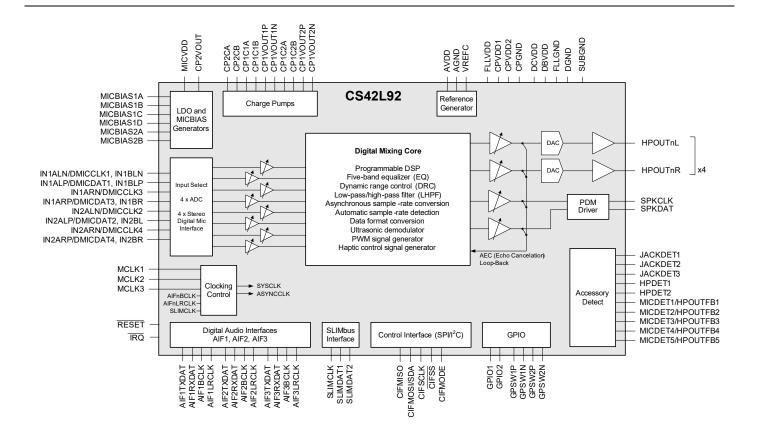


32-Bit 384-kHz Hi-Fi Audio Codec


Features

- Integrated multichannel 32-bit hi-fi audio hub codec
 - 99-dB signal-to-noise ratio (SNR) mic input (48 kHz)
 - 127-dB SNR headphone playback (48 kHz)
 - –100-dB total harmonic distortion + noise (THD+N)
 - Ultrasonic input- and output-path support
- · Up to eight analog or digital microphone (DMIC) inputs
- · Multipurpose headphone/earpiece/line output drivers
 - Support for balanced headphone output loads
 - 33 mW into 32- Ω load at 0.1% THD+N
 - Hi-fi filters for audiophile-quality playback
- Native audio playback up to 384 kHz sample rate, concurrent with voice and ultrasonic input signal paths
- Digital pulse-density modulation (PDM) output interface

- Multichannel asynchronous sample-rate conversion
- Multiline SLIMbus® audio and control interface
- Three multichannel digital-audio interfaces
 - Standard data formats up to 384 kHz, 32 bits
- Flexible clocking, derived from MCLKn, AIFn, or SLIMbus
 - Low-power frequency-locked loops (FLLs) support reference clocks down to 32 kHz.
- · Advanced accessory detection functions
- Configurable functions on up to 16 general-purpose input/output (GPIO) pins
- Integrated regulators and charge pumps
- Small W-CSP package, 0.4-mm staggered ball array

Applications

· Smartphones, tablets, and multimedia handsets

Description

The CS42L92 is a highly integrated low-power audio system for smartphones, tablets, and other portable audio devices. Multiple input/output paths are supported by a fully flexible all-digital mixing and routing engine, incorporating sample rate converters and other signal-processing functions for wide use-case flexibility. The integrated DSP provides a general-purpose signal processing capability; this is supported by general-purpose timer and event-logger functions.

The digital audio interfaces and hi-fi DACs enable 32-bit playback through the entire signal chain. Native audio playback at sample rates up to 384 kHz is possible, concurrent with voice and ultrasonic input paths.

The CS42L92 supports up to eight analog inputs and up to eight PDM digital inputs. Low-power input modes are available for always-on (e.g., voice-trigger) functionality using either analog or digital input. A smart accessory interface, with multipurpose impedance sensing and measurement capability, supports detection of external headsets and push buttons. Dual headphone connections (e.g., 3.5-mm and USB-C™) can be detected simultaneously.

Four hi-fi quality stereo headphone drivers are provided, each supporting stereo ground-referenced or mono bridge-tied load (BTL) configurations. Multiple headphone/earpiece outputs can be supported, including balanced stereo headphone configurations. The output drivers offer noise levels as low as 0.63 μ V_{RMS} into line or headphone loads. Selectable hi-fi filters support playback modes at sample rates up to 384 kHz.

Two channels of PDM output (one stereo interface) are available, and also an IEC-60958-3–compatible S/PDIF transmitter. A signal generator for controlling haptics devices is included; vibe actuators can connect directly to the PDM output interface. All inputs, outputs, and system interfaces can function concurrently.

A SLIMbus interface supports multichannel audio paths and host control register access. Three further digital audio interfaces are provided, each supporting a wide range of standard audio sample rates and serial interface formats. Automatic sample-rate detection enables seamless wideband/narrowband voice-call handover. Two FLLs are integrated, providing support for a wide range of system-clock frequencies.

The CS42L92 is configured using the SLIMbus, SPI[™], or I²C interfaces. The device is powered from 1.8- and 1.2-V supplies. The power, clocking, and output driver architectures are designed to maximize battery life in voice, music, and standby modes. Low-power (10 μA) Sleep Mode is supported, with configurable wake-up events.

Table of Contents

Pin Descriptions	4.4 DSP Firmware Control	94
1.1 WLCSP Pinout	4.5 DSP Peripheral Control	. 106
1.2 Pin Descriptions	4.6 Digital Audio Interface	
2 Typical Connection Diagram9	4.7 Digital Audio Interface Control	. 130
B Characteristics and Specifications10	4.8 SLIMbus Interface	. 140
Table 3-1. Parameter Definitions	4.9 SLIMbus Control Sequences	. 142
Table 3-2. Absolute Maximum Ratings	4.10 SLIMbus Interface Control	. 144
Table 3-3. Recommended Operating Conditions	4.11 Output Signal Path	. 152
Table 3-4. Analog Input Signal Level—IN1xx, IN2xx	4.12 External Accessory Detection	. 169
Table 3-5. Analog Input Pin Characteristics	4.13 Low Power Sleep Configuration	. 189
Table 3-6. Analog Input Gain—Programmable Gain Amplifiers (PGAs)	4.14 General-Purpose I/O	
Table 3-7. Digital Input Signal Level—DMICDATn	4.15 Interrupts	. 200
Table 3-8. Output Characteristics	4.16 Clocking and Sample Rates	. 219
Table 3-9. Input/Output Path Characteristics	4.17 Control Interface	. 244
Table 3-10. Digital Input/Output	4.18 Control-Write Sequencer	
Table 3-11. Miscellaneous Characteristics	4.19 Charge Pumps, Regulators, and Voltage Reference	. 257
Table 3-12. Device Reset Thresholds	4.20 JTAG Interface	. 263
Table 3-13. System Clock and Frequency-Locked Loop (FLL)	4.21 Short-Circuit Protection	. 263
Table 3-14. Digital Microphone (DMIC) Interface Timing	4.22 Power-On Reset (POR)	. 264
Table 3-15. Digital Speaker (PDM) Interface Timing	4.23 Hardware Reset, Software Reset, Wake-Up, and	
Table 3-16. Digital Audio Interface—Master Mode	Device ID	. 264
Table 3-17. Digital Audio Interface—Slave Mode	5 Applications	. 267
Table 3-18. Digital Audio Interface Timing—TDM Mode	5.1 Recommended External Components	. 267
Table 3-19. Control Interface Timing—Two-Wire (I ² C) Mode	5.2 Resets Summary	
Table 3-20. Control Interface Timing—Four-Wire (SPI) Mode	5.3 Output-Signal Drive-Strength Control	. 274
Table 3-21. SLIMbus Interface Timing	5.4 Digital Audio Interface Clocking Configurations	. 276
Table 3-22. JTAG Interface Timing	5.5 PCB Layout Considerations	. 280
Table 3-23. Typical Power Consumption	6 Register Map	. 281
Table 3-24. Typical Signal Latency	7 Thermal Characteristics	. 332
Functional Description27	8 Package Dimensions	
4.1 Overview	9 Ordering Information	. 333
4.2 Input Signal Path30	10 References	. 334
4.3 Digital Core	11 Revision History	. 334

1 Pin Descriptions

1.1 WLCSP Pinout

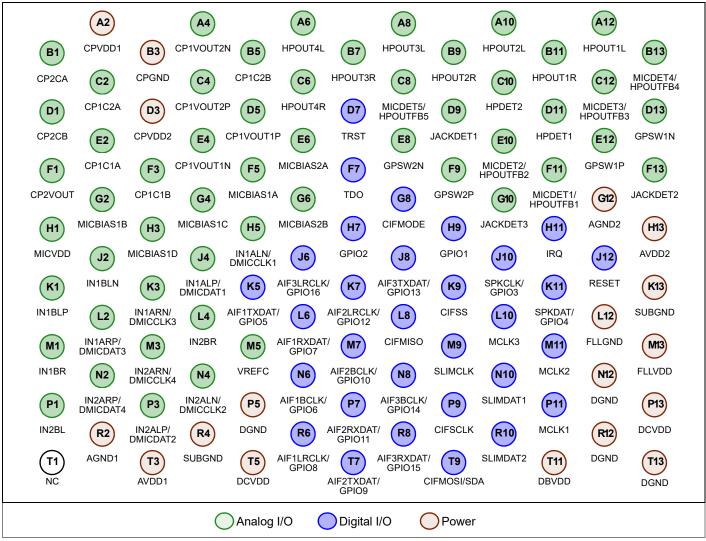


Figure 1-1. Top-Down (Through-Package) View—104-Ball WLCSP Package

1.2 Pin Descriptions

Table 1-1 describes each pin on the CS42L92. Note that pins that share a common name should be tied together on the printed circuit board (PCB).

Table 1-1. Pin Descriptions

PU = Pull-up, PD = Pull-down, K = Bus keeper, H = Hysteresis on CMOS input, Z = Hi-Z (High impedance), C = CMOS, OD = Open drain.

Pin Name	Pin #	Power Supply	I/O	Pin Description	Digital Pad Attributes	State at Reset
				Analog I/O		
CP1C1A	E2	_	0	Charge Pump 1 fly-back capacitor 1 pin	_	_
CP1C1B	F3	_	0	Charge Pump 1 fly-back capacitor 1 pin	_	_
CP1C2A	C2	_	0	Charge Pump 1 fly-back capacitor 2 pin	_	_
CP1C2B	B5	_	0	Charge Pump 1 fly-back capacitor 2 pin	_	_
CP1VOUT1N	E4	_	0	Charge Pump 1 negative output 1 decoupling pin	_	Output
CP1VOUT1P	D5	_	0	Charge Pump 1 positive output 1 decoupling pin	_	Output
CP1VOUT2N	A4	_	0	Charge Pump 1 negative output 2 decoupling pin	_	Output
CP1VOUT2P	C4	_	0	Charge Pump 1 positive output 2 decoupling pin	_	Output
CP2CA	B1	_	0	Charge Pump 2 fly-back capacitor pin	_	Output
CP2CB	D1	_	0	Charge Pump 2 fly-back capacitor pin	_	Output
CP2VOUT	F1	_	0	Charge Pump 2 output decoupling pin/supply for LDO2	_	Output
GPSW1N	D13	_	I/O	General-purpose bidirectional switch 1 contact	_	<u> </u>
GPSW1P	E12	_	I/O	General-purpose bidirectional switch 1 contact	_	<u> </u>
GPSW2N	E8	_	I/O	General-purpose bidirectional switch 2 contact	_	_
GPSW2P	F9	_	I/O	General-purpose bidirectional switch 2 contact	_	_
HPDET1	D11	_	I/O	Headphone sense 1 input	_	Input
HPDET2	C10	_	I/O	Headphone sense 2 input	_	Input
HPOUT1L	A12	_	0	Left headphone 1 output	_	Output
HPOUT1R	B11	_	0	Right headphone 1 output	_	Output
HPOUT2L	A10	_	0	Left headphone 2 output	_	Output
HPOUT2R	B9	_	0	Right headphone 2 output	_	Output
HPOUT3L	A8	_	0	Left headphone 3 output	_	Output
HPOUT3R	B7	_	0	Right headphone 3 output	_	Output
HPOUT4L	A6	_	0	Left headphone 4 output	_	Output
HPOUT4R	C6	_	0	Right headphone 4 output	_	Output
IN1ALN/ DMICCLK1	H5	MICVDD or MICBIASn [2]	I	Left/right-channel negative differential mic/line input/ DMIC Clock Output 1. Also suitable for connection to external accessory interfaces.	_	IN1ALN input
IN1ALP/ DMICDAT1	J4	MICVDD or MICBIASn [2]	I	Left-channel single-ended mic/line input/positive differential mic/line input/DMIC Data Input 1. Also suitable for connection to external accessory interfaces.	PD/H	IN1ALP input
IN1ARN/ DMICCLK3	K3	MICVDD or MICBIASn [2]	I	Right-channel negative differential mic/line input/DMIC Clock Output 3. Also suitable for connection to external accessory interfaces.	_	IN1ARN input
IN1ARP/ DMICDAT3	L2	MICVDD or MICBIASn [2]	I/O	Right-channel single-ended mic/line input/positive differential mic/line input/DMIC Data Input 3. Also suitable for connection to external accessory interfaces.	PD/H	IN1ARP input
IN1BLN	J2	MICVDD	I	Negative differential mic/line input. Also suitable for connection to external accessory interfaces.	_	Input
IN1BLP	K1	MICVDD	I	Single-ended mic/line input/positive differential mic/line input. Also suitable for connection to external accessory interfaces.	_	Input

Table 1-1. Pin Descriptions (Cont.)

PU = Pull-up, PD = Pull-down, K = Bus keeper, H = Hysteresis on CMOS input, Z = Hi-Z (High impedance), C = CMOS, OD = Open drain.

Pin Name	Pin #	Power Supply	I/O	Pin Description	Digital Pad Attributes	State at Reset ¹
IN1BR	M1	MICVDD	I	Right-channel single-ended mic/line input/positive differential mic/line input.	_	Input
IN2ALN/ DMICCLK2	N4	MICVDD or MICBIASn [2]	I	Left-channel negative differential mic/line input/DMIC Clock Output 2. Also suitable for connection to external accessory interfaces.	_	IN2ALN input
IN2ALP/ DMICDAT2	P3	MICVDD or MICBIASn [2]	I/O	Left-channel single-ended mic/line input/positive differential mic/line input/DMIC Data Input 2. Also suitable for connection to external accessory interfaces.	PD/H	IN2ALP input
IN2ARN/ DMICCLK4	М3	MICVDD or MICBIASn [2]	I	Right-channel negative differential mic/line input/DMIC Clock Output 4. Also suitable for connection to external accessory interfaces.	_	IN2ARN input
IN2ARP/ DMICDAT4	N2	MICVDD or MICBIASn [2]	I/O	Right-channel single-ended mic/line input/positive differential mic/line input/DMIC Data Input 4. Also suitable for connection to external accessory interfaces.	PD/H	IN2ARP input
IN2BL	P1	MICVDD	I	Left-channel single-ended mic/line input	_	Input
IN2BR	L4	MICVDD	I	Right-channel single-ended mic/line input. Also suitable for connection to external accessory interfaces.	_	Input
JACKDET1	D9	AVDD	I	Jack detect input 1	_	Input
JACKDET2	F13	AVDD	I	Jack detect input 2	_	Input
JACKDET3	G10	AVDD	I	Jack detect input 3	_	Input
MICBIAS1A	F5	MICVDD	0	Microphone bias 1A	_	Output
MICBIAS1B	G2	MICVDD	0	Microphone bias 1B	_	Output
MICBIAS1C	G4	MICVDD	0	Microphone bias 1C	_	Output
MICBIAS1D	Н3	MICVDD	0	Microphone bias 1D	_	Output
MICBIAS2A	E6	MICVDD	0	Microphone bias 2A	_	Output
MICBIAS2B	G6	MICVDD	0	Microphone bias 2B	_	Output
MICDET1/ HPOUTFB1	F11	_	I/O	Mic/accessory sense input 1/HPOUT ground feedback pin 1	_	Input
MICDET2/ HPOUTFB2	E10	_	I/O	Mic/accessory sense input 2/HPOUT ground feedback pin 2	_	Input
MICDET3/ HPOUTFB3	C12		I/O	Mic/accessory sense input 3/HPOUT ground feedback pin 3		Input
MICDET4/ HPOUTFB4	B13	_	I/O	Mic/accessory sense input 4/HPOUT ground feedback pin 4		Input
MICDET5/ HPOUTFB5	C8	_	I/O	Mic/accessory sense input 5/HPOUT ground feedback pin 5	_	Input
MICVDD	H1	-	0	LDO2 output decoupling pin (generated internally by CS42L92). (Can also be used as reference/supply for external microphones.)	_	Output
VREFC	M5	_	0	Band-gap reference external capacitor connection	_	Output
				Digital I/O		_
AIF1BCLK/ GPIO6	N6	DBVDD	I/O	Audio interface 1 bit clock/GPIO6	PU/PD/K/H/ Z/C/OD	GPIO6 input with bus-keeper
AIF1LRCLK/ GPIO8	R6	DBVDD	I/O	Audio interface 1 left/right clock/GPIO8	PU/PD/K/H/ Z/C/OD	GPIO8 input with bus-keeper
AIF1RXDAT/ GPIO7	L6	DBVDD	I/O	Audio interface 1 RX digital audio data/GPIO7	PU/PD/K/H/ C/OD	GPIO7 input with bus-keeper
AIF1TXDAT/ GPIO5	K5	DBVDD	I/O	Audio interface 1 TX digital audio data/GPIO5	PU/PD/K/H/ Z/C/OD	GPIO5 input with bus-keeper

Table 1-1. Pin Descriptions (Cont.)

PU = Pull-up, PD = Pull-down, K = Bus keeper, H = Hysteresis on CMOS input, Z = Hi-Z (High impedance), C = CMOS, OD = Open drain.

Pin Name	Pin#	Power Supply	I/O	Pin Description	Digital Pad Attributes	State at Reset ¹
AIF2BCLK/ GPIO10	M7	DBVDD	I/O	Audio interface 2 bit clock/GPIO10	PU/PD/K/H/ Z/C/OD	GPIO10 input with bus-keeper
AIF2LRCLK/ GPIO12	K7	DBVDD	I/O	Audio interface 2 left/right clock/GPIO12	PU/PD/K/H/ Z/C/OD	GPIO12 input with bus-keeper
AIF2RXDAT/ GPIO11	P7	DBVDD	I/O	Audio interface 2 RX digital audio data/GPIO11	PU/PD/K/H/ C/OD	GPIO11 input with bus-keeper
AIF2TXDAT/ GPIO9	T7	DBVDD	I/O	Audio interface 2 TX digital audio data/GPIO9	PU/PD/K/H/ Z/C/OD	GPIO9 input with bus-keeper
AIF3BCLK/ GPIO14	N8	DBVDD	I/O	Audio interface 3 bit clock/GPIO14. If the JTAG interface is configured, this pin provides the TCK input connection.	PU/PD/K/H/ Z/C/OD	GPIO14 input with bus-keeper
AIF3LRCLK/ GPIO16	J6	DBVDD	I/O	Audio interface 3 left/right clock/GPIO16	PU/PD/K/H/ Z/C/OD	GPIO16 input with bus-keeper
AIF3RXDAT/ GPIO15	R8	DBVDD	I/O	Audio interface 3 RX digital audio data/GPIO15. If the JTAG interface is configured, this pin provides the TDI input connection.	PU/PD/K/H/ C/OD	GPIO15 input with bus-keeper
AIF3TXDAT/ GPIO13	J8	DBVDD	I/O	Audio interface 3 TX digital audio data/GPIO13. If the JTAG interface is configured, this pin provides the TMS input connection.	PU/PD/K/H/ Z/C/OD	GPIO13 input with bus-keeper
CIFMISO	L8	DBVDD	0	Control interface (SPI) Master In Slave Out data. The CIFMISO is high impedance if CIF1SS is not asserted.	Z/C	Output
CIFMOSI/SDA	Т9	DBVDD	I/O	Control interface (SPI) Master Out Slave In data/ Control interface (I ² C) data input/output.	H/OD	Input
CIFSCLK	P9	DBVDD	I	Control interface clock input	Н	Input
CIFSS	K9	DBVDD	ı	Control interface (SPI) slave select (SS)	Н	Input
CIFMODE	G8	DBVDD	ı	Control interface mode select	Н	Input
GPIO1	H9	DBVDD	I/O	GPI01	PU/PD/K/H/ C/OD	GPIO1 input with bus-keeper
GPIO2	H7	DBVDD	I/O	GPIO2	PU/PD/K/H/ C/OD	GPIO2 input with bus-keeper
ĪRQ	H11	DBVDD	0	Interrupt request (IRQ) output (default is active low)	C/OD	Output
MCLK1	P11	DBVDD	I	Master clock 1	Н	Input
MCLK2	M11	DBVDD	ı	Master clock 2	Н	Input
MCLK3	L10	DBVDD	ı	Master clock 3	Н	Input
RESET	J12	DBVDD	I	Digital reset input (active low)	PU/PD/K/H	Input with pull-up
SLIMCLK	M9	DBVDD	I/O	SLIMbus clock I/O	H/C	Input
SLIMDAT1	N10	DBVDD	I/O	SLIMbus data I/O	H/C	Input
SLIMDAT2	R10	DBVDD	I/O	SLIMbus data I/O	H/C	Input
SPKCLK/ GPIO3	J10	DBVDD	I/O	Digital speaker (PDM) clock output/GPIO3	PU/PD/K/H/ C/OD	GPIO3 input with bus-keeper
SPKDAT/ GPIO4	K11	DBVDD	I/O	Digital speaker (PDM) data output/GPIO4	PU/PD/K/H/ C/OD	GPIO4 input with bus-keeper
TDO	F7	DBVDD	0	JTAG data output	С	Output
TRST	D7	DBVDD	I	JTAG test access port reset (active low)	PD/H	Input with pull-down
				Supply		
AGND1	R2	_	_	Analog ground (return path for AVDD1)	_	
AGND2	G12	_		Analog ground (return path for AVDD2)	_	_
AVDD1	T3			Analog supply		
AVDD2	H13	_	_	Analog supply	_	

Table 1-1. Pin Descriptions (Cont.)

PU = Pull-up, PD = Pull-down, K = Bus keeper, H = Hysteresis on CMOS input, Z = Hi-Z (High impedance), C = CMOS, OD = Open drain.

Pin Name	Pin #	Power Supply	I/O	Pin Description	Digital Pad Attributes	State at Reset ¹
CPGND	В3	_	_	Charge pump ground (return path for CPVDD1, CPVDD2)	_	_
CPVDD1	A2	_	_	Supply for Charge Pump 1 and Charge Pump 2	_	_
CPVDD2	D3	_	_	Secondary supply for Charge Pump 1	_	_
DBVDD	T11	_	_	Digital buffer (I/O) supply	_	_
DCVDD	P13, T5	_	_	Digital core supply	_	_
DGND	N12, P5, R12, T13	_	_	Digital ground (return path for DCVDD and DBVDD)	_	_
FLLGND	L12	_	_	Analog ground (return path for FLLVDD)	_	_
FLLVDD	M13	_	_	Analog FLL supply	_	_
SUBGND	K13, R4	_	_	Substrate ground	_	_
-				No Connect		
NC	T1	_	_	_	_	_

^{1.} Note that the default conditions described are not valid if modified by the boot sequence or by a wake-up control sequence.

^{2.}The analog input functions on these pins are referenced to the MICVDD power domain. The digital input/output functions are referenced to the MICVDD or MICBIAS n power domain, as selected by the applicable INx_DMIC_SUP field.

2 Typical Connection Diagram

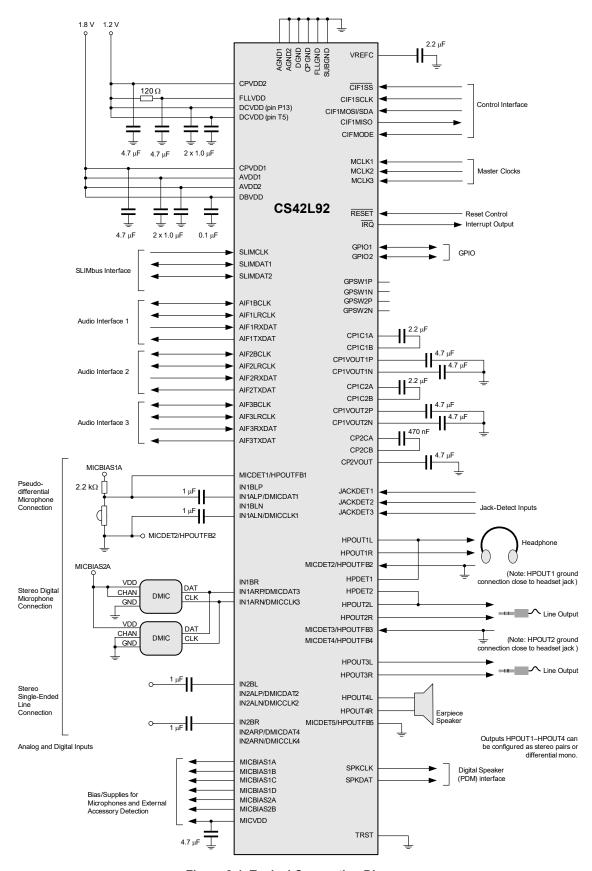


Figure 2-1. Typical Connection Diagram

Characteristics and Specifications

Table 3-1 defines parameters as they are characterized in this section.

Table 3-1. Parameter Definitions

Parameter	Definition
Channel separation	Left-to-right and right-to-left channel separation is the difference in level between the active channel (driven to maximum full scale output) and the measured signal level in the idle channel at the test signal frequency. The active channel is configured and supplied with an appropriate input signal to drive a full scale output, with signal measured at the output of the associated idle channel.
Common-mode rejection ratio (CMRR)	The ratio of a specified input signal (applied to both sides of a differential input), relative to the output signal that results from it.
Dynamic range (DR)	A measure of the difference between the maximum full scale output signal and the sum of all harmonic distortion products plus noise, with a low-level input signal applied. Typically, an input signal level 60 dB below full scale is used.
Power-supply rejection ratio (PSRR)	The ratio of a specified power supply variation relative to the output signal that results from it. PSRR is measured under quiescent signal path conditions.
Signal-to-noise ratio (SNR)	A measure of the difference in level between the maximum full scale output signal and the output with no input signal applied.
Total harmonic distortion (THD)	The ratio of the RMS sum of the harmonic distortion products in the specified bandwidth ¹ relative to the RMS amplitude of the fundamental (i.e., test frequency) output.
Total harmonic distortion plus noise (THD+N)	The ratio of the RMS sum of the harmonic distortion products plus noise in the specified bandwidth ¹ relative to the RMS amplitude of the fundamental (i.e., test frequency) output.

^{1.}All performance measurements are specified with a 20-kHz, low-pass brick-wall filter and, where noted, an A-weighted filter. The low-pass filter removes out-of-band noise.

Table 3-2. Absolute Maximum Ratings

Absolute maximum ratings are stress ratings only. Permanent damage to the device may be caused by continuously operating at or beyond these limits. Device functional operating limits and guaranteed performance specifications are given under electrical characteristics at the test conditions specified.

Parameter	Symbol	Minimum	Maximum
Supply voltages	DCVDD [1], FLLVDD [1]	-0.3 V	1.6 V
	AVDD [2], CPVDD1, CPVDD2	-0.3 V	2.5 V
	DBVDD, MICVDD	-0.3 V	5.0 V
Voltage range digital inputs DBVDD domain DMICDAT1-DMICDAT2		SUBGND – 0.3 V SUBGND – 0.3 V	DBVDD + 0.3 V MICVDD + 0.3 V
Voltage range analog inputs	IN1ARx, IN2Axx, IN2Bx IN1ALx, IN1BLx, IN1BR MICDETn ³ HPOUTFBn ³ JACKDET1, HPDET1, HPDET2 JACKDET2 ^[4] , JACKDET3 ^[4] GPSWnP, GPSWnN	SUBGND - 0.3 V SUBGND - 0.9 V SUBGND - 0.3 V SUBGND - 0.3 V CP1VOUT2N - 0.3 V [5] SUBGND - 0.3 V SUBGND - 0.3 V	MICVDD + 0.3 V MICVDD + 0.3 V MICVDD + 0.3 V SUBGND + 0.3 V AVDD + 0.3 V MICVDD + 0.3 V MICVDD + 0.3 V
Ground	AGND 6, DGND, CPGND, FLLGND	SUBGND - 0.3V	SUBGND + 0.3V
Operating temperature range	T _A	-40°C	+85°C
Operating junction temperature	TJ	-40°C	+125°C
Storage temperature after soldering	_	–65°C	+150°C

ESD-sensitive device. The CS42L92 is manufactured on a CMOS process. It is therefore generically susceptible to damage from excessive static voltages. Proper ESD precautions must be taken during handling and storage of this device. This device is qualified to current JEDEC ESĎ standards.

- 1. The DCVDD and FLLVDD pins should be tied to a common supply rail. The associated power domain is referred to as DCVDD.
- 2. The AVDD1 and AVDD2 pins should be tied together. The associated power domain is referred to as AVDD.
- 3. The MICDET n and HPOUTFB n functions share common pins. The absolute maximum rating varies according to the applicable function of each pin. The HPOUTFBn ratings are applicable if any of the HPn GND SEL bits select the respective pin for HPOUT ground feedback.
- 4.If AVDD > MICVDD (e.g., if LDO2 is disabled), the maximum JACKDET2/JACKDET3 voltage is AVDD + 0.3 V.
- 5. CP1VOUT2N is an internal supply, generated by the CS42L92 charge pump (CP1). Its voltage can vary between CPGND and -CPVDD1.
- 6. The AGND1 and AGND2 pins should be tied together. The associated ground domain is referred to as AGND.

Table 3-3. Recommended Operating Conditions

Parameter		Symbol	Minimum	Typical	Maximum	Units
Digital supply range 1	Core and FLL	DCVDD [2], FLLVDD [3]	1.14	1.2	1.26	V
Digital supply range	I/O	DBVDD	1.71	_	3.6 [4]	V
Charge pump supply range	CPVDD1	CPVDD1	1.71	1.8	1.89	V
	CPVDD2	CPVDD2	1.14	1.2	1.26	V
Analog supply range ^{5,6}		AVDD	1.71	1.8	1.89	V
Mic bias supply ⁷		MICVDD	0.9	2.5	3.78	V
Ground ⁸		DGND, AGND, CPGND, FLLGND, SUBGND	_	0	_	V
Power supply rise time 9,10		DCVDD	10	_	2000	μS
		All other supplies	10	_	<u> </u>	μS
Operating temperature range		T _A	-40		85	°C

Note: There are no power sequencing requirements; the supplies may be enabled and disabled in any order.

- 1. The DCVDD and FLLVDD pins should be tied to a common supply rail. The associated power domain is referred to as DCVDD.
- 2. Sleep mode is supported for when DCVDD is below the limits noted, provided that AVDD and DBVDD are present.
- 3.It is recommended to connect a $120-\Omega$ resistor in series with the FLLVDD pin connection. Note that the minimum voltage limit applies at the supply end of the $120-\Omega$ resistor in this case.
- 4. If the SLIMbus interface is enabled, the maximum DBVDD voltage is 1.98 V.
- 5.The AVDD1 and AVDD2 pins should be tied together. The associated power domain is referred to as AVDD.
- 6. The AGND1 and AGND2 pins should be tied together. The associated ground domain is referred to as AGND.
- 7.An internal charge pump and LDO (powered by CPVDD1) provide the mic bias supply; the MICVDD pin must not be connected to an external supply.
- 8. The impedance between DGND, AGND, CPGND, FLLGND, and SUBGND must not exceed 0.1 Ω .
- 9.If the DCVDD rise time exceeds 2 ms, RESET must be asserted during the rise and held asserted until after DCVDD is within the recommended operating limits.
- 10. The specified minimum power supply rise times assume a minimum decoupling capacitance of 100 nF per pin. However, Cirrus Logic strongly advises that the recommended decoupling capacitors are present on the PCB and that appropriate layout guidelines are observed. The specified minimum power supply rise times also assume a maximum PCB inductance of 10 nH between decoupling capacitor and pin.

Table 3-4. Analog Input Signal Level—IN1xx, IN2xx

Test conditions (unless specified otherwise): AVDD = 1.8V; with the exception of the condition noted, the following electrical characteristics are valid across the full range of recommended operating conditions.

Parameter			Typical	Maximum	Units
Full-scale input signal level (0 dBFS output)	Single-ended PGA input, 0 dB PGA gain	_	0.5	_	V_{RMS}
		_	-6	_	dBV
	Differential PGA input, 0 dB PGA gain	_	1	_	V_{RMS}
		_	0	_	dBV

Notes:

- The full-scale input signal level is also the maximum analog input level, before clipping occurs.
- The maximum input signal level is reduced by 6 dB if mid-power operation is selected (INn_OSR = 100); the maximum signal level
 corresponds to -6 dBFS at the respective ADC outputs in this case.
- The full-scale input signal level changes in proportion with AVDD. For differential input, it is calculated as AVDD / 1.8.
- A 1.0V_{RMS} differential signal equates to 0.5V_{RMS}/–6dBV per input.
- A sinusoidal input signal is assumed.

Table 3-5. Analog Input Pin Characteristics

Test conditions (unless specified otherwise): $T_A = +25^{\circ}C$; with the exception of the condition noted, the following electrical characteristics are valid across the full range of recommended operating conditions.

Parameter			Typical	Maximum	Units
Input resistance	Single-ended PGA input, All PGA gain settings	9	11	_	kΩ
	Differential PGA input, All PGA gain settings	17	22	_	kΩ
Input capacitance		_	_	5	pF

Table 3-6. Analog Input Gain—Programmable Gain Amplifiers (PGAs)

The following electrical characteristics are valid across the full range of recommended operating conditions.

Parameter		Typical	Maximum	Units
Minimum programmable gain	_	0	_	dB
Maximum programmable gain	_	31	_	dB
Programmable gain step size Guaranteed monotonic	_	1	_	dB

Table 3-7. Digital Input Signal Level—DMICDATn

The following electrical characteristics are valid across the full range of recommended operating conditions.

Parameter			Typical	Maximum	Units
Full-scale input level ¹	0 dBFS digital core input, 0 dB gain	_	-6	_	dBFS

^{1.} The digital input signal level is measured in dBFS, where 0 dBFS is a signal level equal to the full-scale range (FSR) of the PDM input. The FSR is defined as the amplitude of a 1-kHz sine wave whose positive and negative peaks are represented by the maximum and minimum digital codes respectively—this is the largest 1-kHz sine wave that can fit in the digital output range without clipping.

Table 3-8. Output Characteristics

The following electrical characteristics are valid across the full range of recommended operating conditions.

	Parameter		Minimum	Typical	Maximum	Units
Line/headphone/earpiece	Load resistance	Normal operation, Single-Ended Mode	6	_	_	Ω
output driver (HPOUTnL,		Normal operation, Differential (BTL) Mode		_	_	Ω
HPOUT <i>n</i> R)	De	Device survival with load applied indefinitely		_	_	Ω
	Load capacitance	Single-Ended Mode	_	_	500	pF
		Differential (BTL) Mode	_	_	200	pF
Digital speaker output (SPKDAT)	Full-scale output level ¹	0 dBFS digital core output, 0 dB gain	_	- 6	_	dBFS

^{1.} The digital output signal level is measured in dBFS, where 0 dBFS is a signal level equal to the full-scale range (FSR) of the PDM output. The FSR is defined as the amplitude of a 1-kHz sine wave whose positive and negative peaks are represented by the maximum and minimum digital codes respectively—this is the largest 1-kHz sine wave that can fit in the digital output range without clipping.

Table 3-9. Input/Output Path Characteristics

Test conditions (unless specified otherwise): DBVDD = CPVDD1 = AVDD = 1.8 V, DCVDD = FLLVDD = CPVDD2 = 1.2 V; MICVDD = 3.1 V (powered from internal LDO); T_A = +25°C; 1 kHz sinusoid signal; Fs = 48 kHz; PGA gain = 0 dB, 24-bit audio data.

	Parameter		Min	Тур	Max	Units
Line/headphone/earpiece output	DC offset at Load	Single-ended mode	_	50	_	μV
driver (HPOUTnL, HPOUTnR)		Differential (BTL) mode	_	75	_	μV
Analog input paths (IN1xx,		20 Hz to 20 kHz, 48 kHz sample rate		99	_	dB
IN2xx) to ADC (Differential Input		20 Hz to 8 kHz, 16 kHz sample rate	_	104	_	dB
Mode)	THD, defined in Table 3-1	–1 dBV input	_	-87	_	dB
	THD+N, defined in Table 3-1	–1 dBV input		-88	-79	dB
	Channel separation (L/R), defined in Table 3-	1 100 Hz to 10 kHz		109	_	dB
	Input-referred noise floor	A-weighted, PGA gain = +20 dB		2.6	_	μV_{RMS}
	CMRR, defined in Table 3-1	PGA gain = +30 dB		83	_	dB
		PGA gain = 0 dB	_	72	_	dB
	PSRR (DBVDD, CPVDD1, AVDD), defined	100 mV (peak-peak) 217 Hz		99	_	dB
	in Table 3-1	100 mV (peak-peak) 10 kHz		84	_	dB
	PSRR (DCVDD, FLLVDD, CPVDD2),	100 mV (peak-peak) 217 Hz		100	_	dB
	defined in Table 3-1	100 mV (peak-peak) 10 kHz		82	_	dB
Analog input paths (IN1xx,	SNR (A-weighted), defined in Table 3-1	20 Hz to 20 kHz, 48 kHz sample rate		98	_	dB
IN2xx) to ADC (Single-Ended		20 Hz to 8 kHz, 16 kHz sample rate		108	_	dB
Input Mode)	THD, defined in Table 3-1	–7dB V input		-84	_	dB
	THD+N, defined in Table 3-1	–7dB V input		-83	-78	dB
	Channel separation (L/R), defined in Table 3-	1 100 Hz to 10 kHz	_	107	_	dB
	Input-referred noise floor	A-weighted, PGA gain = +20 dB	_	4	_	μV_{RMS}
	PSRR (DBVDD, CPVDD1, AVDD), defined	100 mV (peak-peak) 217 Hz	_	76	_	dB
	in Table 3-1	100 mV (peak-peak) 10 kHz	_	52	_	dB
	PSRR (DCVDD, FLLVDD, CPVDD2),	100 mV (peak-peak) 217 Hz		96	_	dB
	defined in Table 3-1	100 mV (peak-peak) 10 kHz	—	87	_	dB

Table 3-9. Input/Output Path Characteristics (Cont.)

