This measurement is done after a transitory guard time. As the current measurement varies over time, an averaging is done taking into account an average parameter (Alpha), a configurable number of cycles (NUMCYCLES, see 12.1.5.35) and a configurable length of each cycle (A NUMMILIS, see 12.1.5.36).

If a power failure occurs, the transmission is shut down and sending messages again will be not possible if an internal flag (PFAILURE, see 12.1.5.22) is not previously cleared.

The system considers that a power failure has occurs when the value read from MEAN registers (see 12.1.5.30) is above the user-definable value stored in MAXPOT registers.

Figure 12-5. PSENSE parameters

Psense and Vsense configurations parameters are automatically set by the Phy layer.

See related peripheral registers for more information about Psense and Vsense.

12.1.1.6 Gain Control

This block implements two Automatic Gain Control outputs to adjust the received signal level to a suitable range. Both of them are set to '1' when the received signal is above two system thresholds in order to activate external attenuators placed in the external analog front end.

The value of these outputs is set during the beginning of a received message and is hold until the end of the message.

AGC0 and AGC1 follow different algorithms, thus using both of them ensures a more accurate gain control.

See AGC_CONFIG register in for information about AGC configuration.

12.1.1.7 Line Impedance Control

This block modifies the configuration of the Analog Front End by means of AFE-HIMP output. When working with a suitable external configuration, the system can change the filter conditions in order to adjust its behavior to the line impedance values. See last SAM4SP32A reference design for further information about Line Impedance topologies.

12.1.1.8 TxRx Control

This block modifies the configuration of the Analog Front End by means of AFE-TXRX output. Thus is possible to change filter conditions between transmission/reception.

See reference design for further information about TxRx control.

12.1.2 PHY parameters

As described below, the PHY layer is specified by certain main parameters, which are fixed for each specific constellation/coding combination. These parameters have to be identical in a network in order to achieve compatibility.

Table 12-1. PRIME Phy main parameters

PRIME Phy parameter	Value
Base Band Clock (Hz)	250000
Subcarrier spacing (Hz)	488,28125
Number of data subcarriers	84 (header), 96 (payload)
Number of pilot subcarriers	13 (header), 1 (payload)
FFT interval (samples)	512
FFT interval (µs)	2048
Cyclic Prefix (samples)	48
Cyclic Prefix (µs)	192
Symbol interval (samples)	560
Symbol interval (μs)	2240
Preamble period (μs)	2048

Table 12-2 shows the PHY data rate during payload transmission, and maximum MSDU length for various modulation and coding combinations

Table 12-2. Phy parameters depending on the modulation

	DBPSK		DQPSK		D8I	PSK
Convolutional Code (1/2)	On	Off	On	Off	On	Off
Information bits per subcarrier	0,5	1	1	2	1,5	3
Information bits per OFDM symbol	48	96	96	192	144	288
Raw data rate (kbps approx)	21,4	42,9	42,9	85,7	64,3	128,6
MAX MSDU length with 63 symbols (bits)	3016	6048	6040	12096	9064	18144

Table 12-3 shows the modulation and coding scheme and the size of the header portion of the PHY frame

Table 12-3. Header parameters

	DBPSK
Convolutional Code (1/2)	On
Information bits per subcarrier	0,5
Information bits per OFDM symbol	42

All the parameters of the physical layer such as the base band clock, subcarrier spacing, number of subcarriers...; are defined in PRIME Specification, and have to be identical in a network in order to achieve compatibility.

12.1.3 PHY Protocal Data Unit (PPDU) Format

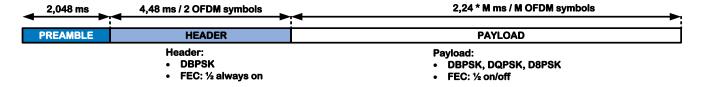

Figure 12-6 shows how OFDM symbols are transmitted in a PPDU (Physical layer Protocol Data Unit). The preamble is used at the beginning of every PPDU for synchronization purposes.

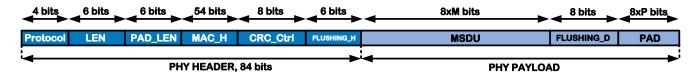
Figure 12-6. PHY layer transmitter block diagram

Phy layer adaptively modifies attenuation values applied to the whole signal. Also, additional attenuations are applied to the chirp section of the signal (preamble) and to the rest of the signal itself (header+payload), to smoothly adapt amplitude values and transitions.

Figure 12-7. PPDU OFDM symbols and duration

12.1.4 PHY Service Specification

There is an interface specified in PRIME for the PHY layer, with several primitives relative to both data and control planes.


PHY layer has a single 20-bit free-running clock measured in 10µs steps. Time measured by this clock is the one to be used in some PHY primitives to indicate a specific instant in time.

SAM4SP32A includes a hardware implementation of this clock, which consists of a 20-bit register. This register is read-only and it can be accessed as a 32-bit variable by the ADD8051C3A microcontroller.

66

Figure 12-8. Header and payload structure

Prime specifies a complete set of primitives to manage the PHY Layer, and the PHY-SAP (PHY Service Access Point) from MAC layer. Atmel PRIME stack integrates all this functions, making them transparent to the final user and simplifying the management.

12.1.5 PHY Layer registers

Relative addresses in the PLC modem intenrnal memory map given.

12.1.5.1 PHY SFR Register

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	B it 0
PHY_SFR	BCH_ERR	CD	UMD			TXRX		INT_PHY

Name: PHY_SFR
Address: 0xFE2A
Access: Read/write

Reset: 0x87

--: Reserved bit

• BCH_ERR: Busy Channel Error Flag.

This bit is set to '0' by hardware to indicate the presence of an OFDM signal at the transmission instant. Otherwise, this field value is '1'.

This bit is used for returning a result of "Busy Channel" in the PHY_DATA.confirm primitive (see PRIME specification).

• CD: Carrier Detect bit.

This bit is set to '1' by hardware when an OFDM signal is detected, and it is active during the whole reception.

This bit is used in channel access (CSMA-CA algorithm) for performing channel-sensing.

UMD: Unsupported Modulation Scheme flag.

This flag is set to '1' by hardware every time a header with correct CRC is received, but the PROTOCOL field in this header indicates a modulation scheme not supported by the system.

• TXRX: Transmission order.

When data to transmit is ready at ADDR_PHY_INI_TX in data memory, the Time value is set at TX_TIME register and then the emission level is specified at ATTENUATION register, then TXRX bit has to be set to '0' in order to init transmission.

If this bit is read, only returns '0' when physical transmission has started. Otherwise, it returns '1'.

The transmission will begin when TIMER_BEACON_REF is equal to TX_TIME.

• **INT PHY:** Physical Layer interruption

This bit is internally connected to the external microcontroller interrupt /EXT INT.

It is low-level active. It is set to '0' by physical layer and is cleared by writing '1' in the bit PHY_SFR(0).

12.1.5.2 SYS_CONFIG Register

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	B it 0
SYS_CONFIG				CONV_PD	PHY_PD	PHY_ERR_EN	PHY_ERR	PHY_RST

Name: SYS_CONFIG

0x04

Address: 0xFE2C
Access: Read/write

Reset:

Reserved bits

• CONV PD: Converter Power Down

The SAM4SP32A microcontroller can activate internal converter power down mode by setting this bit. When internal converter is in power down mode, the system is unable to receive.

This bit is high-level active.

• PHY PD: PHY Power Down

This bit shuts down Physical Layer clock. When in PHY power down mode, all the system blocks involved in communication remain inactive. Thus, the system will be unable to transmit or receive. The next sequence must be respected to ensure proper power down:

Setting PHY power down mode

1-Set Physical Layer reset (SYS_CONFIG(0)), PHY_RST='1'

2-Set CONV_PD and PHY_PD fields

Exiting PHY power down mode

1-Clear CONV PD and PHY PD fields

2-Clear Physical Layer reset (SYS_CONFIG(0)), PHY_RST='0'

This bit is high-level active.

• PHY_ERR_EN:Physical Layer Watchdog enable

This bit enables or disables Physical layer watchdog. Physical layer watchdog is enabled by default.

This bit is high-level active.

PHY EN: Physical Layer Error Flag

This flag indicates if a Physical layer error has occurred. Physical layer watchdog has a 200milliseconds sampling period. When Physical layer detects an error, it activates the Physical layer interrupt and this flag is set.

To restore situation, microcontroller must reset Physical layer by means of PHY_RST bit (SYS_CONFIG(0)).

• PHY_RST: Physical Layer Reset

This bit resets the Physical layer. To perform a Physical layer reset cycle, microcontroller must set this bit to '1' and then must clear it to '0'.

12.1.5.3 PHY CONFIG Register

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	B it 0
PHY_CONFIG			CINR_MODE	PAD_LEN_AC	AES_EN	CD_MOD1_EN	CD_MOD2_DET	MAC_EN

Name: PHY CONFIG

Address: 0xFE68

Access: Read/write

Reset: 0x1F

- --: Reserved bits
- CINR_MODE:Carrier to Interference + Noise Ratio mode

This bit enables/disables CINR mode when set to '1'.

- '0': CINR mode disabled.
- '1': CINR mode enabled.
- PAD_LEN_AC: This field allows the system to work with two different representations of the Phy
 header PAD_LEN field (PAD_LEN represented before coding or PAD_LEN represented
 after coding).
 - '0': PAD_LEN field in PHY header is represented before coding. This is the suitable value to fulfill PRIME specification.
 - '1': PAD_LEN field in PHY header is represented after coding.
- **AES_EN:** This field enables/disables "on the fly" AES encryption and decryption by hardware.
 - '0': "on the fly" AES encryption/decryption disabled.
 - '1': "on the fly" AES encryption/decryption enabled.
- CD_MOD1_EN: This field enables/disables Carrier Detection mode 1.
 - '0': Carrier Detection mode 1 disabled.
 - '1': Carrier Detection mode 1 enabled.
- CD MOD2 DET: This field enables/disables Carrier Detection mode 2.
 - '0': Carrier Detection mode 2 disabled.
 - '1': Carrier Detection mode 2 enabled.
- MAC_EN: This field enables/disables CRC processing by hardware.
 - '0': CRC processing disabled.
 - '1': CRC processing enabled.

12.1.5.4 ATTENUATION Register

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	B it 0
ATTENUATION				ATTENU	JATION(7:0)			

Name: ATTENUATION

Address: 0xFE24

Access: Read/write

Reset: 0xFF

• ATTENUATION: Global attenuation for the transmitted signal (chirp+signal). The 16-bit signal level

is multiplied by this 8-bit value and the result is truncated to 16 bits.

Attenuation value = $0xFF \rightarrow$ the transmitted signal amplitude is not attenuated.

Attenuation value = $0x00 \rightarrow$ the transmitted signal amplitude is nullified.

12.1.5.5 ATT_CHIRP Register

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	B it 0
ATT_CHIRP				ATT_C	CHIRP(7:0)			

Name: ATT_CHIRP
Address: 0xFE9B
Access: Read/write
Reset: 0xFF

• ATT_CHIRP: This register stores the attenuation value for the chirp. The 16-bit chirp data is

multiplied with this 8-bit value and the 24-bit result is truncated to 16 bits.

Attenuation value = $0xFF \rightarrow$ the chirp amplitude is not attenuated

Attenuation value = $0x00 \rightarrow$ the chirp amplitude is nullified

12.1.5.6 ATT_SIGNAL Register

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	B it 0
ATT_SIGNAL				ATT_S	IGNAL(7:0)			

Name: ATT_SIGNAL

Address: 0xFE9C

Access: Read/write

Reset: 0xFF

• ATT_SIGNAL: This register stores the attenuation value for the signal without the chirp section.

The 16-bit chirp data is multiplied with this 8-bit value and the 24-bit result is

truncated to 16 bits.

Attenuation value = $0xFF \rightarrow$ the signal amplitude is not attenuated

Attenuation value = $0x00 \rightarrow$ the signal amplitude is nullified

12.1.5.7 TX TIME Registers

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	B it 0					
TX_TIME				TX_TIM	E(19:12)				@0xFE26				
		TX_TIME(11:4)											
		TX_TIME(3:0) "0000"											
		"0000000"											

Name: TX TIME

Address: 0xFE26 - 0xFE29

Access: Read/write **Reset:** 0x00, ..., 0x00;

• **TX_TIME:** This 20-bit value sets the time instant when the MPDU (MAC Protocol Data Unit) has to be transmitted. The time is expressed in 10µs steps.

When writing a new value to TX_TIME register, a specific writing order must be taken, always from the most significant byte (TX_TIME(19:12) at address 0xFE26) to the least significant byte (TX_TIME(3:0) at address 0xFE28), and it is required to write the 3 bytes to avoid wrong time comparisons in transmission.

The 20-bit TX_TIME value is managed by the microcontroller as a 4-byte variable. The TX_TIME value is aligned to the 20 most significant bits, being the 12 least significant bits padded with zeros.

This register is used by the physical layer for being in accordance with PRIME specifications about transmission time (see PRIME spec.)

Note: TXRX bit (PHY_SFR(2)) has to be cleared to '0' in order to init transmission. Once this bit has been cleared, the transmission will start when TIMER_BEACON_REF value is equal to TX_TIME.

12.1.5.8 TIMER FRAME Registers

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	B it 0			
TIMER_FRAME				TIMER_FF	RAME(19:12)				@0xFE2D		
				TIMER_F	RAME(11:4)				@0xFE2E		
		TIMER_FRAME(3:0) "0000"									
		"0000000"									

Name: TIMER_FRAME
Address: 0xFE2D - 0xFE30

Access: Read only **Reset:** 0x00, ..., 0x00;

• TIMER FRAME: Time of receipt of the preamble associated with the PSDU (PHY Service Data Unit). It is expressed in $10\mu s$ steps and is taken from the physical layer timer TIMER BEACON REF.

It is set by hardware and is a read-only register.

This register is used by the physical layer for being in accordance with PRIME specification about reception time (see PRIME specification).

The 20-bit TIMER_FRAME value is managed by the microcontroller as a 4-byte variable. The TIMER_FRAME value is aligned to the 20 most significant bits, being the 12 least significant bits padded with zeros. This simplifies arithmetic calculations with time values.

12.1.5.9 TIMER BEACON REF Registers

Name	Bit 7 Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	B it 0					
TIMER_BEACON_REF		TIMEF	R_BEAC	ON_REF(19	9:12)			@0xFE47				
		TIMER_BEACON_REF (11:4)										
	TIMER_BEACON_REF (3:0) "0000"											
	"0000000"											

Name: TIMER_BEACON_REF

Address: 0xFE47 - 0xFE4A

Access: Read only

Reset: 0x00, ..., 0x00;

• TIMER_BEACON_REF:

Timer for the physical layer, which consists of a single 20-bit free-running clock measured in $10\mu s$ steps.

It indefinitely increases a unit each 10 microseconds from 0 to 1048575, overflowing back to 0.

It is set by hardware and is a read-only register.

This register is used by the physical layer for being in accordance with PRIME specification. It is reserved 32-bit in data memory to be able to declare as 32-bit variable. The 20-bit register MSB is aligned to the 32-bit variable MSB, in order to simplify arithmetic calculations with time values.

12.1.5.10 RX_LEVEL Registers

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	B it 0			
RX_LEVEL		RX_LEVEL(15:8)									
	RX_LEVEL(7:0)										

Name: TABLE_ELEMENT_INIT

Address: 0xFE31 - 0xFE32

Access: Read only

Reset: 0x00; 0x00

• RX_LEVEL:These registers store the autocorrelation level of the chirp signal.

When the reception process has started, these registers are set by hardware.

12.1.5.11 RSSI_MIN Register

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	B it 0
RSSI_MIN				RSSI_N	MIN(7:0)			

Name: RSSI_MIN
Address: 0xFE33
Access: Read only
Reset: 0xFF

• RSSI_MIN: Received Signal Strength Indication Min

This register stores the minimum RSSI value measured in the last message received.

The measurement is done at symbol level.

The value is stored in 1/4dB steps

12.1.5.12 RSSI_AVG Register

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	B it 0
RSSI_AVG				RSSI_A	AVG(7:0)			

Name: RSSI_AVG
Address: 0xFE34
Access: Read only
Reset: 0x00

• RSSI_AVG: Received Signal Strength Indication Average

This register stores the average RSSI value measured in the last message received.

The measurement is done at symbol level.

The value is stored in 1/4dB steps

12.1.5.13 RSSI_MAX Register

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	B it 0
RSSI_MAX				RSSI_N	ЛАX(7:0)			

Name: RSSI_MAX
Address: 0xFE35
Access: Read only
Reset: 0x00

• RSSI_MAX: Received Signal Strength Indication Max

This register stores the maximum RSSI value measured in the last message received.

The measurement is done at symbol level.

The value is stored in 1/4dB steps

12.1.5.14 CINR MIN Register

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	B it 0
CINR_MIN				CINR_I	MIN(7:0)			

Name: CINR_MIN
Address: 0xFE38
Access: Read only
Reset: 0xFF

CINR_MIN: Carrier to Interference + Noise ratio Min

This register stores the minimum CINR value measured in the last message received.

In order to calculate CINR properly, the algorithm takes beacon-type messages as a reference, since this message type allows knowing its content beforehand.

The system uses a table that must be loaded with the beacon data to be received, so CINR mode must be activated (see PHY_CONFIG register) and the same procedure used to send beacons must be followed. As CINR mode is activated, physical layer will load the message in the table instead of sending it (table load time is in the order of microseconds, and is much shorter than the one used to send the message).

Once the table is loaded, CINR must be disabled, and next messages CINR will be calculated taken the beacon loaded in the table as reference.

The measurement is done at symbol level.

The value is stored in 1/4dB steps.