Test conditions (unless specified otherwise): DBVDD = CPVDD1 = AVDD = 1.8 V, DCVDD = FLLVDD = CPVDD2 = 1.2 V; MICVDD = 3.1 V (powered from internal LDO); T_A = +25°C; 1 kHz sinusoid signal; Fs = 48 kHz; PGA gain = 0 dB, 24-bit audio data.

<u> </u>	Parameter		Min	Тур	Max	
Analog input paths (IN1xx,	SNR, defined in Table 3-1	A-weighted	_	88		dB
IN2xx) to ADC (Differential	THD, defined in Table 3-1	–7 dBV input	_	-81	_	dB
Input, Mid Power Mode)	THD+N, defined in Table 3-1	–7 dBV input	_	-80	_	dB
	Channel separation (L/R), defined in Table 3-1		_	96	_	dB
	Input-referred noise floor	A-weighted, PGA gain = +20 dB		4.79	_	μV_{RMS}
	CMRR, defined in Table 3-1	PGA gain = +30 dB PGA gain = 0 dB		73 81		dB dB
	PSRR (DBVDD, CPVDD1, AVDD), defined in Table 3-1	100 mV (peak-peak) 217 Hz 100 mV (peak-peak) 10 kHz	_	93 75	_	dB dB
	PSRR (DCVDD, FLLVDD, CPVDD2), defined in Table 3-1	100 mV (peak-peak) 217 Hz 100 mV (peak-peak) 10 kHz	_	97 81	_	dB dB
DAC to line output (HPOUT1 x , HPOUT2 x ; Load = 10 k Ω ,	Full-scale output signal level	0 dBFS input		1		V _{RMS} dBV
50 pF)	SNR, defined in Table 3-1	A-weighted, output signal = 1 V _{RMS}	_	125	_	dB
	Dynamic range, defined in Table 3-1	A-weighted, –60 dBFS input		117	_	dB
	THD+N, defined in Table 3-1	0 dBFS input		-100	-90	dB
	Channel separation (L/R), defined in Table 3-1	•		95	_	dB
	Output noise floor	A-weighted	_	0.7	_	μV _{RMS}
	PSRR (DBVDD, CPVDD1, AVDD),	100 mV (peak-peak) 217 Hz	_	105		dB
	defined in Table 3-1	100 mV (peak-peak) 217 Hz 100 mV (peak-peak) 10 kHz 100 mV (peak-peak) 217 Hz	_	81	_	dB
	PSRR (DCVDD, FLLVDD, CPVDD2), defined in Table 3-1	100 mV (peak-peak) 10 kHz	1 1	108 81	_	dB dB
DAC to headphone output	Maximum output power	0.1% THD+N	_	33		mW
(HPOUT1 x , HPOUT2 x ; R _L = 32 Ω)		A-weighted, output signal = $1 V_{RMS}$	_	125	_	dB
- 32 12)	Dynamic range, defined in Table 3-1	A-weighted, –60 dBFS input	108	117		dB
	THD+N, defined in Table 3-1	$P_O = 20 \text{ mW}$	_	-100	-90	dB
	THD+N, defined in Table 3-1	$P_O = 2 \text{ mW}$		-96		dB
	Channel separation (L/R), defined in Table 3-1	100 Hz to 10 kHz		105		dB
	Output noise floor	A-weighted	_	0.6		μV_{RMS}
	PSRR (DBVDD, CPVDD1, AVDD), defined in Table 3-1	100 mV (peak-peak) 217 Hz 100 mV (peak-peak) 10 kHz		126 103	_	dB dB
	PSRR (DCVDD, FLLVDD, CPVDD2), defined in Table 3-1	100 mV (peak-peak) 217 Hz 100 mV (peak-peak) 10 kHz		128 105		dB dB
DAC to headphone output	Maximum output power	0.1% THD+N		46	_	mW
(HPOUT1x, HPOUT2x;	SNR, defined in Table 3-1	A-weighted, output signal = 1 V _{RMS}		125	_	dB
$R_L = 16 \Omega$)	Dynamic range, defined in Table 3-1	A-weighted, –60 dBFS input	108	117	_	dB
	THD+N, defined in Table 3-1	P _O = 20 mW		-97	-90	dB
	THD+N, defined in Table 3-1	P _O = 2 mW		-95	_	dB
	Channel separation (L/R), defined in Table 3-1	100 Hz to 10 kHz		97	_	dB
	Output noise floor	A-weighted		0.6	_	μV_{RMS}
	PSRR (DBVDD, CPVDD1, AVDD),	100 mV (peak-peak) 217 Hz		127		dB
	defined in Table 3-1	100 mV (peak-peak) 10 kHz	_	107	_	dB
	PSRR (DCVDD, FLLVDD, CPVDD2),	100 mV (peak-peak) 217 Hz		127	_	dB
<u> </u>	defined in Table 3-1	100 mV (peak-peak) 10 kHz	_	108		dB
DAC to headphone output	Maximum output power	0.1% THD+N		109	_	mW
(HPOUT1L+HPOUT1R,	SNR, defined in Table 3-1	A-weighted, output signal = $2 V_{RMS}$		127	_	dB
HPOUT2L+HPOUT2R; Stereo differential output, $R_L = 32 \Omega$	Dynamic range, defined in Table 3-1	A-weighted, -60 dBFS input		115	_	dB
BTL)	THD+N, defined in Table 3-1	$P_O = 75 \text{ mW}$	_	-100	_	dB
_ · _, 	THD+N, defined in Table 3-1	P _O = 5 mW	_	-97	_	dB
	Output noise floor	A-weighted	-	0.36	_	μV_{RMS}
ì	PSRR (DBVDD, CPVDD1, AVDD),	100 mV (peak-peak) 217 Hz	_	120	_	dB
	defined in Table 3-1 PSRR (DCVDD, FLLVDD, CPVDD2),	100 mV (peak-peak) 10 kHz 100 mV (peak-peak) 217 Hz	_	90 120	_	dB dB

Table 3-9. Input/Output Path Characteristics (Cont.)

Test conditions (unless specified otherwise): DBVDD = CPVDD1 = AVDD = 1.8 V, DCVDD = FLLVDD = CPVDD2 = 1.2 V; MICVDD = 3.1 V (powered from internal LDO); $T_A = +25^{\circ}C$; 1 kHz sinusoid signal; Fs = 48 kHz; PGA gain = 0 dB, 24-bit audio data.

	Parameter								
DAC to line output (HPOUT3 x , HPOUT4 x ; Load = 10 k Ω ,	Full-scale output signal level	0 dBFS input		1 0	_	V _{RMS} dBV			
50 pF)	SNR, defined in Table 3-1	A-weighted, output signal = 1 V _{RMS}	115	125	_	dB			
	Dynamic range, defined in Table 3-1	A-weighted, -60 dBFS input	107	115	_	dB			
	THD, defined in Table 3-1	0 dBFS input	_	-92	_	dB			
	THD+N, defined in Table 3-1	0 dBFS input	_	-91	-85	dB			
	Channel separation (L/R), defined in Table 3-1	100 Hz to 10 kHz		90	_	dB			
	Output noise floor	A-weighted	_	0.63	_	μV_{RMS}			
	PSRR (DBVDD, CPVDD1, AVDD),	100 mV (peak-peak) 217 Hz		110	_	dB			
	defined in Table 3-1	100 mV (peak-peak) 10 kHz		78	_	dB			
	PSRR (DCVDD, FLLVDD, CPVDD2),	100 mV (peak-peak) 217 Hz		99	_	dB			
	defined in Table 3-1	100 mV (peak-peak) 10 kHz		69	_	dB			
DAC to headphone output	Maximum output power	0.1% THD+N		33	_	mW			
(HPOUT3x, HPOUT4x;	SNR, defined in Table 3-1	A-weighted, output signal = $1 V_{RMS}$		124	_	dB			
$R_L = 32 \Omega$)	Dynamic range, defined in Table 3-1	A-weighted, –60 dBFS input		115	_	dB			
	THD, defined in Table 3-1	$P_O = 20 \text{ mW}$		-93	_	dB			
	THD+N, defined in Table 3-1	P _O = 20 mW		-90	-85	dB			
	THD, defined in Table 3-1	$P_O = 2 \text{ mW}$		-94	_	dB			
	THD+N, defined in Table 3-1	P _O = 2 mW	_	-92	_	dB			
	Channel separation (L/R), defined in Table 3-1	100 Hz to 10 kHz	_	102	_	dB			
	Output noise floor	A-weighted		0.63	_	μV_{RMS}			
	PSRR (DBVDD, CPVDD1, AVDD),	100 mV (peak-peak) 217 Hz		127	_	dB			
	defined in Table 3-1	100 mV (peak-peak) 10 kHz		100	_	dB			
	PSRR (DCVDD, FLLVDD, CPVDD2),	100 mV (peak-peak) 217 Hz		120	_	dB			
	defined in Table 3-1	100 mV (peak-peak) 10 kHz		95		dB			
DAC to headphone output (HPOUT3x, HPOUT4x;	Maximum output power	0.1% THD+N		46		mW			
$R_L = 16 \Omega$	SNR, defined in Table 3-1	A-weighted, output signal = 1 V _{RMS}		124		dB			
10 22)	Dynamic range, defined in Table 3-1	A-weighted, –60 dBFS input		115	_	dB			
	THD, defined in Table 3-1	$P_O = 20 \text{ mW}$		-94	_	dB			
	THD+N, defined in Table 3-1	P _O = 20 mW		-89	-80	dB			
	THD, defined in Table 3-1	$P_O = 2 \text{ mW}$		-91	_	dB			
	THD+N, defined in Table 3-1	$P_O = 2 \text{ mW}$		-89	_	dB			
	Channel separation (L/R), defined in Table 3-1			100	_	dB			
	Output noise floor	A-weighted		0.63	_	μV_{RMS}			
	PSRR (DBVDD, CPVDD1, AVDD), defined in Table 3-1	100 mV (peak-peak) 217 Hz 100 mV (peak-peak) 10 kHz		128 104	_	dB dB			
	PSRR (DCVDD, FLLVDD, CPVDD2),	100 mV (peak-peak) 217 Hz		125	_	dB			
	defined in Table 3-1	100 mV (peak-peak) 10 kHz		97	_	dB			
DAC to earpiece output	Maximum output power	0.1% THD+N		115	_	mW			
(HPOUT3L+HPOUT3R, HPOUT4L+HPOUT4R, Mono	SNR, defined in Table 3-1	A-weighted, output signal = $2 V_{RMS}$		129	_	dB			
Mode, $R_L = 32 \Omega BTL$)	Dynamic range, defined in Table 3-1	A-weighted, –60 dBFS input		120	_	dB			
Wode, 11[02 32 B 12)	THD, defined in Table 3-1	$P_O = 75 \text{ mW}$		-99	_	dB			
	THD+N, defined in Table 3-1	P _O = 75 mW		-97	_	dB			
	THD, defined in Table 3-1	$P_O = 5 \text{ mW}$		-98		dB			
	THD+N, defined in Table 3-1	P _O = 5 mW	_	-94	_	dB			
	Output noise floor	A-weighted		0.36	_	μV_{RMS}			
	PSRR (DBVDD, CPVDD1, AVDD),	100 mV (peak-peak) 217 Hz		127	_	dB			
	defined in Table 3-1	100 mV (peak-peak) 10 kHz		106		dB			
	PSRR (DCVDD, FLLVDD, CPVDD2),	100 mV (peak-peak) 217 Hz		125	-	dB			
	defined in Table 3-1	100 mV (peak-peak) 10 kHz	—	101		dB			

Table 3-9. Input/Output Path Characteristics (Cont.)

Test conditions (unless specified otherwise): DBVDD = CPVDD1 = AVDD = 1.8 V, DCVDD = FLLVDD = CPVDD2 = 1.2 V; MICVDD = 3.1 V (powered from internal LDO); T_A = +25°C; 1 kHz sinusoid signal; Fs = 48 kHz; PGA gain = 0 dB, 24-bit audio data.

	Parameter		Min	Тур	Max	Units
DAC to earpiece output	Maximum output power	0.1% THD+N	_	138	_	mW
(HPOUT3L+HPOUT3R,	SNR, defined in Table 3-1	A-weighted, output signal = 2 V _{RMS}	_	128	_	dB
HPOUT4L+HPOUT4R, Mono Mode, R_L = 16 $Ω$ BTL)	Dynamic range, defined in Table 3-1	A-weighted, –60 dBFS input	110	120	_	dB
	THD, defined in Table 3-1	P _O = 75 mW	_	-97	_	dB
	THD+N, defined in Table 3-1	P _O = 75 mW	_	-95	_	dB
	THD, defined in Table 3-1	$P_O = 5 \text{ mW}$		-96	_	dB
	THD+N, defined in Table 3-1	$P_O = 5 \text{ mW}$		-94	_	dB
	Output noise floor	A-weighted	_	0.4	_	μV_{RMS}
	PSRR (DBVDD, CPVDD1, AVDD),	100 mV (peak-peak) 217 Hz		125	_	dB
	defined in Table 3-1	100 mV (peak-peak) 10 kHz	_	106	_	dB
	PSRR (DCVDD, FLLVDD, CPVDD2),	100 mV (peak-peak) 217 Hz		125	_	dB
	defined in Table 3-1	100 mV (peak-peak) 10 kHz	_	101	_	dB

Table 3-10. Digital Input/Output

The following electrical characteristics are valid across the full range of recommended operating conditions.

	Parameter		Minimum	Typical	Maximum	Units
Digital I/O (except	Input HIGH level	V _{DBVDD} = 1.71–1.98 V	0.75 × DBVDD	_	_	V
DMICDATn and		$V_{DBVDD} = 2.5 V \pm 10\%$			_	V
DMICCLKn) 1,2		$V_{DBVDD} = 3.3 V \pm 10\%$	$0.7 \times DBVDD$	_	_	V
	Input LOW level	V _{DBVDD} = 1.71–1.98 V	_	_	0.3 × DBVDD	V
		$V_{DBVDD} = 2.5 V \pm 10\%$	_	_	0.25 × DBVDD	V
		$V_{DBVDD} = 3.3 V \pm 10\%$			0.2 × DBVDD	V
	Output HIGH level	V _{DBVDD} = 1.71–1.98 V			_	V
	(I _{OH} = 1 mA)	$V_{DBVDD} = 2.5 V \pm 10\%$		_	_	V
		$V_{DBVDD} = 3.3 V \pm 10\%$		—	_	V
	Output LOW level	$V_{DBVDDn} = 1.71-1.98 \text{ V}$			0.25 × DBVDD	V
	(I _{OL} = 1mA)	$V_{DBVDDn} = 2.5 V \pm 10\%$	_	_	$0.3 \times DBVDD$	V
		$V_{DBVDDn} = 3.3 V \pm 10\%$	_	_	0.15 × DBVDD	V
	Input capacitance		_	_	5	pF
	Input leakage		-10	_	10	μА
	Pull-up/pull-down resistance (wh	nere applicable)	35	_	55	kΩ
DMIC I/O	DMICDATn input HIGH level		0.65 × V _{SUP}	_	_	V
(DMICDAT <i>n</i> and	DMICDATn input LOW level		_	_	$0.35 \times V_{SUP}$	V
DMICCLKn) ^{2,3}	DMICCLKn output HIGH level	I _{OH} = 1 mA	$0.8 \times V_{SUP}$	_	_	V
	DMICCLKn output LOW level	$I_{OL} = -1 \text{ mA}$	_		0.2 × V _{SUP}	V
	Input capacitance		_	25		pF
	Input leakage		– 1	_	1	μА
GPIO <i>n</i>	Clock output frequency G	PIO pin as OPCLK or FLL output	_	_	50	MHz

^{1.} Digital I/O is referenced to DBVDD.

^{2.} Note that digital input pins should not be left unconnected or floating.

^{3.} DMICDATn and DMICCLKn are referenced to a selectable supply, V_{SUP} , according to the INn_DMIC_SUP fields.

Table 3-11. Miscellaneous Characteristics

Test conditions (unless specified otherwise): DBVDD = CPVDD1 = AVDD = 1.8 V, DCVDD = FLLVDD = CPVDD2 = 1.2 V; MICVDD = 3.1 V (powered from internal LDO); T_A = +25°C; 1 kHz sinusoid signal; Fs = 48 kHz; PGA gain = 0 dB, 24-bit audio data.

	Parameter	Min	Тур	Max	Units
Microphone bias	Minimum bias voltage ²	_	1.5		V
(MICBIASnx) 1	Maximum bias voltage	_	2.8	-	V
	Bias voltage output step size		0.1		V
	Bias voltage accuracy	-5%		+5%	
	Bias current ³ Regulator Mode (MICBn_BYPASS = 0), V _{MICVDD} - V _{MICBIAS} >200 mV	_	_	2.4 5.0	mA mA
	Bypass Mode (MICBn_BYPASS = 1) Output noise density Regulator Mode (MICBn BYPASS = 0), MICBn LVL = 0x4,		50	5.0	nV/√Hz
	Output noise density Regulator Mode (MICBn_BYPASS = 0), MICBn_LVL = 0x4, Load current = 1 mA, Measured at 1 kHz	_	50	-	NV/VHZ
	Integrated noise voltage Regulator Mode (MICBn BYPASS = 0), MICBn LVL = 0x4,		4	_	μV_{RMS}
	Load current = 1 mA, 100 Hz to 7 kHz, A-weighted	_	4	-	μVRMS
	PSRR (DBVDD, CPVDD1, AVDD), defined in Table 3-1 100 mV (peak-peak) 217 Hz		105	_	dB
	100 mV (peak-peak) 10 kHz		95	_	dB
	PSRR (DCVDD, FLLVDD, CPVDD2), defined in Table 3-1 100 mV (peak-peak) 217 Hz		99	_	dB
	100 mV (peak-peak) 10 kHz	_	92	_	dB
	Load capacitance ³ Regulator Mode (MICB <i>n_</i> BYPASS = 0), MICB <i>n_</i> EXT_CAP = 0	_		50	pF
	Regulator Mode (MICBn_BYPASS = 0), MICBn_EXT_CAP = 1	0.1	1.0	10	μF
	Output discharge resistance MICBnx ENA = 0, MICBnx DISCH = 1	_	2	_	kΩ
General-purpose	Switch resistance Switch closed, I = 1 mA	_	40	_	Ω
switch 4	Switch open	_	100	_	$M\Omega$
External	Headphone detection load impedance range: HPD_IMPEDANCE_RANGE = 00	4	_	30	Ω
Accessory	Detection via HPDET1 (HPD_SENSE_ HPD_IMPEDANCE_RANGE = 01	8	_	100	Ω
Detect	SEL = 0100) or HPDET2 (HPD_SENSE_ HPD_IMPEDANCE_RANGE = 10	100	_	1000	Ω
	SEL = 0101) HPD_IMPEDANCE_RANGE = 11	1000		10000	Ω
	Headphone detection load impedance range: Detection via MICDETn or JACKDETn pins	400		6000	Ω
	Headphone detection accuracy: HPD_IMPEDANCE_RANGE = 01 or 10	-5		+5	%
	(HPD_DACVAL, HPDET <i>n</i> pin) HPD_IMPEDANCE_RANGE = 00 or 11	-10	l	+10	%
	Headphone detection accuracy (HPD_LVL, MICDETn or JACKDETn pin)	-20	l	+20	%
	Microphone impedance detection range: for MICDn_LVL[0] = 1	0		70	Ω
	(MICD _{n_ADC_MODE} = 0, 2.2 k Ω ±2% MICBIAS resistor. 5) for MICD _{n_LVL} [1] = 1	110	_	180	Ω
	for MICD _n _LVL[2] = 1	210	_	290	Ω
	for MICD n_L VL[3] = 1 for MICD n_L VL[8] = 1	360 1000		680 30000	Ω
	Jack-detection input threshold voltage Detection on JACKDET1, Jack insertion	1000	0.9	30000	V
	(JACKDET <i>n</i>) Detection on JACKDET1, Jack insertion		1.65		v
	Detection on JACKDET2/3, Jack insertion		0.27		v
	Detection on JACKDET2/3, Jack removal	_	0.9	_	V
MICVDD Charge	Output voltage	0.9	2.7	3.3	V
Pump and	Programmable output voltage step size LDO2 VSEL = 0x00–0x14 (0.9–1.4V)	_	25	_	mV
Regulator (CP2	LDO2_VSEL = 0x14 to 0x27 (1.4 V-3.3 V)	_	100	-	mV
and LDO2)	Maximum output current	_	8	_	mA
	Start-up time 4.7 µF on MICVDD	_	1.0	2.5	ms
Frequency-Lock	Output frequency	45		50	MHz
ed Loop (FLL1,	Lock Time $F_{REF} = 32 \text{ kHz}, F_{FLL} = 49.152 \text{ MHz}$	_	5	_	ms
				1	
FLL2)	F_{REF} = 12 MHz, F_{FLL} = 49.152 MHz	_	1	_	ms

- 1.No capacitor on MICBIASnx. In Regulator Mode, it is required that $V_{MICVDD} V_{MICBIAS} > 200 \text{ mV}$.
- 2.Regulator Mode (MICBn_BYPASS = 0), Load current ≤ 1.0 mA.
- 3. Bias current and load capacitance specifications are per MICBIAS generator (MICBIAS1 or MICBIAS2).

 4. The GPSWnN pin voltage must not exceed GPSWnP + 0.3 V. See Table 3-2 for voltage limits applicable to the GPSWnP and GPSWnN pins.
- 5. These characteristics assume no other component is connected to MICDET n.
- 6.To trigger a hardware reset, the RESET input must be asserted for longer than this duration.

Table 3-12. Device Reset Thresholds

The following electrical characteristics are valid across the full range of recommended operating conditions.

	Parameter	Symbol	Minimum	Typical	Maximum	Units
AVDD reset threshold	V _{AVDD} rising	V_{AVDD}	_	_	1.66	V
	V _{AVDD} falling		1.06	_	1.44	V
DCVDD reset threshold	V _{DCVDD} rising	V_{DCVDD}	_	_	1.04	V
	V _{DCVDD} falling		0.49	_	0.70	V
DBVDD Reset threshold	V _{DBVDD} rising	V_{DBVDD}	_	_	1.66	V
	V _{DBVDD} falling		1.06		1.44	V

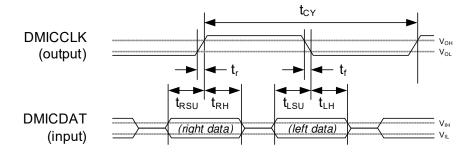
Note: The reset thresholds are derived from simulations only, across all operational and process corners. Device performance is not assured outside the voltage ranges defined in Table 3-3.

Table 3-13. System Clock and Frequency-Locked Loop (FLL)

The following timing information is valid across the full range of recommended operating conditions.

	Pa	rameter	Minimum	Typical	Maximum	Units
Master clock	MCLK cycle time	MCLK as input to FLL, FLLn_REFCLK_DIV = 00	74	_	_	ns
timing (MCLK1,		MCLK as input to FLL, FLLn_REFCLK_DIV = 01	37	_	_	ns
MCLK2, MCLK3) 1		MCLK as input to FLL, FLLn_REFCLK_DIV = 10	18	_	_	ns
		MCLK as input to FLL, FLLn_REFCLK_DIV = 11	12.5		_	ns
		MCLK as direct SYSCLK or ASYNCCLK source	40	_		ns
	MCLK duty cycle	MCLK as input to FLL	80:20	_	20:80	%
		MCLK as direct SYSCLK or ASYNCCLK source	60:40	_	40:60	%
Frequency-locked	FLL input frequency	$FLLn_REFCLK_DIV = 00$	0.032	_	13	MHz
loop (FLL1, FLL2)		$FLLn_REFCLK_DIV = 01$	0.064	_	26	MHz
		FLL_n _REFCLK_DIV = 11	0.128	_	52	MHz
		FLLn_REFCLK_DIV = 11	0.256	_	80	MHz
Internal clocking	SYSCLK frequency	SYSCLK_FREQ = 000, SYSCLK_FRAC = 0	-1%	6.144	+1%	MHz
		SYSCLK_FREQ = 000, SYSCLK_FRAC = 1	-1%	5.6448	+1%	MHz
		SYSCLK_FREQ = 001, SYSCLK_FRAC = 0		12.288	+1%	MHz
		SYSCLK_FREQ = 001, SYSCLK_FRAC = 1	-1%	11.2896	+1%	MHz
		SYSCLK_FREQ = 010, SYSCLK_FRAC = 0		24.576	+1%	MHz
		SYSCLK_FREQ = 010, SYSCLK_FRAC = 1	-1%	22.5792	+1%	MHz
		SYSCLK_FREQ = 011, SYSCLK_FRAC = 0		49.152	+1%	MHz
		SYSCLK_FREQ = 011, SYSCLK_FRAC = 1	-1%	45.1584	+1%	MHz
		SYSCLK_FREQ = 100, SYSCLK_FRAC = 0	-1%	98.304	+1%	MHz
		SYSCLK_FREQ = 100, SYSCLK_FRAC = 1	-1%	90.3168	+1%	MHz
	ASYNCCLK frequency	ASYNC_CLK_FREQ = 000		6.144	+1%	MHz
			-1%	5.6448	+1%	MHz
		ASYNC_CLK_FREQ = 001	-1%	12.288	+1%	MHz
		101/110 011/ ===0 010	-1%	11.2896	+1%	MHz
		ASYNC_CLK_FREQ = 010		24.576	+1%	MHz
		40VAIO OLIK EDEO . 044	-1%	22.5792	+1%	MHz
		ASYNC_CLK_FREQ = 011	-1%	49.152	+1%	MHz
		ACVAIC CLIV EDEC 400	-1%	45.1584	+1%	MHz
		ASYNC_CLK_FREQ = 100		98.304	+1%	MHz
	DCDCLI/ fraguency		-1%	90.3168	+1%	MHz
	DSPCLK frequency		5	_	150	MHz

^{1.}If MCLK1, MCLK2, or MCLK3 is selected as a source for SYSCLK or ASYNCCLK (either directly or via one of the FLLs), the frequency must be within 1% of the applicable SYSCLK_FREQ or ASYNC_CLK_FREQ setting.


Table 3-14. Digital Microphone (DMIC) Interface Timing

The following timing information is valid across the full range of recommended operating conditions.

Parameter ¹	Symbol	Minimum	Typical	Maximum	Units
DMICCLKn cycle time	t _{CY}	160	163	1432	ns
DMICCLKn duty cycle	_	45	_	55	%
DMICCLKn rise/fall time (25-pF load, 1.8-V supply)	t _r , t _f	5	_	30	ns
DMICDATn (left) setup time to falling DMICCLK edge	t _{LSU}	15	_	_	ns
DMICDATn (left) hold time from falling DMICCLK edge	t _{LH}	0	_	_	ns
DMICDATn (right) setup time to rising DMICCLK edge	t _{RSU}	15	_	_	ns
DMICDATn (right) hold time from rising DMICCLK edge	t _{RH}	0	_	_	ns

Note: The voltage reference for the DMIC interfaces is selectable, using the IN*n*_DMIC_SUP fields—each interface may be referenced to MICVDD, MICBIAS1, or MICBIAS2.

1.DMIC interface timing

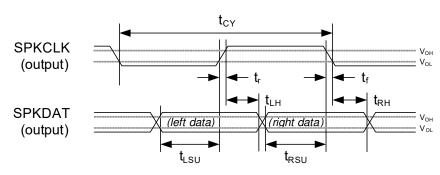
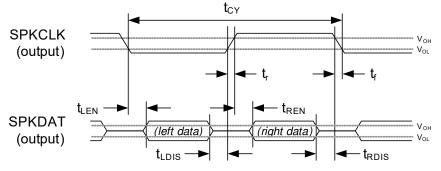


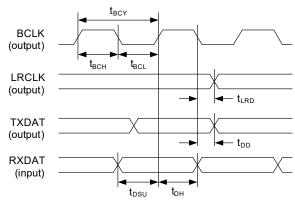
Table 3-15. Digital Speaker (PDM) Interface Timing


The following timing information is valid across the full range of recommended operating conditions.

	Parameter	Symbol	Minimum	Typical	Maximum	Units
Mode A 1	SPKCLK cycle time	t _{CY}	160	163	358	ns
	SPKCLK duty cycle	_	45	_	55	%
	SPKCLK rise/fall time (25-pF load)	t _r , t _f	2	_	8	ns
	SPKDAT set-up time to SPKCLK rising edge (left channel)	t _{LSU}	30	_	_	ns
	SPKDAT hold time from SPKCLK rising edge (left channel)	t _{LH}	30	_	_	ns
	SPKDAT set-up time to SPKCLK falling edge (right channel)	t _{RSU}	30	_	_	ns
	SPKDAT hold time from SPKCLK falling edge (right channel)	t _{RH}	30	_	_	ns
Mode B ²	SPKCLK cycle time	t _{CY}	160	163	358	ns
	SPKCLK duty cycle	_	45	_	55	%
	SPKCLK rise/fall time (25-pF load)	t _r , t _f	2	_	8	ns
	SPKDAT enable from SPKCLK rising edge (right channel)	t _{REN}	_	_	15	ns
	SPKDAT disable to SPKCLK falling edge (right channel)	t _{RDIS}	_	_	5	ns
	SPKDAT enable from SPKCLK falling edge (left channel)	t _{LEN}	_		15	ns
	SPKDAT disable to SPKCLK rising edge (left channel)	t _{LDIS}	_	_	5	ns

1. Digital speaker (PDM) interface timing—Mode A

2. Digital speaker (PDM) interface timing—Mode B


Table 3-16. Digital Audio Interface—Master Mode

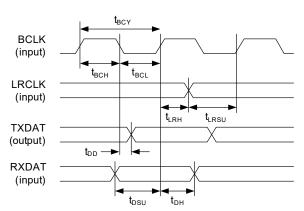
Test conditions (unless specified otherwise): C_{LOAD} = 25 pF (output pins); BCLK slew (10% to 90%) = 3.7–5.6 ns; with the exception of the conditions noted, the following electrical characteristics are valid across the full range of recommended operating conditions.

	Parameter ¹	Symbol	Minimum	Typical	Maximum	Units
Master Mode	AIFnBCLK cycle time	t _{BCY}	40	_	_	ns
	AIFnBCLK pulse width high	t _{BCH}	18	_	_	ns
	AIFnBCLK pulse width low	t _{BCL}	18	_	_	ns
	AIF nLRCLK propagation delay from BCLK falling edge ²	t _{LRD}	0	_	8.3	ns
	AIFnTXDAT propagation delay from BCLK falling edge	t _{DD}	0		5	ns
	AIF nRXDAT setup time to BCLK rising edge	t _{DSU}	11	_	_	ns
	AIFnRXDAT hold time from BCLK rising edge	t _{DH}	0	_	_	ns
Master Mode,	AIFnLRCLK setup time to BCLK rising edge	t _{LRSU}	14		_	ns
Slave LRCLK	AIF nLRCLK hold time from BCLK rising edge	t _{LRH}	0	_	_	ns

Notes: The descriptions above assume noninverted polarity of AIF nBCLK.

1. Digital audio interface timing—Master Mode. Note that BCLK and LRCLK outputs can be inverted if required; the figure shows the default, noninverted polarity.

2. The timing of the AIF nLRCLK signal is selectable. If the LRCLK advance option is enabled, the LRCLK transition is timed relative to the preceding BCLK edge. Under the required condition that BCLK is inverted in this case, the LRCLK transition is still timed relative to the falling BCLK edge.


Table 3-17. Digital Audio Interface—Slave Mode

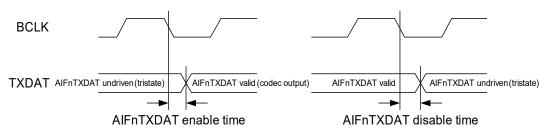
The following timing information is valid across the full range of recommended operating conditions, unless otherwise noted.

	Parameter 1,2	Symbol	Min	Тур	Max	Units
AIFnBCLK cycle time		t _{BCY}	40	_	_	ns
AIFnBCLK pulse width high	BCLK as direct SYSCLK or ASYNCCLK source	t _{BCH}	16	_	_	ns
	All other conditions	t _{BCH}	14	_		ns
AIFnBCLK pulse width low	BCLK as direct SYSCLK or ASYNCCLK source	t_{BCL}	16	_	_	ns
	All other conditions	t _{BCL}	14	_	_	ns
C_{LOAD} = 15 pF (output pins),	AIF <i>n</i> LRCLK set-up time to BCLK rising edge	t_{LRSU}	7	_	_	ns
BCLK slew (10%–90%) = 3 ns	AIF nLRCLK hold time from BCLK rising edge	t_{LRH}	0	_	_	ns
	AIF nTXDAT propagation delay from BCLK falling edge	t_{DD}	0	_	12.2	ns
	AIF nRXDAT set-up time to BCLK rising edge	t _{DSU}	2	_		ns
	AIFnRXDAT hold time from BCLK rising edge	t _{DH}	0	_		ns
	Master LRCLK, AIF nLRCLK propagation delay from BCLK falling edge	t _{LRD}	_	_	14.8	ns
C _{LOAD} = 25 pF (output pins),	AIF nLRCLK set-up time to BCLK rising edge	t _{LRSU}	7	_		ns
BCLK slew (10%–90%) = 6 ns	AIFnLRCLK hold time from BCLK rising edge	t _{LRH}	0	_		ns
	AIF nTXDAT propagation delay from BCLK falling edge	t_{DD}	0	_	14.2	ns
	AIF nRXDAT set-up time to BCLK rising edge	t _{DSU}	2	_		ns
	AIF nRXDAT hold time from BCLK rising edge	t_{DH}	0			ns
	Master LRCLK, AIF nLRCLK propagation delay from BCLK falling edge	t _{LRD}	_		15.9	ns

Note: The descriptions above assume noninverted polarity of AIF *n*BCLK.

^{1.} Digital audio interface timing—Slave Mode. Note that BCLK and LRCLK inputs can be inverted if required; the figure shows the default, noninverted polarity.

2.If AIF nBCLK or AIF nLRCLK is selected as a source for SYSCLK or ASYNCCLK (either directly or via one of the FLLs), the frequency must be within 1% of the applicable SYSCLK_FREQ or ASYNC_CLK_FREQ setting.


Table 3-18. Digital Audio Interface Timing—TDM Mode

The following timing information is valid across the full range of recommended operating conditions, unless otherwise noted.

Par	Min	Тур	Max	Units	
Master Mode— C_{LOAD} (AIF $nTXDAT$) = 15 to	AIFnTXDAT enable time from BCLK falling edge	0	_	_	ns
25 pF. BCLK slew (10%–90%) = 3.7ns to 5.6 ns.	AIFnTXDAT disable time from BCLK falling edge	_	_	6	ns
	AIFnTXDAT enable time from BCLK falling edge	2	_	_	ns
	AIF <i>n</i> TXDAT disable time from BCLK falling edge	_	_	12.2	ns
	AIF <i>n</i> TXDAT enable time from BCLK falling edge	2	_	_	ns
BCLK slew (10%–90%) = 6 ns	AIFnTXDAT disable time from BCLK falling edge		_	14.2	ns

Note: If TDM operation is used on the AIF*n*TXDAT pins, it is important that two devices do not attempt to drive the AIF*n*TXDAT pin simultaneously. To support this requirement, the AIF*n*TXDAT pins can be configured to be tristated when not outputting data.

 Digital audio interface timing— TDM Mode. The timing of the AIF nTXDAT tristating at the start and end of the data transmission is shown.

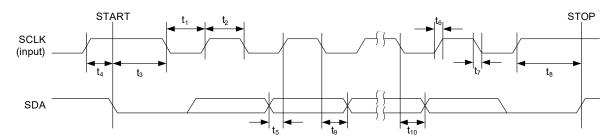


Table 3-19. Control Interface Timing—Two-Wire (I²C) ModeThe following timing information is valid across the full range of recommended operating conditions.

	Symbol	Min	Тур	Max	Units	
SCLK frequency		_	_		3400	kHz
SCLK pulse-width low		t ₁	160	_		ns
SCLK pulse-width high		t ₂	100	_	_	ns
Hold time (start condition)		t ₃	160	_	_	ns
Setup time (start condition)		t ₄	160	_	_	ns
SDA, SCLK rise time (10%–90%)	SCLK frequency > 1.7 MHz		_	_	80	ns
	SCLK frequency > 1 MHz	t ₆	<u> </u>	_	160	ns
	SCLK frequency ≤ 1 MHz	t ₆	_	_	2000	ns
SDA, SCLK fall time (90%–10%)	SCLK frequency > 1.7 MHz		_	_	60	ns
	SCLK frequency > 1 MHz	t ₇	_	_	160	ns
	SCLK frequency ≤ 1 MHz	t ₇	_		200	ns
Setup time (stop condition)		t ₈	160			ns
SDA setup time (data input)		t ₅	40	_	_	ns
SDA hold time (data input)		t ₉	0	_	_	ns
SDA valid time (data/ACK output)	SCLK slew (90%–10%) = 20ns, C _{LOAD} (SDA) = 15 pF	t ₁₀	_	_	40	ns
	SCLK slew (90%–10%) = 60ns, C _{LOAD} (SDA) = 100 pF	t ₁₀	_	_	130	ns
	SCLK slew (90%–10%) = 160ns, C _{LOAD} (SDA) = 400 pF	t ₁₀	—	_	190	ns
	SCLK slew (90%–10%) = 200ns, C _{LOAD} (SDA) = 550 pF	t ₁₀	_		220	ns
Pulse width of spikes that are supp	ressed	t _{ps}	0		25	ns

1. Control interface timing—I²C Mode

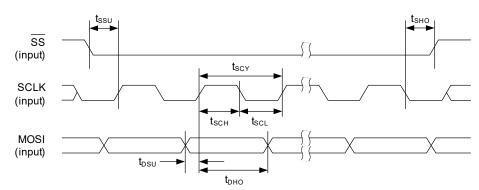
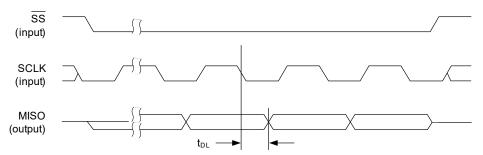


Table 3-20. Control Interface Timing—Four-Wire (SPI) Mode

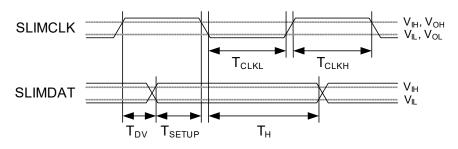

The following timing information is valid across the full range of recommended operating conditions.

Parameter 1, 2	Symbo	Min	Тур	Max	Units
SS falling edge to SCLK rising edge	t _{ssu}	2.6	_		ns
SCLK falling edge to SS rising edge	t _{SHO}	0	_	_	ns
SCLK pulse cycle time SYSCLK disabled (SYSCLK_ENA	$\lambda = 0$) t_{SCY}	38.4	_	_	ns
SYSCLK_ENA = 1, SYSCLK_FREQ =	= 000 t _{SCY}	76.8	_	_	ns
SYSCLK_ENA = 1, SYSCLK_FREQ >	> 000 t _{SCY}	38.4	—	_	ns
SCLK pulse-width low	t _{SCL}	15.3	_	_	ns
SCLK pulse-width high	tscн	15.3	_	_	ns
MOSI to SCLK set-up time	t _{DSU}	1.5	_	_	ns
MOSI to SCLK hold time	t _{DHO}	1.7	_	_	ns
SCLK falling edge to MISO transition SCLK slew $(90\%-10\%) = 5 \text{ ns}, C_{LOAD} \text{ (MISO)} = 2 \text{ ms}$	25 pF t _{DL}	0	_	12.6	ns

1.Control interface timing—SPI Mode (write cycle)

2.Control interface timing—SPI Mode (read cycle)

Table 3-21. SLIMbus Interface Timing


The following timing information is valid across the full range of recommended operating conditions.

		Parameter ¹	Symbol	Minimum	Тур	Maximum	Units
SLIMCLK	SLIMCLK cycle tir		_	35	_	_	ns
input	SLIMCLK pulse width high			12	_	_	ns
	SLIMCLK pulse w	ridth low	T _{CLKH} T _{CLKL}	12	_	_	ns
	SLIMCLK cycle tir		_	40	_	_	ns
output	SLIMCLK pulse w		T _{CLKH}	12	_	_	ns
	SLIMCLK pulse w	ridth low	T _{CLKL}	12	_	_	ns
	SLIMCLK slew	C_{LOAD} = 15 pF, SLIMCLK_DRV_STR = 0		0.09 x V _{DBVDD}	_	0.22 x V _{DBVDD}	V/ns
	rate (20%–80%)	$C_{LOAD} = 70 \text{ pF, SLIMCLK_DRV_STR} = 0$	SR _{CLK}	0.02 x V _{DBVDD}	_	0.05 x V _{DBVDD}	V/ns
		$C_{LOAD} = 70 \text{ pF, SLIMCLK_DRV_STR} = 1$	SR _{CLK}	0.04 x V _{DBVDD}	_	0.11 x V _{DBVDD}	V/ns
SLIMDAT	SLIMDAT setup ti	me to SLIMCLK falling edge	T _{SETUP}	3.5	_	_	ns
input	SLIMDAT hold tim	T _H	2	_	_	ns	
SLIMDAT	SLIMDAT time	SLIMDAT_DRV_STR = 0, DBVDD = 1.71 V	T_DV	_	4.7	8.1	ns
output	for data output	C _{LOAD} = 15 pF, SLIMDAT_DRV_STR = 1, DBVDD = 1.71 V		_	4.3	7.3	ns
	valid (relative to	C _{LOAD} = 30 pF, SLIMDAT_DRV_STR = 0, DBVDD = 1.71 V		_	6.8	11.8	ns
	SLIMCLK rising	C _{LOAD} = 30 pF, SLIMDAT_DRV_STR = 1, DBVDD = 1.71 V	T_DV	_	5.8	10.0	ns
	edge)	$C_{LOAD} = 50 \text{ pF}, SLIMDAT_DRV_STR = 0, DBVDD = 1.71 V$	T_DV	_	9.6	16.6	ns
		C _{LOAD} = 50 pF, SLIMDAT_DRV_STR = 1, DBVDD = 1.71 V		_	7.9	13.7	ns
		$C_{LOAD} = 70 \text{ pF}, \text{SLIMDAT_DRV_STR} = 0, \text{DBVDD} = 1.71 \text{ V}$	T_DV	_	12.4	21.5	ns
		C _{LOAD} = 70 pF, SLIMDAT_DRV_STR = 1, DBVDD = 1.71 V		_	10.0	17.4	ns
	SLIMDAT slew	C_{LOAD} = 15 pF, SLIMDAT_DRV_STR = 0	SR _{DATA}	_	_	0.64 x V _{DBVDD}	V/ns
	rate (20%–80%)	$C_{LOAD} = 30 \text{ pF, SLIMDAT_DRV_STR} = 0$	SR _{DATA}	_	_	0.35 x V _{DBVDD}	V/ns
		$C_{LOAD} = 30pF$, $SLIMDAT_DRV_STR = 1$	SR _{DATA}	_	_	0.46 x V _{DBVDD}	V/ns
		$C_{LOAD} = 70pF, SLIMDAT_DRV_STR = 0$	SR _{DATA}	_	_	0.16 x V _{DBVDD}	V/ns
		C _{LOAD} = 70pF, SLIMCLK_DRV_STR = 1	SR _{DATA}	_	_	0.21 x V _{DBVDD}	V/ns
Other	Driver disable time		T_DD	_	_	6	ns
parameters	Bus holder output	impedance $0.1 \text{ x V}_{DBVDD} < V < 0.9 \text{ x V}_{DBVDD}$	R _{DATAS}	18	—	50	kΩ
Notes:							

Notes

- The signal timing information describes the timing requirements of the SLIMbus interface as a whole, not just the CS42L92 device.
- T_{DV} is the propagation delay from the rising SLIMCLK edge (at CS42L92 input) to the SLIMDAT output being achieved at the input to all
 devices across the bus.
- T_{SETUP} is the set-up time for SLIMDAT input (at CS42L92), relative to the falling SLIMCLK edge (at CS42L92).
- T_H is the hold time for SLIMDAT input (at CS42L92) relative to the falling SLIMCLK edge (at CS42L92).
- · For more details of the interface timing, refer to the MIPI Alliance Specification for Serial Low-Power Inter-Chip Media Bus (SLIMbus)

1.SLIMbus interface timing.

 $V_{\text{IL}},\,V_{\text{IH}}$ are the 35%/65% levels of the respective inputs.

 $V_{\text{OL}},\,V_{\text{OH}}$ are the 20%/80% levels of the respective outputs

The SLIMDAT output delay (T_{DV}) is with respect to the input pads of all receiving devices

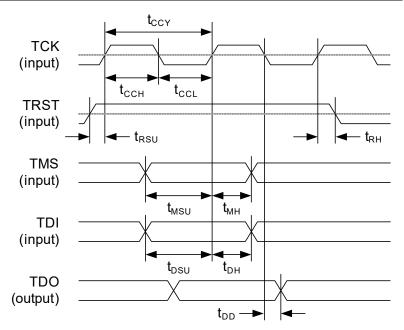


Table 3-22. JTAG Interface Timing

Test conditions (unless specified otherwise): $C_{LOAD} = 25 \text{ pF}$ (output pins); TCK slew (20%–80%) = 5 ns; with the exception of the conditions noted, the following electrical characteristics are valid across the full range of recommended operating conditions.

Parameter ¹	Symbol	Minimum	Typical	Maximum	Units
TCK cycle time	T _{CCY}	50	_	_	ns
TCK pulse width high	T _{CCH}	20	_	_	ns
TCK pulse width low	T _{CCL}	20	_	_	ns
TMS setup time to TCK rising edge	T _{MSU}	1	_	_	ns
TMS hold time from TCK rising edge	T _{MH}	2	_	_	ns
TDI setup time to TCK rising edge	T _{DSU}	1	_	_	ns
TDI hold time from TCK rising edge	T_DH	2	_	_	ns
TDO propagation delay from TCK falling edge	T _{DD}	0	_	17	ns
TRST setup time to TCK rising edge	T _{RSU}	3	_	_	ns
TRST hold time from TCK rising edge	T _{RH}	3	_	_	ns
TRST pulse-width low		20	_	_	ns

1.JTAG Interface timing

Table 3-23. Typical Power Consumption

Test conditions (unless specified otherwise): DBVDD = CPVDD1 = AVDD = 1.8 V, DCVDD = FLLVDD = CPVDD2 = 1.2 V; MICVDD = Off (CP2 and LDO2 disabled); T_A = +25°C; Fs = 48 kHz; 24-bit audio data, I²S Slave Mode; SYSCLK = 24.576 MHz (direct MCLK1 input).

	Operating Configuration		Typical I _{1.2V} (mA)	Typical I _{1.8V} (mA)	P _{TOT} (mW)
Headphone playback	AIF1 to DAC to HPOUT1 (stereo), 32-Ω load.	Quiescent 1-kHz sine wave, $P_0 = 10 \text{ mW}$		0.8 1.9	3.6 48.78
Earpiece playback	AIF1 to DAC to HPOUT1 (mono), 32-Ω load (BTL).	Quiescent 1-kHz sine wave, $P_0 = 30 \text{ mW}$		0.85 1.7	2.97 77.1
Stereo line record	Analog line to ADC to AIF1, MICVDD = 1.8V (CP2 and LDO2 bypass enabled).	1-kHz sine wave, -1 dBFS output	1.1	2.2	5.28
Sleep Mode	Accessory detect enabled (JD1_EN	IA = 1)	0.000	0.010	0.018

Table 3-24. Typical Signal Latency

Test conditions (unless specified otherwise): DBVDD = CPVDD1 = AVDD = 1.8 V, DCVDD = FLLVDD = CPVDD2 = 1.2 V; MICVDD = Off (CP2 and LDO2 disabled); T_A = +25°C; Fs = 48 kHz; 24-bit audio data, I²S Slave Mode; SYSCLK = 24.576 MHz (direct MCLK1 input).

Operating Configuration	on	Latency (µs)
AIF to DAC path—digital input (AIFn) to analog output (HPOUTn)	192 kHz input, 192 kHz output, Synchronous	237
	96 kHz input, 96 kHz output, Synchronous	269
	48 kHz input, 48 kHz output, Synchronous	358
	44.1 kHz input, 44.1 kHz output, Synchronous	374
	16 kHz input, 16 kHz output, Synchronous	629
	8 kHz input, 8 kHz output, Synchronous	1334
	8 kHz input, 48 kHz output, Isochronous 1	1939
	16 kHz input, 48 kHz output, Isochronous 1	993
	8 kHz input, 44.1 kHz output, Asynchronous 2	1880
	16 kHz input, 44.1 kHz output, Asynchronous ²	1084
ADC to AIF path—analog input (INn) to digital output (AIFn) ³	192 kHz input, 192 kHz output, Synchronous	50
	96 kHz input, 96 kHz output, Synchronous	96
	48 kHz input, 48 kHz output, Synchronous	193
	44.1 kHz input, 44.1 kHz output, Synchronous	212
	16 kHz input, 16 kHz output, Synchronous	558
	8 kHz input, 8 kHz output, Synchronous	1170
	8 kHz input, 48 kHz output, Isochronous 1	1696
	16 kHz input, 48 kHz output, Isochronous 1	861
	44.1 kHz input, 8 kHz output, Asynchronous 2	1364
	44.1 kHz input, 16 kHz output, Asynchronous ²	841

^{1.} Signal is routed via the ISRC function in the isochronous cases only.

^{2.} Signal is routed via the ASRC function in the asynchronous cases only.

^{3.} Digital core high-pass filter is included in the signal path.

4 Functional Description

The CS42L92 is a highly integrated, low-power audio hub codec for mobile telephony and portable devices. It provides flexible, high-performance audio interfacing for handheld devices in a small and cost-effective package. The digital audio interfaces and hi-fi DACs support 32-bit playback, offering audiophile-quality playback at sample rates up to 384 kHz. Native audio playback is possible, concurrent with voice and ultrasonic input paths. Multiple analog outputs support a wide variety of the headphone/accessory configurations, including balanced stereo headphone loads.

4.1 Overview

The CS42L92 block diagram is shown in Fig. 4-1.

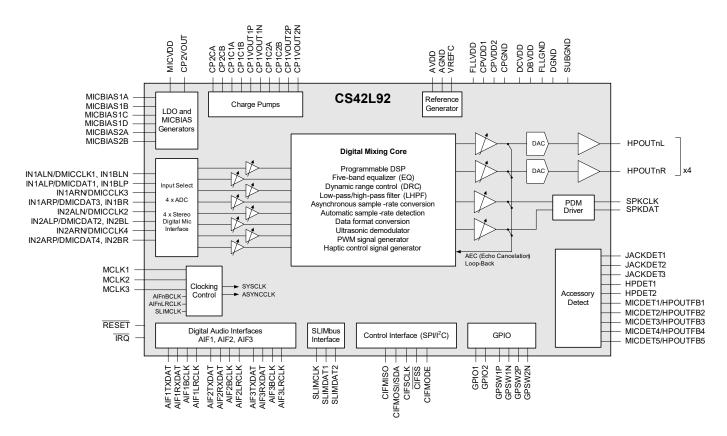


Figure 4-1. CS42L92 Block Diagram

The CS42L92 combines fixed-function signal-processing blocks with a fully-flexible, all-digital audio mixing and routing engine for extensive use-case flexibility. The signal-processing blocks include high-/low-pass filters, EQ, dynamic range control, and sample-rate converters.

The CS42L92 provides multiple digital audio interfaces, including SLIMbus, to provide independent and fully asynchronous connections to different processors (e.g., application processor, baseband processor, and wireless transceiver).

A flexible clocking arrangement supports a wide variety of external clock references, including clocking derived from the digital audio interface. Two frequency-locked loop (FLL) circuits provide additional flexibility for system clocking, including low-power always-on operation. Seamless switching between clock sources is supported, and free-running modes are also available.

Unused circuitry can be disabled under software control to save power; low leakage currents enable extended standby/off time in portable battery-powered applications. The CS42L92 always-on circuitry can be used in conjunction with the applications processor to wake up the device following a headphone jack-detection event.

Versatile GPIO functionality is provided, including support for external accessory/push-button detection inputs. Comprehensive interrupt functions, with status reporting, are also provided. The integrated DSP provides a general-purpose signal processing capability; this is supported by general-purpose timer and event-logger functions.

4.1.1 Hi-Fi Audio Codec

The CS42L92 is a high-performance, low-power audio codec that uses a simple analog architecture. Four ADCs are incorporated, with multiplexers to support up to eight analog inputs. Six DACs are incorporated, with two being switchable between two separate headphone output paths.

The audio codec is controlled directly via register access. The simple analog architecture, combined with the integrated tone generator, enables straightforward device configuration and testing, minimizing debug time and reducing software effort.

The CS42L92 input channels support up to eight analog inputs or up to eight digital inputs, multiplexed into four stereo input signal paths. In differential mode, the analog input path SNR is 104 dB (16-kHz sample rate, i.e., wideband voice mode). The input paths can be configured for low-power operation, ideal for analog or digital microphone input in always-on applications. Ultrasonic signal demodulation functions are provided, supporting a variety of presence-detection applications.

The analog outputs comprise four 33-mW (125 dB SNR) stereo headphone amplifiers with ground-referenced output. The output drivers are designed to support many different system architectures and are compatible with line or headphone loads in single-ended or differential (BTL) configurations. Headphone outputs HPOUT1 and HPOUT2 offer 127 dB SNR and –100 dB THD+N performance with a stereo differential headphone load. Outputs HPOUT3 and HPOUT4 are multiplexed, with the respective DACs and signal paths common to both pairs of output drivers.

Each output path supports independent mixing, equalization, filtering, gain controls. This allows each signal path to be individually tailored for the load characteristics. Selectable hi-fi filters support audiophile playback modes at sample rates up to 384 kHz. All outputs have integrated pop and click suppression features.

The headphone output drivers are ground-referenced, powered from an integrated charge pump, enabling high quality, power efficient headphone playback without any requirement for DC blocking capacitors. Ground loop feedback is incorporated, providing rejection of noise on the ground connections.

The CS42L92 is cost optimized for a wide range of mobile phone applications. External speaker amplifiers can be connected using the stereo PDM outputs; this can ease layout and electromagnetic compatibility by avoiding the need to run high-power speaker outputs over a long distance and across interconnects.

4.1.2 Digital Audio Core

The CS42L92 uses a core architecture based on all-digital signal routing, making digital audio effects available on all signal paths, regardless of whether the source data input is analog or digital. The digital mixing desk allows different audio effects to be applied simultaneously on many independent paths, while supporting a variety of sample rates. Soft mute and unmute control ensures smooth transitions between use cases without interrupting existing audio streams elsewhere.

Highly flexible digital mixing, including mixing between audio interfaces, is possible. The CS42L92 performs multichannel full-duplex asynchronous sample-rate conversion, providing use-case flexibility across a broad range of system architectures. Automatic sample-rate detection is provided, enabling seamless wideband/narrowband voice call handover.

DRC functions are available for optimizing audio signal levels. In playback modes, the DRC can be used to maximize loudness, while limiting the signal level to avoid distortion, clipping, or battery droop, for high-power output drivers such as speaker amplifiers. In record modes, the DRC assists in applications where the signal level is unpredictable.

The five-band parametric EQ functions can be used to compensate for the frequency characteristics of the output transducers. EQ functions can be cascaded to provide additional frequency control. Programmable high-pass and low-pass filters are also available for general filtering applications, such as removal of wind and other low-frequency noise.

4.1.3 Digital Interfaces

Three serial digital audio interfaces (AIFs) each support PCM, TDM, and I²S data formats for compatibility with most industry-standard chipsets. Each AIF supports eight input/output channels. Bidirectional operation at sample rates up to 384 kHz is supported. Data words of up to 32 bits can be routed through AIF1 and AIF3. Data-format conversion (DFC) functions are available to support different interface standards on the input and output signal paths.

Eight digital PDM input channels are available (four stereo interfaces); these are typically used for digital microphones, powered from the integrated MICBIAS power-supply regulators. Two PDM output channels are also available (one stereo interface); these are typically used for external power amplifiers. Embedded mute codes provide a control mechanism for external PDM-input devices.

The auxiliary PDM interface can be used to provide an audio path between an analog microphone connected to the CS42L92 and a digital input to an external audio processor. The auxiliary PDM interface operates in master or slave modes, and is configured on GPIO pins.

The CS42L92 features a SLIMbus interface, compliant with the MIPI® SLIMbus specification, providing eight channels of audio input/output. Mixed audio sample rates are supported on the SLIMbus interface. The SLIMbus interface also supports read/write access to the CS42L92 control registers.

An IEC-60958-3—compatible S/PDIF transmitter is incorporated, enabling stereo S/PDIF output on a GPIO pin. Standard S/PDIF sample rates of 32–192 kHz are supported.

Control register access is supported by a configurable SPI/I²C control interface. The interface supports SPI slave operation up to 26 MHz or I²C slave operation up to 3.4 MHz. Full access to the register map is also provided via the SLIMbus port.

4.1.4 Other Features

The CS42L92 incorporates a tone generator that can be used for beep functions through any of the audio signal paths. The tone generator provides two 1-kHz outputs, with configurable phase relationship, offering flexibility to create differential signals or test scenarios.

A white-noise generator is provided that can be routed within the digital core. The noise generator can provide comfort noise in cases where silence (digital mute) is not desirable.

Two pulse-width modulation (PWM) signal generators are incorporated. The duty cycle of each PWM signal can be modulated by an audio source or can be set to a fixed value using a control register setting. The PWM signal generators can be output directly on a GPIO pin.

The CS42L92 supports up to 16 GPIO pins, offering a range of input/output functions for interfacing, for detection of external hardware, and for providing logic outputs to other devices. The CS42L92 provides two dedicated GPIO pins; a further 14 GPIOs are multiplexed with other functions. Comprehensive interrupt functionality is also provided for monitoring internal and external event conditions.

The integrated DSP provides a general-purpose signal processing capability; this is supported by general-purpose timer and event-logger functions.

A signal generator for controlling haptics devices is included, compatible with both eccentric rotating mass (ERM) and linear resonant actuator (LRA) haptics devices. The haptics signal generator is highly configurable and can execute programmable drive event profiles, including reverse drive control. An external vibe actuator can be driven using the PDM digital output path.

A smart accessory interface is included, supporting a wide variety of system configurations. Jack detection, accessory sensing, and impedance measurement is provided, for external headset and push-button detection. Dual headphone connections (e.g., 3.5 mm and USB-C) can be detected simultaneously. Accessory detection can be used as a wake-up trigger from low-power standby. Microphone activity detection with interrupt is also available.

System clocking can be derived from the MCLK1, MCLK2, or MCLK3 input pins. Alternatively, the SLIMbus interface, or the audio interfaces (configured in Slave Mode), can be used to provide a clock reference. The CS42L92 also provides two integrated FLL circuits for clock frequency conversion and stability. The flexible clocking architecture supports low-power always-on operation, with reference frequencies down to 32 kHz. Seamless switching between clock sources is supported; free-running FLL modes are also available.

The CS42L92 is powered from 1.8- and 1.2-V external supplies. Integrated charge-pump and LDO-regulator circuits are used to generate supply rails for internal functions and to support powering or biasing of external microphones. Power consumption is optimized across a wide variety of voice and multimedia use cases.

4.2 Input Signal Path

The CS42L92 provides flexible input channels, supporting up to eight analog inputs or up to eight digital inputs. Selectable combinations of analog (mic or line) and digital inputs are multiplexed into four stereo input signal paths. Input paths IN1 and IN2 support analog and digital inputs; input paths IN3 and IN4 support digital inputs only.

The analog input paths support single-ended and differential configurations, programmable gain control, and are digitized using a high performance sigma-delta ADC. The analog input paths can be configured for low-power operation, ideal for always-on applications. Analog inputs can be configured as input to the auxiliary PDM interface, providing an audio path between an analog microphone connected to the CS42L92 and a digital input to an external audio processor.

The digital input paths interface directly with external digital microphones; a separate microphone interface clock is provided for four separate stereo pairs of digital microphones.

Two microphone bias (MICBIAS) generators provide a low-noise reference for biasing electret condenser microphones (ECMs) or for use as a low-noise supply for MEMS microphones and digital microphones. Switchable outputs from the MICBIAS generators allow six separate reference/supply outputs to be independently controlled.

Digital volume control is available on all inputs (analog and digital), with programmable ramp control for smooth, glitch-free operation. A configurable signal-detect function is available on each input signal path. Ultrasonic signal demodulation functions are provided on the input signal paths, supporting a variety of presence-detection applications.

The input signal paths and control fields are shown in Fig. 4-2.

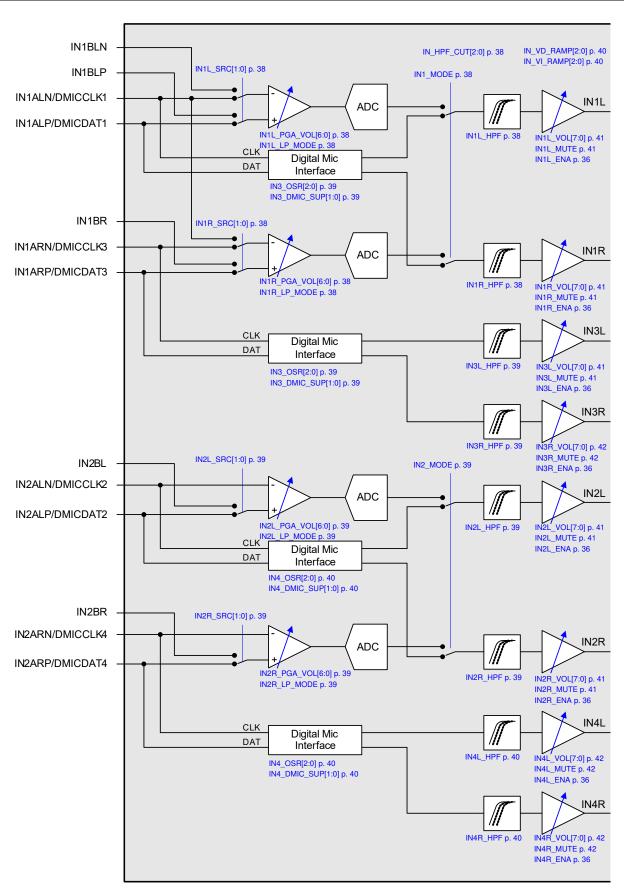
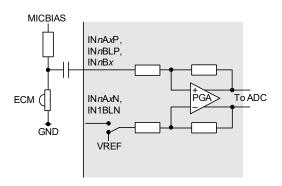


Figure 4-2. Input Signal Paths

4.2.1 Analog Microphone Input

Up to eight analog microphones can be connected to the CS42L92, either in single-ended or differential configuration. The input configuration and pin selection is controlled using INnx SRC, as described in Section 4.2.6.

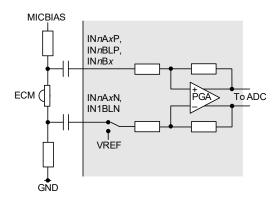

The CS42L92 includes external accessory-detection circuits that can report the presence of a microphone and the status of a hook switch or other push buttons. When using this function, it is recommended to use the IN1ALx, IN1BLx, or IN1BR analog microphone input paths to ensure best immunity to electrical transients arising from the push buttons.

For single-ended input, the microphone signal is connected to the noninverting input of the PGAs. The inverting inputs of the PGAs are connected to an internal reference in this configuration.

For differential input, the noninverted microphone signal is connected to the noninverting input of the PGAs and the inverted (or noisy ground) signal is connected to the inverting input pins.

The gain of the input PGAs is controlled via register settings, as defined in Section 4.2.6. Note that the input impedance of the analog input paths is fixed across all PGA gain settings.

The ECM analog input configurations are shown in Fig. 4-3 and Fig. 4-4. The integrated MICBIAS generators provide a low noise reference for biasing the ECMs.



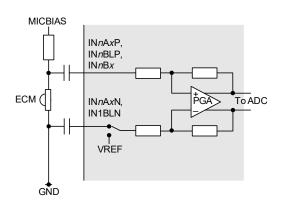

Figure 4-3. Single-Ended ECM Input

Figure 4-4. Differential ECM Input

Pseudodifferential connection is also possible—this is similar to the configuration shown in Fig. 4-4, but the GND connection is directly to the microphone (and IN*nx*N capacitor), instead of via a resistor. The typical connections for pseudodifferential input are shown in Fig. 4-5.

Note that pseudodifferential input is the recommended configuration if the accessory-detection functions are used on this input path. The INnx SRC field settings are the same for pseudodifferential connection as for differential.

The IN1ALN pin can be used as the inverting input connection for the IN1L and IN1R paths concurrently. This allows two microphones to be supported, in pseudodifferential configuration, while minimizing the number of pin connections required—see Fig. 4-6.

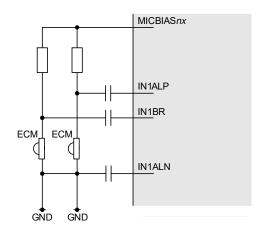


Figure 4-5. Pseudodifferential ECM Input

Figure 4-6. Pseudodifferential IN1L/IN1R Input

Analog MEMS microphones can be connected to the CS42L92 in a similar manner to the ECM configurations. Typical configurations are shown in Fig. 4-7 and Fig. 4-8. In this configuration, the integrated MICBIAS generators provide a low-noise power supply for the microphones.

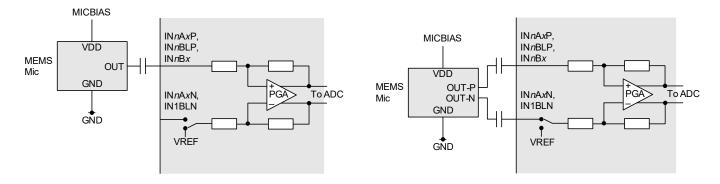


Figure 4-7. Single-Ended MEMS Input

Figure 4-8. Differential MEMS Input

Note: The MICVDD pin can also be used (instead of MICBIAS) as a reference or power supply for external microphones. The MICBIAS outputs are recommended, because they offer better noise performance and independent enable/ disable control.

4.2.2 Analog Line Input

Line inputs can be connected to the CS42L92 in a similar manner to the mic inputs. Single-ended and differential configurations are supported on each analog input path, using the INnx_SRC bits as described in Section 4.2.6.

The analog line input configurations are shown in Fig. 4-9 and Fig. 4-10. Note that the microphone bias (MICBIAS) is not used for line input connections.

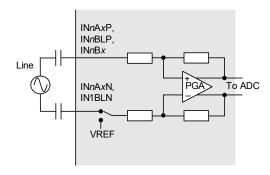


Figure 4-9. Single-Ended Line Input

Figure 4-10. Differential Line Input

4.2.3 DMIC Input

As many as eight digital microphones can be connected to the CS42L92. DMIC operation on input paths IN1–IN4 is selected using IN1_MODE and IN2_MODE, as described in Section 4.2.6.

In DMIC mode, two channels of audio data are multiplexed on the associated DMICDAT*n* pin. Each stereo DMIC interface is clocked using the respective DMICCLK*n* output.

If DMIC input is enabled, the CS42L92 outputs the DMIC clock on the applicable DMICCLK*n* pins. The DMICCLK*n* frequency is controlled by the respective IN*n*_OSR field, as described in Table 4-1 and Table 4-3.

Note that, if the 384- or 768-kHz DMICCLK*n* frequency is selected, the maximum valid sample rate for the respective paths is restricted as described in Table 4-1. If the input sample rates are set globally using IN_RATE (i.e., IN_RATE_ MODE = 0), all input paths are affected similarly.

Note that SYSCLK must be present and enabled when using the DMIC inputs; see Section 4.16 for details of SYSCLK and the associated registers.

The DMIC clock frequencies in Table 4-1 assume that the SYSCLK frequency is a multiple of 6.144 MHz (SYSCLK_FRAC = 0). If the SYSCLK frequency is a multiple of 5.6448 MHz (SYSCLK_FRAC = 1), the DMIC clock frequencies are scaled accordingly.

Condition	DMIC Clock Frequency	Valid Sample Rates	Signal Passband
IN <i>n</i> _OSR = 010	384 kHz	Up to 48 kHz	Up to 4 kHz
INn_OSR = 011	768 kHz	Up to 96 kHz	Up to 8 kHz
IN <i>n</i> _OSR = 100	1.536 MHz	Up to 192 kHz	Up to 20 kHz
INn_OSR = 101	3.072 MHz	Up to 192 kHz	Up to 20 kHz
INn_OSR = 110	6.144 MHz	Up to 192 kHz	Up to 96 kHz

Table 4-1. DMICCLK Frequency

The voltage reference for the DMIC interfaces is selectable, using INn_DMIC_SUP ; each interface may be referenced to MICVDD, MICBIAS1, or MICBIAS2. The voltage reference for each digital input path should be set equal to the applicable power supply of the respective microphones.

A pair of digital microphones is connected as shown in Fig. 4-11. The microphones must be configured to ensure that the left mic transmits a data bit when DMICCLK is high and the right mic transmits a data bit when DMICCLK is low. The CS42L92 samples the DMIC data at the end of each DMICCLK phase. Each microphone must tristate its data output when the other microphone is transmitting.

Note that the CS42L92 provides integrated pull-down resistors on the DMICDAT*n* pins. This provides a flexible capability for interfacing with other devices.

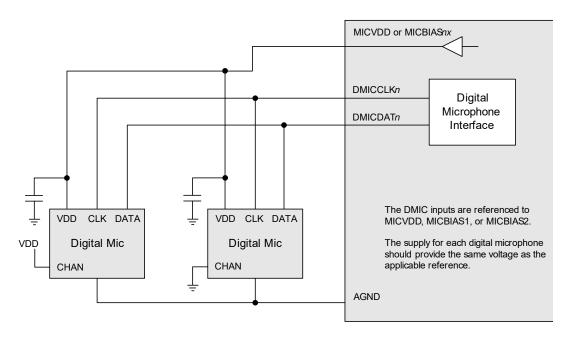


Figure 4-11. DMIC Input

Two DMIC channels are interleaved on DMICDAT*n*. The DMIC interface timing is shown in Fig. 4-12. Each microphone must tristate its data output when the other microphone is transmitting.

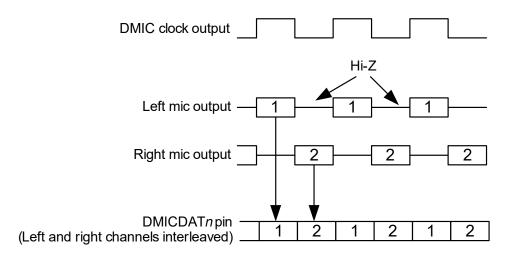


Figure 4-12. DMIC Interface Timing

4.2.4 Input Signal Path Enable

The input signal paths are enabled using the bits described in Table 4-2. The respective bits must be enabled for analog or digital input on the respective input paths.

The input signal paths are muted by default. It is recommended that deselecting the mute should be the final step of the path enable control sequence. Similarly, the mute should be selected as the first step of the path-disable control sequence. The input signal path mute functions are controlled using the bits described in Table 4-4.

The MICVDD power domain must be enabled when using the analog input signal paths. This power domain is provided using an internal charge pump (CP2) and LDO regulator (LDO2). See Section 4.19 for details of these circuits.

The system clock, SYSCLK, must be configured and enabled before any audio path is enabled. The ASYNCCLK and 32-kHz clock may also be required, depending on the path configuration. See Section 4.16 for details of the system clocks.

The CS42L92 performs automatic checks to confirm that the SYSCLK frequency is high enough to support the input signal paths and associated ADCs. If the frequency is too low, an attempt to enable an input signal path fails. Note that active signal paths are not affected under such circumstances.

The status bits in Register R769 indicate the status of each input signal path. If an underclocked error condition occurs, these bits indicate which input signal paths have been enabled.

Table 4-2. Input Signal Path Enable

Register Address	Bit	Label	Default	Description
R768 (0x0300)	7	IN4L_ENA	0	Input Path 4 (left) enable
Input_Enables				0 = Disabled
				1 = Enabled
	6	IN4R_ENA	0	Input Path 4 (right) enable
				0 = Disabled
				1 = Enabled
	5	IN3L_ENA	0	Input Path 3 (left) enable
				0 = Disabled
				1 = Enabled
	4	IN3R_ENA	0	Input Path 3 (right) enable
				0 = Disabled
				1 = Enabled
	3	IN2L_ENA	0	Input Path 2 (left) enable
				0 = Disabled
				1 = Enabled
	2	IN2R_ENA	0	Input Path 2 (right) enable
				0 = Disabled
				1 = Enabled
	1	IN1L_ENA	0	Input Path 1 (left) enable
				0 = Disabled
				1 = Enabled
	0	IN1R_ENA	0	Input Path 1 (right) enable
				0 = Disabled
				1 = Enabled
R769 (0x0301)	7	IN4L_ENA_STS	0	Input Path 4 (left) enable status
Input_Enables_Status				0 = Disabled
				1 = Enabled
	6	IN4R_ENA_STS	0	Input Path 4 (right) enable status
				0 = Disabled
				1 = Enabled
	5	IN3L_ENA_STS	0	Input Path 3 (left) enable status
				0 = Disabled
				1 = Enabled
	4	IN3R_ENA_STS	0	Input Path 3 (right) enable status
				0 = Disabled
				1 = Enabled
	3	IN2L_ENA_STS	0	Input Path 2 (left) enable status
				0 = Disabled
				1 = Enabled
	2	IN2R_ENA_STS	0	Input Path 2 (right) enable status
				0 = Disabled
				1 = Enabled
	1	IN1L_ENA_STS	0	Input Path 1 (left) enable status
				0 = Disabled
				1 = Enabled
	0	IN1R_ENA_STS	0	Input Path 1 (right) enable status
				0 = Disabled
				1 = Enabled

4.2.5 Input Signal Path Sample-Rate Control

The input signal paths may be selected as input to the digital mixers or signal-processing functions within the CS42L92 digital core. The sample rate for the input signal paths can be set globally, or can be configured independently for each input channel.

The IN_RATE_MODE bit (defined in Table 4-3) controls whether the input sample rates are set globally using IN_RATE, or independently for each input channel using the IN*nx*_RATE fields (where *n* is 1–4 and *x* is L or R for the left/right channels respectively). The IN_RATE and IN*nx*_RATE fields are defined in Table 4-26.

Note that sample-rate conversion is required when routing the input signal paths to any signal chain that is asynchronous or configured for a different sample rate.

4.2.6 Input Signal Path Configuration

The CS42L92 supports up to eight analog inputs or up to eight digital inputs. Selectable combinations of analog (mic or line) and digital inputs are multiplexed into four stereo input signal paths.

Input paths IN1 and IN2 can be configured for single-ended, differential, or DMIC operation. The analog input configuration and pin selection is controlled using the IN*n*x SRC bits; digital input mode is selected by setting IN*n* MODE.

Input paths IN3 and IN4 support digital inputs only. Note that the external pin connections are shared with the IN1R and IN2R analog input paths—the following restrictions apply:

- If IN3L or IN3R input paths are enabled, IN1R analog input is restricted to differential (IN1BR–IN1ALN) or single-ended (IN1BR) configurations only.
- If IN4L or IN4R input paths are enabled, IN2R analog input is restricted to single-ended (IN2BR) configuration only.

A configurable high-pass filter (HPF) is provided on the left and right channels of each input path. The applicable cut-off frequency is selected using IN_HPF_CUT. The filter can be enabled on each path independently using the IN*nx*_HPF bits.