12.1.5.15 CINR AVG Register

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	B it 0
CINR_AVG				CINR_A	AVG(7:0)			

Name: CINR_AVG
Address: 0xFE39
Access: Read only
Reset: 0x00

CINR_AVG:Carrier to Interference + Noise ratio Average

This register stores the average CINR measured in the last message received.

In order to calculate CINR properly, the algorithm takes beacon-type messages as a reference, since this message type allows knowing its content beforehand.

The system uses a table that must be loaded with the beacon data to be received, so CINR mode must be activated (see PHY_CONFIG register) and the same procedure used to send beacons must be followed. As CINR mode is activated, physical layer will load the message in the table instead of sending it (table load time is in the order of microseconds, and is much shorter than the one used to send the message).

Once the table is loaded, CINR must be disabled, and next messages CINR will be calculated taken the beacon loaded in the table as reference

The measurement is done at symbol level.

The value is stored in 1/4dB steps.

12.1.5.16 CINR MAX Register

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	B it 0
CINR_MAX				CINR_N	ЛАX(7:0)			

Name: CINR_MAX
Address: 0xFE3A
Access: Read only
Reset: 0x00

CINR_MAX:Carrier to Interference + Noise ratio Max

This register stores the maximum CINR value measured in the last message received.

In order to calculate CINR properly, the algorithm takes beacon-type messages as a reference, since this message type allows knowing its content beforehand.

The system uses a table that must be loaded with the beacon data to be received, so CINR mode must be activated (see PHY_CONFIG register) and the same procedure used to send beacons must be followed. As CINR mode is activated, physical layer will load the message in the table instead of sending it (table load time is in the order of microseconds, and is much shorter than the one used to send the message).

Once the table is loaded, CINR must be disabled, and next messages CINR will be calculated taken the beacon loaded in the table as reference

The measurement is done at symbol level.

The value is stored in 1/4dB steps.

12.1.5.17 EVM HEADER Registers

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	B it 0		
EVM_HEADER				EVM_HEA	DER(15:8)			@0xFE3B	
		EVM_HEADER (7:0)								

Name: EVM_HEADER
Address: 0xFE3B - 0xFE3C

Access: Read only

Reset: 0x00; 0x00

• EVM_HEADER: Header Error Vector Magnitude-

These registers store in a 16-bit value the maximum error vector magnitude measured in the reception of a message header.

The 7 MSB (EVM_HEADER(15:9)) represent the integer part in %, being the EVM_HEADER(8:0) bits the fractional part if more precision were required.

This register is used by the physical layer for being in accordance with PRIME specification. It is reserved 32-bit in data memory to be able to declare as 32-bit variable. The 20-bit register MSB is aligned to the 32-bit variable MSB, in order to simplify arithmetic calculations with time values.

12.1.5.18 EVM_PAYLOAD Registers

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	B it 0			
EVM_PAYLOAD				EVM_PAY	LOAD(15:8	3)			@0xFE3D		
		EVM_PAYLOAD(7:0)									

Name: EVM_PAYLOAD
Address: 0xFE3D - 0xFE3E

Access: Read only

Reset: 0x00; 0x00

EVM_PAYLOAD: Payload Error Vector Magnitude-

These registers store in a 16-bit value the maximum error vector magnitude

measured in the reception of a message payload.

The 7 MSB (EVM_PAYLOAD(15:9)) represent the integer part in %, being the

EVM_PAYLOAD(8:0) bits the fractional part if more precision were required.

12.1.5.19 EVM_HEADER_ACUM Registers

Name	Bit 7 Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	B it 0				
EVM_HEADER_ACUM		EVM_	HEADER_	_ACUM(19	:12)			@0xFE3F			
	EVM_HEADER_ACUM (11:4)										
	EVM_HEADER_ACUM (3:0) "0000"										
	"0000000"										

Name: EVM_HEADER_ACUM

Address: 0xFE3F - 0xFE42

Access: Read only

Reset: 0x00, ..., 0x00;

• EVM_HEADER_ACUM: Header Total Error Vector Magnitude Accumulator

When receiving an OFDM symbol, the summation of all its individual carriers EVMs is calculated in order to further calculate the average EVM value. These registers store the maximum summation between the two OFDM symbols received in a message header.

12.1.5.20 EVM_PAYLOAD_ACUM Registers

Name	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 B it 0									
EVM_PAYLOAD_ACUM	EVM_PAYLOAD_ACUM(19:12)	@0xFE43								
	EVM_PAYLOAD_ACUM(11:4)									
	EVM_PAYLOAD_ACUM(3:0) "0000"									
	"0000000"	@0xFE46								

Name: EVM_PAYLOAD_ACUM

Address: 0xFE43 - 0xFE46

Access: Read only

Reset: 0x00, ..., 0x00;

EVM_PAYLOAD_ACUM: Payload Total Error Vector Magnitude Accumulator

When receiving an OFDM symbol, the summation of all its individual carriers EVMs is calculated in order to further calculate the average EVM value. These registers store the maximum summation between all the OFDM symbols received in a message payload.

12.1.5.21 RMS_CALC Register

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	B it 0
RMS_CALC				RMS_C	ALC(7:0)			

Name: RMS_CALC
Address: 0xFE58
Access: Read only
Reset: 0x00

• **RMS_CALC:** This register stores an 8-bit value which magnitude is proportional to the emitted signal amplitude.

By measuring the amplitude of the emitted signal, the hardware can estimate the power line input impedance. Thus hardware can adjust emission configuration appropriately.

12.1.5.22 VSENSE CONFIG Register

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	B it 0
VSENSE_CONFIG		-			PFAILURE	PSENSE_SOFT	VFAILURE	VSENSE_EN

Name: VSENSE_CONFIG

Address: 0xFE59
Access: Read only
Reset: 0x00

PFAILURE: Power Failure Flag

This flag is set to 1 when a power failure occurs. The transmission is stopped and a new transmission is not possible if this flag is not cleared previously.

When a power failure occurs, a consideration about decreasing voltage amplitude in the source should be taken.

This flag must be cleared by software.

- **PSENSE_SOFT:** Current measurement is done every time a transmission takes place. With PSENSE_SOFT the system can force a continuous current measurement, including both idle and transmission states.
 - '0': Current consumption is measured every time a transmission begins (after a
 guard time defined by TRANS_PSENSE). NUMMILIS, NUMCYCLES and
 TRANS_PSENSE values must be taken into account to accurate PSENSE
 measurements. This is the default mode and it is the expected one when
 SAM4SP32A is working.
 - '1': Current consumption is measured both in idle and transmission states. This
 mode is useful for design purposes, in order to find suitable values for the
 current threshold (MAXPOT registers) depending on the external net
 requirements.

VFAILURE: Voltage Failure Flag

This flag is set to 1 when a voltage failure occurs. The transmission is stopped and a new transmission is not possible if this flag is not cleared previously.

When a voltage failure occurs, a consideration about decreasing voltage amplitude in the source should be taken.

This flag must be cleared by software.

VSENSE EN:VSENSE enable

This bit enables VSENSE.

- '0': VSENSE disabled (default).
- '1': VSENSE enabled.

12.1.5.23 NUM_FAILS Register

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	B it 0
NUM_FAILS				NUM_F	AILS(7:0)			

Name: NUM_FAILS
Address: 0xFE5A
Access: Read/write
Reset: 0x02

NUM_FAILS: This register stores the number of 50 ns cycles (clk=20MHz) during which a voltage
failure must be detected before shutting off the transmission and setting VFAILURE flag.
This detection shall be done after a guard period set by TTRANS from the beginning of

the transmission.

Default value: $0x02 \rightarrow 2*50 = 100$ ns

12.1.5.24 TTRANS Register

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	B it 0
TTRANS				TTRAN	NS(7:0)			

Name: TTRANS
Address: 0xFE5B
Access: Read/write
Reset: 0x2D

• TTRANS: This register stores the number of 50 μs cycles (clk=20MHz) to wait from the beginning

of the transmission before looking for a possible voltage failure.

Default value: $0x2D \rightarrow 45 * 50 = 2.25ms$ (Thus, voltage failures are not expected until the

end of chirp signal period)

12.1.5.25 AGC0_KRSSI Register

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	B it 0
AGC0_KRSSI				AGC0_K	RSSI(7:0)			

Name: AGC0_KRSSI

Address: 0xFE5C

Access: Read/write

Reset: 0x00

• AGC0_KRSSI: This register is used to correct RSSI (Received Signal Strength Indication) computation when Automatic Gain Control 0 (AGC0) is active.

12.1.5.26 AGC1 KRSSI Register

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	B it 0
AGC1_KRSSI				AGC1_K	RSSI(7:0)			

Name: AGC1_KRSSI

Address: 0xFE5D

Access: Read/write

Reset: 0x00

• AGC1_KRSSI: This register is used to correct RSSI (Received Signal Strength Indication) computation when Automatic Gain Control 1 (AGC1) is active.

12.1.5.27 ZERO_CROSS_TIME Registers

	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	B it 0			
ZI	ERO_CROSS_TIME			ZER	O_CROSS	_TIME(19:	12)			@0xFE69		
			ZERO_CROSS_TIME (11:4)									
		ZE	ZERO_CROSS_TIME (3:0) "0000"									
			"0000000"									

Name: ZERO_CROSS_TIME

Address: 0xFE69 - 0xFE6C

Access: Read only

Reset: 0x00, ..., 0x00;

• ZERO_CROSS_TIME:

Instant in time at which the last zero-cross event took place. It is expressed in $10\mu s$ steps and may take values from 0 to 1e6 (20-bit

effective).

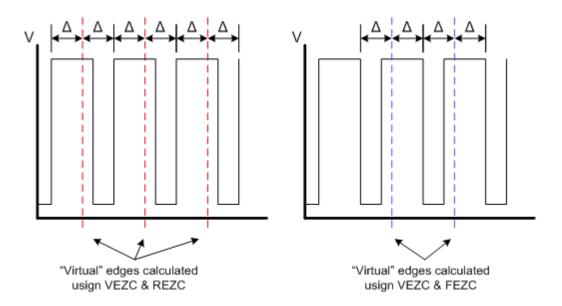
It is set by hardware and is a read-only register.

This register is used by the physical layer for being in accordance with PRIME specification. It is reserved 32-bit in data memory to be able to declare as 32-bit variable. The 20-bit register MSB is aligned to the 32-bit variable MSB, in order to simplify arithmetic calculations with time values.

12.1.5.28 ZERO CROSS CONFIG Register

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	B it 0
ZERO_CROSS_CONFIG						VEZC	REZC	FEZC

Name: ZERO_CROSS_CONFIG


Address: 0xFE6D
Access: Read/write
Reset: 0x06

--: Reserved bits

VEZC: Virtual Edge for Zero Crossing

In this bit is equal to one, the hardware calculates the middle point between two VNR edges to calculate de zero crossing.

This mode is used when the VNR signal duty cycle is different from 50%:

VECZ can be used simultaneously with RECZ or FECZ.

Using the three of them at a time is not recommended.

REZC: Rising Edge for Zero Crossing

If this bit is set to '1', the hardware uses the VNR rising edges to calculate zero-crossing.

FEZC and REZC can be used simultaneously.

FEZC: Falling Edge for Zero Crossing

If this bit is set to '1', the hardware uses the VNR falling edges to calculate zero-crossing.

FEZC and REZC can be used simultaneously.

12.1.5.29 PSENSECYCLES Registers

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2 Bit	1 B it 0			
PSENSECYCLES		-	-		FLAG_PSENSE	D(18:	16)	@0xFE7D		
		D(15:8)								
		D(7:0)								

Name: PSENSECYCLES
Address: 0xFE7D - 0xFE7F

Access: Read/write **Reset:** 0x00, ..., 0x00;

• --: Reserved bits

• FLAG_SENSE: Whenever a new power value is written in PSENSECYCLES, FLAG_PSENSE is

set 1.

This flag must be cleared by software

• **D(17:0):** Power supply consumption measurement

The power supply line is sampled (f_{clk} =20MHz), and the number of logic '1' detected during NUMMILIS milliseconds is stored in this field in order to calculate

power consumption.

Note: The first valid value is written after NUMMILIS, and then a new valid value is

written every NUMMILIS milliseconds.

Note: Measurement is only active when a message transmission begins or

PSENSE_SOFT bit is active (see Name:12.1.5.22)

12.1.5.30 MEAN Registers

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	B it 0	
MEAN			-		FLAG_MEAN		D(18:16)		@0xFE80
					D(15:8)		@0xFE81		
					D(7:0)				@0xFE82

Name: PSENSECYCLES
Address: 0xFE80 - 0xFE82

Access: Read/write **Reset:** 0x00, ..., 0x00;

--: Reserved bits

FLAG_MEAN: Whenever a new value is written in MEAN, FLAG_MEAN is set to '1'

This flag must be cleared by software

• D(17:0): This value stores the average power consumption calculated from the value in

PSENSECYCLES and having into account the convergence factor "A" (see

A_NUMMILIS register in 12.1.5.36).

Note: The first valid value is written after NUMCYCLES*NUMMILIS, and then a

new valid value is written every NUMMILIS milliseconds

12.1.5.31 PMAX Registers

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	B it 0	
PMAX		-	-		FLAG_PMAX		D(18:16)		@0xFE83
		D(15:8)							
					D(7:0)				@0xFE85

Name: PMAX

Address: 0xFE83 - 0xFE85

Access: Read/write **Reset:** 0x00, ..., 0x00;

• --: Reserved bits

FLAG_PMAX: Whenever a new value is written in PMAX, FLAG_PMAX is set to '1'.

This flag must be cleared by software

• **D(17:0):** As described in MAXPOT register (see 12.1.5.34), every time the average power

consumption exceeds a user defined threshold value, the current transmission is

cancelled.

PMAX register stores the average power consumption value that has risen above

MAXPOT threshold.

12.1.5.32 TRANS_PSENSE Register

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	B it 0
TRANS_PSENSE				TRANS_PS	SENSE(7:0	0)		

Name: TRANS_PSENSE

Address: 0xFE86

Access: Read/write

Reset: 0x2B

• TRANS_PSENSE: This register stores the number of 50 μs cycles to wait from the beginning of a

transmission before looking for a possible power failure. This guard time is taken to avoid transient period where the measurement would be inaccurate

Default value: $0x2B \rightarrow 43 * 50 = 2.15ms$

12.1.5.33 P_TH Registers

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	B it 0		
P_TH						F	P_TH(18:16	j)	@0xFE87	
		P_TH(15:8)								
		P_TH(7:0)								

Name: P TH

Address: 0xFE87 - 0xFE89

Access: Read/write

Reset: 0x07, 0xFF, 0xFF.

• --: Reserved bits

• P_TH: These registers contain a user defined power threshold. When the threshold value is

exceeded, a low power consumption mode is automatically activated. In this low power consumption mode, the power dissipated in the transistors decreases at the expense of

distortion increasing.

12.1.5.34 MAXPOT Registers

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	B it 0		
MAXPOT						MA	XPOT(18:	16)	@0xFE8A	
		MAXPOT (15:8)								
		MAXPOT (7:0)								

Name: MAXPOT

Address: 0xFE8A - 0xFE8C

Access: Read/write

Reset: 0x07, 0xFF, 0xFF.

• --: Reserved bits

• MAXPOT: These registers contain a user defined power consumption threshold. When this threshold

is exceeded, current transmission is cancelled.

When the threshold is exceeded, two flags are activated:

• POTFAILURE flag (see VSENSE_CONFIG in 12.1.5.22). This flag indicates that a power failure has occurred.

FLAG_PMAX flag (see PMAX in 12.1.5.31). This flag indicates that, after a
power failure, the last mean power value measured has been stored in PMAX
register.

To reset both flags is enough to reset either of them, the other will be automatically reset. This will enable to start new transmissions.

12.1.5.35 NUMCYCLES Register

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	B it 0
NUMCYCLES				NUMCYO	CLES(7:0)			

Name: NUMCYCLES

Address: 0xFE8D

Access: Read/write

Reset: 0x05

• NUMCYCLES:

Number of cycles of measuring power before obtaining a mean value that can be taken as valid.

Example1: If NUMCYCLES=5(cycles) and NUMMILIS=1(milliseconds), 5 power measurements will be taken during 1 millisecond each one .The first valid power measurement value will be output in the fifth millisecond.

Example2: If NUMCYCLES=3(cycles) and NUMMILIS=20(milliseconds), 3 power measurements will be taken during 20 milliseconds each one. The first valid power measurement value will be output after 60 milliseconds.

12.1.5.36 A NUMMILIS Register

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	B it 0
NUMMILIS			1:0)		N	UMMILIS(4	4:0)	

Name: A_NUMMILIS

Address: 0xFE8E

Access: Read/write

Reset: 0x21

--: Reserved bits

• A(1:0): Convergence Factor

Averaging factor that sets the convergence speed of the mean calculation

algorithm.

A=00 sets quicker convergence, while A=11 sets the slowest one. A=01,10 are

intermediate values.

Note: Power supply presents high dispersion values, so NUMMILIS value must be take into account in order to select a suitable value for A. If NUMMILIS is high, the mean value can be calculated slowly, because the averaging in being calculated over a long period of time. When NUMMILIS is low, the mean value must be

calculated quickly in order to obtain more accurate values.

• **NUMMILIS(4:0):** Measurement acquisition time in milliseconds

Stores the measurement acquisition time in milliseconds.

Example1: If NUMCYCLES=5(cycles) and NUMMILIS=1(milliseconds), 5 power measurements will be taken during 1 millisecond each one .The first valid power

measurement value will be output in the fifth millisecond.

Example2: If NUMCYCLES=3(cycles) and NUMMILIS=20(milliseconds), 3 power measurements will be taken during 20 milliseconds each one. The first valid

power measurement value will be output after 60 milliseconds.