The analog input signal paths (single-ended or differential) each incorporate a PGA to provide gain in the range 0 dB to +31 dB in 1-dB steps. Note that these PGAs do not provide pop suppression functions; it is recommended that the gain should not be adjusted while the respective signal path is enabled.

The analog input PGA gain is controlled using IN*n*L_PGA_VOL and IN*n*R_PGA_VOL. Note that separate volume control is provided for the left and right channels of each stereo pair.

If DMIC input is selected, the respective DMICCLKn frequency is controlled by the respective INn OSR field.

If a signal path is configured for DMIC input, the voltage reference for the associated input/output pins is selectable using the IN*n*_DMIC_SUP fields—each interface may be referenced to MICVDD, MICBIAS1, or MICBIAS2. The voltage reference for each digital input path should be set equal to the applicable power supply of the respective microphones.

The CS42L92 input paths can be configured for power-saving operation, ideal for always-on applications. The low-power configurations allow the power consumption to be optimized with respect to the required audio performance characteristics.

- If a signal path is configured for analog input, low-power operation can be selected by setting the respective INnx_LP_MODE bit. Mid-power operation can be configured by setting INn_OSR = 100 for the respective signal paths. (Note that the INnx_LP_MODE bit should be cleared in the mid-power configuration.) Note that the maximum input-signal level is reduced by 6 dB if mid-power operation is selected—see Table 3-4.
- If a signal path is configured for digital input, the respective DMICCLKn frequency can be configured using the INn_OSR bits. Reducing the DMICCLKn frequency reduces power consumption at the expense of audio performance. The INn_OSR field also supports high performance DMIC mode, when 6.144 MHz DMICCLK is selected.
 If 384- or 768-kHz DMICCLKn frequency is selected, the maximum sample rate for the respective paths is restricted as described in Table 4-1. If the input sample rates are set globally using IN_RATE (i.e., IN_RATE_MODE = 0), all input paths are affected similarly.

The MICVDD voltage is generated by an internal charge pump and LDO regulator. The MICBIAS *n* outputs are derived from MICVDD; see Section 4.19.

The input signal paths are configured using the fields described in Table 4-3.

Table 4-3. Input Signal Path Configuration

Register Address	Bit	Label	Default	Description
R776 (0x0308)	10	IN_RATE_	1	Input Path Sample Rate Configuration
Input_Rate		MODE		0 = Global control (all input paths configured using IN_RATE)
				1 = Individual channel control (using the respective INnx_RATE fields)
R780 (0x030C)	2:0	IN_HPF_	010	Input Path HPF Select. Controls the cut-off frequency of the input path HPF circuits.
HPF_Control		CUT[2:0]		000 = 2.5 Hz 010 = 10 Hz 100 = 40 Hz
_				001 = 5 Hz 011 = 20 Hz All other codes are reserved
R784 (0x0310)	15	IN1L_HPF	0	Input Path 1 (Left) HPF Enable
IN1L_Control				0 = Disabled
				1 = Enabled
	12:11	IN1_DMIC_	00	Input Path 1 DMIC Reference Select (sets the DMICDAT1 and DMICCLK1 logic levels)
		SUP[1:0]		00 = MICVDD 10 = MICBIAS2
				01 = MICBIAS1 11 = Reserved
	10	IN1_MODE	0	Input Path 1 Mode
				0 = Analog input
				1 = Digital input
	7:1	IN1L_PGA_	0x40	Input Path 1 (Left) PGA Volume (applicable to analog input only)
		VOL[6:0]		0x00 to 0x3F = Reserved $0x42 = 2 dB$ $0x60 to 0x7F = Reserved$
				0x40 = 0 dB (1-dB steps)
				0x41 = 1 dB
R785 (0x0311)	14:13		00	Input Path 1 (Left) Source
ADC_Digital_		SRC[1:0]		00 = Differential (IN1ALP-IN1ALN) 10 = Differential (IN1BLP-IN1BLN)
Volume_1L				01 = Single-ended (IN1ALP) 11 = Single-ended (IN1BLP)
	11	IN1L_LP_	0	Input Path 1 (Left) Low-Power Mode (applicable to analog input only)
		MODE		0 = High Performance Mode
				1 = Low Power Mode
R786 (0x0312)	10:8		101	Input Path 1 Oversample Rate Control
DMIC1L_Control		OSR[2:0]		If analog input is selected, this field is used to select Mid-Power Mode.
				100 = Mid Power Mode All other codes are reserved
				101 = Normal
				If digital input is selected, this field controls the DMICCLK1 frequency.
				010 = 384 kHz 101 = 3.072 MHz
				011 = 768 kHz
				100 = 1.536 MHz All other codes are reserved
R788 (0x0314)	15	IN1R_HPF	0	Input Path 1 (Right) HPF Enable
IN1R_Control				0 = Disabled
				1 = Enabled
	7:1	IN1R_PGA_	0x40	Input Path 1 (Right) PGA Volume (applicable to analog input only)
		VOL[6:0]		0x00 to 0x3F = Reserved $0x42 = 2 dB$ $0x60 to 0x7F = Reserved$
				0x40 = 0 dB (1-dB steps)
				0x41 = 1 dB
R789 (0x0315)	14:13	IN1R_	00	Input Path 1 (Right) Source
ADC_Digital_		SRC[1:0]		00 = Differential (IN1ARP-IN1ARN) 10 = Differential (IN1BR-IN1ALN)
Volume_1R				01 = Single-ended (IN1ARP) 11 = Single-ended (IN1BR)
	11	IN1R_LP_	0	Input Path 1 (Right) Low-Power Mode (applicable to analog input only)
		MODE		0 = High Performance Mode
				1 = Low Power Mode

Table 4-3. Input Signal Path Configuration (Cont.)

Register Address	Bit	Label	Default	Description
R792 (0x0318)	15	IN2L_HPF	0	Input Path 2 (Left) HPF Enable
IN2L_Control				0 = Disabled
				1 = Enabled
	12:11	IN2_DMIC_	00	Input Path 2 DMIC Reference Select (sets the DMICDAT2 and DMICCLK2 logic levels)
		SUP[1:0]		00 = MICVDD 10 = MICBIAS2
				01 = MICBIAS1 11 = Reserved
	10	IN2_MODE	0	Input Path 2 Mode
				0 = Analog input
				1 = Digital input
	7:1	IN2L_PGA_	0x40	Input Path 2 (Left) PGA Volume (applicable to analog input only)
		VOL[6:0]		0x00 to 0x3F = Reserved
				0x40 = 0 dB (1-dB steps)
				0x41 = 1 dB
R793 (0x0319)	14:13		00	Input Path 2 (Left) Source
ADC_Digital_		SRC[1:0]		00 = Differential (IN2ALP-IN2ALN) 10 = Differential (IN2BL-IN2ALN)
Volume_2L				01 = Single-ended (IN2ALP) 11 = Single-ended (IN2BL)
	11	IN2L_LP_	0	Input Path 2 (Left) Low-Power Mode (applicable to analog input only)
		MODE		0 = High Performance Mode
				1 = Low Power Mode
R794 (0x031A)	10:8		101	Input Path 2 Oversample Rate Control
DMIC2L_Control		OSR[2:0]		If analog input is selected, this field is used to select Mid-Power Mode.
				100 = Mid Power Mode All other codes are reserved
				101 = Normal
				If digital input is selected, this field controls the DMICCLK2 frequency.
				010 = 384 kHz 101 = 3.072 MHz
				011 = 768 kHz
				100 = 1.536 MHz All other codes are reserved
R796 (0x031C)	15	IN2R_HPF	0	Input Path 2 (Right) HPF Enable
IN2R_Control				0 = Disabled
		INIOD DOA	0.40	1 = Enabled
	7:1	IN2R_PGA_ VOL[6:0]	0x40	Input Path 2 (Right) PGA Volume (applicable to analog input only) 0x00 to 0x3F = Reserved
		VOL[0.0]		
R797 (0x0319)	14.12	IN2R	00	0x41 = 1 dB
ADC_Digital_	14.13	SRC[1:0]	00	10 = Differential (IN2ARP-IN2ARN)
Volume_2R		5.10[0]		01 = Single-ended (IN2ARP) 11 = Single-ended (IN2BR)
	11	IN2R_LP_	0	Input Path 2 (Right) Low-Power Mode (applicable to analog input only)
	''	MODE		0 = High Performance Mode
				1 = Low Power Mode
R800 (0x0320)	15	IN3L_HPF	0	Input Path 3 (Left) HPF Enable
IN3L_Control				0 = Disabled
				1 = Enabled
	12:11	IN3_DMIC_	00	Input Path 3 DMIC Reference Select (sets the DMICDAT3 and DMICCLK3 logic levels)
		SUP[1:0]		00 = MICVDD 10 = MICBIAS2
				01 = MICBIAS1 11 = Reserved
R802 (0x0322)	10:8		101	Input Path 3 Oversample Rate Control - selects the DMICCLK3 frequency.
DMIC3L_Control		OSR[2:0]		010 = 384 kHz 101 = 3.072 MHz
_ -				011 = 768 kHz
				100 = 1.536 MHz All other codes are reserved
R804 (0x0324)	15	IN3R_HPF	0	Input Path 3 (Right) HPF Enable
IN3R_Control				0 = Disabled
				1 = Enabled
			•	

Tahla 4-3	Innut Signal	Path Configuration	(Cont)
1 abie 4-3.	IIIput Signai	ratii Comiguratioi	i (Coiil.)

Register Address	Bit	Label	Default	Description
R808 (0x0328)	15	IN4L_HPF	0	Input Path 4 (Left) HPF Enable
IN4L_Control				0 = Disabled
				1 = Enabled
		IN4_DMIC_	00	Input Path 4 DMIC Reference Select (sets the DMICDAT4 and DMICCLK4 logic levels)
		SUP[1:0]		00 = MICVDD 10 = MICBIAS2
				01 = MICBIAS1 11 = Reserved
R810 (0x032A)	10:8	IN4_	101	Input Path 4 Oversample Rate Control - selects the DMICCLK4 frequency.
DMIC4L_Control		OSR[2:0]		010 = 384 kHz 101 = 3.072 MHz
				011 = 768 kHz
				100 = 1.536 MHz All other codes are reserved
R812 (0x032C)	15	IN4R_HPF	0	Input Path 4 (Right) HPF Enable
IN4R_Control				0 = Disabled
				1 = Enabled

4.2.7 Input Signal Path Digital Volume Control

A digital volume control is provided on each input signal path, providing –64 dB to +31.5 dB gain control in 0.5-dB steps. An independent mute control is also provided for each input signal path.

Whenever the gain or mute setting is changed, the signal path gain is ramped up or down to the new settings at a programmable rate. For increasing gain (or unmute), the rate is controlled by IN_VI_RAMP. For decreasing gain (or mute), the rate is controlled by IN_VD_RAMP.

Note: The IN_VI_RAMP and IN_VD_RAMP fields should not be changed while a volume ramp is in progress.

The IN_VU bits control the loading of the input signal path digital volume and mute controls. When IN_VU is cleared, the digital volume and mute settings are loaded into the respective control register, but do not change the signal path gain. The digital volume and mute settings on all of the input signal paths are updated when a 1 is written to IN_VU. This makes it possible to update the gain of multiple signal paths simultaneously.

Note that, although the digital-volume controls provide 0.5-dB steps, the internal circuits provide signal gain adjustment in 0.125-dB steps. This allows a very high degree of gain control and smooth volume ramping under all operating conditions.

Note: The 0 dBFS level of the IN1–IN4 digital input paths is not equal to the 0 dBFS level of the CS42L92 digital core. The maximum digital input signal level is –6 dBFS (see Table 3-7). Under 0 dB gain conditions, a –6 dBFS input signal corresponds to a 0 dBFS input to the CS42L92 digital core functions.

The digital volume control registers are described in Table 4-4 and Table 4-5.

Table 4-4. Input Signal Path Digital Volume Control

Register Address	Bit	Label	Default		Description	
R777 (0x0309)	6:4	IN_VD_RAMP[2:0]	010	Input Volume Decre	easing Ramp Rate (seconds	s/6 dB).
Input_Volume_				This field should no	t be changed while a volum	e ramp is in progress.
Ramp				000 = 0 ms	011 = 2 ms	110 = 15 ms
				001 = 0.5 ms	100 = 4 ms	111 = 30 ms
				010 = 1 ms	101 = 8 ms	
	2:0	IN_VI_RAMP[2:0]	010	Input Volume Increa	asing Ramp Rate (seconds/	6 dB).
				This field should no	t be changed while a volum	e ramp is in progress.
				000 = 0 ms	011 = 2 ms	110 = 15 ms
				001 = 0.5 ms	100 = 4 ms	111 = 30 ms
				010 = 1 ms	101 = 8 ms	

Table 4-4. Input Signal Path Digital Volume Control (Cont.)

Register Address	Bit	Label	Default	Description
R785 (0x0311)	9	IN_VU	See	Input Signal Paths Volume and Mute Update. Writing 1 to this bit causes the Input
ADC_Digital_			Footnote 1	Signal Paths Volume and Mute settings to be updated simultaneously
Volume_1L	8	IN1L_MUTE	1	Input Path 1 (Left) Digital Mute
				0 = Unmute
				1 = Mute
	7:0	IN1L_VOL[7:0]	0x80	Input Path 1 (Left) Digital Volume (see Table 4-5 for volume register definition).
				-64 dB to +31.5 dB in 0.5-dB steps
				0x00 = -64 dB $0x80 = 0 dB$ $0xC0 to 0xFF = Reserved$
				0x01 = -63.5 dB (0.5-dB steps)
				(0.5-dB steps) 0xBF = +31.5 dB
R789 (0x0315)	9	IN_VU	See	Input Signal Paths Volume and Mute Update
ADC_Digital_			Footnote 1	Writing 1 to this bit causes the Input Signal Paths Volume and Mute settings to be
Volume_1R				updated simultaneously
	8	IN1R_MUTE	1	Input Path 1 (Right) Digital Mute
				0 = Unmute
				1 = Mute
	7:0	IN1R_VOL[7:0]	0x80	Input Path 1 (Right) Digital Volume (see Table 4-5 for volume register definition).
				-64 dB to +31.5 dB in 0.5-dB steps
				0x00 = -64 dB $0x80 = 0 dB$ $0xC0 to 0xFF = Reserved$
				0x01 = -63.5 dB $(0.5 - dB steps)$
				(0.5-dB steps) 0xBF = +31.5 dB
R793 (0x0319) ADC Digital	9	IN_VU	See Footnote 1	Input Signal Paths Volume and Mute Update. Writing 1 to this bit causes the Input Signal Paths Volume and Mute settings to be updated simultaneously
Volume_2L	Volume_2L 8 IN2L_MUTE	IN2L_MUTE	1	Input Path 2 (Left) Digital Mute
			0 = Unmute	
			1 = Mute	
	7:0	IN2L_VOL[7:0]	0x80	Input Path 2 (Left) Digital Volume (see Table 4-5 for volume register definition).
				–64 dB to +31.5 dB in 0.5-dB steps
				0x00 = -64 dB $0x80 = 0 dB$ $0xC0 to 0xFF = Reserved$
				0x01 = -63.5 dB $(0.5-dB steps)$
				(0.5-dB steps) 0xBF = +31.5 dB
R797 (0x031D)	9	IN_VU	See	Input Signal Paths Volume and Mute Update. Writing 1 to this bit causes the Input
ADC_Digital_			Footnote 1	Signal Paths Volume and Mute settings to be updated simultaneously
Volume_2R	8	IN2R_MUTE	1	Input Path 2 (Right) Digital Mute
				0 = Unmute
				1 = Mute
	7:0	IN2R_VOL[7:0]	0x80	Input Path 2 (Right) Digital Volume (see Table 4-5 for volume register definition).
				-64 dB to +31.5 dB in 0.5-dB steps
				0x00 = -64 dB $0x80 = 0 dB$ $0xC0 to 0xFF = Reserved$
				0x01 = -63.5 dB $(0.5-dB steps)$
				(0.5-dB steps) 0xBF = +31.5 dB
R801 (0x0321) ADC_Digital_	9	IN_VU	See Footnote 1	Input Signal Paths Volume and Mute Update. Writing 1 to this bit causes the Input Signal Paths Volume and Mute settings to be updated simultaneously
Volume_3L	8	IN3L_MUTE	1	Input Path 3 (Left) Digital Mute
				0 = Unmute
				1 = Mute
	7:0	IN3L_VOL[7:0]	0x80	Input Path 3 (Left) Digital Volume (see Table 4-5 for volume register definition).
				-64 dB to +31.5 dB in 0.5-dB steps
				0x00 = -64 dB
				0x01 = -63.5 dB $(0.5-dB steps)$
				(0.5-dB steps) 0xBF = +31.5 dB

Table 4-4. Input Signal Path Digital Volume Control (Cont.)

Register Address	Bit	Label	Default		Description	
R805 (0x0325)	9	IN_VU	See			g 1 to this bit causes the Input
ADC_Digital_			Footnote 1	Signal Paths Volume and		ed simultaneously
Volume_3R	8	IN3R_MUTE	1	Input Path 3 (Right) Digita	l Mute	
				0 = Unmute		
				1 = Mute		
	7:0	IN3R_VOL[7:0]	0x80	Input Path 3 (Right) Volum	ne (see Table 4-5 for volui	me register definition).
				-64 dB to +31.5 dB in 0.5-	-dB steps	
				0x00 = -64 dB	0x80 = 0 dB	0xC0 to 0xFF = Reserved
				0x01 = -63.5 dB	(0.5-dB steps)	
				(0.5-dB steps)	0xBF = +31.5 dB	
R809 (0x0329)	9	IN_VU	See	Input Signal Paths Volume	and Mute Update. Writing	g 1 to this bit causes the Input
ADC_Digital_			Footnote 1	Signal Paths Volume and	Mute settings to be updat	ed simultaneously
Volume_4L	8	IN4L_MUTE	1	Input Path 4 (Left) Digital I	Mute	
				0 = Unmute		
				1 = Mute		
	7:0	IN4L_VOL[7:0]	0x80	Input Path 4 (Left) Digital \	Volume (see Table 4-5 for	volume register definition).
				-64 dB to +31.5 dB in 0.5-	-dB steps	
				0x00 = -64 dB	0x80 = 0 dB	0xC0 to 0xFF = Reserved
				0x01 = -63.5 dB	(0.5-dB steps)	
				(0.5-dB steps)	0xBF = +31.5 dB	
R813 (0x032D)	9	IN_VU	See			g 1 to this bit causes the Input
ADC_Digital_			Footnote 1	Signal Paths Volume and	<u> </u>	ed simultaneously
Volume_4R	8	IN4R_MUTE	1	Input Path 4 (Right) Digita	l Mute	
				0 = Unmute		
				1 = Mute		
	7:0	IN4R_VOL[7:0]	0x80	1 (0 / 0	`	or volume register definition).
				-64 dB to +31.5 dB in 0.5-	•	
				0x00 = -64 dB	0x80 = 0 dB	0xC0 to 0xFF = Reserved
				0x01 = -63.5 dB	(0.5-dB steps)	
				(0.5-dB steps)	0xBF = +31.5 dB	

^{1.} Default is not applicable to these write-only bits

Table 4-5 lists the input signal path digital volume settings.

Table 4-5. Input Signal Path Digital Volume Range

Input Volume Register	Volume (dB)						
0x00	-64.0	0x31	-39.5	0x62	-15.0	0x93	9.5
0x01	-63.5	0x32	-39.0	0x63	-14.5	0x94	10.0
0x02	-63.0	0x33	-38.5	0x64	-14.0	0x95	10.5
0x03	-62.5	0x34	-38.0	0x65	-13.5	0x96	11.0
0x04	-62.0	0x35	-37.5	0x66	-13.0	0x97	11.5
0x05	-61.5	0x36	-37.0	0x67	-12.5	0x98	12.0
0x06	-61.0	0x37	-36.5	0x68	-12.0	0x99	12.5
0x07	-60.5	0x38	-36.0	0x69	-11.5	0x9A	13.0
80x0	-60.0	0x39	-35.5	0x6A	-11.0	0x9B	13.5
0x09	-59.5	0x3A	-35.0	0x6B	-10.5	0x9C	14.0
0x0A	-59.0	0x3B	-34.5	0x6C	-10.0	0x9D	14.5
0x0B	-58.5	0x3C	-34.0	0x6D	-9.5	0x9E	15.0
0x0C	-58.0	0x3D	-33.5	0x6E	-9.0	0x9F	15.5
0x0D	-57.5	0x3E	-33.0	0x6F	-8.5	0xA0	16.0
0x0E	-57.0	0x3F	-32.5	0x70	-8.0	0xA1	16.5
0x0F	-56.5	0x40	-32.0	0x71	-7.5	0xA2	17.0
0x10	-56.0	0x41	-31.5	0x72	-7.0	0xA3	17.5
0x11	-55.5	0x42	-31.0	0x73	-6.5	0xA4	18.0

Input Volume Register	Volume (dB)						
0x12	-55.0	0x43	-30.5	0x74	-6.0	0xA5	18.5
0x13	-54.5	0x44	-30.0	0x75	-5.5	0xA6	19.0
0x14	-54.0	0x45	-29.5	0x76	-5.0	0xA7	19.5
0x15	-53.5	0x46	-29.0	0x77	-4.5	0xA8	20.0
0x16	-53.0	0x47	-28.5	0x78	-4.0	0xA9	20.5
0x17	-52.5	0x48	-28.0	0x79	-3.5	0xAA	21.0
0x18	-52.0	0x49	-27.5	0x7A	-3.0	0xAB	21.5
0x19	-51.5	0x4A	-27.0	0x7B	-2.5	0xAC	22.0
0x1A	-51.0	0x4B	-26.5	0x7C	-2.0	0xAD	22.5
0x1B	-50.5	0x4C	-26.0	0x7D	-1.5	0xAE	23.0
0x1C	-50.0	0x4D	-25.5	0x7E	-1.0	0xAF	23.5
0x1D	-49.5	0x4E	-25.0	0x7F	-0.5	0xB0	24.0
0x1E	-49.0	0x4F	-24.5	0x80	0.0	0xB1	24.5
0x1F	-48.5	0x50	-24.0	0x81	0.5	0xB2	25.0
0x20	-48.0	0x51	-23.5	0x82	1.0	0xB3	25.5
0x21	-47.5	0x52	-23.0	0x83	1.5	0xB4	26.0
0x22	-47.0	0x53	-22.5	0x84	2.0	0xB5	26.5
0x23	-46.5	0x54	-22.0	0x85	2.5	0xB6	27.0
0x24	-46.0	0x55	-21.5	0x86	3.0	0xB7	27.5
0x25	-45.5	0x56	-21.0	0x87	3.5	0xB8	28.0
0x26	-45.0	0x57	-20.5	0x88	4.0	0xB9	28.5
0x27	-44.5	0x58	-20.0	0x89	4.5	0xBA	29.0
0x28	-44.0	0x59	-19.5	0x8A	5.0	0xBB	29.5
0x29	-43.5	0x5A	-19.0	0x8B	5.5	0xBC	30.0
0x2A	-43.0	0x5B	-18.5	0x8C	6.0	0xBD	30.5
0x2B	-42.5	0x5C	-18.0	0x8D	6.5	0xBE	31.0
0x2C	-42.0	0x5D	-17.5	0x8E	7.0	0xBF	31.5
0x2D	-41.5	0x5E	-17.0	0x8F	7.5	0xC0-0xFF	Reserved
0x2E	-41.0	0x5F	-16.5	0x90	8.0		·
0x2F	-40.5	0x60	-16.0	0x91	8.5		

Table 4-5. Input Signal Path Digital Volume Range (Cont.)

4.2.8 Input Signal Path Signal-Detect Control

0x61

-40.0

0x30

The CS42L92 provides a digital signal-detect function for the input signal path. This enables system actions to be triggered by signal detection and allows the device to remain in a low-power state until a valid audio signal is detected. A mute function is integrated with the signal-detect circuit, ensuring the respective digital audio path remains at zero until the detection threshold level is reached. Signal detection is also indicated via the interrupt controller.

0x92

9.0

-15.5

The signal-detect function is supported on input paths IN1–IN4 in analog and digital configurations. (For input paths IN1 and IN2, digital input is selected by setting the respective INn MODE bit.) Note that the valid operating conditions for this function vary, depending on the applicable signal-path configuration.

- The signal-detect function is supported on analog input paths for sample rates up to 16 kHz.
- The signal-detect function is supported on digital input paths for sample rates up to 16 kHz (if DMICCLK*n* ≥ 768kHz) and up to 48 kHz (if DMICCLK $n \ge 2.8224$ MHz).

For each input path, the signal-detect function is enabled by setting the respective INnx SIG DET ENA bit. The detection threshold level is set using IN_SIG_DET_THR—this applies to all input paths.

If the signal-detect function is enabled, the respective input channel is muted if the signal level is below the configured threshold. If the input signal exceeds the threshold level, the respective channel is immediately unmuted.

If the input signal falls below the threshold level, the mute is applied. To prevent erroneous behavior, a time delay is applied before muting the input signal—the channel is only muted if the signal level remains below the threshold level for longer than the hold time. The hold time is set using IN_SIG_DET_HOLD.

Note that the signal-level detection is performed in the digital domain, after the ADC, PGA, digital mute and digital volume controls—the respective input channel must be enabled and unmuted when using the signal-detect function.

The signal-detect function is an input to the interrupt control circuit and can be used to trigger an interrupt event; see Section 4.15. Note that the respective interrupt event represents the logic OR of the signal detection on all input channels and does not provide indication of which input channel caused the interrupt. To avoid multiple interrupts, the signal-detect interrupt can be reasserted only after all input channels have fallen below the trigger threshold level.

The input path signal-detection control registers are described in Table 4-6.

Table 4-6. Input Signal Path Signal-Detect Control

Register Address	Bit	Label	Default		Description	
R786 (0x0312)	15	IN1L_SIG_DET_	0	Input Path 1 (Left) S	Signal-Detect Enable	
DMIC1L_Control		ENA		0 = Disabled		
				1 = Enabled		
R790 (0x0316)	15	IN1R_SIG_DET_	0	Input Path 1 (Right)) Signal-Detect Enable	
DMIC1R_Control		ENA		0 = Disabled		
				1 = Enabled		
R794 (0x031A)	15	IN2L_SIG_DET_	0	Input Path 2 (Left) S	Signal-Detect Enable	
DMIC2L_Control		ENA		0 = Disabled		
				1 = Enabled		
R798 (0x031E)	15	IN2R_SIG_DET_	0	Input Path 2 (Right)) Signal-Detect Enable	
DMIC2R_Control		ENA		0 = Disabled		
				1 = Enabled		
R802 (0x0320)	15	IN3L_SIG_DET_	0	. , ,	Signal-Detect Enable	
DMIC3L_Control		ENA		0 = Disabled		
				1 = Enabled		
R806 (0x0326)	15	IN3R_SIG_DET_	0	Input Path 3 (Right)) Signal-Detect Enable	
DMIC3R_Control		ENA		0 = Disabled		
				1 = Enabled		
R810 (0x032A)	15	IN4L_SIG_DET_	0		Signal-Detect Enable	
DMIC4L_Control		ENA		0 = Disabled		
				1 = Enabled		
R814 (0x032E)	15	IN4R_SIG_DET_	0		Signal-Detect Enable	
DMIC4R_Control		ENA		0 = Disabled		
				1 = Enabled		
R832 (0x0340)	8:4	IN_SIG_DET_	0x00	. •	ignal-Detect Threshold	
Signal_Detect_Globals		THR[4:0]		0x00 = -30.1 dB	0x05 = -54.2 dB	0x0A = -72.2 dB
				0x01 = -36.1 dB	0x06 = -56.7 dB	0x0B = -74.7 dB
				0x02 = -42.1 dB	0x07 = -60.2 dB	0x0C = -78.3 dB
				0x03 = -48.2 dB	0x08 = -66.2 dB	0x0D = -80.8 dB
				0x04 = -50.7 dB	0x09 = -68.7 dB	All other codes are reserved
	3:0	IN_SIG_DET_ HOLD[3:0]	0001	Input Signal Path Si is deasserted)	ignal-Detect Hold Time (dela	y before signal detect indication
			1	0000 = Reserved	(4-ms steps)	1100 = 96–100 ms
				0001 = 4-8 ms	1001 = 36–40 ms	1101 = 192–196 ms
				0010 = 8–12 ms	1010 = 40–44 ms	1110 = 384–388 ms
				0011 = 12–16 ms	1011 = 48–52 ms	1111 = 768–772 ms

4.2.9 Ultrasonic Signal Demodulation

The CS42L92 provides ultrasonic signal-processing functions on the input signal paths. Configurable filters and demodulator functions enable ultrasonic signals to be translated down to the audio band and routed through the digital mixer core. Two ultrasonic processing blocks are incorporated, with independent configuration controls for each.

The input source for the ultrasonic blocks is configured using the USn_SRC fields (where n identifies the applicable block US1 or US2). The input signal gain is set using USn_SRC fields (where n identifies the applicable block US1 or US2). The input signal gain is set using USn_SRC fields (where n identifies the applicable block US1 or US2).

The ultrasonic functions can be supported on any of the input signal paths (IN1–IN4). The inputs to the ultrasonic functions are independent of the enable, mute, and digital-volume settings of the respective input signal paths—the ultrasonic functions do not require the selected input signal paths to be enabled, and the mute/digital-volume settings of the input signal paths have no effect on the ultrasonic functions.

The system clock, SYSCLK, must be present and enabled when using the ultrasonic functions. The SYSCLK frequency must be a multiple of 6.144 MHz (SYSCLK_FRAC = 0) in this case. See Section 4.16 for details of SYSCLK and the associated registers.

The ultrasonic demodulator function is enabled by setting USn_ENA . The frequency band and signal gain are selected using USn_ENA FREQ and USn_ENA GAIN respectively.

The output from the ultrasonic demodulator is a frequency-modulated image of the selected input frequency range. The folding frequency that characterizes the frequency modulation is set according to the US*n*_FREQ setting—see Table 4-7. The relationship between input and output frequencies is described in Eq. 4-1.

$$F_{OUT} = |F_{IN} - F_{FOLD}|$$

Equation 4-1. Ultrasonic Demodulator Characteristic

Note that, depending on the input frequency range and the folding frequency, F_{FOLD}, the modulated output in respect of certain input frequencies may overlap others. This effect arises if the folding frequency lies within the input frequency range, with the result that two different input frequencies will each be modulated to the same output frequency. This effect is limited to the outer edges of the input frequency range in all cases. Amplitude response across the input frequency range is flat to within 1.5 dB in all cases.

The demodulated ultrasonic outputs can be selected as input to the digital mixers or signal-processing functions within the digital core by setting the respective x SRCn fields as described in Section 4.3.1.

The sample rate for the demodulated ultrasonic output is configured using US*n*_RATE—see Table 4-26. The selected sample rate must be one of the SYSCLK-related rates, and must be equal to the output rate set by US*n*_FREQ (see Table 4-7). Note that sample-rate conversion is required when routing the ultrasonic signals to any signal chain that is asynchronous or configured for a different sample rate.

The characteristics associated with the USn_FREQ field setting are shown in Table 4-7.

Demodulator Folding Condition Input Frequency Band **Output Sample Rate** Frequency (F_{FOLD}) USn FREQ = 000 24.5-40.5 kHz 32 kHz 40.42 kHz USn FREQ = 00118-22 kHz 18.29 kHz 8 kHz USn FREQ = 010 16-24 kHz 16 kHz 16 kHz USn FREQ = 011 20-28 kHz 20.21 kHz 16 kHz

Table 4-7. Ultrasonic Frequency Control

The ultrasonic demodulation control registers are described in Table 4-8.

Register Address	Bit	Label	Default		Description	
R4224 (0x1080)		US1_GAIN[1:0]	10	Ultrasonic Demodulator	-	
US1 Ctrl 0				00 = Disabled (no signa	I) 10 = 1 dB	
				01 = -5 dB	11 = 7 dB	
	11:8	US1_SRC[3:0]	0x0	Ultrasonic Demodulator	1 Source	
				0x0 = IN1L	0x3 = IN2R	0x6 = IN4L
				0x1 = IN1R	0x4 = IN3L	0x7 = IN4R
				0x2 = IN2L	0x5 = IN3R	All other codes are reserved
	6:4	US1_FREQ[2:0]	011	Ultrasonic Demodulator	1 Frequency	
				000 = 24.5–40.5 kHz	010 = 16–24 kHz	All other codes are
1				001 = 18–22 kHz	011 = 20–28 kHz	reserved
	0	US1_ENA	0	Ultrasonic Demodulator	1 Enable	
				0 = Disabled		
				1 = Enabled		
R4226 (0x1082)	13:12	US2_GAIN[1:0]	10	Ultrasonic Demodulator	2 Gain	
US2_Ctrl_0				00 = Disabled (no signa	I) $10 = 1 dB$	
				01 = -5 dB	11 = 7 dB	
	11:8	US2_SRC[3:0]	0x0	Ultrasonic Demodulator	2 Source	
				0x0 = IN1L	0x3 = IN2R	0x6 = IN4L
				0x1 = IN1R	0x4 = IN3L	0x7 = IN4R
				0x2 = IN2L	0x5 = IN3R	All other codes are reserved
	6:4	US2_FREQ[2:0]	011	Ultrasonic Demodulator	2 Frequency	
				000 = 24.5–40.5 kHz	010 = 16–24 kHz	All other codes are
				001 = 18–22 kHz	011 = 20–28 kHz	reserved
	0	US2_ENA	0	Ultrasonic Demodulator	2 Enable	
1				0 = Disabled		

Table 4-8. Ultrasonic Signal Demodulation Control

4.2.10 Auxiliary PDM Interface

The auxiliary PDM interface supports a one-channel digital output derived from one of the CS42L92 analog input paths. This can be used to provide an audio path between an analog microphone connected to the CS42L92 and a digital input to an external audio processor.

1 = Enabled

The auxiliary PDM interface signal path is shown in Fig. 4-13.

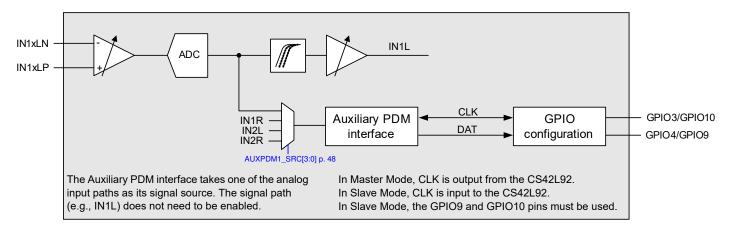


Figure 4-13. Auxiliary PDM Interface

The input source for the auxiliary PDM interface is selected using AUXPDM1_SRC. Note that the selected input path must be configured for analog input—the auxiliary PDM function is not supported for the DMICDAT*n* inputs.

Note: The input to the auxiliary PDM interface is independent of the enable, mute, and digital-volume settings of the respective input signal path—the auxiliary PDM function does not require the selected input signal paths to be enabled, and the mute/digital-volume settings of the input signal paths have no effect on the auxiliary PDM function.

The auxiliary PDM interface is enabled by setting AUXPDM1_ENA. Note that the other auxiliary PDM control fields should be configured before enabling the interface. The external connections (GPIO pins) should also be configured before enabling the interface; the AUXPDM1_ENA bit should be set as the final step of the enable sequence. The AUXPDM1_ENA bit should be cleared before changing the interface configuration.

The output signal can be muted and unmuted using AUXPDM1_MUTE.

The interface operates in master or slave modes, selected using the AUXPDM1_MSTR bit. In Master Mode, the clock (CLK) signal is generated by the CS42L92; in Slave Mode, the CLK signal is an input to the CS42L92.

The CLK frequency is selected using the AUXPDM1_CLK_FREQ field. For each setting of this field, the actual frequency depends on whether SYSCLK is configured for 48- or 44.1-kHz related sample rates. See Section 4.16 for details of the system clocks. Note that the CLK frequency must be configured in master and slave modes, using the AUXPDM1_CLK_FREQ field.

The timing of the data (DAT) output signal can be controlled using AUXPDM1_TXEDGE. This selects whether the DAT output changes on the rising or falling edge of CLK.

The auxiliary PDM interface timing is shown in Fig. 4-14. In Master Mode, the clock and data outputs are driven synchronously by the CS42L92. In Slave Mode, the timing of the output data is controlled by the external clock input.

In Slave Mode, the CS42L92 system clock (SYSCLK) must be synchronized to the CLK input. This is achieved by using one of the FLLs to generate the system clock, with AIF2BCLK configured as the FLL clock reference. (If the auxiliary PDM interface is configured in Slave Mode, the CLK input is supported on the AIF2BCLK/GPIO10 pin.) Further details of the FLLs are provided in Section 4.16.8.

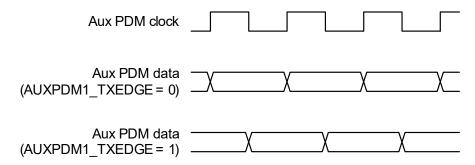


Figure 4-14. Auxiliary PDM Interface Timing

The external connections associated with the auxiliary PDM interface are implemented on GPIO pins, which must be configured for the respective CLK and DAT functions. The auxiliary PDM signals are alternative functions available on specific GPIO pins only. See Section 4.14 to configure the GPIO pins for the auxiliary PDM interface. Note that the output pins (including the CLK function, if Master Mode is selected) must be configured as outputs using the respective GP*n*_DIR fields.

- In Master Mode, the CLK output can be configured on the GPIO3 or GPIO10 pins. The DAT output can be configured on GPIO4 or GPIO9.
- In Slave Mode, the CLK input is supported on GPIO10 only. The DAT output is supported on GPIO9.

The auxiliary PDM interface control registers are described in Table 4-9.