12.1.5.37 EMIT_CONFIG Register

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	B it 0
EMIT_CONFIG							TR_EMIT	TWO_H_BRIDGES

Name: EMIT_CONFIG

Address: 0xFE8F

Access: Read/write

Reset: 0x03

TR_EMIT: Emission mode

This bit selects the emission mode (Internal Drive or External transistors bridge).

- '0': Emission is done by means of internal SAM4SP32A driver.
- '1': Emission is done by means of external transistors (Default).
- TWO_H_BRIDGES: This bit selects the number of semi-H-bridges in the external interface.
 - '0': There is only one semi-H-bridge in the external interface.
 - '1': There are two semi-H-bridges in the external interface and the field HIMP (AFE_CTL register) determines which one is active (Default).

Semi-H-Bridges must be connected following the table below

	TWO_H_BRIDGES='0'	TWO_H_BRIDGES='1'
EMIT1	Р	N1
EMIT2	Р	N1
EMIT3	Р	N1
EMIT4	N	P2
EMIT5	N	P2
EMIT6	N	P2

12.1.5.38 AFE CTL Register

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	B it 0
AFE_CTL				HIMP	HIMP_INV	TXRX	TXRX_HARD	TXRX_INV

Name: AFE_CTL
Address: 0xFE90
Access: Read/write

Reset: 0x10

--: Reserved bits

HIMP: Analog Front End Impedance control bit-

This bit selects which branch is active when working with a two half-H-bridge

branches analog front end.

• '0': "Low impedance" half-H-bridge is active (P2-N2).

• '1': "High impedance" half-H-bridge is active (P1-N1).

HIMP INV: HIMP pin polarity control

This field inverts the polarity of the HIMP pin output.

Note: This field only affect to the polarity of the external pin HIMP output, the

value taken from HIMP bit (AFE_CTL(4)) remains unchanged

• TXRX: The value stored in this bit is taken by the microcontroller in order to set the TXRX

pin level.

• '0': TXRX pin output = '0'.

• '1': TXRX pin output = '1'.

• TXRX_HARD: TXRX pin control

This field selects if the TXRX pin is software/hardware controlled.

• '0': TXRX pin is software controlled. TXRX value is set by TXRX bit field

 $(AFE_CTL(2)).$

• '1': TXRX pin is hardware controlled.

• TXRX_INV: TXRX pin polarity control

This field inverts the polarity of the TXRX pin output

12.1.5.39 R Registers

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	B it 0	
R1				R1	(7:0)				0xFE9F
R2				R2	(7:0)				0xFEA0
R3				R3	(7:0)				0xFEA1
R4				R4	(7:0)				0xFEA2
R5				R5	(7:0)				0xFEA3
R6				R6	(7:0)				0xFEA4
R7				R7	(7:0)				0xFEA5
R8				R8	(7:0)				0xFEA6

Name: R1 – R8

Address: 0xFE9F - 0xFEA6

Access: Read/write

Reset: 0x60; 0x60; 0x60; 0x60; 0xFF; 0xFF; 0xFF; 0xFF.

• **R:** The value in these registers strongly depends on the external circuit configuration.

Atmel provides values to be used according with the design recommended in SAM4SP32A

kits

Please contact Atmel Power Line if different external configurations are going to be used

Recommended values (according to the configuration recommended in SAM4SP32A kits)

R1(7:0): 0x21

R2(7:0): 0x20

R3(7:0): 0x12

R4(7:0): 0x02

R5(7:0): 0x37

R6(7:0): 0x77

R7(7:0): 0x37

R8(7:0): 0x77

Order of precedence: In the event of a conflict between the Ri(7:0) values above and Ri(7:0) values specified in the latest documentation in an SAM4SP32A kit, the values in the kit documentation shall take precedence.

12.1.5.40 PHY_ERRORS Registers

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	B it 0
PHY_ERRORS					PH	_ERROR	S(4:0)	

Name: PHY_ERRORS

Address: 0xFE94

Access: Read/write

Reset: 0x00

Reserved bits

• PHY_ERRORS: Physical Layer Error Counter

The system stores in these bits the number of times that a Physical layer error has

occurred. Microcontroller can clear this counter to zero.

The value stored in this register is cleared every time the register is read.

12.1.5.41 FFT MODE Registers

Reset:

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	B it 0
FFT_MODE	NSYM(5:0)					CONTINUOUS	TEST_MODE_EN	

Name: FFT_MODE
Address: 0xFEB0
Access: Read/write

0x00

NSYM: Number of symbols to transmit

When in continuous transmission mode, symbol data acts as a free-running buffer, increasing from 0 to NSYM-1 and overflowing back to symbol 0.

• **CONTINUOUS:** This field enables/disables continuous transmission mode.

'0': Continuous transmission mode disabled.
'1': Continuous transmission mode enabled.

TEST_MODE_EN: This field enables/disables test mode

'0': Test mode disabled.'1': Test mode enabled.

Configuration for test mode. This register is used by the physical layer to fulfill with PRIME specification (PLME_TESTMODE.request primitive and PLME_TESTMODE.confirm primitive, see PRIME specification). In this mode data provided to FFT is written in data memory at ADDR_PHY_INI_TX, codifying each value with 4 bits according to DPSK modulation mapping. The msb of the value is to indicate an input of zero when set to '1'. Each byte in data memory contains 2 input values for FFT, with the first value located at high bits. There are 97 input values for FFT, so many as the number of subcarriers, so there are 48 bytes and a half of the next byte used for codifying them. The other half of this byte (low bits) will be used for the next symbol data.

12.1.5.42 AGC CONFIG Register

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	B it 0
AGC_CONFIG	-	-	AGC0_POL	AGC0_VALUE	AGC0_MODE	AGC1_POL	AGC1_VALUE	AGC1_MODE

Name: AGC_CONFIG

Address: 0xFEB1

Access: Read/write

Reset: 0x24

SAM4SP32A has implemented two Automatic Gain Control outputs in order to adjust the received signal level to a suitable range. When in "automatic" mode, both of them are set to '1' when the received signal is above 16-bit-user-definable thresholds (AGC1_TH and AGC0_TH) in order to activate external attenuators placed in the external analog front end.

The value of these outputs is set during the beginning of a received message and is hold until the end of the message.

AGC0 and AGC1 follow different algorithms, thus using both of them ensures more accurate gain control

--: Reserved bits

AGC0_POL: AGC0 polarity

This bit sets the polarity of the AGC0 output.

• '0': Polarity is inverted.

• '1': Polarity is not inverted (default).

AGC0_VALUE: AGC0 output value-

This bit stores the value wrote by the user to be the AGC0 output.

This bit is only taken into account when AGC0 "forced" mode is active (AGC0 MODE='1').

AGC0_POL field can invert this value.

• AGC0_MODE: AGC0 mode

This bit selects which AGC0 mode is being used

 '0': "Automatic" Mode. AGC0 output will be managed by the MAC, depending on saturation detected in received signal. If saturation is detected, AGC0 output will be '1'. Else, AGC0 output will be '0'. AGC0_POL field can invert this value.

(See SAT TH registers in 12.1.5.43)

• '1': "Forced" Mode. AGC0 output will be managed by the user, according to the value wrote in AGC0_VALUE field (AGC_CONFIG(4)).

AGC1_POL: AGC1 polarity

This bit sets the polarity of the AGC1 output.

• '0': Polarity is inverted.

• '1': Polarity is not inverted (default).

AGC1_VALUE: AGC1 output value-

This bit stores the value wrote by the user to be the AGC1 output.

This bit is only taken into account when AGC1 "forced" mode is active

 $(AGC1_MODE='1').$

AGC1_POL field can invert this value.

• AGC1_MODE: AGC1 mode

This bit selects which AGC1 mode is being used

- '0': "Automatic" Mode. AGC1 output will be managed by the MAC, depending on saturation detected in received signal. If saturation is detected, AGC1 output will be '1'. Else, AGC1 output will be '0'. AGC1_POL field can invert this value. (See SAT_TH registers in 12.1.5.43)
- '1': "Forced" Mode. AGC1 output will be managed by the user, according to the value wrote in AGC1_VALUE field (AGC_CONFIG(4)).

12.1.5.43 SAT_TH Registers

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	B it 0				
SAT_TH		SAT_TH(15:8)										
		SAT_TH(7:0)										

Name: SAT_TH

Address: 0xFEB7 – 0xFEB8

Access: Read/write Reset: 0x40; 0x00

• SAT_TH: These registers store a threshold for the PLC input-signal amplitude.

If this threshold is exceeded, AGC thresholds (AGC0_TH and AGC1_TH) will be taken into account.

If this threshold is not exceeded, AGC0_TH and AGC1_TH thresholds will be ignored, thus the AGC algorithm will be never triggered.

Recommended value for Atmel reference design = 0x37AA.

12.1.5.44 AGC1_TH Registers

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	B it 0			
AGC1_TH				AGC1_	TH(15:8)				@0xFE5F		
		AGC1_TH(7:0)									

Name: AGC1_TH

Address: 0xFE5F - 0xFE60

Access: Read/write

Reset: 0x40; 0x00

AGC1_TH: AGC1 Threshold

These registers store the 16-bit upper threshold used by the AGC1 algorithm to determine that the input signal must be attenuated.

This threshold is only taken into account in AGC1 "automatic" mode (AGC_CONFIG.AGC1_MODE='0').

This threshold is only taken into account if SAT_TH value is exceeded.

Recommended value for Atmel reference design = 0x4A00.

12.1.5.45 AGC0_TH Registers

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	B it 0		
AGC0_TH				AGC0_	TH(15:8)				@0xFEB2	
		AGC0_TH(7:0)								

Name: AGC0_TH

Address: 0xFEB2 – 0xFEB3

Access: Read/write

Reset: 0x10; 0x00

AGC0_TH: AGC0 Threshold

These registers store the 16-bit upper threshold used by the AGC0 algorithm to determine that the input signal must be attenuated.

This threshold is only taken into account in AGC0 "automatic" mode (AGC_CONFIG.AGC0_MODE='0').

This threshold is only taken into account if SAT_TH value is exceeded.

Recommended value for Atmel reference design = 0x1000.

12.1.5.46 AGC_PADS Register

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	B it 0
AGC_PADS							P46_MODE	SWITCH_AGC

Name: AGC_PADS

Address: 0xFE61

Access: Read/write

Reset: 0x00

--: Reserved bits

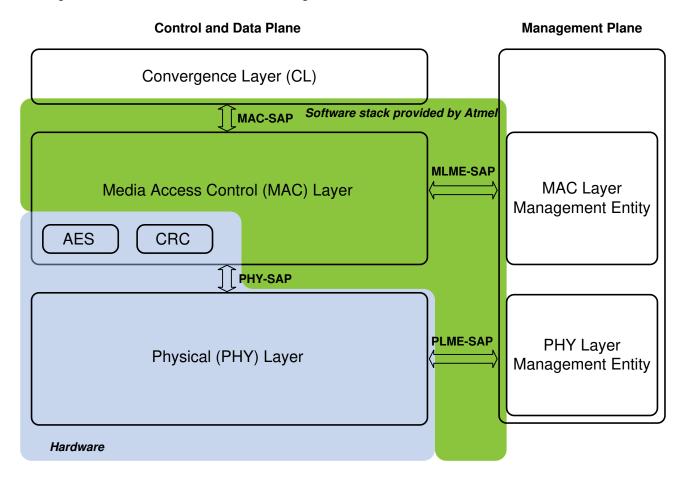
• **P46_MODE:** This field controls the P4.6/T2/AGC1 output pin (pin no.94).

• '0': Pin no.94 works as P4.6/T2 output pin.

• '1': Pin no.94 works as AGC1 output pin.

• **SWITCH_AGC:** This bit switches the AGC0 and AGC1 outputs.

• '0': Not switched AGC outputs.

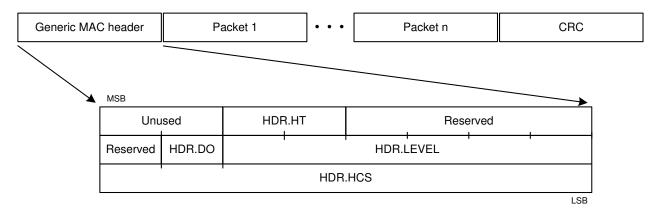

• '1': Switched AGC outputs.

12.2 SAM4SP32A MAC Layer

The SAM4SP32A hardware MAC layer consists of a hardware implementation of some functionalities of the MAC Layer Entity specified in PRIME specification. These features are CRC calculation and AES128 block.

Figure 12-9. SAM4SP32A Software Stack Diagram

Atmel PRIME stack implements by software the rest of the MAC layer requirements and capabilities. Furthermore, the software package allows the communication with the Management Plane by means of the two Access points described by PRIME (PHY Layer Management Entity SAP and MAC Layer Management Entity SAP) and the interface to communicate MAC layer with the upper layer (Convergence Layer).


Please check the "Atmel PRIME Stack User Manual" for software package detailed description and functionality.

12.2.1 Cyclic Redundancy Check (CRC)

There are three types of MAC PDUs (generic, promotion and beacon) for different purposes, and each one has its own specific CRC. In SAM4SP32A there is a hardware implementation of every CRC type calculated by the MAC layer. This CRC hardware-calculation is enabled by default. Note that the CRC included at the physical layer is also a hardware implementation available in SAM4SP32A and it is also enabled by default.

Figure 12-10. Generic MAC PDU format and generic MAC header detail

In transmission all CRC bytes are real-time calculated and the last bytes of the MAC PDU are overwritten with these values, (provided that the field HT in the first byte of the MAC header in transmission data is equal to the corresponding MAC PDU type).

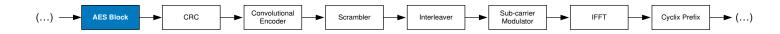
In reception the CRC bytes are also real-time calculated and these bytes are checked with the last bytes of the MAC PDU. If the CRC is not correct, then an error flag is activated, the complete frame is discarded, and the corresponding error counter is increased. These counters allow the MAC layer to take decisions according to error ratio.

For the Generic MAC PDU, there is an 8-bit CRC in the Generic MAC header, which corresponds to PRIME HDR.HCS. In reception if this CRC doesn't check successfully, the current frame is discarded and no interruption is generated.

This works in the same way as CRC for the PHY layer (CRC Ctrl, located in the PHY header, see PRIME specification for further information).

There is another CRC for the Generic MAC PDU which is the last field of the GPDU. It is 32 bits long and it is used to detect transmission errors. The CRC shall cover the concatenation of the SNA with the GPDU except for the CRC field itself. In reception, if the CRC is not successful then an internal flag is set and the error counter is increased.

For the Promotion Needed PDU there is an 8-bit CRC, calculated with the first 13 bytes of the header. In reception, if this CRC is not correct, then an internal flag is set and the corresponding error counter is increased.


For the Beacon PDU there is a 32-bit CRC calculated with the same algorithm as the one defined for the CRC of the Generic MAC PDU. This CRC shall be calculated over the complete BPDU except for the CRC field itself. In reception, if this CRC is not successful, then an internal flag is set and the same error counter as for GPDU is increased. The hardware used for this CRC is the same as the one used for GPDU.

12.2.2 Advanced Encryption Standard (AES)

One of the security functionalities in PRIME is the 128-bit AES encryption of data and its associated CRC. SAM4SP32A includes a hardware implementation of this block, and it is used by the physical layer in real-time transmission/reception. It is possible to use this block externally as a peripheral unit, by accessing the specific registers designed to control it. Therefore there are some configurable parameters and input/output buffers to the block.

Figure 12-11. PHY Layer transmitter block diagram

There are two basic operation ways in SAM4SP32A when using PRIME Security Profile 1. The first one is real-time encryption and the second one is independent encryption from the PHY layer.

Real-Time Encryption: the AES128 core is integrated in the physical chain, and data is encrypted and decrypted in real-time when needed. In transmission, data is transferred to the emission buffer by means of the DMA TX channel. Then the 128 bits located in the buffer are encrypted before starting transmission (Note that Beacon PDU, Promotion PDU and Generic MAC header, as well as several control packets, are not encrypted). Data is extracted when required from this buffer until it is empty, and then a new DMA transfer is requested to fill the 16 bytes and a new encryption is executed. The key used for encryption must be set at the corresponding register, and it can vary from a packet to another.

In reception, data is obtained from the PHY layer and it is passed to the AES128 block. When the reception buffer is full with incoming data, the 128 bits are decrypted and transferred to external memory through DMA RX channel. Then the reception buffer is available again to fill with processed data.

The header is always real-time analyzed in order to know if encryption process must be applied.

Independent Encryption: the AES128 core is used as a peripheral unit, accessible with several registers mapped in external memory. In this mode, when in transmission, data must be encrypted previously to the use of the PHY_DATA.request primitive (see PRIME specification), in an independent way. In reception, data passed by the PHY layer is already encrypted and must be decrypted in a subsequent process.

When working with AES block as a peripheral unit, automatic CRC calculation by hardware is disabled.

12.2.3 MAC Layer Registers

12.2.3.1 SNA Registers

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	B it 0	
SNA				SNA(47:40)				@FE62
				SNA	(7: 0)				@FE67

Name: SNA

Address: 0xFE62 - 0xFE67

Access: Read/write **Reset:** 0x00, ..., 0x00

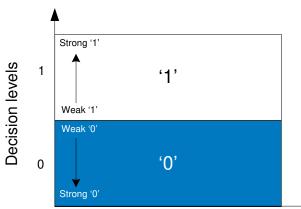
SNA: Sub Network Address

These registers store the 48-bit Sub Network Address. When the system Sub Network Address is available, the SAM4SP32A microcontroller must write it down so the Phy layer will be able to correctly calculate the CRC's, which depend on this parameter.

12.2.3.2 VITERBI BER HARD Register

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	B it 0
VITERBI_BER_HARD			VI	TERBI_BEI	R_HARD(7:	0)		

Name: VITERBI_BER_HARD


Address: 0xFE36
Access: Read only
Reset: 0x00

VITERBI_BER_HARD:

This register stores the number of errors accumulated in a message reception using Viterbi hard* decision. The value is cleared by hardware each time a new message is received.

*Hard Decision: in "hard" detection there are only two decision levels. If the received value is different than the corrected one, the error value taken is "1". Otherwise, the error value taken is "0".

Figure 12-12. Viterbi Hard detection decision levels

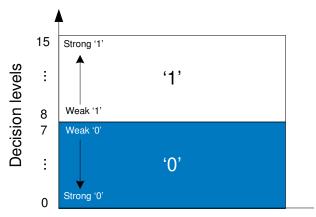
From the value in VITERBI_BER_HARD register it is possible to calculate de Bit Error Rate according to the following formula:

$$BER = \frac{10^{\frac{VTB_BER_HARD}{40}} - 1}{100}$$

12.2.3.3 VITERBI BER SOFT Register

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	B it 0
VITERBI_BER_SOFT			VI	TERBI_BE	R_SOFT(7:	0)		

Name: VITERBI_BER_SOFT


Address: 0xFE37
Access: Read only
Reset: 0x00

VITERBI_BER_SOFT:

This register stores a value proportional to the number of errors accumulated in a message reception using Viterbi soft* decision. The value is cleared by hardware each time a new message is received.

*Soft Decision: in "soft" decision there are fifteen decision levels. A strong '0' is represented by a value of "0", while a strong '1' is represented by a value of "15". The rest of values are intermediate, so "7" is used to represent a weak '0' and "8" represents a weak '1'. Soft decision calculates the error in one bit received as the distance in decision levels between the value received (a value in the range 0 to 15) and the corrected one (0 or 15).

Figure 12-13. Viterbi Hard detection decision levels

12.2.3.4 ERR_CRC32_MAC Registers

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	B it 0					
ERR_CRC32_MAC		ERR_CRC32_MAC(15:8)											
		ERR_CRC32_MAC(7:0)											

Name: ERR_CRC32_MAC
Address: 0xFEBA - 0xFEBB

Access: Read/write Reset: 0x00, 0x00

• ERR_CRC32_MAC: 16-bit value that stores the number of received messages that have been

discarded by an error in the MAC layer CRC32.

Note: to clear this value, these registers must be reset by the SAM4SP32A

12.2.3.5 ERR_CRC8_MAC Registers

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	B it 0				
ERR_CRC8_MAC		ERR_CRC8_MAC(15:8)										
		ERR CRC8 MAC(7:0)										

Name: ERR_CRC8_MAC Address: 0xFEBC - 0xFEBD

Access: Read/write 0x00, 0x00 Reset:

ERR_CRC8_MAC:

16-bit value that stores the number of received messages that have been

discarded by an error in the payload MAC layer CRC8.

Note: to clear this value, these registers must be reset by the SAM4SP32A

12.2.3.6 ERR_CRC8_AES Registers

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	B it 0				
ERR_CRC8_AES		ERR_CRC8_AES(15:8)										
	ERR_CRC8_AES(7:0)											

Name: ERR_CRC8_AES Address: 0xFEBE - 0xFEBF

Access: Read/write 0x00, 0x00 Reset:

ERR_CRC8_AES:

16-bit value that stores the number of received messages that have been

discarded by an error in the payload AES CRC8.

Note: to clear this value, these registers must be reset by the SAM4SP32A

12.2.3.7 ERR_CRC8_MAC_HD Registers

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	B it 0					
ERR_CRC8_MAC_HD		ERR_CRC8_MAC_HD(15:8)											
		ERR CRC8 MAC HD(7:0)											

Name: ERR_CRC8_MAC_HD

Address: 0xFEC0 - 0xFEC1

Access: Read/write Reset: 0x00, 0x00

> ERR_CRC8_MAC_HD:16-bit value that stores the number of received messages that have been discarded by an error in the header MAC layer.

> > Note: to clear this value, these registers must be reset by the SAM4SP32A microcontroller.

12.2.3.8 ERR_CRC8_PHY Registers

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	B it 0		
ERR_CRC8_PHY	ERR_CRC8_PHY(15:8)									
	ERR_CRC8_PHY(7:0)									

Name: ERR_CRC8_AES Address: 0xFEC2 - 0xFEC3

Access: Read/write 0x00, 0x00 Reset:

ERR_CRC8_PHY:

16-bit value that stores the number of received messages that have been

discarded by an error in the PHY layer CRC8.

Note: to clear this value, these registers must be reset by the SAM4SP32A

12.2.3.9 FALSE DET CONFIG Register

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	B it 0
FALSE_DET _CONFIG	-	-	ERR_CRC8 _MAC	INVALID _PROTOCOL	ERROR _LEN	ERROR_PAD _LEN	UNKNOWN _PDU	UNKNOWN _SP

Name: FALSE_DET_CONFIG

Address: 0xFEC4

Access: Read/write

Reset: 0x10

--: Reserved bits

• ERR_CRC8_MAC: If this bit is set to 1, FALSE_DET registers will increase its error counter if a received message has a correct PHY layer CRC8 but the MAC layer CRC8 present in its header is wrong.

• INVALID_PROTOCOL: If this bit is set to 1, FALSE_DET registers will increase its error counter if a received message has a correct PHY layer CRC8 but the PROTOCOL field indicates a modulation not supported by the system.

• **ERROR_LEN:** If this bit is set to 1, FALSE_DET registers will increase its error counter if a received message has a correct PHY layer CRC8 but the LEN field indicates a not valid message length.

ERROR_PAD_LEN:If this bit is set to 1, FALSE_DET registers will increase its error counter if a
received message has a correct PHY layer CRC8 but the PAD_LEN field
indicates a not valid message padding length.

UNKNOWN_PDU: If this bit is set to 1, FALSE_DET registers will increase its error counter if a
received message has a correct PHY layer CRC8 but the HT field indicates a
header type different from BEACON, PROMOTION or GENERIC.

UNKNOWN_SP: If this bit is set to 1, FALSE_DET registers will increase its error counter if a
received message has a correct PHY layer CRC8 but the
SECURITY_PROTOCOL field is wrong.

12.2.3.10 FALSE_DET Registers

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	B it 0		
FALSE_DET	FALSE_DET(15:8)									
	FALSE_DET(7:0)									

Name: FALSE_DET

Address: 0xFEC5 - 0xFEC6

Access: Read/write Reset: 0x00, 0x00

• FALSE_DET: Erroneous non-discarded messages.

16-bit value that stores the number of received messages that have not been discarded since its PHY layer CRC8 is correct, but in which there are other incorrect fields. The fields that shall be taken into account to increase the counter in case they were wrong can be selected by FALSE_DET_CONFIG register.

Note: to clear this value, these registers must be reset by the SAM4SP32A microcontroller

12.2.3.11 MAX_LEN_DBPSK Register

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	B it 0
MAX_LEN_DBPSK	-	-		N	//AX_LEN_I	DBPSK(5:0)	

Name: MAX_LEN_DBPSK

0xFF

Address: 0xFEC8
Access: Read/write

Reset:

--: Reserved bits

 MAX_LEN_DBPSK: This register sets the maximum length, measured in OFDM symbols, that the system allows to receive when working with DBPSK modulation and no Viterbi encoding.

If a message in such modulation/encoding is received and its LEN field indicates a length above the threshold defined by MAX_LEN_DBPSK value, the message will be discarded.

12.2.3.12 MAX_LEN_DBPSK_VTB Register

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	B it 0
MAX_LEN_DBPSK_VTB	-	-		MAX	_LEN_DB	PSK_VTB(5:0)	

Name: MAX_LEN_DBPSK_VTB

Address: 0xFEC9
Access: Read/write

Reset: 0xFF

--: Reserved bits

• MAX_LEN_DBPSK_VTB: This register sets the maximum length, measured in OFDM symbols that

the system allows to receive when working with DBPSK modulation and

Viterbi encoding.

If a message in such modulation/encoding is received and its LEN field indicates a length above the threshold defined by

MAX_LEN_DBPSK_VTB value, the message will be discarded.

12.2.3.13 MAX_LEN_DQPSK Register

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	B it 0
MAX_LEN_DQPSK	-	-		N	//AX_LEN_I	DQPSK(5:0)	

Name: MAX_LEN_DQPSK

0xFF

Address: 0xFECA
Access: Read/write

Reset:

Reserved bits

 MAX_LEN_DBPSK: This register sets the maximum length, measured in OFDM symbols, that the system allows to receive when working with DQPSK modulation and no Viterbi encoding.

If a message in such modulation/encoding is received and its LEN field indicates a length above the threshold defined by MAX_LEN_DQPSK value, the message will be discarded.

12.2.3.14 MAX_LEN_DQPSK_VTB Registers

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	B it 0
MAX_LEN_DQPSK_VTB	-	-		MAX	_LEN_DQ	PSK_VTB((5:0)	

Name: MAX_LEN_DQPSK_VTB

Address: 0xFECB
Access: Read/write

Reset: 0xFF

--: Reserved bits

• MAX_LEN_DQPSK_VTB: This register sets the maximum length, measured in OFDM symbols that

the system allows to receive when working with DQPSK modulation and

Viterbi encoding.

If a message in such modulation/encoding is received and its LEN field indicates a length above the threshold defined by

MAX_LEN_DQPSK_VTB value, the message will be discarded.

12.2.3.15 MAX_LEN_D8PSK Registers

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	B it 0
MAX_LEN_D8PSK	-	-		N	//AX_LEN_I	D8PSK(5:0))	

Name: MAX_LEN_D8PSK

Address: 0xFECC
Access: Read/write
Reset: 0xFF

--: Reserved bits

 MAX_LEN_D8PSK: This register sets the maximum length, measured in OFDM symbols, that the system allows to receive when working with D8PSK modulation and no Viterbi encoding.

If a message in such modulation/encoding is received and its LEN field indicates a length above the threshold defined by MAX_LEN_D8PSK value, the message will be discarded.

12.2.3.16 MAX_LEN_D8PSK_VTB Register

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	B it 0
MAX_LEN_D8PSK_VTB	-	-		MAX	(_LEN_D8	PSK_VTB(5:0)	

Name: MAX_LEN_D8PSK_VTB

Address: 0xFECD
Access: Read/write

Reset: 0xFF

--: Reserved bits

MAX_LEN_D8PSK_VTB: This register sets the maximum length, measured in OFDM symbols that

the system allows to receive when working with D8PSK modulation and $\,$

Viterbi encoding.

If a message in such modulation/encoding is received and its LEN field indicates a length above the threshold defined by

MAX_LEN_D8PSK_VTB value, the message will be discarded.

12.2.3.17 AES_PAD_LEN Register

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	B it 0
AES_PAD_LEN		-	-			AES_PAD	_LEN(3:0)	

Name: AES_PAD_LEN

Address: 0xFE25

Access: Read/write

Reset: 0x00

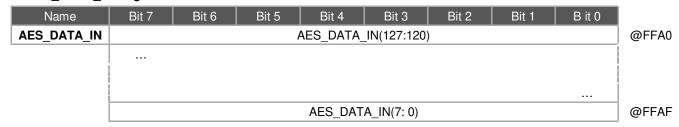
• --: Reserved bits

• AES_PAD_LEN: AES protocol works over 16-bytes-length blocks. When a block is not 16-bytes

long, this register indicates the number of padding bytes to append.

This register takes values between 0 and 15.

In transmission, if encryption is being used, microcontroller must write the AES


padding length in this register.

In no-encrypted transmission and in reception, the value in this register is not

used.

12.2.3.18 AES_DATA_IN Registers

Name: AES_DATA_IN
Address: 0xFFA0 - 0xFFAF

Access: Read/write **Reset:** 0x00, ..., 0x00

• AES_DATA_IN: Input buffer for AES128 block.

This buffer can be written to be encrypted/decrypted by the key in KEY_PERIPH

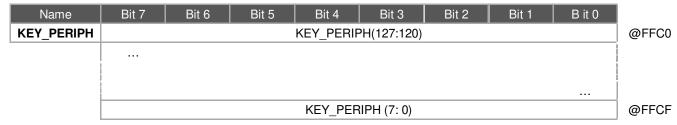
(see 12.2.3.20) register.

The resulting data could be read at AES_DATA_OUT (see 12.2.3.19) registers.

12.2.3.19 AES_DATA_OUT Registers

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	B it 0	
AES_DATA_OUT			Αl	ES_DATA_0	OUT(127:12	.0)			@FFB0
	AES_DATA_OUT(7: 0)								

Name: AES_DATA_OUT
Address: 0xFFB0 - 0xFFBF


Access: Read only **Reset:** 0x00, ..., 0x00

• AES_DATA_OUT: Output buffer for AES128 block.

This buffer stores the result of the encryption/decryption processing of data in AES_DATA_IN (see 12.2.3.18) register with the key in KEY_PERIPH (see 12.2.3.20) register.

12.2.3.20 KEY PERIPH Registers

Name: KEY_PERIPH

Address: 0xFFC0 - 0xFFCF

Access: Read/write

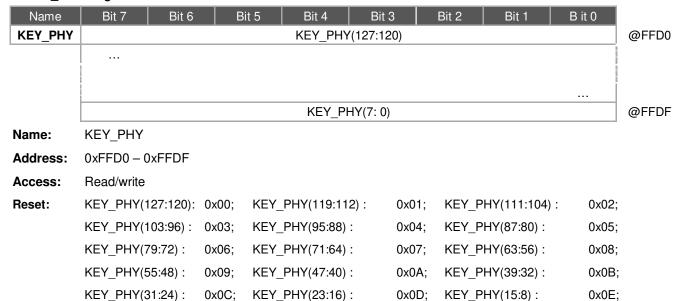
Reset: KEY_PERIPH(127:120): 0x00; KEY_PERIPH(119:112): 0x01; KEY_PERIPH(111:104): 0x02;

 ${\sf KEY_PERIPH(103:96):} \qquad \qquad 0 x 0 3; \qquad {\sf KEY_PERIPH(95:88):} \qquad 0 x 0 4; \qquad {\sf KEY_PERIPH(87:80):} \qquad 0 x 0 5;$

KEY_PERIPH(79:72): 0x06; KEY_PERIPH(71:64): 0x07; KEY_PERIPH(63:56): 0x08;

KEY_PERIPH(55:48): 0x09; KEY_PERIPH(47:40): 0x0A; KEY_PERIPH(39:32): 0x0B; KEY_PERIPH(31:24): 0x0C; KEY_PERIPH(23:16): 0x0D; KEY_PERIPH(15:8): 0x0E;

KEY_PERIPH(7:0): 0x0F;


• **KEY_PERIPH:** Key for AES128 block when used as peripheral part.

This key is used for encrypting/decrypting data in AES_DATA_IN registers.

12.2.3.21 KEY PHY Registers

KEY_PHY(7:0):

KEY_PHY: Key for AES128 block when used by the physical layer

0x0F;

This key is used in real time encryption/decryption for Security Profile 1. When any of the DMA channels of the physical layer accesses to the memory, then this key and the input data are multiplexed to the AES128-core. Also output data is multiplexed in order to provide encrypted/decrypted data to the physical buffer.

12.2.3.22 AES SFR Register

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	B it 0
AES_SFR						READY	START	CIPHER

Name: AES_SFR
Address: 0xFFE0
Access: Read/write
Reset: 0x00

--: Reserved bits.

• **READY:** Flag to indicate encryption/decryption process completion.

When the encryption/decryption has been completed, this flag is set to '1'.

This flag is automatically cleared when an encryption/decryption process begins.

• **START:** When this bit is set to '1', the encryption/decryption process is triggered.

If encryption/decryption starts successfully, then this bit is automatically cleared to '0'.

• **CIPHER:** This field indicates if data must be encrypted or decrypted.

'0' - Decryption mode

• '1' - Encryption mode

13. Electrical Characteristics

13.1 **Absolute Maximum Ratings**

Permanent device damage may occur if Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions given in the Recommended Operating Conditions section. Exposure to the Absolute Maximum Conditions for extended periods may affect device reliability.

Table 13-1. SAM4SP32A Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit
Operating Temperature (Industrial)	ОТ	-40 to +85	°C
Storage Temperature	TST	-55 to 125	ъС
Voltage on Input Pins With Respect to Ground		-0.3 to +4.0	V
Maximum Operating Voltage (VDDCORE)	VDDCORE max	1.32	V
Maximum Operating Voltage (VDDIO)	VDDIO max	4.0	V
Junction Temperature	TJ	-40 to 125	ºC
Total DC Output Current On all I/O lines	IO	300	mA

ATTENTION observe EDS precautions

Precautions for handling electrostatic sensitive devices should be taken into account to avoid malfunction. Charged devices and circuit boards can discharge without detection

13.2 DC Characteristics

The following characteristics are applicable to the operating temperature range: $T_A = -40^{\circ}C$ to $+85^{\circ}C$, unless otherwise specified.