Table 4-9. Auxiliary PDM Interface Control

Register Address	Bit	Label	Default	Description
R4288 (0x10C0)	11:8	AUXPDM1_SRC[3:0]	0x0	Auxiliary PDM 1 Source
AUXPDM1_Ctrl_0				0x0 = IN1L
				0x1 = IN1R All other codes are reserved
				0x2 = IN2L
				Note that the selected input source must be configured for analog input—digital input paths are not supported. The Auxiliary PDM interface must be disabled when updating this field.
	4	AUXPDM1_TXEDGE	0	Auxiliary PDM 1 Timing
				0 = Output data is driven on rising edge of AUXPDM1_CLK
				1 = Output data is driven on falling edge of AUXPDM1_CLK
				The Auxiliary PDM interface must be disabled when updating this field.
	3 AI		1	Auxiliary PDM 1 Master Mode select
				0 = AUXPDM1_CLK Slave Mode (input)
				1 = AUXPDM1_CLK Master mode (output)
				The Auxiliary PDM interface must be disabled when updating this field.
	2	AUXPDM1_MUTE	0	Auxiliary PDM 1 Mute
				0 = Unmute
				1 = Mute
	0	AUXPDM1_ENA	0	Auxiliary PDM 1 Enable
				0 = Disabled
				1 = Enabled
R4281 (0x10C1)	15:14	AUXPDM1_FREQ[1:0]	01	Auxiliary PDM 1 CLK Rate
AUXPDM1_Ctrl_1				00 = 3.072 MHz (2.8824 MHz) 10 = 1.536 MHz (1.4112 MHz)
				01 = 2.048 MHz (1.8816 MHz)
				The frequencies in brackets apply for 44.1 kHz–related sample rates only (i.e., if SYSCLK_FRAC = 1). The Auxiliary PDM interface must be disabled when updating this field.

4.2.11 DMIC Pin Configuration

DMIC operation on input paths IN1–IN4 is selected using INn_MODE, as described in Table 4-3. If DMIC is selected, the respective DMICCLKn and DMICDATn pins are configured as digital outputs and inputs, respectively.

The CS42L92 provides integrated pull-down resistors on each DMICDAT*n* pin. This provides a flexible capability for interfacing with other devices.

The DMICDAT*n* pull-down resistors can be configured independently using the bits described in Table 4-10. Note that, if the DMICDAT*n* DMIC input paths are disabled, the pull-down is disabled on the respective pin.

Table 4-10. DMIC Interface Pull-Down Control

Register Address	Bit	Label	Default	Description
R840 (0x0348)	3	DMICDAT4_PD	0	DMICDAT4 Pull-Down Control
Dig_Mic_Pad_Ctrl				0 = Disabled
				1 = Enabled
	2	DMICDAT3_PD	0	DMICDAT3 Pull-Down Control
				0 = Disabled
				1 = Enabled
	1	DMICDAT2_PD	0	DMICDAT2 Pull-Down Control
				0 = Disabled
				1 = Enabled
	0	DMICDAT1_PD	0	DMICDAT1 Pull-Down Control
				0 = Disabled
				1 = Enabled

4.3 Digital Core

The CS42L92 digital core provides extensive mixing and processing capabilities for multiple signal paths. The configuration is highly flexible and supports virtually every conceivable input/output connection between the available processing blocks.

The digital core provides parametric equalization (EQ) functions, DRC, and low-/high-pass filters (LHPF).

The CS42L92 supports multiple signal paths through the digital core. Stereo full-duplex sample-rate conversion is provided to allow digital audio to be routed between input (ADC) paths, output (DAC) paths, digital audio interfaces (AIF1–AIF3) and SLIMbus paths operating at different sample rates or referenced to asynchronous clock domains. Data-format conversion (DFC) functions are available to support different interface standards on the input and output signal paths.

The integrated DSP provides a general-purpose signal processing capability; this is supported by general-purpose timer and event-logger functions. Note that the DSP configuration data is lost whenever the DCVDD power domain is removed; the DSP configuration data must be downloaded to the CS42L92 each time the device is powered up.

The digital core incorporates a S/PDIF transmitter that can provide a stereo S/PDIF output on a GPIO pin. Standard sample rates of 32–192 kHz can be supported. The CS42L92 incorporates a tone generator that can be used for beep functions through any of the audio signal paths. A white-noise generator is incorporated, to provide comfort noise in cases where silence (digital mute) is not desirable.

A haptic signal generator is provided, for use with external haptic devices (e.g., mechanical vibration actuators). Two pulse-width modulation (PWM) signal generators are also provided; the PWM waveforms can be modulated by an audio source within the digital core and can be output on a GPIO pin.

An overview of the digital-core mixing and signal-processing functions is provided in Fig. 4-15. The control registers associated with the digital-core signal paths are shown in Fig. 4-16 through Fig. 4-33. The full list of digital mixer control registers (R1600–R3576) is provided in Section 6. Generic register field definitions are provided in Table 4-11.

The digital audio core is predominantly a 24-bit architecture, but also provides support for 32-bit signal paths. Audio data samples of up to 32 bits can be received via the AIF1, AIF3, and SLIMbus input channels and routed to the AIF1, AIF3, SLIMbus, S/PDIF, and DAC output paths. The respective output mixers provide full support for 32-bit data words.

Note that all other signal paths and signal-processing blocks within the digital core are limited to 24-bit data length; data samples are truncated to 24-bit length if they are routed through any function that does not support 32-bit data words.

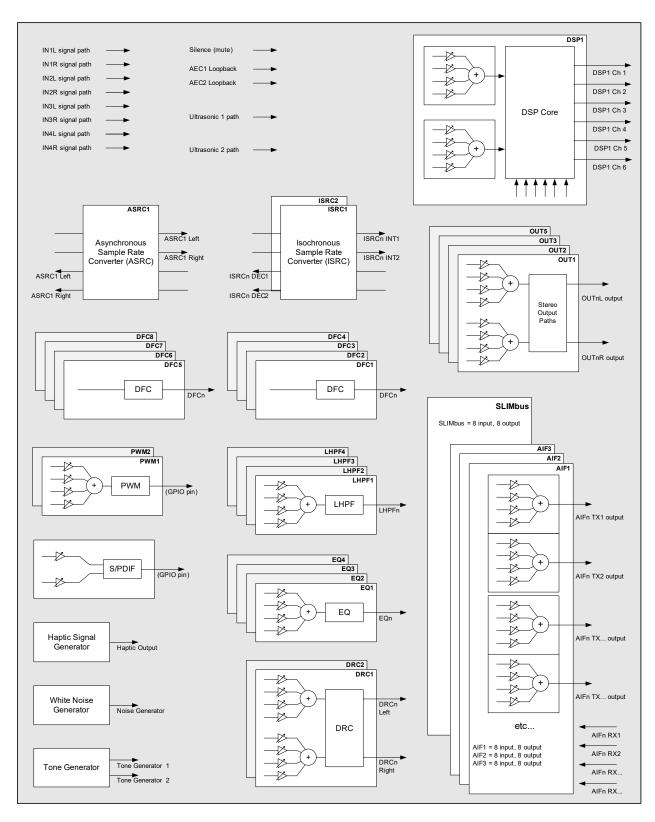


Figure 4-15. Digital Core

4.3.1 Digital-Core Mixers

The CS42L92 provides an extensive digital mixing capability. The digital-core mixing and signal-processing blocks are shown in Fig. 4-15. A four-input digital mixer is associated with many of these functions, as shown. The digital mixer circuit is identical in each instance, providing up to four selectable input sources, with independent volume control on each input.

The control registers associated with the digital-core signal paths are shown in Fig. 4-16–Fig. 4-33. The full list of digital mixer control registers (R1600–R3576) is provided in Section 6.

Further description of the associated control registers is provided throughout Section 4.3. Generic register field definitions are provided in Table 4-11.

The digital mixer input sources are selected using the associated x_SRCn fields; the volume control is implemented via the associated x_VOLn fields.

The ASRC, ISRC, DFC, and DSP auxiliary input functions support selectable input sources, but do not incorporate any digital mixing. The respective input source (x SRCn) fields are identical to those of the digital mixers.

The x_SRC*n* fields select the input sources for the respective mixer or signal-processing block. Note that the selected input sources must be configured for the same sample rate as the blocks to which they are connected. Sample-rate conversion functions are available to support flexible interconnectivity; see Section 4.3.15 and Section 4.3.16. The DFCs provide support for different data types, including floating point formats. Note that, if unsigned or floating point data is present within the digital core, some restrictions on the valid signal routing options apply—see Section 4.3.13.

A status bit is associated with each configurable input source. If an underclocked error condition occurs, these bits indicate which signal paths have been enabled.

The generic register field definition for the digital mixers is provided in Table 4-11.

Table 4-11. Digital-Core Mixer Control Registers

Register Address	Bit	Label	Default		Description	
R1600 (0x0640)	15	x_STSn	0	[Digital Core function] input	t <i>n</i> status	
to				0 = Disabled		
R3576 (0x0DF8)				1 = Enabled		
	7:1	x_VOL <i>n</i>	0x40	[Digital Core mixer] input n	volume. (-32 dB to +16 dE	3 in 1-dB steps)
				0x00 to 0x20 = -32 dB	(1-dB steps)	0x50 = +16 dB
				0x21 = -31 dB	0x40 = 0 dB	0x51 to 0x7F = +16 dB
				0x22 = -30 dB	(1-dB steps)	
	7:0	x_SRCn	0x00	[Digital Core function] input	t n source select	
				0x00 = Silence (mute)	0x2E = AIF2 RX7	0x63 = LHPF4
				0x04 = Tone generator 1	0x2F = AIF2 RX8	0x68 = DSP1 Channel 1
				0x05 = Tone generator 2	0x30 = AIF3 RX1	0x69 = DSP1 Channel 2
				0x06 = Haptic generator	0x31 = AIF3 RX2	0x6A = DSP1 Channel 3
				0x08 = AEC Loop-Back 1	0x32 = AIF3 RX3	0x6B = DSP1 Channel 4
				0x09 = AEC Loop-Back 2	0x33 = AIF3 RX4	0x6C = DSP1 Channel 5
				0x0D = Noise generator	0x34 = AIF3 RX5	0x6D = DSP1 Channel 6
				0x10 = IN1L signal path	0x35 = AIF3 RX6	0x90 = ASRC1 IN1 Left
				0x11 = IN1R signal path	0x36 = AIF3 RX7	0x91 = ASRC1 IN1 Right
				0x12 = IN2L signal path	0x37 = AIF3 RX8	0x92 = ASRC1 IN2 Left
				0x13 = IN2R signal path	0x38 = SLIMbus RX1	0x93 = ASRC1 IN2 Right
				0x14 = IN3L signal path	0x39 = SLIMbus RX2	0xA0 = ISRC1 INT1
				0x15 = IN3R signal path	0x3A = SLIMbus RX3	0xA1 = ISRC1 INT2
				0x16 = IN4L signal path	0x3B = SLIMbus RX4	0xA4 = ISRC1 DEC1
				0x17 = IN4R signal path	0x3C = SLIMbus RX5	0xA5 = ISRC1 DEC2
				0x20 = AIF1 RX1	0x3D = SLIMbus RX6	0xA8 = ISRC2 INT1
				0x21 = AIF1 RX2	0x3E = SLIMbus RX7	0xA9 = ISRC2 INT2
				0x22 = AIF1 RX3	0x3F = SLIMbus RX8	0xAC = ISRC2 DEC1
				0x23 = AIF1 RX4	0x50 = EQ1	0xAD = ISRC2 DEC2
				0x24 = AIF1 RX5	0x51 = EQ2	0xF0 = US1
				0x25 = AIF1 RX6	0x52 = EQ3	0xF1 = US2
				0x26 = AIF1 RX7	0x53 = EQ4	0xF8 = DFC1
				0x27 = AIF1 RX8	0x58 = DRC1 Left	0xF9 = DFC2
				0x28 = AIF2 RX1	0x59 = DRC1 Right	0xFA = DFC3
				0x29 = AIF2 RX2	0x5A = DRC2 Left	0xFB = DFC4
				0x2A = AIF2 RX3	0x5B = DRC2 Right	0xFC = DFC5
				0x2B = AIF2 RX4	0x60 = LHPF1	0xFD = DFC6
				0x2C = AIF2 RX5	0x61 = LHPF2	0xFE = DFC7
				0x2D = AIF2 RX6	0x62 = LHPF3	0xFF = DFC8

4.3.2 Digital-Core Inputs

The digital core comprises multiple input paths, as shown in Fig. 4-16. Any of these inputs may be selected as a source to the digital mixers or signal-processing functions within the CS42L92 digital core.

Note that the outputs from other blocks within the digital core may also be selected as input to the digital mixers or signal-processing functions within the CS42L92 digital core. Those input sources, which are not shown in Fig. 4-16, are described separately throughout Section 4.3.

The hexadecimal numbers in Fig. 4-16 indicate the corresponding x_SRC*n* setting for selection of that signal as an input to another digital-core function.

The sample rate for the input signal paths is configured by using the applicable IN_RATE, AIFn_RATE, SLIMRXn_RATE, or USn_RATE field; see Table 4-26. Note that sample-rate conversion is required when routing the input signal paths to any signal chain that is asynchronous or configured for a different sample rate.

Figure 4-16. Digital-Core Inputs

4.3.3 Digital-Core Output Mixers

The digital core comprises multiple output paths. The output paths associated with AIF1–AIF3 are shown in Fig. 4-17. The output paths associated with OUT1–OUT5 are shown in Fig. 4-18. The output paths associated with the SLIMbus interface are shown in Fig. 4-19.

A four-input mixer is associated with each output. The four input sources are selectable in each case, and independent volume control is provided for each path.

The AIF1–AIF3 output mixer control fields (see Fig. 4-17) are located at register addresses R1792–R1983 (0x0700–0x07BF). The OUT1–OUT5 output mixer control fields (see Fig. 4-18) are located at addresses R1664–R1743 (0x0680–0x06CF). The SLIMbus output mixer control fields (see Fig. 4-19) are located at addresses R1984–R2047 (0x07C0–0x07FF).

The full list of digital mixer control registers (R1600–R3576) is provided in Section 6. Generic register field definitions are provided in Table 4-11.

The x_SRC*n* fields select the input sources for the respective mixers. Note that the selected input sources must be configured for the same sample rate as the mixer to which they are connected. Sample-rate conversion functions are available to support flexible interconnectivity; see Section 4.3.15 and Section 4.3.16.

The sample rate for the output signal paths is configured using the applicable OUT_RATE, AIF*n*_RATE, or SLIMTX*n*_RATE fields; see Table 4-26. Note that sample-rate conversion is required when routing the output signal paths to any signal chain that is asynchronous or configured for a different sample rate.

The OUT_RATE, AIFn_RATE, or SLIMTXn_RATE fields must not be changed if any of the respective x_SRCn fields is nonzero. The associated x_SRCn fields must be cleared before writing new values to OUT_RATE, AIFn_RATE, or SLIMTXn_RATE. A minimum delay of 125 μ s must be allowed between clearing the x_SRCn fields and writing to the associated OUT_RATE, AIFn_RATE, or SLIMTXn_RATE fields. See Table 4-26 for details.

The AIF1, AIF3, SLIMbus, and DAC (OUT1–OUT3) output mixers provide full support for 32-bit data words. Audio data samples up to 32 bits are supported on the AIF1, AIF3, and SLIMbus input channels, which can be routed to the AIF1, AIF3, SLIMbus, and DAC (OUT1–OUT3) output paths. Note that other signal paths and signal-processing blocks within the digital core are limited to 24-bit data length; data samples are truncated to 24-bit length if they are routed through any function that does not support 32-bit data words.

The CS42L92 performs automatic checks to confirm that the SYSCLK frequency is high enough to support the output mixer paths. If the frequency is too low, an attempt to enable an output mixer path fails. Note that active signal paths are not affected under such circumstances.

The status bits in registers R1600–R3576 indicate the status of each digital mixer. If an underclocked error condition occurs, these bits indicate which mixers have been enabled.

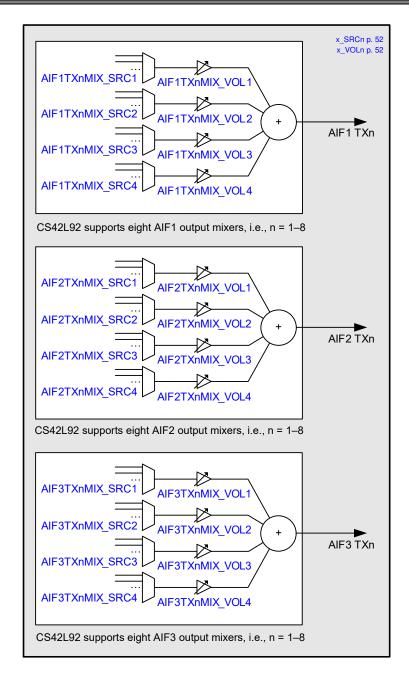


Figure 4-17. Digital-Core AIF Outputs

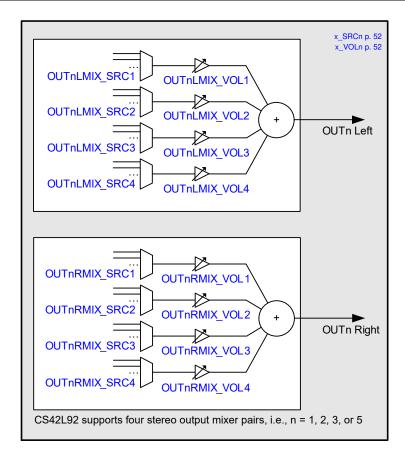


Figure 4-18. Digital-Core OUTn Outputs

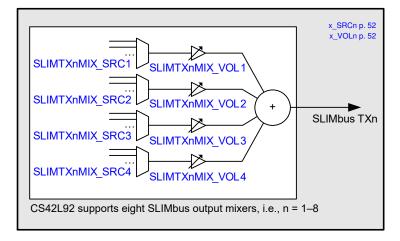


Figure 4-19. Digital-Core SLIMbus Outputs

4.3.4 Five-Band Parametric Equalizer (EQ)

The digital core provides four EQ processing blocks as shown in Fig. 4-20. A four-input mixer is associated with each EQ. The four input sources are selectable in each case, and independent volume control is provided for each path. Each EQ block supports one output.

The EQ provides selective control of five frequency bands as follows:

• The low-frequency band (Band 1) filter can be configured as a peak filter or as a shelving filter. If configured as a shelving filter, it provides adjustable gain below the Band 1 cut-off frequency. As a peak filter, it provides adjustable gain within a defined frequency band that is centered on the Band 1 frequency.

- The midfrequency bands (Band 2–Band 4) filters are peak filters that provide adjustable gain around the respective center frequency.
- The high-frequency band (Band 5) filter is a shelving filter that provides adjustable gain above the Band 5 cut-off frequency.

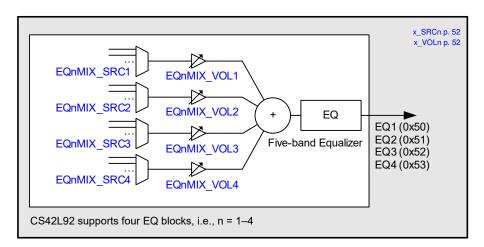


Figure 4-20. Digital-Core EQ Blocks

The EQ1–EQ4 mixer control fields (see Fig. 4-20) are located at register addresses R2176–R2207 (0x0880–0x089F).

The full list of digital-mixer control registers (R1600–R3576) is provided in Section 6. Generic register field definitions are provided in Table 4-11.

The x_SRC*n* fields select the input sources for the respective EQ processing blocks. Note that the selected input sources must be configured for the same sample rate as the EQ to which they are connected. Sample-rate conversion functions are available to support flexible interconnectivity; see Section 4.3.15 and Section 4.3.16.

The hexadecimal numbers in Fig. 4-20 indicate the corresponding x_SRCn setting for selection of that signal as an input to another digital-core function.

The sample rate for the EQ function is configured using FX_RATE; see Table 4-26. Note that the EQ, DRC, and LHPF functions must be configured for the same sample rate. Sample-rate conversion is required when routing the EQ signal paths to any signal chain that is asynchronous or configured for a different sample rate.

The FX_RATE field must not be changed if any of the associated x_SRCn fields is nonzero. The associated x_SRCn fields must be cleared before writing a new value to FX_RATE. A minimum delay of 125 μ s must be allowed between clearing the x_SRCn fields and writing to FX_RATE. See Table 4-26 for details.

The cut-off or center frequencies for the five-band EQ are set by using the coefficients held in the registers identified in Table 4-12. These coefficients are derived using tools provided in Cirrus Logic's WISCE™ evaluation-board control software; please contact your Cirrus Logic representative for details.

Table 4-12. EQ Coefficient Registers

EQ	Register Addresses
EQ1	R3602 (0x0E10) to R3620 (0x0E24)
EQ2	R3624 (0x0E28) to R3642 (0x0E3A)
EQ3	R3646 (0x0E3E) to R3664 (0x0E53)
EQ4	R3668 (0x0E54) to R3686 (0x0E66)

The control registers associated with the EQ functions are described in Table 4-13.

Table 4-13. EQ Enable and Gain Control

Register Address	Bit	Label	Default	Description
R3585 (0x0E01)	15:4	FX_STS[11:0]	0x00	LHPF, DRC, EQ Enable Status. Indicates the status of each respective
FX_Ctrl2				signal-processing function. Each bit is coded as follows:
				0 = Disabled
				1 = Enabled
				[11] = EQ4 [7] = DRC2 (Right) [3] = LHPF4
				[10] = EQ3 [6] = DRC2 (Left) [2] = LHPF3
				[9] = EQ2 [5] = DRC1 (Right) [1] = LHPF2
				[8] = EQ1 [4] = DRC1 (Left) [0] = LHPF1
R3600 (0x0E10)		EQ1_B1_GAIN[4:0]		EQ1 Band 1 Gain 1 (–12 dB to +12 dB in 1-dB steps)
EQ1_1	10:6	EQ1_B2_GAIN[4:0]		EQ1 Band 2 Gain 1 (–12 dB to +12 dB in 1-dB steps)
	5:1	EQ1_B3_GAIN[4:0]	0x0C	EQ1 Band 3 Gain ¹ (–12 dB to +12 dB in 1-dB steps)
	0	EQ1_ENA	0	EQ1 Enable
				0 = Disabled
D0004 (0, 0E44)	45.44	EO4 D4 OAINI40	0.00	1 = Enabled
R3601 (0x0E11)		EQ1_B4_GAIN[4:0]		EQ1 Band 4 Gain 1 (–12 dB to +12 dB in 1-dB steps)
EQ1_2		EQ1_B5_GAIN[4:0]		EQ1 Band 5 Gain 1 (-12 dB to +12 dB in 1-dB steps)
	0	EQ1_B1_MODE	0	EQ1 Band 1 Mode
				0 = Shelving filter
D0000 (0::0E40) t-	45.0	FO4 B4 *		1 = Peak filter
R3602 (0x0E12) to	15:0	EQ1_B1_*		EQ1 Frequency Coefficients. Refer to WISCE evaluation board control software for the derivation of these field values.
R3620 (0x0E24)		EQ1_B2_*		the derivation of these field values.
		EQ1_B3_*		
		EQ1_B4_*		
R3622 (0x0E26)	15.11	EQ1_B5_* EQ2_B1_GAIN[4:0]	0x0C	EQ2 Band 1 Gain ¹
EQ2_1	13.11	LQZ_D1_GAIIV[4.0]	UXUC	-12 dB to +12 dB in 1-dB steps
LQZ_1	10:6	EQ2 B2 GAIN[4:0]	0x0C	EQ2 Band 2 Gain 1
	10.0	LQZ_DZ_OAIIV[4.0]	0,000	-12 dB to +12 dB in 1-dB steps
	5:1	EQ2_B3_GAIN[4:0]	0x0C	EQ2 Band 3 Gain 1
	0.1	242_50_0/ 1 1.01	oxoo	-12 dB to +12 dB in 1-dB steps
	0	EQ2 ENA	0	EQ2 Enable
				0 = Disabled
				1 = Enabled
R3623 (0x0E27)	15:11	EQ2_B4_GAIN[4:0]	0x0C	EQ2 Band 4 Gain ¹ (–12 dB to +12 dB in 1-dB steps)
EQ2_2	10:6	EQ2_B5_GAIN[4:0]	0x0C	EQ2 Band 5 Gain ¹ (–12 dB to +12 dB in 1-dB steps)
_	0	EQ2_B1_MODE	0	EQ2 Band 1 Mode
				0 = Shelving filter
				1 = Peak filter
R3624 (0x0E28) to	15:0	EQ2_B1_*	_	EQ2 Frequency Coefficients. Refer to WISCE evaluation board control software for
R3642 (0x0E3A)		EQ2_B2_*		the derivation of these field values.
		EQ2_B3_*		
		EQ2_B4_*		
		EQ2_B5_*		
R3644 (0x0E3C)	15:11	EQ3_B1_GAIN[4:0]		EQ3 Band 1 Gain ¹ (–12 dB to +12 dB in 1-dB steps)
EQ3_1	10:6		0x0C	EQ3 Band 2 Gain ¹ (–12 dB to +12 dB in 1-dB steps)
	5:1	EQ3_B3_GAIN[4:0]	0x0C	EQ3 Band 3 Gain 1 (-12 dB to +12 dB in 1-dB steps)
	0	EQ3_ENA	0	EQ3 Enable
				0 = Disabled
				1 = Enabled
R3645 (0x0E3D)		EQ3_B4_GAIN[4:0]	0x0C	EQ3 Band 4 Gain ¹ (–12 dB to +12 dB in 1-dB steps)
EQ3_2		EQ3_B5_GAIN[4:0]		EQ3 Band 5 Gain ¹ (–12 dB to +12 dB in 1-dB steps)
	0	EQ3_B1_MODE	0	EQ3 Band 1 Mode
				0 = Shelving filter
				1 = Peak filter

Table 4-13. EQ Enable and Gain Control (Cont.)

Register Address	Bit	Label	Default	Description
R3646 (0x0E3E) to	15:0	EQ3_B1_*	_	EQ3 Frequency Coefficients. Refer to WISCE evaluation board control software for
R3664 (0x0E50)		EQ3_B2_*		the derivation of these field values.
		EQ3_B3_*		
		EQ3_B4_*		
		EQ3_B5_*		
R3666 (0x0E52)	15:11	EQ4_B1_GAIN[4:0]	0x0C	EQ4 Band 1 Gain ¹ (–12 dB to +12 dB in 1-dB steps)
EQ4_1	10:6	EQ4_B2_GAIN[4:0]	0x0C	EQ4 Band 2 Gain ¹ (–12 dB to +12 dB in 1-dB steps)
	5:1	EQ4_B3_GAIN[4:0]	0x0C	EQ4 Band 3 Gain ¹ (–12 dB to +12 dB in 1-dB steps)
	0	EQ4_ENA	0	EQ4 Enable
				0 = Disabled
				1 = Enabled
R3667 (0x0E53)	15:11	EQ4_B4_GAIN[4:0]	0x0C	EQ4 Band 4 Gain ¹ (–12 dB to +12 dB in 1-dB steps)
EQ4_2	10:6	EQ4_B5_GAIN[4:0]	0x0C	EQ4 Band 5 Gain 1 (-12 dB to +12 dB in 1-dB steps
	0	EQ4_B1_MODE	0	EQ4 Band 1 Mode
				0 = Shelving filter
				1 = Peak filter
R3668 (0x0E54) to	15:0	EQ4_B1_*	_	EQ4 Frequency Coefficients. Refer to WISCE evaluation board control software for
R3686 (0x0E66)		EQ4_B2_*		the derivation of these field values.
		EQ4_B3_*		
		EQ4_B4_*		
		EQ4_B5_*		

^{1.} See Table 4-14 for gain range.

Table 4-14 lists the EQ gain control settings.

EQ Gain Setting Gain (dB) EQ Gain Setting Gain (dB) 00000 -12 01101 +1 00001 -11 01110 +2 00010 -10 01111 +3 00011 -9 10000 +4 00100 -8 10001 +5 00101 -7 10010 +6 00110 10011 +7 -6 00111 -5 10100 +8 10101 01000 -4 +9 01001 -3 10110 +10 01010 -2 10111 +11 01011 -1 11000 +12 01100 0 11001-11111 Reserved

Table 4-14. EQ Gain-Control Range

The CS42L92 automatically checks to confirm whether the SYSCLK frequency is high enough to support the commanded EQ and digital mixing functions. If an attempt is made to enable an EQ signal path, and there are insufficient SYSCLK cycles to support it, the attempt does not succeed. Note that any signal paths that are already active are not affected under such circumstances.

The FX_STS field in register R3585 indicates the status of each EQ, DRC, and LHPF signal path. If an underclocked error condition occurs, this field indicates which EQ, DRC, or LHPF signal paths have been enabled.

The status bits in registers R1600–R3576 indicate the status of each digital mixer. If an underclocked error condition occurs, these bits indicate which mixers have been enabled.

4.3.5 Dynamic Range Control (DRC)

The digital core provides two stereo DRC processing blocks, as shown in Fig. 4-21. A four-input mixer is associated with each DRC input channel. The input sources are selectable in each case, and independent volume control is provided for each path. The stereo DRC blocks support two outputs each.

The function of the DRC is to adjust the signal gain in conditions where the input amplitude is unknown or varies over a wide range, for example, when recording from microphones built into a handheld system or to restrict the dynamic range of an output signal path.

To improve intelligibility in the presence of loud impulsive noises, the DRC can apply compression and automatic level control to the signal path. It incorporates anticlip and guick-release features for handling transients.

The DRC also incorporates a noise-gate function that provides additional attenuation of very low-level input signals. This means that the signal path is quiet when no signal is present, giving an improvement in background noise level under these conditions.

A signal-detect function is provided within the DRC; this can be used to detect the presence of an audio signal and to trigger other events. It can also be used as an interrupt event or to trigger the control-write sequencer. Note that DRC triggering of the control-write sequencer is supported for DRC1 only.

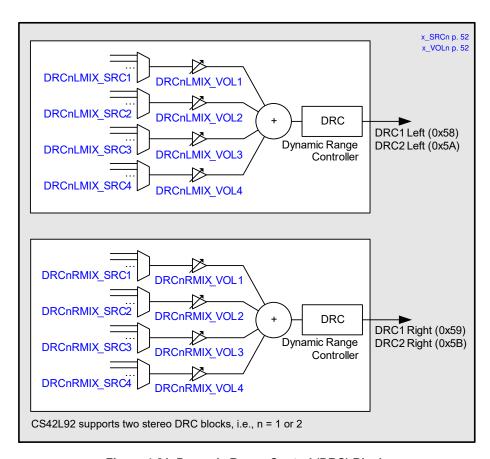


Figure 4-21. Dynamic Range Control (DRC) Block

The DRC1 and DRC2 mixer control fields (see Fig. 4-21) are located at register addresses R2240–R2271 (0x08C0–0x08DF).

The full list of digital mixer control registers (R1600–R3576) is provided in Section 6. Generic register field definitions are provided in Table 4-11.

The x_SRC*n* fields select the input sources for the respective DRC processing blocks. Note that the selected input sources must be configured for the same sample rate as the DRC to which they are connected. Sample-rate conversion functions are available to support flexible interconnectivity; see Section 4.3.15 and Section 4.3.16.

The hexadecimal numbers in Fig. 4-21 indicate the corresponding x_SRC*n* setting for selection of that signal as an input to another digital-core function.

The sample rate for the DRC function is configured using FX_RATE; see Table 4-26. Note that the EQ, DRC, and LHPF functions must all be configured for the same sample rate. Sample-rate conversion is required when routing the DRC signal paths to any signal chain that is asynchronous or configured for a different sample rate.

The FX_RATE field must not be changed if any of the associated x_SRCn fields is nonzero. The associated x_SRCn fields must be cleared before writing a new value to FX_RATE. A minimum delay of 125 μ s must be allowed between clearing the x_SRCn fields and writing to FX_RATE. See Table 4-26 for details.

The DRC functions are enabled using the control registers described in Table 4-15.

Register Address Bit Label Default Description R3712 (0x0E80) DRC1L ENA 0 DRC1 (left) enable DRC1 ctrl1 0 = Disabled 1 = Enabled 0 DRC1R ENA 0 DRC1 (right) enable 0 = Disabled 1 = Enabled R3720 (0x0E88) 0 DRC2L ENA DRC2 (left) enable DRC2 ctrl1 0 = Disabled 1 = Enabled 0 DRC2R ENA 0 DRC2 (right) enable 0 = Disabled1 = Enabled

Table 4-15. DRC Enable

The following description of the DRC is applicable to each DRC. The associated control fields are described in Table 4-17 and Table 4-18 for DRC1 and DRC2 respectively.

4.3.5.1 DRC Compression, Expansion, and Limiting

The DRC supports two different compression regions, separated by a knee at a specific input amplitude. In the region above the knee, the compression slope DRC*n*_HI_COMP applies; in the region below the knee, the compression slope DRC*n* LO COMP applies. Note that *n* identifies the applicable DRC 1 or 2.

The DRC also supports a noise-gate region, where low-level input signals are heavily attenuated. This function can be enabled or disabled according to the application requirements. The DRC response in this region is defined by the expansion slope DRC*n* NG EXP.

For additional attenuation of signals in the noise-gate region, an additional knee can be defined (shown as Knee 2 in Fig. 4-22). When this knee is enabled, this introduces an infinitely steep drop-off in the DRC response pattern between the DRC LO COMP and DRC NG EXP regions.

The overall DRC compression characteristic in steady state (i.e., where the input amplitude is near constant) is shown in Fig. 4-22.

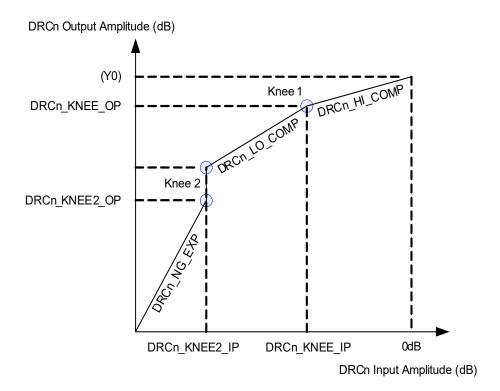


Figure 4-22. DRC Response Characteristic

The slope of the DRC response is determined by DRC*n_HI_COMP* and DRC*n_LO_COMP*. A slope of 1 indicates constant gain in this region. A slope less than 1 represents compression (i.e., a change in input amplitude produces only a smaller change in output amplitude). A slope of 0 indicates that the target output amplitude is the same across a range of input amplitudes; this is infinite compression.

When the noise gate is enabled, the DRC response in this region is determined by DRC*n*_NG_EXP. A slope of 1 indicates constant gain in this region. A slope greater than 1 represents expansion (i.e., a change in input amplitude produces a larger change in output amplitude).

When the DRCn_KNEE2_OP knee is enabled (Knee 2 in Fig. 4-22), this introduces the vertical line in the response pattern shown, resulting in infinitely steep attenuation at this point in the response.

The DRC parameters are listed in Table 4-16.

Parameters Parameter Description DRCn KNEE IP Input level at Knee 1 (dB) 2 DRCn KNEE OP Output level at Knee 2 (dB) DRCn HI COMP 3 Compression ratio above Knee 1 4 DRCn LO COMP Compression ratio below Knee 1 5 DRCn KNEE2 IP Input level at Knee 2 (dB) 6 DRCn NG EXP Expansion ratio below Knee 2 DRCn KNEE2 OP Output level at Knee 2 (dB)

Table 4-16. DRC Response Parameters

The noise gate is enabled by setting DRC*n*_NG_ENA. When the noise gate is not enabled, Parameters 5–7 (see Table 4-16) are ignored, and the DRC*n*_LO_COMP slope applies to all input signal levels below Knee 1.

The DRCn_KNEE2_OP knee is enabled by setting DRCn_KNEE2_OP_ENA. If this bit is not set, Parameter 7 is ignored and the Knee 2 position always coincides with the low end of the DRCn_LO_COMP region.

The Knee 1 point in Fig. 4-22 is determined by DRCn KNEE IP and DRCn KNEE OP.

Parameter Y0, the output level for a 0 dB input, is not specified directly but can be calculated from the other parameters using Eq. 4-2.

 $Y0 = DRCn_KNEE_OP - (DRCn_KNEE_IP \times DRCn_HI_COMP)$

Equation 4-2. DRC Compression Calculation

4.3.5.2 Gain Limits

The minimum and maximum gain applied by the DRC is set by DRC*n*_MINGAIN, DRC*n*_MAXGAIN, and DRC*n*_NG_MINGAIN. These limits can be used to alter the DRC response from that shown in Fig. 4-22. If the range between maximum and minimum gain is reduced, the extent of the dynamic range control is reduced.

The minimum gain in the compression regions of the DRC response is set by DRC*n*_MINGAIN. The minimum gain in the noise-gate region is set by DRC*n*_NG_MINGAIN. The minimum gain limit prevents excessive attenuation of the signal path.

The maximum gain limit set by DRCn_MAXGAIN prevents quiet signals (or silence) from being excessively amplified.

4.3.5.3 Dynamic Characteristics

The dynamic behavior determines how quickly the DRC responds to changing signal levels. Note that the DRC responds to the average (RMS) signal amplitude over a period of time.

The DRCn_ATK determines how quickly the DRC gain decreases when the signal amplitude is high. The DRCn_DCY determines how quickly the DRC gain increases when the signal amplitude is low.

These fields are described in Table 4-17 and Table 4-18. The register defaults are suitable for general-purpose microphone use.

4.3.5.4 Anticlip Control

The DRC includes an anticlip function to avoid signal clipping when the input amplitude rises very quickly. This function uses a feed-forward technique for early detection of a rising signal level. Signal clipping is avoided by dynamically increasing the gain attack rate when required.

The anticlip function is enabled using the DRC*n*_ANTICLIP bit. Note that the feed-forward processing increases the latency in the input signal path.

The anticlip feature operates entirely in the digital domain; it cannot be used to prevent signal clipping in the analog domain nor in the source signal. Analog clipping can only be prevented by reducing the analog signal gain or by adjusting the source signal.