Table 13-2. **SAM4SP32A DC Characteristics**

Symbol	Parameter	Conditions	Min	Тур	Max	Units
$V_{VDDCORE}$	DC Supply Core		1.08	1.20	1.32	
V_{VDDIO}	DC Supply I/Os	(1) (2)	3.00	3.30	3.60	
V_{VDDPLL}	PLLA, PLLB and Main Oscillator Suplly		1.08		1.32	
A_{VDD}	PLC Analog Converter Power Supply		3.00	3.30	3.60	
V_{IL}	Input Low-level Voltage	PA0-PA25, PB0-PB12, PC0, PC5, PC26	-0.3		MIN[0.8V:0.3 x V _{VDDIO}]	
V _{IH}	Input High-level Voltage	PA0-PA25, PB0 PB12, PC0, PC5, PC26	MIN[2.0V:0.7 x V _{VDDIO}]		V _{VDDIO+} 0.3V	V
V_OH	Output High-level Voltage	PA0-PA25, PB0-PB12, PC0, PC5, PC26 I _{OL} = 4.0 mA	V _{VDDIO} -0.4V			
		VDDIO [3.0V : 3.60V] PB0-PB12	V _{VDDIO} -0.15V			
V_OL	Output Low-level Voltage	PA0-PA25, PB0 PB12, PC0, PC5, PC26 I _{OL} = 4.0 mA			0.4	
		VDDIO [3.0V : 3.60V] PB0-PB12			0.15	
V_{Hys}	Hysteresis Voltage	PA0-PA25, PB0-PB9, PB12, PC0,PC5,PC26 (Hysteresis mode enabled)	150			mV
І _{ОН}	I _{ОН} (or I _{SOURCE})	VDDIO [3V : 3.60V] ;V _{OH} = V _{VDDIO} - 0.4V - PA14 (SPCK) - PA[12-13], - PA[0-3] - Other pins ⁽¹⁾ VDDIO [3.0V : 3.60V] - PB[10-11] -EMIT[1:6]			-4 -4 -2 -2 -30 -20	mA
		-Other PLC pins VDDIO [3V : 3.60V] ; V _{OH} = V _{VDDIO} - 0.4V - NRST			-10 -2	

Table 13-2. SAM4SP32A DC Characteristics (Continued)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
		VDDIO [3V : 3.60V] ;V _{OH} = V _{VDDIO} - 0.4V			4	
		- PA14 (SPCK)			4	
		- PA[12-13],			4 2	
		- PA[0-3]			2	
	I _{OL} (or I _{SINK})	- Other pins (1)			~	
I _{OL}		VDDIO [3.0V : 3.60V]			30	
		- PB[10-11]			20	
		-EMIT[1:6]			10	
		-Other PLC pins				
		VDDIO [3V : 3.60V] ; V _{OH} =				
		V _{VDDIO} - 0.4V			2	
		- NRST				
l _{IL}	Input Low	Pull_up OFF	-1		1	
'IL		Pull_up ON	10		50	μΑ
I _{IH}	Input High	Pull_up OFF	-1		1	μΑ
		Pull_up ON	10		50	
R _{PULLUP}	Internal Pull-up Resistor	PA0-PA25, PB0- PB12, PC0, PC5, PC26, NRST	70	100	130	
R _{PULLDOWN}	Internal Pull-down Resistor	PA0-PA25, PB0-PB12, PC0, PC5, PC26, NRST	70	100	130	kΩ
PLC _{RPU}	PLC Internal Pull-up Resistor	3.3v I/O	10	33	80	K12
PLC _{RPD}	PLC Internal Pull- down Resistor	3.3v I/O	10	33	80	

Note:

- 1. At power-up VDDIO needs to reach 0.6V before VDDIN reaches 1.0V
- 2. VDDIO voltage needs to be equal or below to (VDDIN voltage +0.5V)

Table 13-3. **1.2V Voltage Regulator Characteristics (VDDOUT12)**

Symbol	Parameter	Conditions	Min	Тур	Max	Units
V_{VDDIN}	DC Input Voltage Range	(4)(5)	1.6	3.3	3.6	V
V _{VDDOUT}	DC Output Voltage	Normal Mode Standby Mode		1.2 0		V
V _{ACCURACY}	Output Voltage Accuracy	I _{Load} = 0.8mA to 80 mA (after trimming)	-3		3	%
I _{LOAD}	Maximum DC Output Current	$V_{VDDIN} > 1.8V$ $V_{VDDIN} \le 1.8V$			80 40	mA
I _{LOAD-START}	Maximum Peak Current during startup	See Note ⁽³⁾			400	mA
D _{DROPOUT}	Dropout Voltage	$V_{VDDIN} = 1.6V$, $I_{Load} = Max$		400		mV
V _{LINE}	Line Regulation	V _{VDDIN} from 2.7V to 3.6V; I _{Load} MAX		10	30	
$V_{LINE-TR}$	Transient Line regulation	V_{VDDIN} from 2.7V to 3.6V; tr = tf = $5\mu s;$ I_{Load} Max		50	150	mV
V_{LOAD}	Load Regulation	$V_{VDDIN} \ge 1.8V$; $I_{Load} = 10\%$ to 90% MAX $V_{VDDIN} \ge 1.8V$;		20	40	
$V_{LOAD ext{-}TR}$	Transient Load Regulation	$I_{Load} = 10\%$ to 90% MAX tr = tf = 5 μ s		50	150	mV
lα	Quiescent Current	Normal Mode; @ I _{Load} = 0 mA @ I _{Load} = 80 mA Standby Mode;		5 500	1	μА
CD _{IN}	Input Decoupling Capacitor	Cf. External Capacitor Requirements (1)		4.7		μF
CD _{OUT}	Output Decoupling	Cf. External Capacitor Requirements (2)	1.85	2.2	5.9	μF
	Capacitor	ESR	0.1		10	Ω
T _{ON}	Turn on Time	CD _{OUT} = 2.2μ F, V _{VDDOUT} reaches $1.2V$ (+/- 3%)		300		μѕ
T _{OFF}	Turn off Time	CD _{OUT} = 2.2μF			40	ms

Note:

- A 10μF or higher ceramic capacitor must be connected between VDDIN and the closest GND pin of the device.
 This large decoupling capacitor is mandatory to reduce startup current, improving transient response and noise rejection.
 - 2. To ensure stability, an external 2.2μF output capacitor, CDOUT must be connected between the VDDOUT and the closest GND pin of the device. The ESR (Equivalent Series Resistance) of the capacitor must be in the range 0.1 to 10 ohms. Solid tantalum and multilayer ceramic capacitors are all suitable as output capacitor. A 100nF bypass capacitor between VDDOUT and the closest GND pin of the device helps decreasing output noise and improves the load transient response.
 - 3. Defined as the current needed to charge external bypass/decoupling capacitor network.
 - 4. At power-up VDDIO needs to reach 0.6V before VDDIN reaches 1.0V
 - 5. VDDIO voltage needs to be equal or below to (VDDIN voltage +0.5V)

Table 13-4. Core Power Supply Brownout Detector Characteristics

Parameter	Symbol	Conditions	Min	Тур	Max	Units
Supply Falling Threshold ⁽¹⁾	V _{TH-}		0.98	1.0	1.04	V
Hysteresis	V _{HYST}				110	mV
Supply Rising Threshold	$V_{TH_{+}}$		0.8	1.0	1.08	V
Current Consumption	I _{DDON}	Brownout Detector enabled			24	
on VDDCOARE	I _{DDOFF}	Brownout Detector disable			2	_
Current Consumption on VDDIO	I _{DD33ON}	Brownout Detector enabled			24	μΑ
	I _{DD33OFF}	Brownout Detector disable			2	
V _{TH-} detection propagation time	Td-	[-40/+85°C]	-2.5		+2.5	%
Start Time	T _{START}	From disable state to enable state			320	μѕ

Note:

1. The product is guaranteed to be functional at V_{TH}-

Figure 13-1. Core Brownout Output Waveform

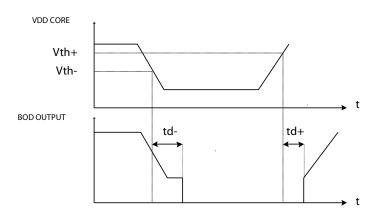


Table 13-5. VDDIO Supply Monitor

Parameter	Symbol	Conditions	Min	Тур	Max	Units
Supply Monitor Threshold	V _{TH}	16 selectable steps	1.6		3.34	V
Threshold Level Accuracy	TACCURACY	[-40/+85°C]	-2.5		+2.5	%
Hysteresis	V _{HYST}			20	30	mV
Current Consumption on VDDCOARE	I _{DDON}	Enabled			40	
	I _{DDOFF}	Disable			10	μΑ
Start Time	T _{START}	From disable state to enable state			320	μs

Table 13-6. Threshold Selection

Digital Code	Threshold min (V)	Threshold typ (V)	Threshold max (V)
0000	1.58	1.6	1.62
0001	1.7	1.72	1.74
0010	1.82	1.84	1.86
0011	1.94	1.96	1.98
0100	2.05	2.08	2.11
0101	2.17	2.2	2.23
0110	2.29	2.32	2.35
0111	2.41	2.44	2.47
1000	2.53	2.56	2.59
1001	2.65	2.68	2.71
1010	2.77	2.8	2.83
1011	2.8	2.92	2.95
1100	3.0	3.04	3.07
1101	3.12	3.16	3.2
1110	3.24	3.28	3.32
1111	3.36	3.4	3.44

Figure 13-2. VDDIO Supply Monitor

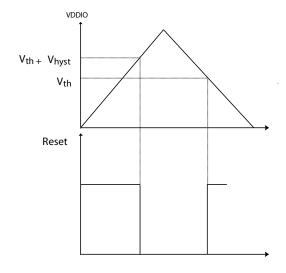


Table 13-7. **Zero-Power-on Reset Characteristics**

Parameter	Symbol	Coditions	Min	Тур	Max	Units
Threshold voltage rising	V_{TH+}	At Startup	1.45	1.53	1.59	V
Threshold voltage falling	V _{TH-}		1.35	1.45	1.55	V
Reset Time-out Period	Tres		100	240	500	μs

Figure 13-3. Zero-Power-on Reset Characteristics

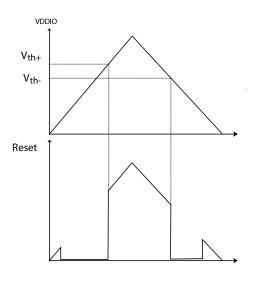
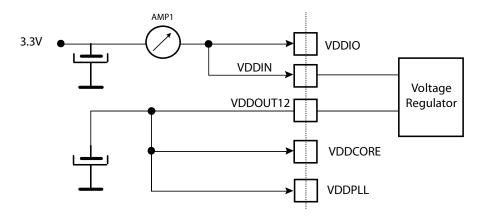


Table 13-8. **DC Flash Characteristics**

Parameter	Symbol	Coditions		Max	Units
Active current		Random 144-bit Read:	16	25	mA
		Maximum Read Frequency onto VDDCORE = 1.2 @ 25°C	10	25	
	Icc	Random 72-bit Read:	10	18	
		Maximum Read Frequency onto VDDCORE = 1.2 @ 25°C	10		
		Program onto VDDCORE = 1.2V @ 25°C	3	5	


13.3 **Power Consumption**

- Power consumption of the device according to the different Low Power Mode Capabilities (Backup, Wait, Sleep) and Active Mode.
- Power consumption on power supply in different modes: Backup, Wait, Sleep and Active.
- Power consumption by peripheral: calculated as the difference in current measurement after having enabled then disabled the corresponding clock.

13.3.1 Backup Mode Current Consuption

The Backup Mode configuration and measurements are defined as follows.

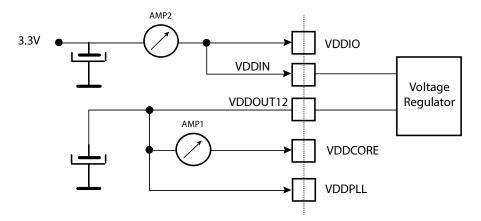
Figure 13-4. Measurement Setup

13.3.1.1 Configuration A

- Supply Monitor on VDDIO is disabled
- RTT and RTC not used
- Embedded slow clock RC Oscillator used
- One WKUPx enabled
- Current measurement on AMP1 (See Figure 13-4)

13.3.1.2 Configuration B

- Supply Monitor on VDDIO is disabled
- RTT used
- One WKUPx enabled
- Current measurement on AMP1 (See Figure 13-4)
- 32 KHz Crystal Oscillator used


Table 13-9. Power Consumption for Backup Mode Configuration A and B

Conditions	Total Consumption (AMP1) Configuration A	Total Consumption (AMP1) Configuration B	Unit
VDDIO = 3.3V @25°C	1.98	1.85	
VDDIO = 3.0V @25°C	1.79	1.66	^
VDDIO = 2.5V @25°C	1.51	1.37	μΑ
VDDIO = 1.8V @25°C	1	0.95	
VDDIO = 3.3V @85°C	13.0	12.42	
VDDIO = 3.0V @85°C	12.0	11.42	
VDDIO = 2.5V @85°C	10.5	10.05	μΑ
VDDIO = 1.8V @85°C	8.78	8.42	

13.3.2 Sleep and Wait Mode Current Consumption

The Wait Mode and Sleep Mode configuration and measurements are defined below.

Figure 13-5. Measurement Setup for Sleep Mode

13.3.2.1 Sleep Mode

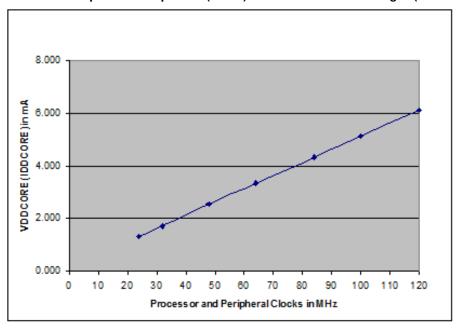
- Core Clock OFF
- Master Clock (MCK) running at various frequencies with PLLA or the fast RC oscillator.
- Fast start-up through WKUP0-15 pins
- Current measurement as shown in figure Figure 13-6
- All peripheral clocks deactivated

Table 13-10 below gives current consumption in typical conditions.

Table 13-10. Typical Current Consumption for Sleep Mode

Conditions	VDDCORE Consumption (AMP1)	Total Consumption (AMP2)	Unit
Figure 13-6 @25°C MCK = 48 MHz There is no activity on the I/Os of the device.	2.52	3.04	mA

Figure 13-6. Current Consumption in Sleep Mode (AMP1) versus Master Clock ranges (Condition from Table 13-10)



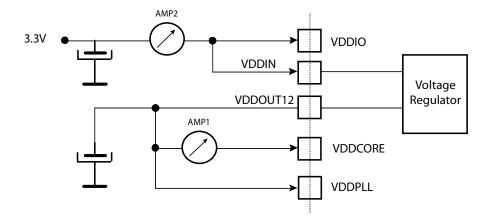


Table 13-11. Sleep mode Current consumptionversus Master Clock (MCK) variation with PLLA

Core Clock/MCK (MHz)	VDDCORE Consumption (AMP1)	Total Consumption (AMP2)	Unit
120	8.1	9.9	mA
100	6.7	8.3	mA
84	5.7	7.1	mA
64	4.5	6.4	mA
48	3.4	4.8	mA
32	2.3	3.38	mA
24	1.8	3.31	mA

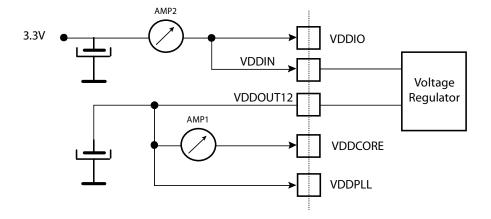
13.3.2.2 Wait Mode

Figure 13-7. Measurement Setup for Wait Mode

- Core Clock and Master Clock Stopped
- Current measurement as shown in the above figure
- All Peripheral clocks deactivated

Table 13-12 gives current consumption in typical conditions.

Table 13-12. Typical Current Consumption in Wait Mode


Conditions	VDDOUT Consumption (AMP1)	Total Consumption (AMP2)	Unit
See Figure 13-7 @25°C There is no activity on the I/Os of the device. With the Flash in Standby Mode	20.4	32.2	μΑ
See Figure 13-7 @25°C There is no activity on the I/Os of the device. With the Flash in Deep Power Down Mode	20.5	27.6	μА

13.3.3 Active Mode Power Consumption

The Active Mode configuration and measurements are defined as follows:

- VDDIO = VDDIN = 3.3V
- VDDCORE = 1.2V (Internal Voltage regulator used)
- TA = 25°C
- Application Running from Flash Memory with128-bit access Mode
- All Peripheral clocks are deactivated.
- Master Clock (MCK) running at various frequencies with PLLA or the fast RC oscillator.
- Current measurement on AMP1 (VDDCORE) and total current on AMP2

Figure 13-8. Active Mode Measurement Setup

Tables below give Active Mode Current Consumption in typical conditions.

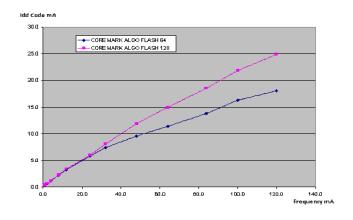

- VDDCORE at 1.2V
- Temperature = 25°C

Table 13-13. Active Power Consumption with VDDCORE @ 1.2V (VDDOUT12) running from Flash Memory or SRAM

	CoreMark				
Core Clock (MHz)	128-bit Flas	sh access ⁽¹⁾	64-bit Flas	Unit	
	AMP1	AMP2	AMP1	AMP2	
120	24.9	28.8	18	21.4	
100	21.9	25.4	16.3	19.5	
84	18.5	21.4	13.8	16.6	
64	15.0	17.6	11.4	13.9	
48	11.9	14.3	9.6	11.8	
32	8.1	9.9	7.4	9.3	
24	6.0	7.7	5.8	7.5	mA
12	3.4	6.1	3.2	6.0	
8	2.3	4.5	2.2	4.5	
4	1.2	2.6	1.2	2.9	
2	0.7	1.9	0.7	2.0	
1	0.4	1.3	0.4	1.6	
0.5	0.3	1.1	0.3	1.3	

1. Flash Wait State (FWS) in EEFC_FMR adjusted versus Core Frequency

13.3.4 Peripheral Power Consumption in Active Mode

Table 13-14. Power Consumption on V_{VDDCORE}⁽¹⁾ (when PRIME PLC Transceiver is turned off)

Peripheral	Consumption (Typ)	Unit
PIO Controller A (PIOA)	5.6	
PIO Controller B (PIOB)	7.5	
PIO Controller C (PIOC)	5.9	
UART	3.8	
USART	7.7	
PWM	10.5	
TWI	5.8	
PLC_Bridge	6.9	μ A /MHz
Timer Counter (TCx)	4.7	
ACC	1.3	
CRCCU	1.4	
SMC	3.6	
SSC	6.1	
UDP	5	

Table 13-15. PRIME PLC Transceiver Peripheral Power Consumption

Parameter	Condition	Symbol	Rating			Unit
raidilletei	Condition	Symbol	Min.	Тур.	Max.	Oilit
Power Consumption	(2)	P ₂₅		260		mW
Power Consumption (worst case)	(3)	P ₈₅			355	

- 1. VDDIO = 3.3V, $V_{VDDCORE} = 1.08V$, TA = 25°C
- 2. VDDIO = 3.3V, $V_{VDDCORE} = 1.08V$, $T_A = 25$ °C
- 3. VDDIO = 3.3V, $V_{VDDCORE} = 1.08V$, $T_A = 25$ °C

13.4 Oscillator Characteristics

13.4.1 32 kHz RC Oscillator Characteristics

Table 13-16. 32 kHz RC Oscillator Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	RC Oscillator Frequency		20	32	44	kHz
	Frequency Supply Dependency		-3		3	%/V
	Frequency Temperature Dependency	Over temperature range (-40°C/ +85°C) versus 25°C	-7		7	%
Duty	Duty Cycle		45	50	55	%
T _{ON}	Startup Time				100	μs
I _{DDON}	Current Consumption	After Startup Time Temp. Range = -40°C to +125°C Typical Consumption at 2.2V supply and Temp = 25°C		540	860	nA

13.4.2 4/8/12 MHz RC Oscillators Characteristics

Table 13-17. 4/8/12 MHz RC Oscillators Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
F _{Range}	RC Oscillator Frequency Range	(1)	4		12	MHz
ACC ₄	4 MHz Total Accuracy	-40°C <temp<+85°c 4 MHz output selected (1)(2)</temp<+85°c 			±30	%
ACC ₈		-40°C <temp<+85°c 8 MHz output selected (1)(2)</temp<+85°c 			±30	0/
•	8 MHz Total Accuracy	-40°C <temp<+85°c 8 MHz output selected (1)(3)</temp<+85°c 			±5	%
400	12 MHz Total Accuracy	-40°C <temp<+85°c 12 MHz output selected (1)(2)</temp<+85°c 			±30	24
ACC ₁₂		-40°C <temp<+85°c 12 MHz output selected (1)(3)</temp<+85°c 			±5	%
	Frequency deviation versus trimming code	8 MHz 12 MHz		47 64		kHz/trimming code
Duty	Duty Cycle		45	50	55	%
T _{ON}	Startup Time				10	μs
I _{DDON}	Active Current Consumption ⁽²⁾	4MHz 8MHz 12MHz		50 65 82	75 95 118	μΑ

Note:

- 1. Frequency range can be configured in the Supply Controller Registers
- 2. Not trimmed from factory
- 3. After Trimming from factory

The 4/8/12 MHz Fast RC oscillator is calibrated in production. This calibration can be read through the Get CALIB Bit command (see EEFC section) and the frequency can be trimmed by software through the PMC.

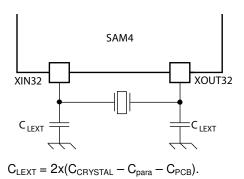

13.4.3 32.768 kHz Crystal Oscillator Characteristics

Table 13-18. **32.768 kHz Crystal Oscillator Characteristics**

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
F _{req}	Operating Frequency	Normal mode wi	th crystal			32.768	KHz
	Supply Ripple Voltage (on VDDIO)	Rms value, 10 KHz to 10 MHz				30	mV
	Duty Cycle				50	60	%
	Startup Time	Rs < 50 K Ω Rs < 100 K Ω	$C_{crystal} = 12.5 pF$ $C_{crystal} = 6 pF$ $C_{crystal} = 12.5 pF$ $C_{crystal} = 6 pF$			900 300 1200 500	ms
lddon	Current consumption	Rs < 50KΩ Rs < 100KΩ	$C_{crystal} = 12.5 pF$ $C_{crystal} = 6 pF$ $C_{crystal} = 12.5 pF$ $C_{crystal} = 6 pF$		550 380 820 530	1150 980 1600 1350	nA
Pon	Drive level					0.1	μW
R _f	Internal resistor	between XIN32 and XOUT32			10		МΩ
C _{LEXT}	Maximum external capacitor on XIN32 and XOUT32					20	pF
C _{para}	Internal Parasitic Capacitance			0.6	0.7	0.8	pF

Note:

1. R_S is the series resitor

Where C_{PCB} is the capacitance of the printed circuit board (PCB) track layout from the crystal to the SAM4 pin.

13.4.4 32.768 kHz Crystal Characteristics

Table 13-19. Crystal Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
ESR	Equivalent Series Resistor (R _{S)}	Crystal @ 32.768 KHz		50	100	ΚΩ
См	Motional capacitance	Crystal @ 32.768 KHz	0.6		3	fF
C _{SHUNT}	Shunt capacitance	Crystal @ 32.768 KHz	0.6		2	pF

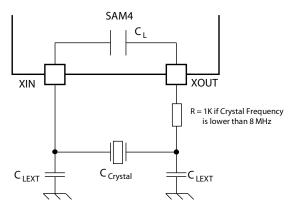

13.4.5 **3 to 20 MHz Crystal Oscillator Characteristics**

Table 13-20. 3 to 20 MHz Crystal Oscillator Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
F _{req}	Operating Frequency	Normal mode with crystal	3	16	20	MHz
	Supply Ripple Voltage (on VDDPLL)	Rms value, 10 KHz to 10 MHz			30	mV
	Duty Cycle		40	50	60	%
T _{ON}	Startup Time	3 MHz, C_{SHUNT} = 3pF 8 MHz, C_{SHUNT} = 7pF 16 MHz, C_{SHUNT} = 7pF with Cm = 8fF 16 MHz, C_{SHUNT} = 7pF with Cm = 1.6fF 20 MHz, C_{SHUNT} = 7pF			14.5 4 1.4 2.5 1	ms
I _{DD_ON}	Current consumption (on VDDIO)	3 MHz ⁽²⁾ 8 MHz ⁽³⁾ 16 MHz ⁽⁴⁾ 20 MHz ⁽⁵⁾		230 300 390 450	350 400 470 560	μА
P _{ON}	Drive level	3 MHz 8 MHz 16 MHz, 20 MHz			15 30 50	μW
R_f	Internal resistor	between XIN and XOUT		0.5		ΜΩ
C _{LEXT}	Maximum external capacitor on XIN and XOUT		12.5		17.5	pF
C _L	Internal Equivalent Load Capacitance	Integrated Load Capacitance (XIN and XOUT in series)	7.5	9.5	10.5	pF

- 1. $R_S = 100-200$ Ohms; Cs = 2.0 2.5pF; Cm = 2 1.5 fF(typ, worst case) using 1 K<Symbol>W serial resistor on XOUT.
- 2. $R_S = 50-100 \text{ Ohms}$; Cs = 2.0 2.5pF; Cm = 4 3 fF(typ, worst case).
- 3. $R_S = 25-50 \text{ Ohms}$; Cs = 2.5 3.0 pF; Cm = 7 5 fF (typ, worst case).
- 4. $R_S = 20-50$ Ohms; Cs = 3.2 4.0pF; Cm = 10 8 fF(typ, worst case).

 $C_{\text{LEXT}} = 2x(C_{\text{CRYSTAL}} - C_{\text{L}} - C_{\text{PCB}}).$

Where C_{PCB} is the capacitance of the printed circuit board (PCB) track layout from the crystal to the SAM4 pin

13.4.6 3 to 20 MHz Crystal Characteristics

Table 13-21. 3 to 20 MHz Crystal Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
ESR	Equivalent Series Resistor (Rs)	Fundamental @ 3 MHz Fundamental @ 8 MHz Fundamental @ 12 MHz Fundamental @ 16 MHz Fundamental @ 20 MHz			200 100 80 80 50	Ω
См	Motional capacitance				8	fF
Сѕнилт	Shunt capacitance				7	pF

13.4.7 Crystal Oscillator Design Considerations Information

13.4.7.1 Choosing a Crystal

When choosing a crystal for the 32768 Hz Slow Clock Oscillator or for the 3-20 MHz Oscillator, several parameters must be taken into account. Important parameters between crystal and SAM4S specifications are as follows:

- Load Capacitance
 - C_{crystal} is the equivalent capacitor value the oscillator must "show" to the crystal in order to oscillate at the target frequency. The crystal must be chosen according to the internal load capacitance (C_L) of the on-chip oscillator. Having a mismatch for the load capacitance will result in a frequency drift.
- Drive Level
 - Crystal drive level >= Oscillator Drive Level. Having a crystal drive level number lower than the oscillator specification may damage the crystal.
- Equivalent Series Resistor (ESR)
 - Crystal ESR <= Oscillator ESR Max. Having a crystal with ESR value higher than the oscillator may cause the oscillator to not start.
- Shunt Capacitance
 - Max. crystal Shunt capacitance <= Oscillator Shunt Capacitance (C_{SHUNT}). Having a crystal with ESR value higher than the oscillator may cause the oscillator to not start.

13.4.7.2 Printed Circuit Board (PCB)

SAM4SP32A Oscillators are low power oscillators requiring particular attention when designing PCB systems.

13.5 PLLA, PLLB Characteristics

Table 13-22. Supply Voltage Phase Lock Loop Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
VDDPLL	Supply Voltage Range		1.08	1.2	1.32	V
	Allowable Voltage Ripple	RMS Value 10 kHz to 10 MHz RMS Value > 10 MHz			20 10	mV

Table 13-23. PLLA and PLLB Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
F _{IN}	Input Frequency		3		32	MHz
F _{OUT}	Output Frequency		80		240	MHz
I _{PLL}	Current Consumption	Active mode @ 80 MHz @1.2V Active mode @ 96 MHz @1.2V Active mode @ 160 MHz @1.2V Active Mode @240 MHz @1.2V		0.94 1.2 2.1 3.34	1.2 1.5 2.5 4	mA
T _{START}	Settling Time			60	150	μS

13.6 USB Transceiver Characteristics

13.6.1 **Typical Connections**

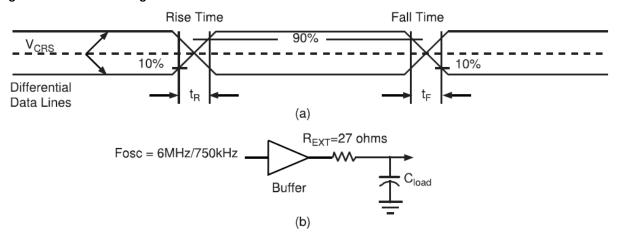
For typical connection please refer to the USB Device Section.

13.6.2 Electrical Characteristics

Table 13-24. Electrical Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		Input Levels				
V_{IL}	Low Level				0.8	V
V _{IH}	High Level		2.0			V
V _{DI}	Differential Input Sensitivity	(D+) - (D-)	0.2			V
V _{CM}	Differential Input Common Mode Range		0.8		2.5	V
C _{IN}	Transceiver capacitance	Capacitance to ground on each line			9.18	pF
1	Hi-Z State Data Line Leakage	0V < V _{IN} < 3.3V	-10		+10	μΑ
R _{EXT}	Recommended External USB Series Resistor	In series with each USB pin with ±5%		27		Ω
		Output Levels				
V _{OL}	Low Level Output	Measured with R_L of 1.425 $k\Omega$ tied to 3.6V	0.0		0.3	V
V _{OH}	High Level Output	Measured with R_L of 14.25 $k\Omega$ tied to GND	2.8		3.6	V
V _{CRS}	Output Signal Crossover Voltage	Measure conditions described in Figure 13-9	1.3		2.0	V
	1	Consumption	1	I	1	
I _{VDDIO}	Current Consumption	Transceiver enabled in input mode		105	200	μΑ
I _{VDDCORE}	Current Consumption	DDP = 1 and DDM = 0		80	150	μΑ

Table 13-23. Electrical Characteristics (Continued)


Symbol	Parameter	Conditions	Min	Тур	Max	Unit			
Pull-up Resistor									
R _{PUI}	Bus Pull-up Resistor on Upstream Port (idle bus)		0.900		1.575	kΩ			
R _{PUA}	Bus Pull-up Resistor on Upstream Port (upstream port receiving)		1.425		3.090	kΩ			

13.6.3 Switching Characteristics

Table 13-24. In Full Speed

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{FR}	Transition Rise Time	C _{LOAD} = 50 pF	4		20	ns
t _{FE}	Transition Fall Time	C _{LOAD} = 50 pF	4		20	ns
t _{FRFM}	Rise/Fall time Matching		90		111.11	%

Figure 13-9. USB Data Signal Rise and Fall Times

13.7 Analog Comparator Characteristics

Table 13-25. Analog Comparator Characteristics

Parameter	Conditions	Min	Тур	Max	Units
Voltage Range	The Analog Comparator is supplied by VDDIN	1.62	3.3	3.6	V
Input Voltage Range		GND + 0.2		VDDIN - 0.2	V
Input Offset Voltage				20	mV
Current Consumption	On VDDIN Low Power Option (ISEL = 0) High Speed Option (ISEL = 1)			25 170	μА
Hysteresis	HYST = 0x01 or 0x10 HYST = 0x11		15 30	50 90	mV
Settling Time	Given for overdrive > 100 mV Low Power Option High Speed Option			1 0.1	μѕ

13.8 **Temperature Sensor**

The temperature sensor is connected to Channel 15 of the ADC.

The temperature sensor provides an output voltage (V_T) that is proportional to absolute temperature (PTAT). The V_T output voltage linearly varies with a temperature slope $dV_T/dT = 4.72 \text{ mV/}^{\circ}\text{C}$.

The V_T voltage equals 1.44V at 27°C, with a ± 50 mV accuracy. The V_T slope versus temperature $dV_T/dT = 4.72$ mV/°C only shows a $\pm 8\%$ slight variation over process, mismatch and supply voltage.

The user needs to calibrate it (offset calibration) at ambient temperature in order to get rid of the VT spread at ambient temperature (+/-15%).

Table 13-26. Temperature Sensor Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Units
V _T	Output Voltage	T° = 27° C		1.44		V
<symbol> DV_T</symbol>	Output Voltage Accuracy	T° = 27° C	-50		+50	mV
dV _T /dT	Temperature Sensitivity (slope voltage versus temperature)			4.72		mV/°C
	Slope accuracy	Over temperature range [-40°C / +85°C]	-8		+8	%
	Townselve	After offset calibration Over temperature range [-40°C / +85°C]	-5		+5	°C
	Temperature accuracy	After offset calibration Over temperature range [0°C / +80°C]	-3		+3	°C
T _{START-UP}	Startup Time	After TSON = 1		5	10	μs
I _{VDDCORE}	Current Consumption		50	70	80	μΑ

13.9 AC Characteristics

13.9.1 Master Clock Characteristics

Table 13-27. Master Clock Waveform Parameters

Symbol	Parameter	Conditions	Min	Max	Units
1/(t _{CPMCK})	Master Clock Frequency	VDDCORE @ 1.20V		120	MHz
1/(t _{CPMCK})	Master Clock Frequency	VDDCORE @ 1.08V		100	MHz

13.9.2 I/O Characteristics

Criteria used to define the maximum frequency of the I/Os:

- Output duty cycle (40%-60%)
- Minimum output swing: 100 mV to VDDIO 100 mV
- Minimum output swing: 100 mV to VDDIO 100 mV
- Addition of rising and falling time inferior to 75% of the period

Table 13-28. I/O Characteristics

Symbol	Parameter	(Conditions	Min	Max	Units
FreqMax1	Pin Group 1 ⁽¹⁾ Maximum output frequency	10 pF	$V_{DDIO} = 1.62V$		70	MHz
	riequency	30 pF	$V_{DDIO} = 1.62V$		45	
PulseminH ₁	Pin Group 1 ⁽¹⁾ High Level Pulse Width	10 pF	$V_{DDIO} = 1.62V$	7.2		ns
		30 pF	$V_{DDIO} = 1.62V$	11		
PulseminL ₁	Pin Group 1 ⁽¹⁾ Low Level Pulse Width	10 pF	$V_{DDIO} = 1.62V$	7.2		ns
		30 pF	V _{DDIO} = 1.62V	11		
FreqMax2	Pin Group 2 (2) Maximum output frequency	10 pF	$V_{DDIO} = 1.62V$		46	MHz
	Hoquonoy	25 pF	$V_{DDIO} = 1.62V$		23	
PulseminH ₂	Pin Group 2 (2) High Level Pulse Width	10 pF	$V_{DDIO} = 1.62V$	11		ns
		25pF	V _{DDIO} = 1.62V	21.8		
PulseminL ₂	Pin Group 2 ⁽²⁾ Low Level Pulse Width	10 pF	$V_{DDIO} = 1.62V$	11		ns
		25 pF	V _{DDIO} = 1.62V	21.8		
FreqMax3	Pin Group3 ⁽³⁾ Maximum output frequency	10 pF	$V_{DDIO} = 1.62V$		70	MHz
		25 pF	V _{DDIO} = 1.62V		35	
PulseminH ₃	Pin Group 3 ⁽³⁾ High Level Pulse Width	10 pF	$V_{DDIO} = 1.62V$	7.2		ns
		25 pF	V _{DDIO} = 1.62V	14.2		
PulseminL ₃	Pin Group 3 ⁽³⁾ Low Level Pulse Width	10 pF	V _{DDIO} = 1.62V	7.2		ns
		25 pF	V _{DDIO} = 1.62V	14.2		

Table 13-28. I/O Characteristics

Symbol	Parameter	Conditions		Min	Max	Units
FreqMax4	Pin Group 4 ⁽⁴⁾ Maximum output frequency	10 pF	V _{DDIO} = 1.62V		58	MHz
		25 pF	V _{DDIO} = 1.62V		29	
PulseminH₄	Pin Group 4 ⁽⁴⁾ High Level Pulse Width	10 pF	V _{DDIO} = 1.62V	8.6		ns
		25pF	$V_{DDIO} = 1.62V$	17.2		
PulseminL₄	Pin Group 4 ⁽⁴⁾ Low Level Pulse Width	10 pF	V _{DDIO} = 1.62V	8.6		ns
1 01001111124		25 pF	V _{DDIO} = 1.62V	17.2		
FreqMax5	Pin Group 5 ⁽⁵⁾ Maximum output frequency	25 pF	V _{DDIO} = 1.62V		25	MHz

- 1. Pin Group 1 = PA14, PA29
- 2. Pin Group 2 = PA[4-11], PA[15-25], PA[30-31], PB[0-9], PB[12-14], PC[0-31]
- 3. Pin Group 3 = PA[12-13], PA[26-28], PA[30-31]
- 4. Pln Group 4 = PA[0-3]
- 5. Pln Group 5 = PB[10-11]

13.9.3 **SSC Timings**

Timings are given in the following domain:

1.8V domain: VDDIO from 1.65V to 1.95V, maximum external capacitor = 20 pF

3.3V domain: VDDIO from 2.85V to 3.6V, maximum external capacitor = 30 pF.