It is recommended to disable the anticlip function if the quick-release function (see Section 4.3.5.5) is enabled.

4.3.5.5 Quick Release Control

The DRC includes a quick-release function to handle short transient peaks that are not related to the intended source signal. For example, in handheld microphone recording, transient signal peaks sometimes occur due to user handling, key presses or accidental tapping against the microphone. The quick-release function ensures that these transients do not cause the intended signal to be masked by the longer time constant of DRC*n*_DCY.

The quick-release function is enabled by setting the DRC*n*_QR bit. When this bit is enabled, the DRC measures the crest factor (peak to RMS ratio) of the input signal. A high crest factor is indicative of a transient peak that may not be related to the intended source signal. If the crest factor exceeds the level set by DRC*n*_QR_THR, the normal decay rate (DRC*n*_DCY) is ignored and a faster decay rate (DRC*n*_QR_DCY) is used instead.

It is recommended to disable the quick-release function if the anticlip function (see Section 4.3.5.4) is enabled.

4.3.5.6 Signal Activity Detect

The DRC incorporates a configurable signal-detect function, allowing the signal level at the DRC input to be monitored and to be used to trigger other events. This can be used to detect the presence of a microphone signal on an ADC or DMIC channel or to detect an audio signal received over the digital audio interface.

The DRC signal-detect function is enabled by setting DRC*n_*SIG_DET. Note that the respective DRC*n* must also be enabled. The detection threshold is either a peak level (crest factor) or an RMS level, depending on DRC*n_*SIG_DET_MODE. When peak level is selected, the threshold is determined by DRC*n_*SIG_DET_PK, which defines the applicable crest factor (peak-to-RMS ratio) threshold. If RMS level is selected, the threshold is set using DRC*n_*SIG_DET_RMS.

The DRC signal-detect function is an input to the interrupt control circuit and can be used to trigger an interrupt event; see Section 4.15.

The control-write sequencer can be triggered by the DRC1 signal-detect function. This is enabled by setting DRC1_WSEQ_SIG_DET_ENA. See Section 4.18.

Note that signal detection is supported on DRC1 and DRC2, but the triggering of the control-write sequencer is available on DRC1 only.

4.3.5.7 DRC Register Controls

The DRC1 control registers are described in Table 4-17.

Table 4-17. DRC1 Control Registers

Register Address	Bit	Label	Default	Description			
R3585 (0x0E01)	15:4	FX_STS[11:0]	0x00	HPF, DRC, EQ enable status. Indicates the status of each respective			
FX Ctrl2				signal-processing function.	signal-processing function. Each bit is coded as follows:		
_				0 = Disabled			
				1 = Enabled			
				[11] = EQ4	[7] = DRC2 (Right)	[3] = LHPF4	
				[10] = EQ3	[6] = DRC2 (Left)	[2] = LHPF3	
				[9] = EQ2	[5] = DRC1 (Right)	[1] = LHPF2	
				[8] = EQ1	[4] = DRC1 (Left)	[0] = LHPF1	

Table 4-17. DRC1 Control Registers (Cont.)

Register Address	Bit	Label	Default		Description	
R3712 (0x0E80)	15:11	DRC1_SIG_	0x00			or signal-detect to be indicated
DRC1_ctrl1		DET_RMS[4:0]		when DRC1_SIG_DET_MO		
				0x00 = -30 dB	(1.5-dB steps)	0x1F = -76.5 dB
	10.0	5504.010		0x01 = -31.5 dB	0x1E = -75 dB	
	10:9	DRC1_SIG_ DET_PK[1:0]	00	DRC1 Signal-Detect Peak TI for signal-detect to be indicated.	hreshold. This is the Peak/RI	MS ratio, or Crest Factor, level
		DEI_FK[I.0]		00 = 12 dB	10 = 24 dB	_WODE = 0.
				01 = 18 dB	10 = 24 dB 11 = 30 dB	
	8	DRC1 NG ENA	0	DRC1 Noise-Gate Enable	11 - 00 dB	
	0	BIG 1_IVO_EIV		0 = Disabled		
				1 = Enabled		
	7	DRC1 SIG	0	DRC1 Signal-Detect Mode		
		DET_MODE		0 = Peak threshold mode		
				1 = RMS threshold mode		
	6	DRC1_SIG_DET	0	DRC1 Signal-Detect Enable		
				0 = Disabled		
				1 = Enabled		
	5	DRC1_KNEE2_	0	DRC1 KNEE2_OP Enable		
		OP_ENA		0 = Disabled		
				1 = Enabled		
	4	DRC1_QR	1	DRC1 Quick-release Enable)	
				0 = Disabled		
	_	DDC4 ANTIOLID	4	1 = Enabled		
	3	DRC1_ANTICLIP	1	DRC1 Anticlip Enable 0 = Disabled		
				1 = Enabled		
	2	DRC1 WSEQ	0	DRC1 Signal-Detect Write S	Seguencer Select	
	_	SIG DET ENA		0 = Disabled	ocquerioer ocioor	
				1 = Enabled		
R3713 (0x0E81)	12:9	DRC1_ATK[3:0]	0100	DRC1 Gain attack rate (seco	onds/6 dB)	
DRC1_ctrl2				0000 = Reserved	0101 = 2.9 ms	1010 = 92.8 ms
_				0001 = 181 μs	0110 = 5.8 ms	1011 = 185.6 ms
				0010 = 363 μs	0111 = 11.6 ms	1100 to 1111 = Reserved
				0011 = 726 μs	1000 = 23.2 ms	
				0100 = 1.45 ms	1001 = 46.4 ms	
	8:5	DRC1_DCY[3:0]	1001	DRC1 Gain decay rate (second		
				0000 = 1.45 ms	0101 = 46.5 ms	1010 = 1.49 s
				0001 = 2.9 ms	0110 = 93 ms	1011 = 2.97 s
				0010 = 5.8 ms	0111 = 186 ms	1100 to 1111 = Reserved
				0011 = 11.6 ms	1000 = 372 ms	
	4.0	DDO4	400	0100 = 23.25 ms	1001 = 743 ms	
	4:2	DRC1_ MINGAIN[2:0]	100	DRC1 Minimum gain to attenue 000 = 0 dB	-	11V = Decenied
		WIII VOAII V[2.0]		000 = 0 dB 001 = -12 dB	011 = -24 dB 100 = -36 dB	11X = Reserved
				010 = -18 dB	101 = Reserved	
	1:0	DRC1	11	DRC1 Maximum gain to boo		
	1.0	MAXGAIN[1:0]	''	00 = 12 dB	10 = 24 dB	
				01 = 18 dB	11 = 36 dB	
]	01 10 GD	11 - 00 GD	

Table 4-17. DRC1 Control Registers (Cont.)

Register Address	Bit	Label	Default		Description	
R3714 (0x0E82)	15:12	DRC1_NG_	0000	DRC1 Minimum gain to atte	enuate audio signals when the	Noise Gate is active.
DRC1_ctrl3		MINGAIN[3:0]		0000 = -36 dB	0101 = -6 dB	1010 = 24 dB
				0001 = -30 dB	0110 = 0 dB	1011 = 30 dB
				0010 = -24 dB	0111 = 6 dB	1100 = 36 dB
				0011 = -18 dB	1000 = 12 dB	1101 to 1111 = Reserved
				0100 = -12 dB	1001 = 18 dB	
	11:10	DRC1_NG_	00	DRC1 Noise-Gate slope		
		EXP[1:0]		00 = 1 (no expansion)	10 = 4	
				01 = 2	11 = 8	
	9:8	DRC1_QR_	00	DRC1 Quick-release thresh	old (crest factor in dB)	
		THR[1:0]		00 = 12 dB	10 = 24 dB	
				01 = 18 dB	11 = 30 dB	
	7:6	DRC1_QR_	00	DRC1 Quick-release decay	rate (seconds/6 dB)	
		DCY[1:0]		00 = 0.725 ms	10 = 5.8 ms	
				01 = 1.45 ms	11 = Reserved	
	5:3	DRC1_HI_	011	DRC1 Compressor slope (u		
		COMP[2:0]		000 = 1 (no compression)	011 = 1/8	11X = Reserved
				001 = 1/2	100 = 1/16	
				010 = 1/4	101 = 0	
	2:0	DRC1_LO_	000	DRC1 Compressor slope (le	• ,	
		COMP[2:0]		000 = 1 (no compression)		11X = Reserved
				001 = 1/2	100 = 0	
				010 = 1/4	101 = Reserved	
R3715 (0x0E83)	10:5	DRC1_KNEE_	0x00	DRC1 Input signal level at t		
DRC1_ctrl4		IP[5:0]		0x00 = 0 dB	0x02 = -1.5 dB	0x3C = -45 dB
				0x01 = -0.75 dB	(-0.75-dB steps)	0x3D-0x3F = Reserved
	4:0	DRC1_KNEE_	0x00	DRC1 Output signal at the	•	
		OP[4:0]		0x00 = 0 dB	0x02 = -1.5 dB	0x1E = -22.5 dB
				0x01 = -0.75 dB	(–0.75 dB steps)	0x1F = Reserved
R3716 (0x0E84)	9:5	DRC1_KNEE2_	0x00	. •	he noise-gate threshold, Kne	
DRC1_ctrl5		IP[4:0]		0x00 = -36 dB	0x02 = -39 dB	0x1E = -81 dB
				0x01 = -37.5 dB	(-1.5-dB steps)	0x1F = -82.5 dB
				Applicable if DRC1_NG_EN		
	4:0	DRC1_KNEE2_	0x00		noise-gate threshold, Knee 2.	
		OP[4:0]	1	0x00 = -30 dB	0x02 = -33 dB	0x1E = -75 dB
				0x01 = -31.5 dB	(-1.5dB steps)	0x1F = -76.5 dB
				Applicable only if DRC1_KN	NEE2_OP_ENA = 1	

The DRC2 control registers are described in Table 4-18.

Table 4-18. DRC2 Control Registers

Register Address	Bit	Label	Default		Description			
R3585 (0x0E01)	15:4	FX_STS[11:0]	0x00	, , ,	HPF, DRC, EQ Enable Status. Indicates the status of each respective			
FX_Ctrl2				signal-processing t	unction. Each bit is coded as follo	ows:		
				0 = Disabled				
				1 = Enabled				
				[11] = EQ4	[7] = DRC2 (Right)	[3] = LHPF4		
				[10] = EQ3	[6] = DRC2 (Left)	[2] = LHPF3		
				[9] = EQ2	[5] = DRC1 (Right)	[1] = LHPF2		
				[8] = EQ1	[4] = DRC1 (Left)	[0] = LHPF1		

Table 4-18. DRC2 Control Registers (Cont.)

Register Address	Bit	Label	Default		Description	
R3720 (0x0E88)	15:11	DRC2_SIG_	0x00			gnal level for signal-detect to
DRC2_ctrl1		DET_RMS[4:0]		be indicated when DRC2_S		
				0x00 = -30 dB	(1.5-dB steps)	0x1E = -75 dB
				0x01 = -31.5 dB		0x1F = -76.5 dB
	10:9	DRC2_SIG_ DET_PK[1:0]	00	DRC2 Signal-Detect Peak T signal-detect to be indicated	Γhreshold. Peak/RMS ratio, α d when DRC2_SIG_DET_Mα	or Crest Factor, level for ODE = 0.
				00 = 12 dB	10 = 24 dB	
				01 = 18 dB	11 = 30 dB	
	8	DRC2_NG_ENA	0	DRC2 Noise-Gate Enable		
				0 = Disabled		
				1 = Enabled		
	7	DRC2_SIG_	0	DRC2 Signal-Detect Mode		
		DET_MODE		0 = Peak threshold mode		
				1 = RMS threshold mode		
	6	DRC2_SIG_DET	0	DRC2 Signal-Detect Enable	9	
				0 = Disabled		
				1 = Enabled		
	5	DRC2_KNEE2_	0	DRC2 KNEE2_OP Enable		
		OP_ENA		0 = Disabled		
				1 = Enabled		
	4	DRC2_QR	1	DRC2 Quick-release Enable	е	
				0 = Disabled		
				1 = Enabled		
	3	DRC2_ANTICLIP	1	DRC2 Anticlip Enable		
				0 = Disabled		
				1 = Enabled		
R3721 (0x0E89)	12:9	DRC2_ATK[3:0]	0100	DRC2 Gain attack rate (sec	onds/6 dB)	
DRC2_ctrl2				0000 = Reserved	0101 = 2.9 ms	1010 = 92.8 ms
				0001 = 181 μs	0110 = 5.8 ms	1011 = 185.6 ms
				0010 = 363 μs	0111 = 11.6 ms	1100 to 1111 = Reserved
				0011 = 726 μs	1000 = 23.2 ms	
				0100 = 1.45 ms	1001 = 46.4 ms	
	8:5	DRC2_DCY[3:0]	1001	DRC2 Gain decay rate (sec	conds/6 dB)	
				0000 = 1.45 ms	0101 = 46.5 ms	1010 = 1.49 s
				0001 = 2.9 ms	0110 = 93 ms	1011 = 2.97 s
				0010 = 5.8 ms	0111 = 186 ms	1100 to 1111 = Reserved
				0011 = 11.6 ms	1000 = 372 ms	
				0100 = 23.25 ms	1001 = 743 ms	
	4:2	DRC2_	100	DRC2 Minimum gain to atte	enuate audio signals	
		MINGAIN[2:0]		000 = 0 dB	011 = -24 dB	11X = Reserved
				001 = -12 dB (default)	100 = -36 dB	
				010 = -18 dB	101 = Reserved	
	1:0	DRC2_	11	DRC2 Maximum gain to boo	ost audio signals (dB)	
		MAXGAIN[1:0]		00 = 12 dB	10 = 24 dB	
				01 = 18 dB	11 = 36 dB	

Table 4-18. DRC2 Control Registers (Cont.)

Register Address	Bit	Label	Default		Description	
R3722 (0x0E8A)	15:12	DRC2_NG_	0000	DRC2 Minimum gain to atte	enuate audio signals when the	e Noise Gate is active.
DRC2_ctrl3		MINGAIN[3:0]		0000 = -36 dB	0101 = -6 dB	1010 = 24 dB
				0001 = -30 dB	0110 = 0 dB	1011 = 30 dB
				0010 = -24 dB	0111 = 6 dB	1100 = 36 dB
				0011 = -18 dB	1000 = 12 dB	1101 to 1111 = Reserved
				0100 = -12 dB	1001 = 18 dB	
	11:10	DRC2_NG_	00	DRC2 Noise-Gate slope		
		EXP[1:0]		00 = 1 (no expansion)	10 = 4	
				01 = 2	11 = 8	
	9:8	DRC2_QR_	00	DRC2 Quick-release thresh	old (crest factor in dB)	
		THR[1:0]		00 = 12 dB	10 = 24 dB	
				01 = 18 dB	11 = 30 dB	
	7:6	DRC2_QR_	00	DRC2 Quick-release decay	,	
		DCY[1:0]		00 = 0.725 ms	10 = 5.8 ms	
				01 = 1.45 ms	11 = Reserved	
	5:3	DRC2_HI_	011	DRC2 Compressor slope (u		
		COMP[2:0]		000 = 1 (no compression)		11X = Reserved
				001 = 1/2	100 = 1/16	
				010 = 1/4	101 = 0	
	2:0	DRC2_LO_	000	DRC2 Compressor slope (le	• ·	
		COMP[2:0]		000 = 1 (no compression)		11X = Reserved
				001 = 1/2	100 = 0	
				010 = 1/4	101 = Reserved	
R3723 (0x0E8B)	10:5	DRC2_KNEE_	000000	DRC2 Input signal level at t	•	
DRC2_ctrl4		IP[5:0]		0x00 = 0 dB	0x02 = -1.5 dB	0x3C = -45 dB
				0x01 = -0.75 dB	(-0.75-dB steps)	0x3D-0x3F = Reserved
	4:0	DRC2_KNEE_	00000	DRC2 Output signal at the		
		OP[4:0]		0x00 = 0 dB	0x02 = -1.5 dB	0x1E = -22.5 dB
				0x01 = -0.75 dB	(–0.75 dB steps)	0x1F = Reserved
R3724 (0x0E8C)	9:5	DRC2_KNEE2_	00000	, ,	he noise-gate threshold, Kne	
DRC2_ctrl5		IP[4:0]		0x00 = -36 dB	0x02 = -39 dB	0x1E = -81 dB
				0x01 = -37.5 dB	(-1.5-dB steps)	0x1F = -82.5 dB
				Applicable only if DRC2_NO		
	4:0	DRC2_KNEE2_	00000	. •	noise-gate threshold, Knee 2	
		OP[4:0]		0x00 = -30 dB	0x02 = -33 dB	0x1E = -75 dB
				0x01 = -31.5 dB	(-1.5dB steps)	0x1F = -76.5 dB
				Applicable only if DRC2_KN	NEE2_OP_ENA = 1.	

The CS42L92 performs automatic checks to confirm that the SYSCLK frequency is high enough to support the commanded DRC and digital mixing functions. If the frequency is too low, an attempt to enable a DRC signal path fails. Note that active signal paths are not affected under such circumstances.

The FX_STS field in register R3585 indicates the status of each EQ, DRC, and LHPF signal path. If an underclocked error condition occurs, this field indicates which EQ, DRC, or LHPF signal paths have been enabled.

The status bits in registers R1600–R3576 indicate the status of each digital mixer. If an underclocked error condition occurs, these bits indicate which mixers have been enabled.

4.3.6 Low-/High-Pass Digital Filter (LHPF)

The digital core provides four LHPF processing blocks as shown in Fig. 4-23. A four-input mixer is associated with each filter. The four input sources are selectable in each case, and independent volume control is provided for each path. Each LHPF block supports one output.

The LHPF /HPF can be used to remove unwanted out-of-band noise from a signal path. Each filter can be configured either as a low-pass filter (LPF) or a high-pass filter (HPF).

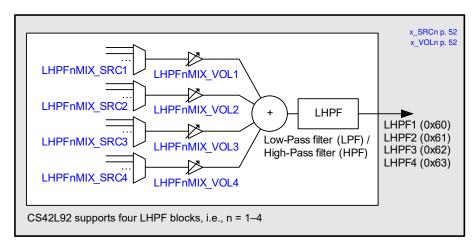


Figure 4-23. Digital-Core LPF/HPF Blocks

The LHPF1–LHPF4 mixer control fields, shown in Fig. 4-23, are located at register addresses R2304–R2335 (0x0900–0x091F).

The full list of digital mixer control registers (R1600–R3576) is provided in Section 6. Generic register field definitions are provided in Table 4-11.

The x_SRC*n* fields select the input sources for the respective LHPF processing blocks. Note that the selected input sources must be configured for the same sample rate as the LHPF to which they are connected. Sample-rate conversion functions are available to support flexible interconnectivity; see Section 4.3.15 and Section 4.3.16.

The hexadecimal numbers in Fig. 4-23 indicate the corresponding x_SRC*n* setting for selection of that signal as an input to another digital-core function.

The sample rate for the LHPF function is configured using FX_RATE; see Table 4-26. Note that the EQ, DRC, and LHPF functions must all be configured for the same sample rate. Sample-rate conversion is required when routing the LHPF signal paths to any signal chain that is asynchronous or configured for a different sample rate.

The FX_RATE field must not be changed if any of the associated x_SRCn fields is nonzero. The associated x_SRCn fields must be cleared before writing a new value to FX_RATE. A minimum delay of 125 μ s must be allowed between clearing the x_SRCn fields and writing to FX_RATE. See Table 4-26 for details.

The control registers associated with the LHPF functions are described in Table 4-19.

The cut-off frequencies for the LHPF blocks are set by using the coefficients held in registers R3777, R3781, R3785, and R3789 for LHPF1, LHPF2, LHPF3 and LHPF4 respectively. These coefficients are derived using tools provided in Cirrus Logic's WISCE evaluation board control software; please contact your Cirrus Logic representative for details.

Table 4-19. Low-Pass Filter/High-Pass Filter

Register Address	Bit	Label	Default	Description			
R3585 (0x0E01) FX Ctrl2	15:4	FX_STS[11:0]		LHPF, DRC, EQ Enable Status. Indicates the status of the respective signal-processing functions. Each bit is coded as follows:			
_				0 = Disabled			
				1 = Enabled			
				[11] = EQ4	[7] = DRC2 (Right)	[3] = LHPF4	
				[10] = EQ3	[6] = DRC2 (Left)	[2] = LHPF3	
				[9] = EQ2	[5] = DRC1 (Right)	[1] = LHPF2	
				[8] = EQ1	[4] = DRC1 (Left)	[0] = LHPF1	

Table 4-19. Low-Pass Filter/High-Pass Filter (Cont.)

Register Address	Bit	Label	Default	Description
R3776 (0x0EC0)	1	LHPF1_MODE	0	Low-/High-Pass Filter 1 Mode
HPLPF1_1				0 = Low Pass
				1 = High Pass
	0	LHPF1_ENA	0	Low-/High-Pass Filter 1 Enable
				0 = Disabled
				1 = Enabled
R3777 (0x0EC1)	15:0	LHPF1_COEFF[15:0]	0x0000	Low-/High-Pass Filter 1 Frequency Coefficient
HPLPF1_2				Refer to WISCE evaluation board control software for the derivation of this field value.
R3780 (0x0EC4)	1	LHPF2_MODE	0	Low-/High-Pass Filter 2 Mode
, ,	ı	LHPFZ_MODE	U	0 = Low Pass
HPLPF2_1				
	•	LUDEO ENA	0	1 = High Pass
	0	LHPF2_ENA	0	Low-/High-Pass Filter 2 Enable
				0 = Disabled
D0704 (0.0E05)	45.0	LUDEO OOFFEIAF OL	0.0000	1 = Enabled
, ,	15:0	LHPF2_COEFF[15:0]	0x0000	Low-/High-Pass Filter 2 Frequency Coefficient
HPLPF2_2				Refer to WISCE evaluation board control software for the derivation of this field value.
R3784 (0x0EC8)	1	LHPF3_MODE	0	Low-/High-Pass Filter 3 Mode
HPLPF3_1				0 = Low Pass
				1 = High Pass
	0	LHPF3_ENA	0	Low-/High-Pass Filter 3 Enable
				0 = Disabled
				1 = Enabled
R3785 (0x0EC9)	15:0	LHPF3_COEFF[15:0]	0x0000	Low-/High-Pass Filter 3 Frequency Coefficient
HPLPF3_2				Refer to WISCE evaluation board control software for the derivation of this field value.
R3788 (0x0ECC)	1	LHPF4 MODE	0	Low-/High-Pass Filter 4 Mode
HPLPF4_1		_		0 = Low Pass
				1 = High Pass
	0	LHPF4 ENA	0	Low-/High-Pass Filter 4 Enable
	-	_		0 = Disabled
				1 = Enabled
R3789 (0x0ECD)	15:0	LHPF4 COEFF[15:0]	0x0000	Low-/High-Pass Filter 4 Frequency Coefficient
HPLPF4_2				Refer to WISCE evaluation board control software for the derivation of this field
				value.

The CS42L92 performs automatic checks to confirm whether the SYSCLK frequency is high enough to support the commanded LHPF and digital mixing functions. If the frequency is too low, an attempt to enable an LHPF signal path fails. Note that active signal paths are not affected under such circumstances.

The FX_STS field in register R3585 indicates the status of each EQ, DRC, and LHPF signal path. If an underclocked error condition occurs, this field indicates which EQ, DRC, or LHPF signal paths have been enabled.

The status bits in registers R1600–R3576 indicate the status of each digital mixer. If an underclocked error condition occurs, these bits indicate which mixers have been enabled.

4.3.7 Digital-Core DSP

The digital core provides one programmable DSP processing block as shown in Fig. 4-24. The DSP block supports eight inputs (Left, Right, Aux1, Aux2, ... Aux6). A four-input mixer is associated with the left and right inputs, providing further expansion of the number of input paths. Each of the input sources is selectable, and independent volume control is provided for left and right input mixer channels. The DSP block supports six outputs.

The functionality of the DSP processing block is not fixed; application-specific algorithms can be implemented according to different customer requirements. The procedure for configuring the CS42L92 DSP functions is tailored to each customer's application; please contact your Cirrus Logic representative for details.

For details of the DSP firmware requirements relating to clocking, register access, and code execution, refer to Section 4.4.3.

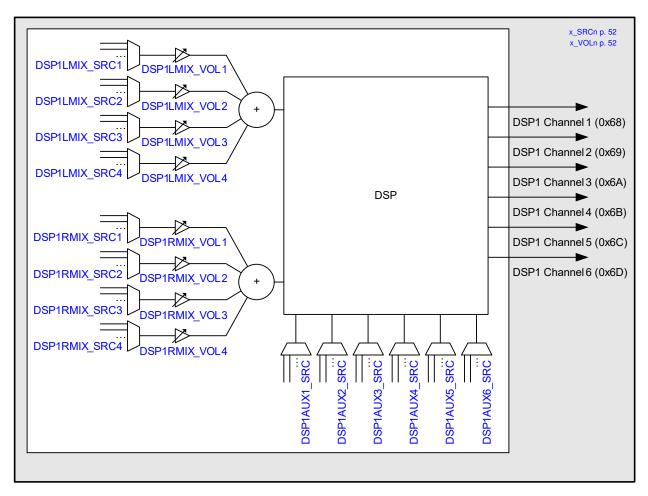


Figure 4-24. Digital-Core DSP Block

The DSP mixer input control fields (see Fig. 4-24) are located at register addresses R2368–R2424 (0x0940–0x0978).

The full list of digital mixer control registers (R1600–R3576) is provided in Section 6. Generic register field definitions are provided in Table 4-11.

The x_SRC*n* fields select the input sources for the DSP processing block. Note that the selected input sources must be configured for the same sample rate as the DSP. Sample-rate conversion functions are available to support flexible interconnectivity; see Section 4.3.16.

The hexadecimal numbers in Fig. 4-24 indicate the corresponding x_SRC*n* setting for selection of that signal as an input to another digital-core function.

The sample rate for the DSP functions is configured using the DSP1_RATE field; see Table 4-26. Sample-rate conversion is required when routing the DSP signal paths to any signal chain that is configured for a different sample rate.

The DSP1_RATE field must not be changed if any of the respective x_SRCn fields is nonzero. The associated x_SRCn fields must be cleared before writing new values to DSP1_RATE. A minimum delay of 125 μ s must be allowed between clearing the x_SRCn fields and writing to the DSP1_RATE field. See Table 4-26 for details.

The CS42L92 performs automatic checks to confirm that the SYSCLK frequency is high enough to support the required DSP mixing functions. If the frequency is too low, an attempt to enable a DSP mixer path fails. Note that active signal paths are not affected under such circumstances.

The status bits in registers R1600–R3576 indicate the status of each digital mixer. If an underclocked error condition occurs, these bits indicate which mixers have been enabled.

4.3.8 S/PDIF Output Generator

The CS42L92 incorporates an IEC-60958-3–compatible S/PDIF output generator, as shown in Fig. 4-25; this provides a stereo S/PDIF output on a GPIO pin. The S/PDIF transmitter allows full control over the S/PDIF validity bits and channel status information.

The input sources to the S/PDIF transmitter are selectable for each channel, and independent volume control is provided for each path. The *TX1 and *TX2 fields control Channels A and B (respectively) of the S/PDIF output.

The S/PDIF signal can be output directly on a GPIO pin. See Section 4.14 to configure a GPIO pin for this function.

Note that the S/PDIF signal cannot be selected as input to the digital mixers or signal-processing functions within the CS42L92 digital core.

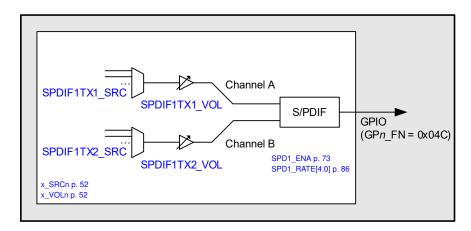


Figure 4-25. Digital-Core S/PDIF Output Generator

The S/PDIF input control fields (see Fig. 4-25) are located at register addresses R2048–R2057 (0x0800–0x0809).

The full list of digital mixer control registers (R1600–R3576) is provided in Section 6. Generic register field definitions are provided in Table 4-11.

The x_SRC*n* fields select the input sources for the two S/PDIF channels. Note that the selected input sources must be synchronized to the SYSCLK clocking domain, and configured for the same sample rate as the S/PDIF generator. Sample-rate conversion functions are available to support flexible interconnectivity; see Section 4.3.15 and Section 4.3.16.

The sample rate of the S/PDIF generator is configured using SPD1_RATE; see Table 4-26. The S/PDIF transmitter supports sample rates in the range 32–192 kHz. Note that sample-rate conversion is required when linking the S/PDIF generator to any signal chain that is asynchronous or configured for a different sample rate.

The SPD1_RATE field must not be changed if any of the associated x_SRCn fields is nonzero. The associated x_SRCn fields must be cleared before writing a new value to SPD1_RATE. A minimum delay of 125 μ s must be allowed between clearing the x_SRCn fields and writing to SPD1_RATE. See Table 4-26 for details.

The S/PDIF generator is enabled by setting SPD1 ENA, as described in Table 4-20.

The S/PDIF output contains audio data derived from the selected sources. Audio samples up to 24-bit width can be accommodated. The validity bits and the channel status bits in the S/PDIF data are configured using the corresponding fields in registers R1474 (0x5C2) to R1477 (0x5C5).

Refer to the S/PDIF specification (IEC60958-3 Digital Audio Interface - Consumer) for full details of the S/PDIF protocol and configuration parameters.

Register Address	Bit	Label	Default	Description
R1474 (0x05C2)	13	SPD1_VAL2	0	S/PDIF Validity (Subframe B)
SPD1_TX_Control	12	SPD1_VAL1	0	S/PDIF Validity (Subframe A)
	0	SPD1_ENA	0	S/PDIF Generator Enable
				0 = Disabled
				1 = Enabled
R1475 (0x05C3)	15:8	SPD1_CATCODE[7:0]	0x00	S/PDIF Category code
SPD1_TX_	7:6	SPD1_CHSTMODE[1:0]	00	S/PDIF Channel Status mode
Channel_Status_1	5:3	SPD1_PREEMPH[2:0]	000	S/PDIF Preemphasis mode
	2	SPD1_NOCOPY	0	S/PDIF Copyright status
	1	SPD1_NOAUDIO	0	S/PDIF Audio/nonaudio indication
	0	SPD1_PRO	0	S/PDIF Consumer Mode/Professional Mode
R1476 (0x05C4)	15:12	SPD1_FREQ[3:0]	0000	S/PDIF Indicated sample frequency
SPD1_TX_	11:8	SPD1_CHNUM2[3:0]	1011	S/PDIF Channel number (Subframe B)
Channel_Status_2	7:4	SPD1_CHNUM1[3:0]	0000	S/PDIF Channel number (Subframe A)
	3:0	SPD1_SRCNUM[3:0]	0001	S/PDIF Source number
R1477 (0x05C5)	11:8	SPD1_ORGSAMP[3:0]	0000	S/PDIF Original sample frequency
SPD1_TX_	7:5	SPD1_TXWL[2:0]	000	S/PDIF Audio sample word length
Channel_Status_3	4	SPD1_MAXWL	0	S/PDIF Maximum audio sample word length
	3:2	SPD1_SC31_30[1:0]	00	S/PDIF Channel Status [31:30]
	1:0	SPD1_CLKACU[1:0]	00	Transmitted Clock accuracy

Table 4-20. S/PDIF Output Generator Control

The S/PDIF output generator provides full support for 32-bit data words. Audio data samples up to 32 bits are supported on the AIF1, AIF3, and SLIMbus input channels, which can be routed to the S/PDIF output. Note that other signal paths and signal-processing blocks within the digital core are limited to 24-bit data length; data samples are truncated to 24-bit length if they are routed through any function that does not support 32-bit data words.

The CS42L92 automatically checks to confirm whether the SYSCLK frequency is high enough to support the digital mixer paths. If an attempt is made to enable the S/PDIF generator, and there are insufficient SYSCLK cycles to support it, the attempt does not succeed. Note that any active signal paths are unaffected under such circumstances.

The status bits in registers R1600–R3576 indicate the status of each digital mixer. If an underclocked error condition occurs, these bits indicate which mixers have been enabled.

4.3.9 Tone Generator

The CS42L92 incorporates a tone generator that can be used for beep functions through any of the audio signal paths. The tone generator provides two 1-kHz outputs, with configurable phase relationship, offering flexibility to create differential signals or test scenarios.

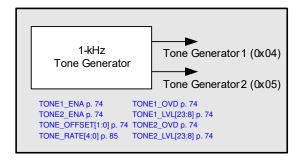


Figure 4-26. Digital-Core Tone Generator

The tone generator outputs can be selected as input to any of the digital mixers or signal-processing functions within the CS42L92 digital core. The hexadecimal numbers in Fig. 4-26 indicate the corresponding x_SRC*n* setting for selection of that signal as an input to another digital-core function.

The sample rate for the tone generator is configured using TONE_RATE. See Table 4-26. Note that sample-rate conversion is required when routing the tone generator outputs to any signal chain that is asynchronous or configured for a different sample rate.

The tone generator outputs are enabled by setting the TONE1_ENA and TONE2_ENA bits as described in Table 4-21. The phase relationship is configured using TONE_OFFSET.

The tone generator outputs can also provide a configurable DC signal level, for use as a test signal. The DC output is selected using the TONE*n*_DVD bits, and the DC signal amplitude is configured using the TONE*n*_LVL fields, as described in Table 4-21.

Table 4-21. Tone Generator Control

Register Address	Bit	Label	Default	Description
R32 (0x0020)	9:8	TONE_	00	Tone Generator Phase Offset. Sets the phase of Tone Generator 2 relative to Tone
Tone_Generator_1		OFFSET[1:0]		Generator 1
				00 = 0° (in phase)
				01 = 90° ahead
				10 = 180° ahead
				11 = 270° ahead
	5	TONE2_	0	Tone Generator 2 Override
		OVD		0 = Disabled (1-kHz tone output)
				1 = Enabled (DC signal output)
				The DC signal level, when selected, is configured using TONE2_LVL[23:0]
	4	TONE1_	0	Tone Generator 1 Override
		OVD		0 = Disabled (1-kHz tone output)
				1 = Enabled (DC signal output)
				The DC signal level, when selected, is configured using TONE1_LVL[23:0]
	1	TONE2_ENA	0	Tone Generator 2 Enable
				0 = Disabled
				1 = Enabled
	0	TONE1_ENA	0	Tone Generator 1 Enable
				0 = Disabled
				1 = Enabled
R33 (0x0021)	15:0	TONE1_	0x1000	Tone Generator 1 DC output level
Tone_Generator_2		LVL[23:8]		TONE1_LVL[23:8] is coded as 2's complement. Bits [23:20] contain the integer portion; bits [19:0] contain the fractional portion.
				The digital core 0 dBFS level corresponds to 0x10_0000 (+1) or 0xF0_0000 (-1).
R34 (0x0022)	7:0	TONE1_	0x00	Tone Generator 1 DC output level
Tone_Generator_3		LVL[7:0]		TONE1_LVL[23:8] is coded as 2's complement. Bits [23:20] contain the integer portion; bits [19:0] contain the fractional portion.
				The digital core 0 dBFS level corresponds to 0x10_0000 (+1) or 0xF0_0000 (-1).
R35 (0x0023)	15:0	TONE2_	0x1000	Tone Generator 2 DC output level
Tone_Generator_4		LVL[23:8]		TONE2_LVL[23:8] is coded as 2's complement. Bits [23:20] contain the integer portion; bits [19:0] contain the fractional portion.
				The digital core 0 dBFS level corresponds to 0x10_0000 (+1) or 0xF0_0000 (-1).
R36 (0x0024)	7:0	TONE2_	0x00	Tone Generator 2 DC output level
Tone_Generator_5		LVL[7:0]		TONE2_LVL[23:8] is coded as 2's complement. Bits [23:20] contain the integer portion; bits [19:0] contain the fractional portion.
				The digital core 0 dBFS level corresponds to 0x10_0000 (+1) or 0xF0_0000 (-1).

4.3.10 Noise Generator

The CS42L92 incorporates a white-noise generator that can be routed within the digital core. The main purpose of the noise generator is to provide comfort noise in cases where silence (digital mute) is not desirable.

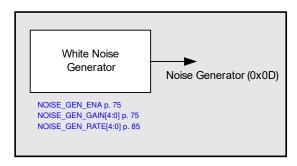


Figure 4-27. Digital-Core Noise Generator

The noise generator can be selected as input to any of the digital mixers or signal-processing functions within the CS42L92 digital core. The hexadecimal number (0x0D) in Fig. 4-27 indicates the corresponding x_SRCn setting for selection of the noise generator as an input to another digital-core function.

The sample rate for the noise generator is configured using NOISE_GEN_RATE. See Table 4-26. Note that sample-rate conversion is required when routing the noise generator output to any signal chain that is asynchronous or configured for a different sample rate.

The noise generator is enabled by setting NOISE_GEN_ENA, described in Table 4-22. The signal level is configured using NOISE_GEN_GAIN.

Register Address	Bit	Label	Default	Description
R160 (0x00A0)	5	NOISE_GEN_	0	Noise Generator Enable
Comfort_Noise_		ENA		0 = Disabled
Generator				1 = Enabled
	4:0	NOISE_GEN_	0x00	Noise generator signal level
		GAIN[4:0]		0x00 = -114 dBFS(6-dB steps) All other codes are reserved
				0x01 = -108 dBFS $0x11 = -6 dBFS$
				0x02 = -102 dBFS $0x12 = 0 dBFS$

Table 4-22. Noise Generator Control

4.3.11 Haptic Signal Generator

The CS42L92 incorporates a signal generator for use with haptic devices (e.g., mechanical vibration actuators). The haptic signal generator is compatible with both eccentric rotating mass (ERM) and linear resonant actuator (LRA) haptic devices.

The haptic signal generator is highly configurable, and includes the capability to execute a programmable event profile comprising three distinct operating phases.

The resonant frequency of the haptic signal output (for LRA devices) is selectable, providing support for many different actuator components.

The haptic signal generator is a digital signal generator, which is incorporated within the digital core of the CS42L92. In a typical use case the haptic signal may be routed, via one of the digital-core output mixers, to the digital PDM output. An external amplifier can be used to drive the haptic device, as shown in Fig. 4-28.

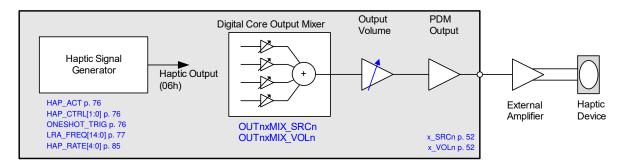


Figure 4-28. Digital-Core Haptic Signal Generator

The hexadecimal number (0x06) in Fig. 4-28 indicates the corresponding x_SRCn setting for selection of the haptic signal generator as an input to another digital-core function.

The haptic signal generator is selected as input to one of the digital-core output mixers by setting the x_SRCn field of the applicable output mixer to 0x06.

The sample rate for the haptic signal generator is configured using the HAP_RATE field. See Table 4-26. Note that sample-rate conversion is required when routing the haptic signal generator output to any signal chain that is asynchronous or configured for a different sample rate.

The haptic signal generator is configured for an ERM or LRA actuator using the HAP_ACT bit. The required resonant frequency is configured using the LRA FREQ field. Note that the resonant frequency is only applicable to LRA actuators.

The signal generator can be enabled in continuous mode or configured for one-shot mode using the HAP_CTRL field, as described in Table 4-23. In one-shot mode, the output is triggered by writing to the ONESHOT TRIG bit.

In one-shot mode, the signal generator profile comprises the distinct phases (1, 2, 3). The duration and intensity of each output phase is programmable.

In continuous mode, the signal intensity is controlled using the PHASE2_INTENSITY field only.

In the case of an ERM actuator (HAP_ACT = 0), the haptic output is a DC signal level, which may be positive or negative, as selected by the x INTENSITY fields.

For an LRA actuator (HAP_ACT = 1), the haptic output is an AC signal; selecting a negative signal level corresponds to a 180° phase inversion. In some applications, phase inversion may be desirable during the final phase, to halt the physical motion of the haptic device.

Table 4-23. Haptic Signal Generator Control

Register Address	Bit	Label	Default	Description
R144 (0x0090)		ONESHOT_	0	Haptic One-Shot Trigger. Writing 1 starts the one-shot profile (i.e., Phase 1, Phase 2,
Haptics_Control_1		TRIG		Phase 3)
	3:2	HAP_CTRL[1:0]	00	Haptic Signal Generator Control
				00 = Disabled 10 = One-Shot
				01 = Continuous 11 = Reserved
	1	HAP_ACT	0	Haptic Actuator Select
				0 = Eccentric rotating mass (ERM)
				1 = Linear resonant actuator (LRA)

Table 4-23. Haptic Signal Generator Control (Cont.)

Register Address	Bit	Label	Default	Description
R145 (0x0091)	14:0	LRA_	0x7FFF	Haptic Resonant Frequency. Selects the haptic signal frequency (LRA actuator only,
Haptics_Control_2		FREQ[14:0]		HAP_ACT = 1)
				Haptic Frequency (Hz) = System Clock/(2 x (LRA_FREQ+1)), where System Clock =
				6.144 MHz or 5.6448 MHz, derived by division from SYSCLK or ASYNCCLK.
				If HAP_RATE < 1000, SYSCLK is the clock source, and the applicable System Clock
				frequency is determined by SYSCLK.
				If HAP_RATE ≥ 1000, ASYNCCLK is the clock source, and the applicable System Clock frequency is determined by ASYNCCLK.
				Valid for haptic frequency in the range 100–250 Hz
				For 6.144-MHz System Clock: For 5.6448-MHz System Clock: 0x77FF = 100 Hz 0x6E3F = 100 Hz
				0x4491 = 175 Hz
D440 (0::0000)	7.0	DUACEA	000	0x2FFF = 250 Hz
R146 (0x0092)	7:0	PHASE1_ INTENSITY[7:0]	0x00	Haptic Output Level (Phase 1). Selects the signal intensity of Phase 1 in one-shot mode.
Haptics_phase_1_ intensity		INTENSITIE		Coded as 2's complement. Range is ± Full Scale (FS).
intensity				For ERM actuator, this selects the DC signal level for the haptic output.
				For LRA actuator, this selects the AC peak amplitude; negative values correspond to a 180° phase shift.
R147 (0x0093)	8:0	PHASE1_	0x000	Haptic Output Duration (Phase 1). Selects the duration of Phase 1 in one-shot mode.
Haptics_Control_		DURATION[8:0]		0x000 = 0 ms
phase_1_duration				0x001 = 0.625 ms
				0x002 = 1.25 ms
				(0.625-ms steps)
				0x1FF = 319.375 ms
R148 (0x0094)	7:0	PHASE2_	0x00	Haptic Output Level (Phase 2)
Haptics_phase_2_		INTENSITY[7:0]		Selects the signal intensity in Continuous mode or Phase 2 of one-shot mode.
intensity				Coded as 2's complement. Range is ± Full Scale (FS).
				For ERM actuator, this selects the DC signal level for the haptic output.
				For LRA actuator, this selects the AC peak amplitude; Negative values correspond to a
				180° phase shift.
R149 (0x0095)	10:0	PHASE2_	0x000	Haptic Output Duration (Phase 2). Selects the duration of Phase 2 in one-shot mode.
Haptics_phase_2_		DURATION[10:0]		0x000 = 0 ms $0x002 = 1.25 ms$ $0x7FF = 1279.375 ms$
duration				0x001 = 0.625 ms (0.625-ms steps)
R150 (0x0096)	7:0	PHASE3_	0x00	Haptic Output Level (Phase 3). Selects the signal intensity of Phase 3 in one-shot mode.
Haptics_phase_3_		INTENSITY[7:0]		Coded as 2's complement.
intensity				Range is ± Full Scale (FS).
				For ERM actuator, this selects the DC signal level for the haptic output.
				For LRA actuator, this selects the AC peak amplitude; Negative values correspond to a 180° phase shift.
R151 (0x0097)	8:0	PHASE3_	0x000	Haptic Output Duration (Phase 3). Selects the duration of Phase 3 in one-shot mode.
Haptics_phase_3_		DURATION[8:0]		0x000 = 0 ms $0x002 = 1.25 ms$ $0x1FF = 319.375 ms$
duration				0x001 = 0.625 ms (0.625-ms steps)
R152 (0x0098)	0	ONESHOT_STS	0	Haptic One-Shot status
Haptics_Status		_		0 = One-Shot event not in progress
. –				1 = One-Shot event in progress
	1		1	1 0

4.3.12 PWM Generator

The CS42L92 incorporates two PWM signal generators as shown in Fig. 4-29. The duty cycle of each PWM signal can be modulated by an audio source, or can be set to a fixed value using a control register setting.

A four-input mixer is associated with each PWM generator. The four input sources are selectable in each case, and independent volume control is provided for each path.

PWM signal generators can be output directly on a GPIO pin. See Section 4.14 to configure a GPIO pin for this function.

Note that the PWM signal generators cannot be selected as input to the digital mixers or signal-processing functions within the CS42L92 digital core.

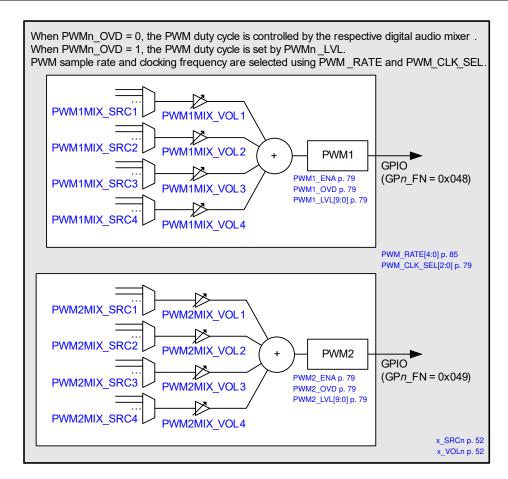


Figure 4-29. Digital-Core PWM Generator

The PWM1 and PWM2 mixer control fields (see Fig. 4-29) are located at register addresses R1600–R1615 (0x0640–0x064F).

The full list of digital mixer control registers (R1600–R3576) is provided in Section 6. Generic register field definitions are provided in Table 4-11.

The x_SRCn fields select the input sources for the respective mixers. Note that the selected input sources must be configured for the same sample rate as the mixer to which they are connected. Sample-rate conversion functions are available to support flexible interconnectivity; see Section 4.3.15 and Section 4.3.16.

The PWM sample rate (cycle time) is configured using PWM_RATE. See Table 4-26. Note that sample-rate conversion is required when linking the PWM generators to any signal chain that is asynchronous or configured for a different sample rate.

The PWM_RATE field must not be changed if any of the associated x_SRCn fields is nonzero. The associated x_SRCn fields must be cleared before writing a new value to PWM_RATE. A minimum delay of 125 μ s must be allowed between clearing the x_SRCn fields and writing to PWM_RATE. See Table 4-26 for details.

The PWM generators are enabled by setting PWM1_ENA and PWM2_ENA, respectively, as described in Table 4-24.

Under default conditions (PWMn_OVD = 0), the duty cycle of the PWM generators is controlled by an audio signal path; a 4-input mixer is associated with each PWM generator, as shown in Fig. 4-29.

When the PWMn_OVD bit is set, the duty cycle of the respective PWM generator is set to a fixed ratio; in this case, the duty cycle ratio is configurable using the PWMn LVL fields.

The PWM generator clock frequency is selected using PWM_CLK_SEL. For best performance, the highest available setting should be used. Note that the PWM generator clock must not be set to a higher frequency than SYSCLK (if PWM_RATE ≥ 1000).

Table 4-24. PWM Generator Control

Register Address	Bit	Label	Default	Description
R48 (0x0030)	10:8	PWM_CLK_	000	PWM Clock Select
PWM_Drive_1		SEL[2:0]		000 = 6.144 MHz (5.6448 MHz)
				001 = 12.288 MHz (11.2896 MHz)
				010 = 24.576 MHz (22.5792 MHz)
				All other codes are reserved.
				The frequencies in brackets apply for 44.1 kHz–related sample rates only.
				PWM_CLK_SEL controls the resolution of the PWM generator; higher settings correspond to higher resolution.
				The PWM Clock must be less than or equal to SYSCLK (if PWM_RATE < 1000) or less than or equal to ASYNCCLK (if PWM_RATE ≥ 1000).
	5	PWM2_OVD	0	PWM2 Generator Override
				0 = Disabled (PWM duty cycle is controlled by audio source)
				1 = Enabled (PWM duty cycle is controlled by PWM2_LVL).
	4	PWM1_OVD	0	PWM1 Generator Override
				0 = Disabled (PWM1 duty cycle is controlled by audio source)
				1 = Enabled (PWM1 duty cycle is controlled by PWM1_LVL).
	1	PWM2_ENA	0	PWM2 Generator Enable
				0 = Disabled
				1 = Enabled
	0	PWM1_ENA	0	PWM1 Generator Enable
				0 = Disabled
				1 = Enabled
R49 (0x0031)	9:0	PWM1_LVL[9:0]	0x100	PWM1 Override Level. Sets the PWM1 duty cycle when PWM1_OVD = 1.
PWM_Drive_2				Coded as 2's complement.
				0x000 = 50% duty cycle
				0x200 = 0% duty cycle
R50 (0x0032)	9:0	PWM2_LVL[9:0]	0x100	PWM2 Override Level. Sets the PWM2 duty cycle when PWM2_OVD = 1.
PWM_Drive_3				Coded as 2's complement.
				0x000 = 50% duty cycle
				0x200 = 0% duty cycle

The CS42L92 automatically checks to confirm that the SYSCLK frequency is high enough to support the digital mixer paths. If an attempt is made to enable a PWM signal mixer path, without sufficient SYSCLK cycles to support it, the attempt fails. Note that any signal paths that are already active are not affected under such circumstances.

The status bits in registers R1600–R3576 indicate the status of each digital mixer. If an underclocked error condition occurs, these bits indicate which mixers have been enabled.

4.3.13 Data Format Conversion

The digital mixing and signal-processing functions on the CS42L92 are designed to route audio data in signed fixed point format. Data format converter (DFC) blocks are incorporated in the digital core, with the capability to convert audio data between signed, unsigned, and floating-point formats. The DFCs enable the flexibility to support many different interface standards on the input and output signal paths. They can also be used to apply dithering to digital audio data.

The digital core provides eight DFC blocks as shown in Fig. 4-30. Each DFC supports one input and one output path only.

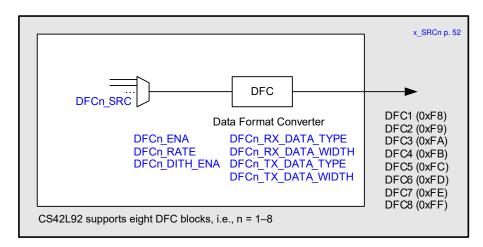


Figure 4-30. Digital-Core DFC Blocks

The DFC1–DFC8 input control fields (see Fig. 4-30) are located at register addresses R3520–R3576 (0x0DC0–0x0DF8).

The full list of digital-mixer control registers (R1600–R3576) is provided in Section 6. Generic register field definitions are provided in Table 4-11.

The x_SRC*n* fields select the input sources for the respective DFCs. Note that the selected input sources must be configured for the same sample rate as the DFC to which they are connected. Sample-rate conversion functions are available to support flexible interconnectivity; see Section 4.3.15 and Section 4.3.16.

The hexadecimal numbers in Fig. 4-30 indicate the corresponding x_SRC*n* setting for selection of that signal as an input to another digital-core function.

The sample rate for each converter DFC*n* is configured using the respective DFC*n*_RATE field; see Table 4-26. Note that sample-rate conversion is required when routing the DFC paths to any signal chain that is asynchronous or configured for a different sample rate.

The DFCn_RATE fields must not be changed if the associated x_SRCn field is nonzero. The associated x_SRCn field must be cleared before writing a new value to DFCn_RATE. A minimum delay of 125 μ s must be allowed between clearing the x_SRCn field and writing to the associated DFCn_RATE field. See Table 4-26 for details.

The DFC is enabled by setting DFCn ENA.

The input data format is configured using the DFCn_RX_DATA_TYPE and DFCn_RX_DATA_WIDTH fields. Valid data types are signed fixed point, unsigned fixed point, and three different floating point configurations. If a fixed point data type is selected, the data width (number of data bits) is selected using DFCn_RX_DATA_WIDTH.

The DFC input can be any of the digital core inputs or signal processing blocks. If the input data type is unsigned or floating point format, one of the AIF or SLIMbus RX channels must be selected as the DFC input source—unsigned and floating point data types are not valid selections with any other source within the digital core.

The output data format is configured using the DFC*n*_TX_DATA_TYPE and DFC*n*_TX_DATA_WIDTH fields. Valid data types are signed fixed point, unsigned fixed point, and floating point formats. If a fixed point data type is selected, the data width (number of data bits) is selected using DFC*n*_TX_DATA_WIDTH.

The DFC output can be selected as input to any of the digital mixers or signal-processing functions within the CS42L92 digital core. If the DFC output data type is unsigned fixed point or floating point format, it must be routed directly to the AIF or SLIMbus TX channels using the respective digital-core output mixers—unsigned fixed point or floating point data is not valid as input to any other digital core functions.

Note: If unsigned fixed point or floating point data is routed from a DFC output to an AIF or SLIMbus TX channel, the DFC must be the only enabled signal path in the respective output mixer, and the associated volume selection must be 0 dB.

The DFC can apply dithering to its output data; this is enabled by setting DFC*n*_DITH_ENA. Note that dithering is only valid if the output data is in fixed point format (signed or unsigned). If the output data type is floating point, the DFC*n*_DITH_ENA bit must be cleared.

The dither function can be used to improve the noise characteristics of signals routed in the digital core. Dithering is particularly recommended if truncating audio data (e.g., from 32- to 24-bit format) as it converts the truncation/quantization errors into benign background noise.

The DFCs provide input to the interrupt control circuit and can be used to trigger an interrupt event if saturation (arithmetic error) is detected; see Section 4.15.

The control registers associated with the DFCs are described in Table 4-25.

Table 4-25. Digital-Core DFC Control

Register Address	Bit	Label	Default	•
R5248 (0x1480)	1	DFCn_DITH_ENA	0	DFC <i>n</i> dither enable (valid for fixed point output data only)
DFC1_CTRL_W0				0 = Disabled
R5254 (0x1486)				1 = Enabled
DFC2_CTRL_W0	0	DFCn_ENA	0	DFC <i>n</i> enable
R5260 (0x148C) DFC3_CTRL_W0				0 = Disabled
R5266 (0x1492)				1 = Enabled
DFC4_CTRL_W0				
R5272 (0x1498)				
DFC5_CTRL_W0				
R5278 (0x149E)				
DFC6_CTRL_W0				
R5284 (0x14A4)				
DFC7_CTRL_W0				
R5290 (0x14AA)				
DFC8_CTRL_W0 R5250 (0x1482)	12:8	DFCn RX DATA	0x1F	DFC <i>n</i> input data width (valid for fixed point data types only)
DFC1_RX_W0	12.0	WIDTH[4:0]	UXIF	0x00 to 0x06 = Reserved 0x09 = 10 bits
R5256 (0x1488)				0x07 = 9 hito
DFC2_RX_W0				0x07 - 6 bits $0x08 = 9 bits$ $0x1F = 32 bits$
R5262 (0x148E)	2:0	DFCn RX DATA	000	DFC <i>n</i> input data type
DFC3_RX_W0	2.0	TYPE[2:0]	000	000 = Signed, fixed point
R5268 (0x1494)		–[–.•]		001 = Unsigned, fixed point
DFC4_RX_W0				010 = Single-precision floating point (binary32)
R5274 (0x149A)				100 = Half-precision floating point (binary16)
DFC5_RX_W0 R5280 (0x14A0)				101 = ARM-alternative half-precision floating point
DFC6_RX_W0				All other codes are reserved.
R5286 (0x14A6)				All other codes are reserved.
DFC7_RX_W0				
R5292 (0x14AC)				
DFC8_RX_W0				
R5252 (0x1488)	12:8	DFCn_TX_DATA_	0x1F	DFCn output data width (valid for fixed point data types only)
DFC1_TX_W0		WIDTH[4:0]		0x00 to 0x06 = Reserved $0x09 = 10 bits$
R5258 (0x148A)				0x07 = 8 bits
DFC2_TX_W0 R5264 (0x1490)				$0x08 = 9 \text{ bits} \qquad 0x1F = 32 \text{ bits}$
DFC3_TX_W0	2:0	DFCn_TX_DATA_	000	DFCn output data type
R5270 (0x1494)		TYPE[2:0]		000 = Signed, fixed point
DFC4_TX_W0				001 = Unsigned, fixed point
R5276 (0x149C)				010 = Single-precision floating point (binary32)
DFC5_TX_W0 ´				100 = Half-precision floating point (binary16)
R5282 (0x14A2)				101 = ARM-alternative half-precision floating point
IDECS TV MA				
DFC6_TX_W0				All other codes are reserved.
R5288 (0x14A8)				All other codes are reserved.
				All other codes are reserved.

The CS42L92 automatically checks to confirm whether the SYSCLK frequency is high enough to support the commanded DFC and digital mixing functions. If an attempt is made to enable DFC signal path, and there are insufficient SYSCLK cycles to support it, the attempt does not succeed. Note that any signal paths that are already active are not affected under such circumstances.

The status bits in registers R1600–R3576 indicate the status of each digital mixer. If an underclocked error condition occurs, these bits indicate which mixers have been enabled.

4.3.14 Sample-Rate Control

The CS42L92 supports multiple signal paths through the digital core. Stereo full-duplex sample-rate conversion is provided to allow digital audio to be routed between interfaces operating at different sample rates and/or referenced to asynchronous clock domains.

Two independent clock domains are supported for the audio signal paths, referenced to SYSCLK and ASYNCCLK respectively, as described in Section 4.16. Every digital signal path must be synchronized either to SYSCLK or to ASYNCCLK.

Up to five different sample rates may be in use at any time on the CS42L92. Three of these sample rates must be synchronized to SYSCLK; the remaining two, where required, must be synchronized to ASYNCCLK.

Sample-rate conversion is required when routing any audio path between digital functions that are asynchronous or configured for different sample rates.

The asynchronous sample-rate converter (ASRC) supports two-way stereo conversion paths between the SYSCLK and ASYNCCLK domains. The ASRC is described in Section 4.3.15.

There are two isochronous sample-rate converters (ISRCs). Each ISRC supports two-way, two-channel conversion paths between sample rates on the SYSCLK domain, or between sample rates on the ASYNCCLK domain. The ISRCs are described in Section 4.3.16.

The sample rate of different blocks within the CS42L92 digital core are controlled as shown in Fig. 4-31. The x_RATE fields select the applicable sample rate for each respective group of digital functions.

The x_RATE fields must not be changed if any of the x_SRCn fields associated with the respective functions is nonzero. The associated x_SRCn fields must be cleared before writing new values to the x_RATE fields. A minimum delay of 125 μ s must be allowed between clearing the x_SRCn fields and writing to the associated x_RATE fields. See Table 4-26 for details.

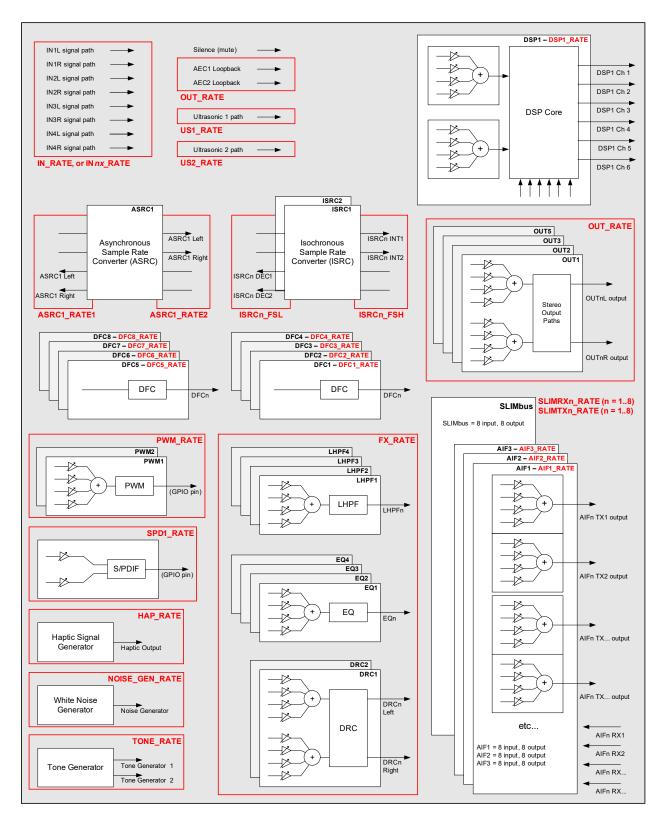


Figure 4-31. Digital-Core Sample-Rate Control

The input signal paths may be selected as input to the digital mixers or signal-processing functions. The sample rate for the input signal paths can either be set globally (using IN_RATE), or can be configured independently for each input channel (using the respective IN*nx*_RATE fields). The applicable mode depends on IN_RATE_MODE, as described in

Table 4-3.

The ultrasonic demodulator circuits can be selected as input to the digital mixers or signal-processing functions. The sample rate for these signals are configured using US1_RATE and US2_RATE. The selected sample rate must be equal to the output rate of the demodulator function, set by the respective USn FREQ field—see Section 4.2.9.

The output signal paths are derived from the respective output mixers. The sample rate for the output signal paths is configured using OUT_RATE. The sample rate of the AEC loop-back path is also set by OUT_RATE. Clocking for the DACs and output signal path circuits must also be configured using the OUT_CLK_SRC field—see Section 4.11.2.

The AIF n RX inputs may be selected as input to the digital mixers or signal-processing functions. The AIF n TX outputs are derived from the respective output mixers. The sample rates for digital audio interfaces (AIF1–AIF3) are configured using the AIF n_RATE fields (where n identifies the applicable AIF 1, 2, or 3) respectively.

The SLIMbus interface supports up to eight input channels and eight output channels. The sample rate of each channel can be configured independently, using SLIMTX*n* RATE and SLIMRX*n* RATE.

Note that the SLIMbus interface provides simultaneous support for SYSCLK-referenced and ASYNCCLK-referenced sample rates on different channels. For example, 48-kHz and 44.1-kHz SLIMbus audio paths can be simultaneously supported.

The EQ, DRC, and LHPF functions can be enabled in any signal path within the digital core. The sample rate for these functions is configured using FX_RATE. Note that the EQ, DRC, and LHPF functions must all be configured for the same sample rate.

The DSP functions can be enabled in any signal path within the digital core. The applicable sample rate is configured using the DSP1 RATE field.

The S/PDIF transmitter can be enabled on a GPIO pin. Stereo inputs to this function can be configured from any of the digital-core inputs, mixers, or signal-processing functions. The sample rate of the S/PDIF transmitter is configured using SPD1_RATE.

The tone generator and noise generator can be selected as input to any of the digital mixers or signal-processing functions. The sample rates for these sources are configured using the TONE_RATE and NOISE_GEN_RATE fields, respectively.

The haptic signal generator can be used to control an external vibe actuator. In a typical use case the haptic signal may be routed, via one of the digital-core output mixers, to the digital PDM output (OUT5). The sample rate for the haptic signal generator is configured using HAP RATE.

The PWM signal generators can be modulated by an audio source, derived from the associated signal mixers. The sample rate (cycle time) for the PWM signal generators is configured using PWM_RATE.

The DFCn blocks can be enabled in signal paths within the digital core. The applicable sample rates are configured using the DFCn RATE fields (where n identifies the applicable DFC block).

The sample-rate control registers are described in Table 4-26. Refer to the field descriptions for details of the valid selections in each case—note that the input (ADC) and output (DAC) signal paths must always be associated with the SYSCLK clocking domain; different sample rates may be selected concurrently, but both these rates must be synchronized to SYSCLK.

The control registers associated with the ASRC and ISRCs are described in Table 4-27 and Table 4-28.

Note that 32-bit register addressing is used from R12888 (0x3000) upwards; 16-bit format is used otherwise. The registers noted in Table 4-26 contain a mixture of 16-bit and 32-bit register addresses.

Table 4-26. Digital-Core Sample-Rate Control

Register Address	Bit	Label	Default	Description
R32 (0x0020)	15:11	TONE_RATE[4:0]	0x00	Tone Generator Sample Rate
Tone_Generator_1				0x00 = SAMPLE_RATE_1
				0x01 = SAMPLE_RATE_2
				0x02 = SAMPLE_RATE_3
				0x08 = ASYNC_SAMPLE_RATE_1
				0x09 = ASYNC_SAMPLE_RATE_2
				All other codes are reserved.
				The selected sample rate is valid in the range 8–192 kHz.
R48 (0x0030)	15:11	PWM_RATE[4:0]	0x00	PWM Frequency (sample rate)
PWM_Drive_1				0x00 = SAMPLE_RATE_1
				0x01 = SAMPLE_RATE_2
				0x02 = SAMPLE_RATE_3
				0x08 = ASYNC_SAMPLE_RATE_1
				0x09 = ASYNC_SAMPLE_RATE_2
				All other codes are reserved.
				The selected sample rate is valid in the range 8–192 kHz.
				All PWMnMIX_SRCm fields must be cleared before changing PWM_RATE.
R144 (0x0090)	15:11	HAP_RATE[4:0]	0x00	Haptic Signal Generator Sample Rate
Haptics_Control_1				0x00 = SAMPLE_RATE_1
				0x01 = SAMPLE_RATE_2
				0x02 = SAMPLE_RATE_3
				0x08 = ASYNC_SAMPLE_RATE_1
				0x09 = ASYNC_SAMPLE_RATE_2
				All other codes are reserved.
				The selected sample rate is valid in the range 8–192 kHz.
R160 (0x00A0)	15:11	NOISE_GEN_	0x00	Noise Generator Sample Rate
Comfort_Noise_		RATE[4:0]		0x00 = SAMPLE_RATE_1
Generator				0x01 = SAMPLE_RATE_2
				0x02 = SAMPLE_RATE_3
				0x08 = ASYNC_SAMPLE_RATE_1
				0x09 = ASYNC_SAMPLE_RATE_2
				All other codes are reserved.
				The selected sample rate is valid in the range 8–192 kHz.
R776 (0x0308)	15:11	IN_RATE[4:0]	0x00	Input Signal Paths Sample Rate (only valid if IN_RATE_MODE = 0)
Input_Rate				0x00 = SAMPLE_RATE_1
				0x01 = SAMPLE_RATE_2
				0x02 = SAMPLE_RATE_3
				All other codes are reserved.
				The selected sample rate is valid in the range 8–192 kHz.
				If 384 kHz/768 kHz DMIC rate is selected on any of the input paths (INn_OSR = 01X), the input paths sample rate is valid up to 48 kHz/96 kHz respectively.

Table 4-26. Digital-Core Sample-Rate Control (Cont.)

Register Address	Bit	Label	Default	Description
R787 (0x0313)	15:11	IN1L_RATE[4:0]	0x00	Input Path <i>n</i> (Left/Right) Sample Rate (only valid if IN_RATE_MODE = 1)
IN1L_Rate_				0x00 = SAMPLE_RATE_1
Control				0x01 = SAMPLE_RATE_2
R791 (0x0317)	15:11	IN1R_RATE[4:0]	0x00	0x02 = SAMPLE_RATE_3
IN1R_Rate_				All other codes are reserved.
Control				The selected sample rate is valid in the range 8–192 kHz.
R795 (0x031B)	15:11	IN2L_RATE[4:0]	0x00	If 384 kHz/768 kHz DMIC rate is selected (INn_OSR = 01X), the INnL/INnR sample
IN2L_Rate_				rate is valid up to 48 kHz/96 kHz respectively.
Control R799 (0x031F)	15.11	IN2R_RATE[4:0]	0x00	
IN2R Rate	13.11	INZK_KATE[4.0]	0000	
Control				
R803 (0x0323)	15:11	IN3L_RATE[4:0]	0x00	
IN3L_Rate_				
Control				
R807 (0x0327)	15:11	IN3R_RATE[4:0]	0x00	
IN3R_Rate_				
Control	45.44	INIAL DATE(4.01	0,,00	
R811 (0x032B)	15:11	IN4L_RATE[4:0]	0x00	
IN4L_Rate_ Control				
R815 (0x032F)	15:11	IN4R_RATE[4:0]	0x00	
IN4R_Rate_				
Control				
R1032 (0x0408)	15:11	OUT_RATE[4:0]	0x00	Output Signal Paths Sample Rate
Output_Rate_1				0x00 = SAMPLE_RATE_1
				0x01 = SAMPLE_RATE_2
				0x02 = SAMPLE_RATE_3
				0x08 = ASYNC_SAMPLE_RATE_1
				0x09 = ASYNC_SAMPLE_RATE_2
				All other codes are reserved.
				The selected sample rate is valid in the range 8–384 kHz.
				All OUT <i>nx</i> MIX_SRC <i>m</i> fields must be cleared before changing OUT_RATE.
R1283 (0x0503)	15:11	AIF1_RATE[4:0]	0x00	AIFn Audio Interface Sample Rate
AIF1_Rate_Ctrl				0x00 = SAMPLE_RATE_1
R1347 (0x0543)	15:11	AIF2_RATE[4:0]	0x00	0x01 = SAMPLE_RATE_2
AIF2_Rate_Ctrl				0x02 = SAMPLE_RATE_3
R1411 (0x0583)	15:11	AIF3_RATE[4:0]	0x00	0x08 = ASYNC_SAMPLE_RATE_1
AIF3_Rate_Ctrl				0x09 = ASYNC_SAMPLE_RATE_2
				All other codes are reserved.
				The selected sample rate is valid in the range 8–384 kHz.
D4474 (0.0500)	0.4	ODD4 DATE(4.0)	0.00	All AIF nTXMIX_SRC m fields must be cleared before changing AIF n_RATE.
R1474 (0x05C2)	8:4	SPD1_RATE[4:0]	0x00	S/PDIF Transmitter Sample Rate
SPD1_TX_Control				0x00 = SAMPLE_RATE_1
				0x01 = SAMPLE_RATE_2
				0x02 = SAMPLE_RATE_3
				0x08 = ASYNC_SAMPLE_RATE_1
				0x09 = ASYNC_SAMPLE_RATE_2
				All other codes are reserved.
				The selected sample rate is valid in the range 32–192 kHz.
]		All SPDIF1TX <i>n</i> _SRC fields must be cleared before changing SPD1_RATE.

Table 4-26. Digital-Core Sample-Rate Control (Cont.)

Register Address	Bit	Label	Default	Description
R1509 (0x05E5)	15:11	SLIMRX2_	0x00	SLIMbus RX Channel <i>n</i> Sample Rate
SLIMbus_Rates_1		RATE[4:0]		0x00 = SAMPLE_RATE_1
	7:3	SLIMRX1_	0x00	0x01 = SAMPLE_RATE_2
R1510 (0x05E6)	15:11	RATE[4:0] SLIMRX4	0x00	0x02 = SAMPLE_RATE_3
SLIMbus Rates 2	13.11	RATE[4:0]	0,000	0x08 = ASYNC_SAMPLE_RATE_1
OLIMbus_Itates_2	7:3	SLIMRX3	0x00	0x09 = ASYNC_SAMPLE_RATE_2
		RATE[4:0]		All other codes are reserved.
R1511 (0x05E7)	15:11	SLIMRX6_	0x00	The selected sample rate is valid in the range 8–384 kHz.
SLIMbus_Rates_3	7.0	RATE[4:0]	0.00	
	7:3	SLIMRX5_ RATE[4:0]	0x00	
R1512 (0x05E8)	14.15	SLIMRX8	0x00	
SLIMbus_Rates_4	14.15	RATE[4:0]	0,000	
OLINIDUS_ITAICS_4	7:3	SLIMRX7	0x00	
		RATE[4:0]		
R1513 (0x05E9)	15:11	SLIMTX2_	0x00	SLIMbus TX Channel <i>n</i> Sample Rate
SLIMbus_Rates_5	7.0	RATE[4:0]	0.00	0x00 = SAMPLE_RATE_1
	7:3	SLIMTX1_ RATE[4:0]	0x00	0x01 = SAMPLE_RATE_2
R1514 (0x05EA)	15:11	SLIMTX4	0x00	0x02 = SAMPLE_RATE_3
SLIMbus_Rates_6	10.11	RATE[4:0]	0,000	0x08 = ASYNC_SAMPLE_RATE_1
OLINIDUS_INICS_0	7:3	SLIMTX3	0x00	0x09 = ASYNC_SAMPLE_RATE_2
		RATE[4:0]		All other codes are reserved.
R1515 (0x05EB)	15:11	SLIMTX6_	0x00	The selected sample rate is valid in the range 8–384 kHz.
SLIMbus_Rates_7		RATE[4:0]		All SLIMTX <i>n</i> MIX_SRC <i>m</i> fields must be cleared before changing SLIMTX <i>n</i> _RATE.
	7:3	SLIMTX5_ RATE[4:0]	0x00	
R1516 (0x05EC)	15:11	SLIMTX8	0x00	
SLIMbus_Rates_8		RATE[4:0]		
	7:3	SLIMTX7_ RATE[4:0]	0x00	
R3584 (0x0E00)	15:11	FX_RATE[4:0]	0x00	FX Sample Rate (EQ, LHPF, DRC)
FX_Ctrl1				0x00 = SAMPLE_RATE_1
				0x01 = SAMPLE_RATE_2
				0x02 = SAMPLE_RATE_3
				0x08 = ASYNC_SAMPLE_RATE_1
				0x09 = ASYNC_SAMPLE_RATE_2
				All other codes are reserved.
				The selected sample rate is valid in the range 8–192 kHz.
				All EQnMIX_SRCm, DRCnxMIX_SRCm, and LHPFnMIX_SRCm fields must be cleared before changing FX_RATE.
R4225 (0x1081)	15:11	US1_RATE[4:0]	0x00	Ultrasonic Demodulator 1 Sample Rate
US1_Ctrl_1	10.11	001_10112[4.0]	OXOO	0x00 = SAMPLE RATE 1
				0x01 = SAMPLE_RATE_2
				0x02 = SAMPLE_RATE_3
				All other codes are reserved. The selected sample rate must be the same as the output rate set by US1_FREQ (i.e., 8, 16, or 32 kHz).
R4227 (0x1083)	15:11	US2_RATE[4:0]	0x00	Ultrasonic Demodulator 2 Sample Rate
US2_Ctrl_1		[]		0x00 = SAMPLE_RATE_1
				0x01 = SAMPLE_RATE_2
				0x02 = SAMPLE_RATE_3
				All other codes are reserved. The selected sample rate must be the same as the
				output rate set by US2_FREQ (i.e., 8, 16, or 32 kHz).