Figure 13-10. SSC Transmitter, TK and TF as output

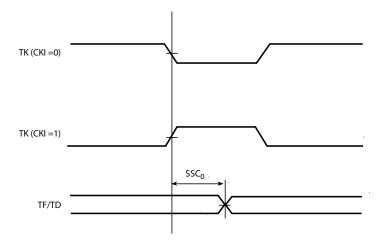


Figure 13-11. SSC Transmitter, TK as input and TF as output

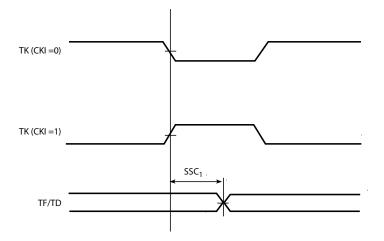


Figure 13-12. SSC Transmitter, TK as output and TF as input

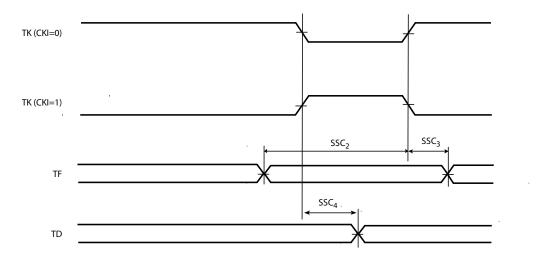


Figure 13-13. SSC Transmitter, TK and TF as input

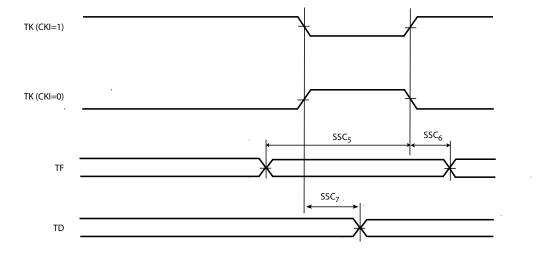


Figure 13-14. SSC Receiver RK and RF as input

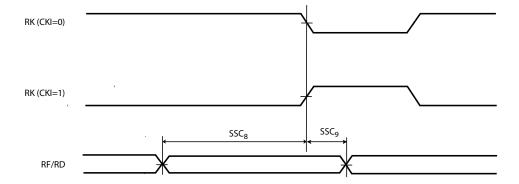


Figure 13-15. SSC Receiver, RK as input and RF as output

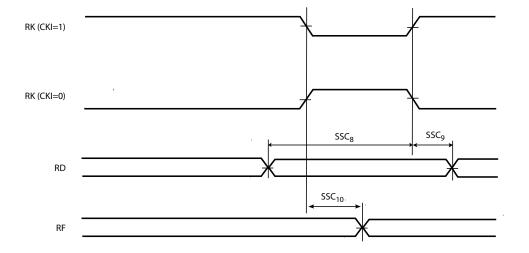


Figure 13-16. SSC Receiver, RK and RF as output

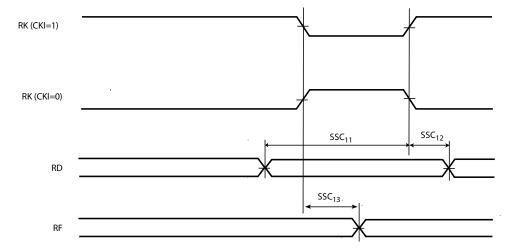
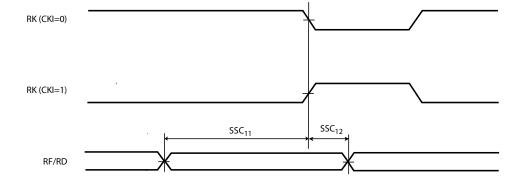
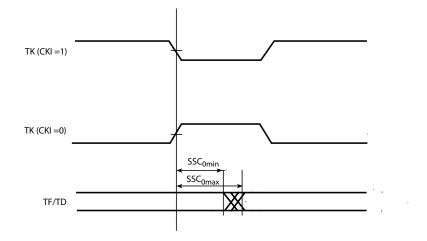



Figure 13-17. SSC Receiver, RK as output and RF as input

13.9.3.2 SSC Timings


Table 13-29. SSC Timings

Symbol	Parameter	Condition	Min	Max	Units
		Transmitter			
SSC ₀	TK edge to TF/TD (TK output, TF output)	1.8v domain ⁽³⁾ 3.3v domain ⁽⁴⁾	-3 -2.6	5.4 5.0	ns
SSC ₁	TK edge to TF/TD (TK input, TF output)	1.8v domain ⁽³⁾ 3.3v domain ⁽⁴⁾	4.5 3.8	16.3 13.3	ns
SSC ₂	TF setup time before TK edge (TK output)	1.8v domain ⁽³⁾ 3.3v domain ⁽⁴⁾	14.8 12.0		ns
SSC ₃	TF hold time after TK edge (TK output)	1.8v domain ⁽³⁾ 3.3v domain ⁽⁴⁾	0		ns
SSC ₄ ⁽¹⁾	TK edge to TF/TD (TK output, TF input)	1.8v domain ⁽³⁾ 3.3v domain ⁽⁴⁾	2.6(+2*t _{CPMCK}) (1)(4) 2.3(+2*t _{CPMCK}) (1)(4)	5.4(+2*t _{CPMCK}) (1)(4) 5.0(+2*t _{CPMCK}) (1)(4)	ns
SSC ₅	TF setup time before TK edge (TK input)	1.8v domain ⁽³⁾ 3.3v domain ⁽⁴⁾	0		ns
SSC ₆	TF hold time after TK edge (TK input)	1.8v domain ⁽³⁾ 3.3v domain ⁽⁴⁾	t _{CPMCK}		ns
SSC ₇ ⁽¹⁾	TK edge to TF/TD (TK input, TF input)	1.8v domain ⁽³⁾ 3.3v domain ⁽⁴⁾	4.5(+3*t _{CPMCK}) (1)(4) 3.8(+3*t _{CPMCK}) (1)(4)	16.3(+3*t _{CPMCK}) (1)(4) 13.3(+3*t _{CPMCK}) (1)(4)	ns
		Receiver			1
SSC ₈	RF/RD setup time before RK edge (RK input)	1.8v domain ⁽³⁾ 3.3v domain ⁽⁴⁾	0		ns
SSC ₉	RF/RD hold time after RK edge (RK input)	1.8v domain ⁽³⁾ 3.3v domain ⁽⁴⁾	t _{СРМСК}		ns
SSC ₁₀	RK edge to RF (RK input)	1.8v domain ⁽³⁾ 3.3v domain ⁽⁴⁾	4.7 4	16.1 12.8	ns
SSC ₁₁	RF/RD setup time before RK edge (RK output)	1.8v domain ⁽³⁾ 3.3v domain ⁽⁴⁾	15.8 - t _{СРМСК} 12.5- t _{СРМСК}		ns
SSC ₁₂	RF/RD hold time after RK edge (RK output)	1.8v domain ⁽³⁾ 3.3v domain ⁽⁴⁾	t _{CPMCK} - 4.3 t _{CPMCK} - 3.6		ns
SSC ₁₃	RK edge to RF (RK output)	1.8v domain ⁽³⁾ 3.3v domain ⁽⁴⁾	-3 -2.6	4.3 3.8	ns

- 1. Timings SSC4 and SSC7 depend on the start condition. When STTDLY = 0 (Receive start delay) and START = 4, or 5 or 7(Receive Start Selection), two Periods of the MCK must be added to timings.
- 2. For output signals (TF, TD, RF), Min and Max access times are defined. The Min access time is the time between the TK (or RK) edge and the signal change. The Max access timing is the time between the TK edge and the signal stabilization. Figure 13-18 illustrates Min and Max accesses for SSC0. The same applies for SSC1, SSC4, and SSC7, SSC10 and SSC13.
- 3. 1.8V domain: V_{VDDIO} from 1.65V to 1.95V, maximum external capacitor = 20 pF.
- 4. 3.3V domain: V_{VDDIO} from 2.85V to 3.6V, maximum external capacitor = 30 pF...

Figure 13-18. Min and Max Access Time of Output Signals

13.9.4 SMC Timings

Timings are given in the following domain:

1.8V domain: VDDIO from 1.65V to 1.95V, maximum external capacitor = 30 pF

3.3V domain: VDDIO from 2.85V to 3.6V, maximum external capacitor = 50 pF.

Timings are given assuming a capacitance load on data, control and address pads:

In the following tables $t_{\text{CPMCK}} \hspace{0.5mm} \text{is MCK} \hspace{0.5mm} \text{period.} \hspace{0.5mm} \text{Timing extraction}$

13.9.4.1 Read Timings

Table 13-30. SMC Read Signals - NRD Controlled (READ_MODE = 1)

Symbol	Parameter	M	lin	Max		Units
	VDDIO Supply	1.8V ⁽²⁾	3.3V ⁽³⁾	1.8V ⁽²⁾	3.3V ⁽³⁾	
	N	O HOLD SETTING	GS (nrd hold = 0)			
SMC ₁	Data Setup before NRD High	19.9	17.9			ns
SMC ₂	Data Hold after NRD High	0	0			ns
	HOL	.D SETTINGS (nro	I hold <symbol>1</symbol>	0)		·
SMC ₃	Data Setup before NRD High	16.0	14.0			ns
SMC ₄	Data Hold after NRD High	0	0			ns
	HOLD or NO HOL	.D SETTINGS (nrd	l hold <symbol>1</symbol>	0, nrd hold = 0)		1
SMC ₅	A0 - A22 Valid before NRD High	(nrd setup + nrd pulse) * t _{CPMCK} - 6.5	(nrd setup + nrd pulse)* t _{CPMCK} - 6.3			ns
SMC ₆	NCS low before NRD High	(nrd setup + nrd pulse - ncs rd setup) * t _{CPMCK} - 4.6	(nrd setup + nrd pulse - ncs rd setup) * t _{CPMCK} - 5.1			ns
SMC ₇	NRD Pulse Width	nrd pulse * t _{CPMCK} - 7.2	nrd pulse * t _{CPMCK} - 6.2			ns

Table 13-31. SMC Read Signals - NCS Controlled (READ_MODE= 0)

Symbol	Parameter	М	in	M	lax	Units
	VDDIO supply	1.8V ⁽²⁾	3.3V ⁽³⁾	1.8V ⁽²⁾	3.3V ⁽³⁾	
	NO	O HOLD SETTINGS (n	ics rd hold = 0)			
SMC ₈	Data Setup before NCS High	20.7	18.4			ns
SMC ₉	Data Hold after NCS High	0	0			ns
HOLD SET	FTINGS (ncs rd hold <symbol>1 0)</symbol>					- 1
SMC ₁₀	Data Setup before NCS High	16.8	14.5			ns
SMC ₁₁	Data Hold after NCS High	0	0			ns
	HOLD or NO HOLD	SETTINGS (ncs rd ho	old <symbol>¹ 0, ncs</symbol>	rd hold = 0)		
SMC ₁₂	A0 - A22 valid before NCS High	(ncs rd setup + ncs rd pulse)* t _{CPMCK} - 6.5	(ncs rd setup + ncs rd pulse)* tcpmck - 6.3			ns
SMC ₁₃	NRD low before NCS High	(ncs rd setup + ncs rd pulse - nrd setup)* tcpmck - 5.6	(ncs rd setup + ncs rd pulse - nrd setup)* t _{CPMCK} - 5.4			ns
SMC ₁₄	NCS Pulse Width	ncs rd pulse length * t _{CPMCK} -7.7	ncs rd pulse length * t _{CPMCK} - 6.7			ns

13.9.4.2 Write Timings

Table 13-32. SMC Write Signals - NWE Controlled (WRITE_MODE = 1)

		Min		М	ax					
Symbol	Parameter	1.8V ⁽²⁾	3.3V ⁽³⁾	1.8V ⁽²⁾	3.3V ⁽³⁾	Units				
	HOLD or NO HOLD SETTINGS (nwe hold <symbol>1 0, nwe hold = 0)</symbol>									
SMC ₁₅	Data Out Valid before NWE High	nwe pulse * t _{CPMCK} - 6.9	nwe pulse * t _{CPMCK} - 6.7			ns				
SMC ₁₆	NWE Pulse Width	nwe pulse * t _{CPMCK} - 7.3	nwe pulse * t _{CPMCK} - 6.3			ns				
SMC ₁₇	A0 - A22 valid before NWE low	nwe setup * t _{CPMCK} - 7.2	nwe setup * t _{CPMCK} - 7.0			ns				
SMC ₁₈	NCS low before NWE high	(nwe setup - ncs rd setup + nwe pulse) * t _{CPMCK} -7.1	(nwe setup - ncs rd setup + nwe pulse) * t _{CPMCK} - 6.8			ns				
	HOLE	SETTINGS (nwe ho	old <symbol>1 0)</symbol>							
SMC ₁₉	NWE High to Data OUT, NBS0/A0 NBS1, NBS2/A1, NBS3, A2 - A25 change	nwe hold * t _{CPMCK} - 8.8	nwe hold * t _{CPMCK} - 6.9			ns				
SMC ₂₀	NWE High to NCS Inactive (1)	(nwe hold - ncs wr hold)* t _{CPMCK} - 5.2	(nwe hold - ncs wr hold)* t _{CPMCK} - 5.0			ns				
	NO HOLD SETTINGS (nwe hold = 0)									
SMC ₂₁	NWE High to Data OUT, NBS0/A0 NBS1, NBS2/A1, NBS3, A2 - A25, NCS change ⁽¹⁾	3.0	2.8			ns				

Table 13-33. SMC Write NCS Controlled (WRITE_MODE = 0)

		Min		М	ax	
Symbol	Parameter	1.8V ⁽²⁾	3.3V ⁽³⁾	1.8V ⁽²⁾	3.3V ⁽³⁾	Units
SMC ₂₂	Data Out Valid before NCS High	ncs wr pulse * t _{CPMCK} - 6.3	ncs wr pulse * t _{CPMCK} - 6.2			ns
SMC ₂₃	NCS Pulse Width	ncs wr pulse * t _{CPMCK} - 7.7	ncs wr pulse * t _{CPMCK} - 6.7			ns
SMC ₂₄	A0 - A22 valid before NCS low	ncs wr setup * t _{CPMCK} - 6.5	ncs wr setup * t _{CPMCK} - 6.3			ns
SMC ₂₅	NWE low before NCS high	(ncs wr setup - nwe setup + ncs pulse)* t _{CPMCK} - 5.1	(ncs wr setup - nwe setup + ncs pulse)* t _{CPMCK} - 4.9			ns
SMC ₂₆	NCS High to Data Out,A0 - A25, change	ncs wr hold * t _{CPMCK} - 10.2	ncs wr hold * t _{CPMCK} - 8.4			ns
SMC ₂₇	NCS High to NWE Inactive	(ncs wr hold - nwe hold)* tcpMCk - 7.4	(ncs wr hold - nwe hold)* t _{CPMCK} - 7.1			ns

- 1. Hold length = total cycle duration setup duration pulse duration. "hold length" is for "ncs wr hold length" or "NWE hold length".
- 2. 1.8V domain: VDDIO from 1.65 V to 1.95V, maximum external capacitor = 30pF
- 3. 3.3V domain: VDDIO from 2.85V to 3.6V, maximum external capacitor = 50pF.

Figure 13-19. SMC Timings - NCS Controlled Read and Write

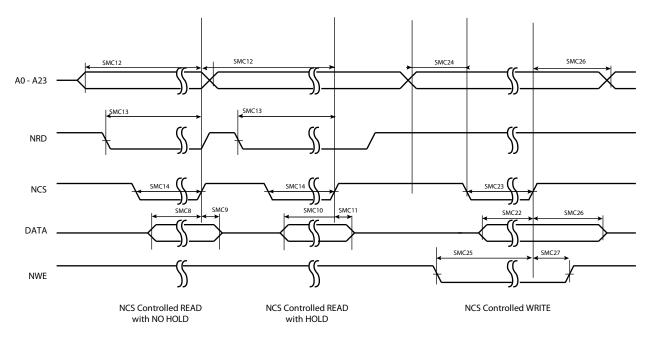
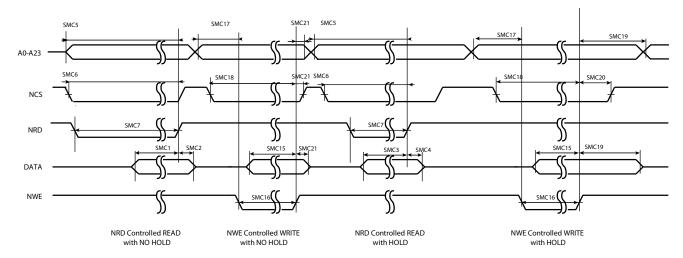



Figure 13-20. SMC Timings - NRD Controlled Read and NWE Controlled Write

13.9.5 USART in SPI Mode Timings

Timings are given in the following domain:

1.8V domain: VDDIO from 1.65V to 1.95V, maximum external capacitor = 20 pF

3.3V domain: VDDIO from 2.85V to 3.6V, maximum external capacitor = 40 pF.

Figure 13-21. USART SPI Master Mode

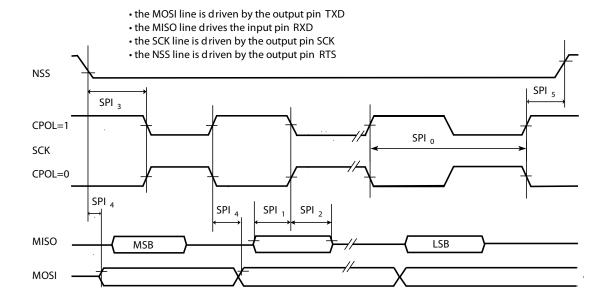


Figure 13-22. USART SPI Slave Mode: (Mode 1 or 2)

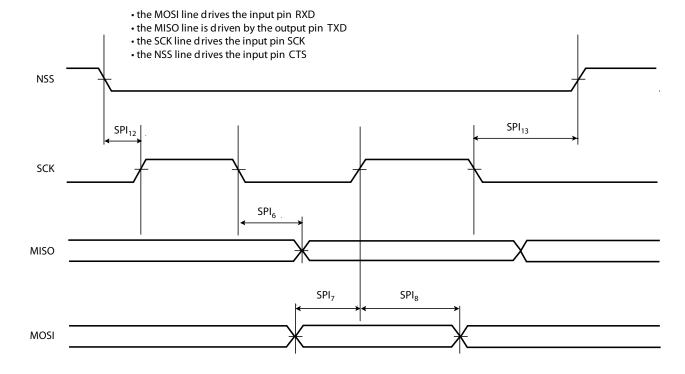
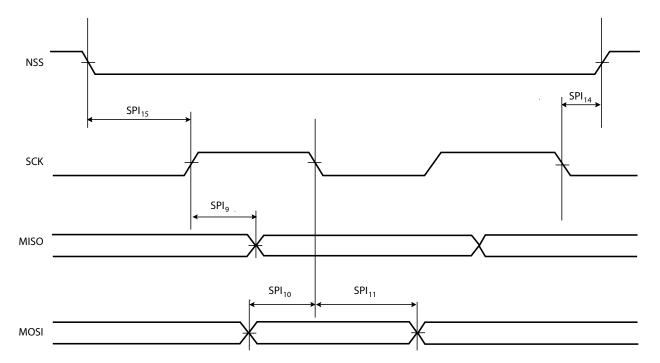



Figure 13-23. USART SPI Slave mode: (Mode 0 or 3)

13.9.5.2 USART SPI TImings

Table 13-34. USART SPI TImings

Symbol	Parameter	Conditions	Min	Max	Units
		Master Mode			
SPI ₀	SCK Period	1.8v domain 3.3v domain	MCK/6		ns
SPI ₁	Input Data Setup Time	1.8v domain 3.3v domain	0.5 * MCK + 0.8 0.5 * MCK + 1.0		ns
SPI ₂	Input Data Hold Time	1.8v domain 3.3v domain	1.5 * MCK + 0.3 1.5 * MCK + 0.1		ns
SPI ₃	Chip Select Active to Serial Clock	1.8v domain 3.3v domain	1.5 * SPCK - 1.5 1.5 * SPCK - 2.1		ns
SPI ₄	Output Data Setup Time	1.8v domain 3.3v domain	- 7.9 - 7.2	9.9 10.7	ns
SPI ₅	Serial Clock to Chip Select Inactive	1.8v domain 3.3v domain	1 * SPCK - 4.1 1 * SPCK - 4.8		ns
		Slave Mode			
SPI ₆	SCK falling to MISO	1.8V domain 3.3V domain	4.7 4	17.3 15.2	ns
SPI ₇	MOSI Setup time before SCK rises	1.8V domain 3.3V domain	2 * MCK + 0.7 2 * MCK		ns
SPI ₈	MOSI Hold time after SCK rises	1.8v domain 3.3v domain	0 0.1		ns
SPI ₉	SCK rising to MISO	1.8v domain 3.3v domain	4.7 4.1	17.1 15.5	ns
SPI ₁₀	MOSI Setup time before SCK falls	1.8v domain 3.3v domain	2 * MCK + 0.7 2 * MCK + 0.6		ns
SPI ₁₁	MOSI Hold time after SCK falls	1.8v domain 3.3v domain	0.2 0.1		ns

Table 13-34. USART SPI Timings (Continued)

Symbol	Parameter	Conditions	Min	Max	Units	
SPI ₁₂	NDCC0 actualta CCV vigina	1.8v domain	2,5 * MCK + 0.5		no	
SP112	NPCS0 setup to SCK rising	3.3v domain	2,5 * MCK		ns	
CDI	NDCC0 hold ofter CCV follow	1.8v domain	1,5 * MCK + 0.2		no	
SPI ₁₃	NPCS0 hold after SCK falling	3.3v domain	1,5 * MCK		ns	
CDI	NDCC0 actua to CCV falling	1.8v domain	2,5 * MCK + 0.5		no	
SPI ₁₄	NPCS0 setup to SCK falling	3.3v domain	2,5 * MCK + 0.3		ns	
SPI ₁₅	NDCC0 hold offer CCV vising	1.8v domain	1,5 * MCK		no	
3 F115	NPCS0 hold after SCK rising	3.3v domain	1,5 * MCK		ns	

Note:

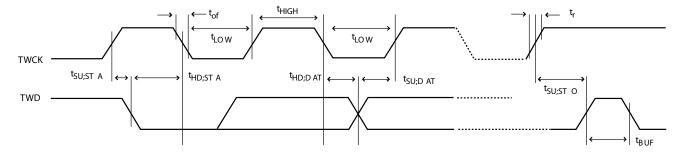
- 1. 1.8V domain: VDDIO from 1.65V to 1.95V, maximum external capacitor = 20 pF
- 2. 3.3V domain: VDDIO from 2.85V to 3.6V, maximum external capacitor = 40 pF.

13.9.6 Two-wire Serial Interface Characteristics

Following table describes the requirements for devices connected to the Two-wire Serial Bus. For timing symbols refer to Figure 13-24

Table 13-35. Two-wire Serial Bus Requirements

Symbol	Parameter	Condition	Min	Max	Units
V _{IL}	Input Low-voltage		-0.3	0.3 V _{VDDIO}	V
V _{IH}	Input High-voltage		0.7xV _{VDDIO}	V _{CC} + 0.3	V
V _{HYS}	Hysteresis of Schmitt Trigger Inputs		0.150	_	V
V _{OL}	Output Low-voltage	3 mA sink current	-	0.4	V
t _R	Rise Time for both TWD and TWCK		20 + 0.1C _b ⁽¹⁾⁽²⁾	300	ns
t _{OF}	Output Fall Time from V _{IHmin} to V _{ILmax}	10 pF < C _b < 400 pF Figure 13-24	20 + 0.1C _b ⁽¹⁾⁽²⁾	250	ns
C _i ⁽¹⁾	Capacitance for each I/O Pin		_	10	pF
f _{TWCK}	TWCK Clock Frequency		0	400	kHz
Rp	Value of Pull-up resistor	f _{TWCK} ≤100 kHz			Ω
- 'P'	value of Pull-up resistor	f _{TWCK} > 100 kHz			Ω


Table 13-35. Two-wire Serial Bus Requirements (Continued)

Symbol	Parameter	Condition	Min	Max	Units
		f _{TWCK} ≤ 100 kHz	(3)	_	μs
t _{LOW}	Low Period of the TWCK clock	$f_{TWCK} > 100 \text{ kHz}$	(3)	_	μs
		f _{TWCK} ≤ 100 kHz	(4)	_	μs
thigh	High period of the TWCK clock	$f_{TWCK} > 100 \text{ kHz}$	(4)	-	μs
		f _{TWCK} ≤ 100 kHz	t _{HIGH}	_	μs
t _{HD;STA}	Hold Time (repeated) START Condition	$f_{TWCK} > 100 \text{ kHz}$	t _{HIGH}	_	μs
	Set-up time for a repeated START condition	f _{TWCK} ≤ 100 kHz	tніgн	_	μs
t _{su;sta}		$f_{TWCK} > 100 \text{ kHz}$	t _{HIGH}	_	μs
		f _{TWCK} ≤ 100 kHz	0	3 x T _{CP_MCK} ⁽⁵⁾	μs
t _{HD;DAT}	Data hold time	$f_{TWCK} > 100 \text{ kHz}$	0	3 x T _{CP_MCK} ⁽⁵⁾	μs
	_	f _{TWCK} ≤ 100 kHz	t _{LOW} - 3 x t _{CP_MCK} ⁽⁵⁾	_	ns
t _{SU;DAT}	Data setup time	$f_{TWCK} > 100 \text{ kHz}$	t _{LOW} - 3 x t _{CP_MCK} ⁽⁵⁾	-	ns
		f _{TWCK} ≤ 100 kHz	t _{HIGH}	_	μs
t _{su;sto}	Setup time for STOP condition	$f_{TWCK} > 100 \text{ kHz}$	tнıgн	-	μs
		f _{TWCK} ≤ 100 kHz	tніgн	_	μs
t _{HD;STA}	Hold Time (repeated) START Condition	f _{TWCK} > 100 kHz	t _{HIGH}	_	μs

Note:

- 1. Required only for $f_{TWCK} > 100 \text{ kHz}$.
- 2. C_B = capacitance of one bus line in pF. Per I2C Standard, C_b Max = 400pF
- 3. The TWCK low Period is defined as follows: $T_{low} = ((CLDIV \times 2^{CKDIV}) + 4) \times T_{MCK}$
- 4. The TWCK high period is defined as follows: $T_{High} = ((CHDIV \times 2^{CKDIV}) + 4) \times T_{MCK}$
- 5. $t_{CP_MCK} = MCK$ Bus Period.

Figure 13-24. Two-wire Serial Bus Timing

13.9.7 Embedded Flash Characteristics

The maximum operating frequency is given in Table 13-36 to Table 13-39 below but is limited by the Embedded Flash access time when the processor is fetching code out of it. The tables below give the device maximum operating frequency depending on the field FWS of the MC_FMR register. This field defines the number of wait states required to access the Embedded Flash Memory.

The embedded flash is fully tested during production test, the flash contents are not set to a known state prior to shipment. Therefore, the flash contents should be erased prior to programming an application.

Table 13-36. Embedded Flash Wait State VDDCORE set at 1.08V and VDDIO 1.62V to 3.6V @85C

FWS	Read Operations	Maximum Operating Frequency (MHz)
0	1 cycle	16
1	2 cycles	33
2	3 cycles	50
3	4 cycles	67
4	5 cycles	84
5	6 cycles	100

Table 13-37. Embedded Flash Wait State VDDCORE set at 1.08V and VDDIO 2.7V to 3.6V @85C

FWS	Read Operations	Maximum Operating Frequency (MHz)
0	1 cycle	20
1	2 cycles	40
2	3 cycles	60
3	4 cycles	80
4	5 cycles	100

Table 13-38. Embedded Flash Wait State VDDCORE set at 1.2V and VDDIO 1.62V to 3.6V @ 85C

FWS	Read Operations	Maximum Operating Frequency (MHz)	
0	1 cycle	17	
1	2 cycles	34	
2	3 cycles	52	
3	4 cycles	69	
4	5 cycles	87	
5	6 cycles	104	
6	7 cycles	121	

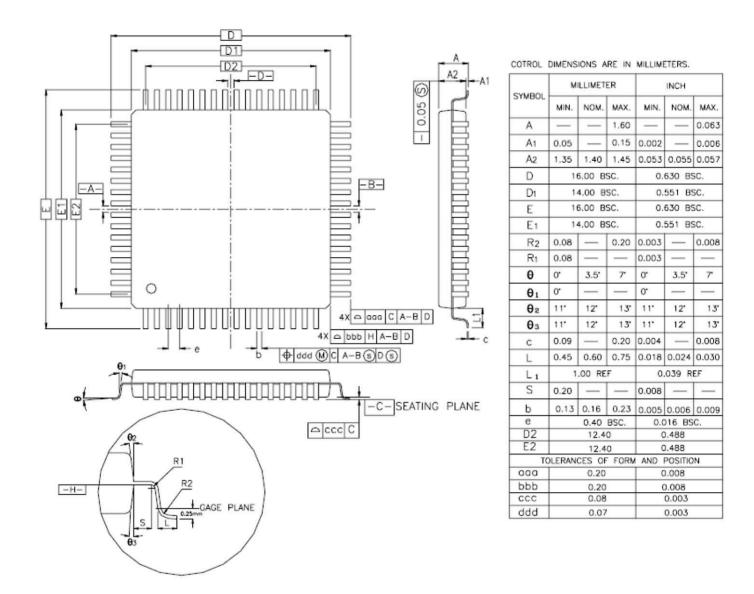
Table 13-39. Embedded Flash Wait State VDDCORE set at 1.20V and VDDIO 2.7V to 3.6V @ 85C

FWS	Read Operations	Maximum Operating Frequency (MHz)
0	1 cycle	21
1	2 cycles	42
2	3 cycles	63
3	4 cycles	84
4	5 cycles	105
5	6 cycles	123

Table 13-40. AC Flash Characteristics

Parameter	Conditions	Min	Тур	Max	Units
	Erase page mode		10	50	ms
Program Cycle Time	Erase block mode (by 4Kbytes)		50	200	ms
	Erase sector mode		400	950	ms
Full Chip Erase	1 MBytes 512 KBytes		9 5.5	18 11	S
Data Retention	Not Powered or Powered		20		Years
Endurance	Write/Erase cycles per page, block or sector @ 25°C Write/Erase cycles per page, block or sector @ 85°C	10K	100K		cycles

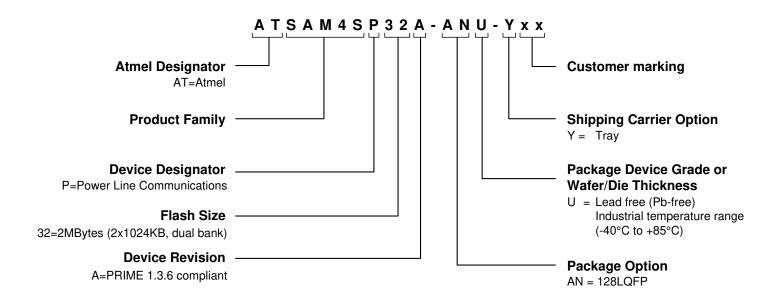
13.10 Recommended Operating Conditions


Table 13-41. SAM4SP32A Recommended Operating Conditions

Davamatav	Cumhal		Unit		
Parameter	Symbol	Min	Тур	Max	Unit
	V _{VDDCORE}	1.08	1.20	1.32	
Supply Voltage	V_{VDDIN}	3.00	3.30	3.60	
	V _{VDDIO}	3.00	3.30	3.60	V
	V_{VDDPLL}	1.08	1	1.32	
	A_{VDD}	3.00	3.30	3.60	
Junction Temperature	TJ	-40	25	+125	%C
Ambient Temperature	TA	-40	-	+85	ōС

14. Mechanical Characteristics

Figure 14-1. 128-lead LQFP Package Mechanical Drawing


Note: 1. This drawing is for general information only. Refer to JEDEC Drawing MS-026 for additional information.

15. Ordering Information

Table 15-1. Atmel SAM4SP32A Ordering Codes

Atmel Ordering Code	Package	Package Type	Temperature Range
ATSAM4SP32A-ANU-Y	128 LQFP	Pb-Free	Industrial (-40°C to 85°)

16. Revision History

Doc	c. Rev.	Date	Comments
Α		10/2012	Initial release

Atmel Corporation

1600 Technology Drive San Jose, CA 95110 USA

Tel: (+1)(408) 441-0311 **Fax:** (+1)(408) 487-2600

www.atmel.com

Atmel Asia Limited

Unit 01-5 & 16, 19F BEA Tower, Millennium City 5 418 Kwun Tong Road Kwun Tong, Kowloon HONG KONG

Tel: (+852) 2245-6100 **Fax:** (+852) 2722-1369

Atmel Munich GmbH

Business Campus Parkring 4 D-85748 Garching b. Munich GERMANY

Tel: (+49) 89-31970-0 **Fax:** (+49) 89-3194621

Atmel Japan G.K.

16F Shin-Osaki Kangyo Building 1-6-4 Osaki Shinagawa-ku, Tokyo 141-0032

JAPAN

Tel: (+81)(3) 6417-0300 **Fax:** (+81)(3) 6417-0370

© 2012 Atmel Corporation. All rights reserved. / Rev.: 43020A-ATPL-09/12

Atmel®, logo and combinations thereof, SAM-BA® and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. ARM®, ARM®Powered logo, Cortex®, Thumb®-2 and others are registered trademarks or trademarks of ARM Ltd.Other terms and product names may be trademarks of others.

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.