Register Address	Bit	Label	Default	Description
R5248 (0x1480)	6:2	DFC1_RATE[4:0]	0x00	DFCn Sample Rate
DFC1_CTRL_W0				0x00 = SAMPLE_RATE_1
R5254 (0x1486)	6:2	DFC2_RATE[4:0]	0x00	0x01 = SAMPLE_RATE_2
DFC2_CTRL_W0	6.0	DECO DATE(4.0)	0,,00	0x02 = SAMPLE_RATE_3
R5260 (0x148C) DFC3_CTRL_W0	6:2	DFC3_RATE[4:0]	0x00	0x08 = ASYNC_SAMPLE_RATE_1 0x09 = ASYNC_SAMPLE_RATE_2
R5266 (0x1492)	6:2	DFC4_RATE[4:0]	0x00	All other codes are reserved.
DFC4_CTRL_W0				The selected sample rate is valid in the range 8–192 kHz.
R5272 (0x1498) DFC5_CTRL_W0	6:2	DFC5_RATE[4:0]	0x00	The DFCn_SRC field must be cleared before changing DFCn_RATE.
R5278 (0x149E)	6:2	DFC6_RATE[4:0]	0x00	
DFC6_CTRL_W0				
R5284 (0x14A4) DFC7_CTRL_W0	6:2	DFC7_RATE[4:0]	0x00	
R5290 (0x14AA)	6:2	DFC8_RATE[4:0]	0x00	
DFC8_CTRL_W0	0.2	D1 00_10 (12[1.0]	OX.00	
R1048064 (0xF_	15:11	DSP1_RATE[4:0]	0x00	DSP1 Sample Rate
FE00)				0x00 = SAMPLE_RATE_1
DSP1_Config_1				0x01 = SAMPLE_RATE_2
				0x02 = SAMPLE_RATE_3
				0x08 = ASYNC_SAMPLE_RATE_1
				0x09 = ASYNC_SAMPLE_RATE_2
				All other codes are reserved.
				The selected sample rate is valid in the range 8–384 kHz.
				All DSP1xMIX_SRC <i>m</i> fields must be cleared before changing DSP1_RATE.

4.3.15 Asynchronous Sample-Rate Converter (ASRC)

The CS42L92 supports multiple signal paths through the digital core. Two independent clock domains are supported for the audio signal paths, referenced to SYSCLK and ASYNCCLK respectively, as described in Section 4.16. Every digital signal path must be synchronized either to SYSCLK or to ASYNCCLK.

The ASRC provides stereo, two-way signal paths between two sample rates, as shown in Fig. 4-32. Each of the sample rates may be referenced to the SYSCLK or ASYNCCLK domain. The clock domains and sample rates associated with the ASRC signal paths are selected using the ASRC1_RATE1 and ASRC1_RATE2 fields.

- ASRC1_RATE1 selects the clock domain and sample rate of the inputs to the ASRC1 IN1x paths, and the outputs from the ASRC1 IN2x paths.
- ASRC1_RATE2 selects the clock domain and sample rate of the inputs to the ASRC1 IN2x paths, and the outputs from the ASRC1 IN1x paths.

Note that it is possible to select two sample rates for the ASRC that are each referenced to the same clock domain. This provides flexibility to switch between synchronous and asynchronous use cases without changing the signal routing configuration of the affected audio paths.

See Section 4.16 for details of the sample-rate control registers.

The ASRC supports sample rates from 8–192 kHz. The ratio of the applicable SAMPLE_RATE_n and ASYNC_SAMPLE_RATE_n fields must not exceed 6.

The ASRC1_RATE1 and ASRC1_RATE2 fields must not be changed if any of the respective x_SRCn fields is nonzero. The associated x_SRCn fields must be cleared before writing new values to ASRC1_RATE1 or ASRC1_RATE2. A minimum delay of 125 μ s must be allowed between clearing the x_SRCn fields and writing to the associated ASRC1_RATE1 or ASRC1_RATE2 fields. See Table 4-27 for details.

The ASRC signal paths are enabled using the ASRC1 INnx ENA bits, as follows:

- The ASRC1 IN1 (left and right) paths convert from the ASRC1_RATE1 sample rate to the ASRC1_RATE2 sample rate. These paths are enabled by setting the ASRC1_IN1L_ENA and ASRC1_IN1R_ENA bits, respectively.
- The ASRC1 IN2 (left and right) paths convert from the ASRC1_RATE2 sample rate to the ASRC1_RATE1 sample rate. These paths are enabled by setting the ASRC1_IN2L_ENA and ASRC1_IN2R_ENA bits, respectively.

Synchronization (lock) between different clock domains is not instantaneous when the clocking or sample rate configurations are updated. The lock status of each ASRC path is an input to the interrupt control circuit and can be used to trigger an interrupt event; see Section 4.15.

The ASRC lock status of each ASRC path can be output directly on a GPIO pin as an external indication of ASRC lock. See Section 4.14 to configure a GPIO pin for this function.

The CS42L92 performs automatic checks to confirm that the SYSCLK or ASYNCCLK frequency is high enough to support the commanded ASRC and digital mixing functions. If the frequency is too low, an attempt to enable an ASRC signal path fails. Note that active signal paths are not affected under such circumstances.

The status bits in register R3809 indicate the status of each ASRC signal path. If an underclocked error condition occurs, these bits indicate which ASRC signal paths have been enabled.

The status bits in registers R1600–R3576 indicate the status of each digital mixer. If an underclocked error condition occurs, these bits indicate which mixers have been enabled.

The ASRC signal paths and control registers are shown in Fig. 4-32.

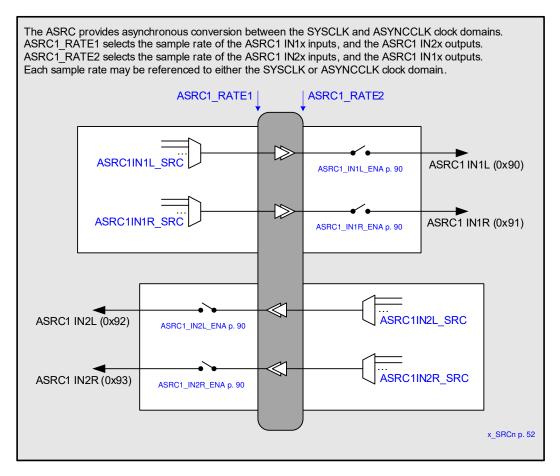


Figure 4-32. Asynchronous Sample-Rate Converters (ASRCs)

The ASRC1 input control fields (see Fig. 4-32) are located at register addresses R2688–R2712 (0x0A80–0x0A98).

The full list of digital mixer control registers (R1600–R3576) is provided in Section 6. Generic register field definitions are provided in Table 4-11.

The x_SRC*n* fields select the input sources for the ASRC paths. Note that the selected input sources must be configured for the same sample rate as the ASRC to which they are connected.

The hexadecimal numbers in Fig. 4-32 indicate the corresponding x_SRC*n* setting for selection of that signal as an input to another digital-core function.

The fields associated with the ASRC are described in Table 4-27.

Table 4-27. Digital-Core ASRC Control

Register Address	Bit	Label	Default	Description
R3808 (0x0EE0)	3	ASRC1_IN2L_	0	ASRC1 IN2 (left) enable
ASRC1_ENABLE		ENA		(Left channel from ASRC1_RATE2 sample rate to ASRC1_RATE1 sample rate)
				0 = Disabled
				1 = Enabled
	2	ASRC1_IN2R_	0	ASRC1 IN2 (right) enable
		ENA		(Right channel from ASRC1_RATE2 sample rate to ASRC1_RATE1 sample rate)
				0 = Disabled
				1 = Enabled
	1	ASRC1_IN1L_	0	ASRC1 IN1 (left) enable
		ENA		(Left channel from ASRC1_RATE1 sample rate to ASRC1_RATE2 sample rate)
				0 = Disabled
				1 = Enabled
	0	ASRC1_IN1R_	0	ASRC1 IN1 (right) enable
		ENA		(Right channel from ASRC1_RATE1 sample rate to ASRC1_RATE2 sample rate)
				0 = Disabled
				1 = Enabled

Table 4-27. Digital-Core ASRC Control (Cont.)

Register Address	Bit	Label	Default	Description
R3809 (0x0EE1)	3	ASRC1_IN2L_	0	ASRC1 IN2 (left) enable status
ASRC1_STATUS		ENA_STS		(Left channel from ASRC1_RATE2 sample rate to ASRC1_RATE1 sample rate)
				0 = Disabled
				1 = Enabled
	2	ASRC1_IN2R_	0	ASRC1 IN2 (right) enable status
		ENA_STS		(Right channel from ASRC1_RATE2 sample rate to ASRC1_RATE1 sample rate)
				0 = Disabled
				1 = Enabled
	1	ASRC1_IN1L_	0	ASRC1 IN1 (left) enable status
		ENA_STS _		(Left channel from ASRC1_RATE1 sample rate to ASRC1_RATE2 sample rate)
				0 = Disabled
				1 = Enabled
	0	ASRC1_IN1R_	0	ASRC1 IN1 (right) enable status
		ENA_STS		(Right channel from ASRC1_RATE1 sample rate to ASRC1_RATE2 sample rate)
				0 = Disabled
				1 = Enabled
R3810 (0x0EE2)	15:11	ASRC1_	0x00	ASRC1 Sample Rate select for ASRC1 IN1x inputs and ASRC1 IN2x outputs
ASRC1_RATE1		RATE1[4:0]		0x00 = SAMPLE_RATE_1
				0x01 = SAMPLE_RATE_2
				0x02 = SAMPLE_RATE_3
				0x08 = ASYNC_SAMPLE_RATE_1
				0x09 = ASYNC_SAMPLE_RATE_2
				All other codes are reserved.
				The selected sample rate is valid in the range 8–192 kHz.
				All ASRC1_IN1x_SRC fields must be cleared before changing ASRC1_RATE1.
R3811 (0x0EE3)	15:11	ASRC1_	0x08	ASRC1 Sample Rate select for ASRC1 IN2x inputs and ASRC1 IN1x outputs
ASRC1_RATE2		RATE2[4:0]		0x00 = SAMPLE_RATE_1
				0x01 = SAMPLE_RATE_2
				0x02 = SAMPLE_RATE_3
				0x08 = ASYNC_SAMPLE_RATE_1
				0x09 = ASYNC_SAMPLE_RATE_2
				All other codes are reserved.
				The selected sample rate is valid in the range 8–192 kHz.
				All ASRC1_IN1x_SRC fields must be cleared before changing ASRC1_RATE1.

4.3.16 Isochronous Sample-Rate Converter (ISRC)

The CS42L92 supports multiple signal paths through the digital core. The ISRCs provide sample-rate conversion between synchronized sample rates on the SYSCLK clock domain, or between synchronized sample rates on the ASYNCCLK clock domain.

There are two ISRCs on the CS42L92. Each ISRC provides two stereo signal paths between two different sample rates, as shown in Fig. 4-33.

The sample rates associated with each ISRC can be set independently. Note that the two sample rates associated with any single ISRC must both be referenced to the same clock domain (SYSCLK or ASYNCCLK).

- When an ISRC is used on the SYSCLK domain, the associated sample rates may be selected from SAMPLE_ RATE_1, SAMPLE_RATE_2, or SAMPLE_RATE_3.
- When an ISRC is used on the ASYNCCLK domain, the associated sample rates are ASYNC_SAMPLE_RATE_1 and ASYNC_SAMPLE_RATE_2.

See Section 4.16 for details of the sample-rate control registers.

Each ISRC converts between a sample rate selected by ISRC*n*_FSL and a sample rate selected by ISRC*n*_FSH, (where *n* identifies the applicable ISRC 1 or 2). The higher of the two sample rates must be selected by ISRC*n*_FSH in each case.

The ISRCs support sample rates in the range 8–384 kHz. For each ISRC, the ratio of the applicable SAMPLE_RATE_n or ASYNC_SAMPLE_RATE_n fields must not exceed 24. The sample-rate conversion ratio must be an integer (1–24) or equal to 1.5.

The ISRCn_FSL and ISRCn_FSH fields must not be changed if any of the respective x_SRCn fields is nonzero. The associated x_SRCn fields must be cleared before writing new values to ISRCn_FSL or ISRCn_FSH. A minimum delay of 125 μ s must be allowed between clearing the x_SRCn fields and writing to the associated ISRCn_FSL or ISRCn_FSH fields. See Table 4-28 for details.

The ISRC signal paths are enabled using the ISRCn INTm ENA and ISRCn DECm ENA bits, as follows:

- The ISRC*n* interpolation paths (increasing sample rate) are enabled by setting the ISRC*n*_INT*m*_ENA bits, (where *m* identifies the applicable channel).
- The ISRCn decimation paths (decreasing sample rate) are enabled by setting the ISRCn_DECm_ENA bits.

The CS42L92 performs automatic checks to confirm that the SYSCLK or ASYNCCLK frequency is high enough to support the commanded ISRC and digital mixing functions. If the frequency is too low, an attempt to enable an ISRC signal path fails. Note that active signal paths are not affected under such circumstances.

The status bits in registers R1600–R3576 indicate the status of each digital mixer. If an underclocked error condition occurs, these bits indicate which mixers have been enabled.

The ISRC signal paths and control registers are shown in Fig. 4-33.

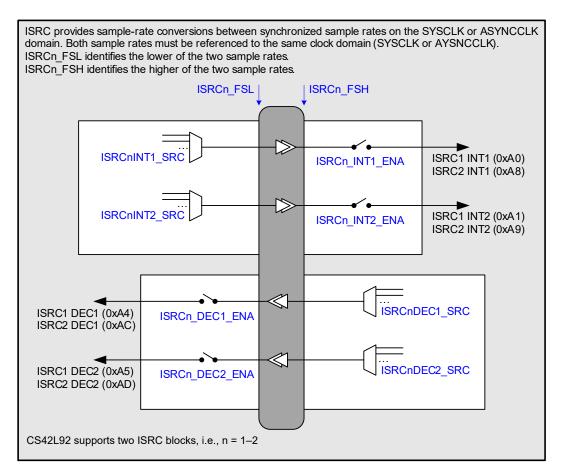


Figure 4-33. Isochronous Sample-Rate Converters (ISRCs)

The ISRC input control fields (see Fig. 4-33) are located at register addresses R2816–R2920 (0x0B00–0x0B68).

The full list of digital mixer control registers (R1600–R3576) is provided in Section 6. Generic register field definitions are provided in Table 4-11.

The x_SRC fields select the input sources for the respective ISRC processing blocks. Note that the selected input sources must be configured for the same sample rate as the ISRC to which they are connected.

The hexadecimal numbers in Fig. 4-33 indicate the corresponding x_SRC setting for selection of that signal as an input to another digital-core function.

The fields associated with the ISRCs are described in Table 4-28.

Table 4-28. Digital-Core ISRC Control

Register Address	Bit	Label	Default	Description
R3824 (0x0EF0)	15:11	ISRC1_FSH[4:0]	0x00	ISRC1 High Sample Rate (Sets the higher of the ISRC1 sample rates)
ISRC1_CTRL_1				0x00 = SAMPLE RATE 1
				0x01 = SAMPLE RATE 2
				0x02 = SAMPLE_RATE_3
				0x08 = ASYNC_SAMPLE_RATE_1
				0x09 = ASYNC_SAMPLE_RATE_2
				All other codes are reserved.
				The selected sample rate is valid in the range 8–192 kHz.
				The ISRC1 FSH and ISRC1 FSL fields must both select sample rates referenced to
				the same clock domain (SYSCLK or ASYNCCLK).
				All ISRC1_DECn_SRC fields must be cleared before changing ISRC1_FSH.
R3825 (0x0EF1)	15:11	ISRC1_FSL[4:0]	0x00	ISRC1 Low Sample Rate (Sets the lower of the ISRC1 sample rates)
ISRC1_CTRL_2				0x00 = SAMPLE_RATE_1
				0x01 = SAMPLE_RATE_2
				0x02 = SAMPLE_RATE_3
				0x08 = ASYNC_SAMPLE_RATE_1
				0x09 = ASYNC_SAMPLE_RATE_2
				All other codes are reserved.
				The selected sample rate is valid in the range 8–192 kHz.
				The ISRC1_FSH and ISRC1_FSL fields must both select sample rates referenced to the same clock domain (SYSCLK or ASYNCCLK).
				All ISRC1_INTn_SRC fields must be cleared before changing ISRC1_FSL.
R3826 (0x0EF2)	15	ISRC1 INT1 ENA	0	ISRC1 INT1 Enable (Interpolation Channel 1 path from ISRC1 FSL rate to ISRC1
ISRC1 CTRL 3			,	FSH rate)
				0 = Disabled
				1 = Enabled
	14	ISRC1_INT2_ENA	0	ISRC1 INT2 Enable (Interpolation Channel 2 path from ISRC1_FSL rate to ISRC1_FSH rate)
				0 = Disabled
				1 = Enabled
	9	ISRC1_DEC1_ ENA	0	ISRC1 DEC1 Enable (Decimation Channel 1 path from ISRC1_FSH rate to ISRC1_FSL rate)
				0 = Disabled
				1 = Enabled
	8	ISRC1 DEC2	0	ISRC1 DEC2 Enable (Decimation Channel 2 path from ISRC1_FSH rate to ISRC1_
		ENA		FSL rate)
				0 = Disabled
				1 = Enabled
R3827 (0x0EF3)	15:11	ISRC2_FSH[4:0]	0x00	ISRC2 High Sample Rate (Sets the higher of the ISRC2 sample rates)
ISRC2_CTRL_1				0x00 = SAMPLE_RATE_1
				0x01 = SAMPLE_RATE_2
				0x02 = SAMPLE_RATE_3
				0x08 = ASYNC_SAMPLE_RATE_1
				0x09 = ASYNC_SAMPLE_RATE_2
				All other codes are reserved.
				The selected sample rate is valid in the range 8–192 kHz.
				The ISRC2_FSH and ISRC2_FSL fields must both select sample rates referenced to
				the same clock domain (SYSCLK or ASYNCCLK).
				All ISRC2_DECn_SRC fields must be cleared before changing ISRC2_FSH.

Register Address	Bit	Label	Default	Description
R3828 (0x0EF4)	15:11	ISRC2_FSL[4:0]	0x00	ISRC2 Low Sample Rate (Sets the lower of the ISRC2 sample rates)
ISRC2_CTRL_2				0x00 = SAMPLE_RATE_1
				0x01 = SAMPLE_RATE_2
				0x02 = SAMPLE_RATE_3
				0x08 = ASYNC_SAMPLE_RATE_1
				0x09 = ASYNC_SAMPLE_RATE_2
				All other codes are reserved.
				The selected sample rate is valid in the range 8–192 kHz.
				The ISRC2_FSH and ISRC2_FSL fields must both select sample rates referenced to the same clock domain (SYSCLK or ASYNCCLK).
				All ISRC2_INTn_SRC fields must be cleared before changing ISRC2_FSL.
R3829 (0x0EF5)	15	ISRC2_INT1_ENA	0	ISRC2 INT1 Enable (Interpolation Channel 1 path from ISRC2_FSL rate to ISRC2_
ISRC2_CTRL_3				FSH rate)
				0 = Disabled
				1 = Enabled
	14	ISRC2_INT2_ENA	0	ISRC2 INT2 Enable (Interpolation Channel 2 path from ISRC2_FSL rate to ISRC2_FSH rate)
				0 = Disabled
				1 = Enabled
	9	ISRC2_DEC1_ ENA	0	ISRC2 DEC1 Enable (Decimation Channel 1 path from ISRC2_FSH rate to ISRC2_FSL rate)
				0 = Disabled
				1 = Enabled
	8	ISRC2_DEC2_	0	ISRC2 DEC2 Enable (Decimation Channel 2 path from ISRC2_FSH rate to ISRC2_
		ENA		FSL rate)
				0 = Disabled
				1 = Enabled

4.4 DSP Firmware Control

The CS42L92 digital core incorporates one programmable DSP processing block, capable of running a range of application-specific algorithms. Different firmware configurations can be loaded onto the DSP, enabling the CS42L92 to be customized for specific application requirements. Full read/write access to the device register map is supported from the DSP core.

The DSP can be clocked at up to 75 MHz, corresponding to 75 MIPS. A software programming guide can be provided to assist users in developing their own software algorithms—please contact your Cirrus Logic representative for further information.

To use the programmable DSP, the required firmware configuration must first be loaded onto the device by writing the appropriate files to the CS42L92 register map. The firmware configuration comprises program, data, and coefficient content.

Details of the DSP firmware memory registers are provided in Section 4.4.1. Note that the WISCE evaluation board control software provides support for easy loading of program, data, and coefficient content onto the CS42L92. Please contact your Cirrus Logic representative for more details of the WISCE evaluation board control software.

After loading the DSP firmware, the DSP functions must be enabled using the associated control fields.

The audio signal paths to and from the DSP processing block are configured as described in Section 4.3. Note that the DSP firmware must be loaded and enabled before audio signal paths can be enabled.

4.4.1 DSP Firmware Memory and Register Mapping

The DSP firmware memory is programmed by writing to the registers referenced in Table 4-29. Note that clocking is not required for access to the firmware registers by the host processor.

4k x 24-bit words

4k x 24-bit words

Y-Data memory

Coefficient memory

DSP1

The CS42L92 program, data, and coefficient register memory space is described in Table 4-29. The full register map listing is provided in Section 6.

The program firmware parameters are formatted as 40-bit words. For this reason, 3 x 32-bit register addresses are required for every 2 x 40-bit words.

DSP Number Description Register Address Number of Registers **DSP Memory Size** 0x08 0000-0x08 2FFE 4k x 40-bit words 6144 Program memory 0x0A 0000-0x0A 1FFE 4096 X-Data memory 4k x 24-bit words

0x0C 0000-0x0C 1FFE

0x0E 0000-0x0E 1FFE

4096

4096

Table 4-29. DSP Program, Data, and Coefficient Registers

The X-memory on the DSP supports read/write access to all register fields throughout the device, including the codec control registers, and the other firmware-memory regions of DSP core itself. Access to the register address space is supported using a number of register windows within the X-memory on the DSP.

Note that the register window space is additional to the X-data memory size described in Table 4-29.

Addresses 0xC000 to 0xDFFF in X-memory map directly to addresses 0x0000 to 0x1FFF in the device register space. This fixed register window contains primarily the codec control registers; it also includes the virtual DSP control registers (described in Section 4.4.7). Each X-memory address within this window maps onto one 16-bit register in the codec memory space.

Four movable register windows are also provided, starting at X-memory addresses 0xF000, 0xF400, 0xF800, and 0xFC00 respectively. Each window represents 1024 addresses in the X-memory space. The start address, within the corresponding device register space, for each window is configured using DSP1 EXT [A/B/C/D] PAGE (where A defines the first window, B defines the second window, etc.).

Two mapping modes are supported and are selected using the DSP1_EXT_[A/B/C/D]_PSIZE16 bits for the respective window. In 16-Bit Mode, each address within the window maps onto one 16-bit register in the device memory space; the window equates to 1024 x 16-bit registers. In 32-Bit Mode, each address within the window maps onto two 16-bit registers in the device memory space; the window equates to 1024 x 32-bit registers.

Note that the X-memory is only 24-bits wide; as a result, the upper 8 bits of the odd-numbered register addresses are not mapped, and cannot be accessed, in 32-Bit Mode.

The DSP1 EXT [A/B/C/D] PAGE fields are defined with an LSB = 512. Accordingly, the base address of each window must be aligned with 512-word boundaries. Note that the base addresses are entirely independent of each other; for example, overlapping windows are permissible if required, and there is no requirement for the A/B/C/D windows to be at incremental locations.

The register map window functions are shown in Fig. 4-34. Further information on the definition and usage of the DSP firmware memories is provided in the software programming guide; contact your Cirrus Logic representative if required.

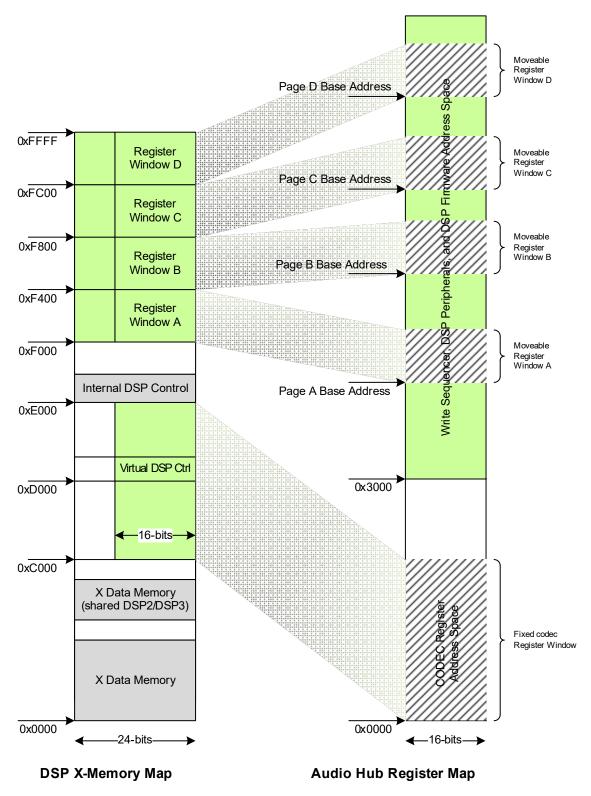


Figure 4-34. X-Data Memory Map

Note that the full CS42L92 register space is shown here as 16-bit width. (SPI/I²C register access uses 32-bit data width at 0x3000 and above.) However, the window base address fields (DSP1_EXT_[A/B/C/D]_PAGE) are referenced to 16-bit width, and 16-bit register mapping is shown. Hence, the device register map is shown here entirely as 16-bit width for ease of explanation.

The control registers associated with the register map window functions are described in Table 4-30.

Table 4-30. X-Data Memory and Clocking Contro	Table 4-30.	X-Data Memory	and Clocking	Control
---	-------------	---------------	--------------	---------

Register Address	Bit	Label	Default	Description
R1048148 (0xF_FE54)	31	DSP1_EXT_A_PSIZE16	0	Register Window A page width select
DSP1_Ext_window_A				0 = 32-bit
				1 = 16-bit
				Note that, in 32-Bit Mode, only the lower 24 bits can be accessed.
	15:0	DSP1_EXT_A_PAGE[15:0]	0x0000	Sets the Base Address of Register Window A in X-memory.
				Coded as LSB = 512 (0x200)
R1048150 (0xF_FE56)	31	DSP1_EXT_B_PSIZE16	0	Register Window B page width select
DSP1_Ext_window_B				0 = 32-bit
				1 = 16-bit
				Note that, in 32-Bit Mode, only the lower 24 bits can be accessed.
	15:0	DSP1_EXT_B_PAGE[15:0]	0x0000	Sets the Base Address of Register Window B in X-memory.
				Coded as LSB = 512 (0x200)
R1048152 (0xF_FE58)	31	DSP1_EXT_C_PSIZE16	0	Register Window C page width select
DSP1_Ext_window_C				0 = 32-bit
				1 = 16-bit
				Note that, in 32-Bit Mode, only the lower 24 bits can be accessed.
	15:0	DSP1_EXT_C_PAGE[15:0]	0x0000	Sets the Base Address of Register Window C in X-memory.
				Coded as LSB = 512 (0x200)
R1048154 (0xF_FE5A)	31	DSP1_EXT_D_PSIZE16	0	Register Window D page width select
DSP1_Ext_window_D				0 = 32-bit
				1 = 16-bit
				Note that, in 32-Bit Mode, only the lower 24 bits can be accessed.
	15:0	DSP1_EXT_D_PAGE[15:0]	0x0000	Sets the Base Address of Register Window D in X-memory.
				Coded as LSB = 512 (0x200)

4.4.2 DSP Memory Locking

The DSP core has the capability for read/write access to all register fields throughout the device, including the codec control registers, DSP peripheral control registers, and the virtual DSP control registers. Access to these registers is supported via the DSP's X-memory (using the register windows), as described in Section 4.4.1.

The CS42L92 provides a register-locking feature that blocks DSP register-write attempts to invalid register regions, preventing the firmware from making unintentional changes to register and memory contents. An interrupt event and associated debug information are generated if any write-access attempt is blocked; this can be used to assist software development and debug.

The register map and DSP firmware memories are partitioned into four regions; each region can be locked independently. This allows full flexibility to lock different register/memory regions according to the applicable DSP firmware configuration.

The DSP has direct access to its own X-, Y-, Z-, and P- memories; this is always enabled and cannot be locked. Access to the codec registers, DSP peripheral registers, and the virtual DSP registers is effected using the X-memory register windows (fixed codec window, and four configurable windows)—write access to these locations is governed by the register-locking configuration settings.

The virtual DSP registers occupy addresses within the codec register space; these registers represent one of the lockable regions within the register map—two independent locks are provided for the codec and virtual DSP registers.

Note: A DSP register window can be mapped onto the X-, Y-, Z-, or P- memory region of the DSP. In this event, write access via that window is governed by the register locks, potentially blocking the DSP from accessing its own memory. This is not the intended use of the register lock, however.

The lockable register/memory regions are defined in Table 4-31.

Table 4-31. D	OSP Memory I	Locking	Regions
---------------	--------------	---------	---------

Region	Description	Register Address	Notes
Region 0	Virtual DSP registers	0x00_1000-0x00_2FFF	Excludes memory lock and watchdog reset registers
Region 1	Codec registers	0x00_0000-0x03_FFFE	Excludes virtual DSP registers
Region 2	DSP peripheral control registers	0x04_0000-0x07_FFFE	_
Region 3	DSP1 memory	0x08_0000-0x09_FFFE	_

The register locks are controlled using the DSP1_CTRL_REGION*m*_LOCK fields (where *m* identifies the register/memory region). The associated lock determines whether the DSP core is granted write access to region *m*. To change the lock status, two writes must be made to the respective register field:

- Writing 0x5555, followed by 0xAAAA, sets the respective lock
- Writing 0xCCCC, followed by 0x3333, clears the respective lock

The status of each lock can be read from the DSP1 CTRL REGIONm LOCK STS bits.

Write access to the DSP1_CTRL_REGION*m*_LOCK fields is always possible. This means that the DSP core always has write access for configuring the memory-access locks.

The DSP memory locking function is an input to the interrupt control circuit and can be used to trigger an interrupt event if an invalid register write is attempted—see Section 4.4.5. Additional status and control fields are provided for debug purposes, as described in Section 4.4.6.

The control registers associated with the DSP memory locking functions are described in Table 4-32.

Table 4-32. DSP Memory Locking Control

Register Address	Bit	Label	Default	Description
R1048164 (0xF_FE64)	3	DSP1_CTRL_REGION3_LOCK_STS	0	DSP1 memory region <i>m</i> lock status
DSP1_Region_lock_sts_0	2	DSP1_CTRL_REGION2_LOCK_STS	0	0 = Unlocked
	1	DSP1_CTRL_REGION1_LOCK_STS	0	1 = Locked (write access is blocked)
	0	DSP1_CTRL_REGION0_LOCK_STS	0	
R1048166 (0xF_FE66)	31:16	DSP1_CTRL_REGION1_LOCK[15:0]	See	DSP1 memory region <i>m</i> lock.
DSP1_Region_lock_1			Footnote 1	Write 0x5555, then 0xAAAA, to set the lock.
DSP1_Region_lock_0	15:0	DSP1_CTRL_REGION0_LOCK[15:0]	See	Write 0xCCCC, then 0x3333, to clear the lock.
			Footnote 1	
R1048168 (0xF_FE68)	31:16	DSP1_CTRL_REGION3_LOCK[15:0]	See	
DSP1 Region lock 3			Footnote 1	
DSP1_Region_lock_2	15:0	DSP1_CTRL_REGION2_LOCK[15:0]	See	
			Footnote 1	

^{1.} Default is not applicable to these write-only fields

4.4.3 DSP Firmware Control

The configuration and control of the DSP firmware is described in the following subsections.

4.4.3.1 **DSP Memory**

The DSP memory (program, X-data, Y-data, and coefficient) is enabled by setting DSP1_MEM_ENA. This memory must be enabled (DSP1_MEM_ENA = 1) for read/write access, code execution, and DMA functions. The DSP memory is disabled, and the contents lost, whenever the DSP1_MEM_ENA bit is cleared.

The DSP1_RAM_RDY status bit indicates whether the DSP memory is ready for read/write access. The DSP memory should not be accessed until this bit has been set.

The DSP1_MEM_ENA bit is not affected by software reset; it remains in its previous state under software reset conditions. Accordingly, the DSP memory contents are maintained through software reset, provided DCVDD is held above its reset threshold.

The DSP firmware memory is always cleared under power-on reset, hardware reset, and Sleep Mode conditions. See Section 5.2 for a summary of the CS42L92 reset behavior.

4.4.3.2 DSP Clocking

Clocking is required for the DSP processing block, when executing software or when supporting DMA functions. (Note that clocking is not required for access to the firmware registers by the host processor.) Clocking within the DSP is enabled and disabled automatically, as required by the DSP core and DMA channel status.

The clock source for each DSP is derived from DSPCLK. See Section 4.16 for details of how to configure DSPCLK.

The clock frequency for the DSP is selected using DSP1_CLK_FREQ_SEL. The DSP clock frequency must be less than or equal to the DSPCLK frequency.

The DSP1_CLK_FREQ_STS field indicates the clock frequency for the DSP core. This can be used to confirm the clock frequency, in cases where code execution has a minimum clock frequency requirement. The DSP1_CLK_FREQ_STS field is only valid when the core is running code; typical usage of this field would be for the DSP core itself to read the clock status and to take action as applicable, in particular, if the available clock does not meet the application requirements.

Note that, depending on the DSPCLK frequency and the available clock dividers, the DSP1 clock frequency may differ from the selected clock. In most cases, the DSP1 clock frequency equals or exceeds the requested frequency. A lower frequency is implemented if limited by either the DSPCLK frequency or the maximum DSP1 clocking frequency.

The DSPCLK configuration provides input to the interrupt control circuit and can be used to trigger an interrupt event when the DSP1 clock frequency is less than the requested frequency; see Section 4.15.

4.4.3.3 DSP Code Execution

After the DSP firmware has been loaded, and the clocks configured, the DSP block is enabled by setting DSP1_CORE_ENA. When the DSP is configured and enabled, the firmware execution can be started by writing 1 to DSP1_START.

Alternative methods to trigger the firmware execution can also be configured using the DSP1_START_IN_SEL field.

Using the DSP1_START_IN_SEL field, the DSP firmware execution can be linked to the respective DMA function, the IRQ2 status, or to the FIFO status in the event logger:

- DMA function: firmware execution commences when all enabled DSP input (WDMA) channel buffers have been filled, and all enabled DSP output (RDMA) channel buffers have been emptied
- IRQ2: firmware execution commences when one or more of the unmasked IRQ2 events has occurred
- Event logger status: firmware execution commences when the FIFO not-empty status is asserted within the event logger

To enable firmware execution on the DSP block, the DSP1_CORE_ENA bit must be set. Note that the usage of the DSP1_START bit may vary depending on the particular firmware that is being executed: in some applications (e.g., when an alternative trigger is selected using DSP1_START_IN_SEL), writing to the DSP1_START bit is not required.

4.4.3.4 DSP Watchdog Timer

A watchdog timer is provided for the DSP, which can be used to detect software lock-ups, and other conditions that require corrective action in order to resume the intended DSP behavior.

The DSP1 watchdog is enabled using DSP1_WDT_ENA. The timeout period is configured using DSP1_WDT_MAX_COUNT.

In normal operation, the watchdog should be reset regularly—this action is used to confirm that the DSP code is running correctly. The watchdog is reset by writing 0x5555, followed by 0xAAAA, to the DSP1 WDT RESET field.

The watchdog status bit, DSP1_WDT_TIMEOUT_STS, is set if the timeout period elapses before the watchdog is reset; this event typically signals that a lock-up or other error condition has occurred.

The DSP watchdog is an input to the interrupt control circuit and can be used to trigger an interrupt event if the timeout period elapses—see Section 4.4.5.

Note that write access to the DSP1_WDT_RESET field is not affected by the register locking mechanism (see Section 4.4.2). This means that the DSP core always has write access to reset the watchdog.

4.4.3.5 DSP Control Registers

The DSP memory, clocking, code-execution, and watchdog control registers are described in Table 4-33.

The audio signal paths connecting to/from the DSP processing block are configured as described in Section 4.3. Note that the DSP firmware must be loaded and enabled before audio signal paths can be enabled.

Table 4-33. DSP Control Registers

Register Address	Bit	Label	Default	Description			
R1048064 (0xF_	4	DSP1_MEM_ENA	0	DSP1 memory control			
FE00)				0 = Disabled			
DSP1_Config_1				1 = Enabled			
		The DSP1 memory contents are lost when DSP1_MEM_ENA this bit is not affected by software reset; it remains in its previous contents are lost when DSP1_MEM_ENA this bit is not affected by software reset; it remains in its previous contents.					
	1	DSP1_CORE_ENA	0	DSP1 enable. Controls	the DSP1 firmware ex	ecution	
				0 = Disabled			
				1 = Enabled			
	0	DSP1_START	_	DSP1 start			
				Write 1 to start DSP1 fi	rmware execution		
R1048066 (0xF_	15:0	DSP1_CLK_FREQ_	0x0000	DSP1 clock frequency	select		
FE02)		SEL[15:0]		Coded as LSB = 1/64 N	MHz, Valid from 5.6 to 7	75 MHz.	
DSP1_Config_2				The DSP1 clock must be less than or equal to the DSPCLK frequency. The DSP1 clock is generated by division of DSPCLK, and may differ from the selected frequency. The DSP1 clock frequency can be read from DSP1_CLK_FREQ_STS.			
R1048070 (0xF_	0	DSP1_CLK_AVAIL	0	DSP1 clock availability	(read only)		
FE06)				0 = No Clock			
DSP1_Status_2				1 = Clock Available			
						y; it is not recommended for test device architectures.	
R1048072 (0xF_ FE08)	15:0	DSP1_CLK_FREQ_ STS[15:0]	0x0000	DSP1 clock frequency is enabled.	(read only). Valid only v	when the respective DSP core	
DSP1_Status_3				Coded as LSB = 1/64 N			
R1048074 (0xF_	4:1	DSP1_WDT_MAX_	0x0	DSP1 watchdog timeou	ut value.		
FE0A)		COUNT[3:0]		0x0 = 2 ms	0x5 = 64 ms	0xA = 2 s	
DSP1_Watchdog_1				0x1 = 4 ms	0x6 = 128 ms	0xB = 4 s	
				0x2 = 8 ms	0x7 = 256 ms	0xC = 8 s	
				0x3 = 16 ms	0x8 = 512 ms	0xD-0xF = reserved	
				0x4 = 32 ms	0x9 = 1 s		
	0	DSP1_WDT_ENA	0	DSP1 watchdog enable	Э		
				0 = Disabled			
				1 = Enabled			
R1048120 (0xF_	4:0	DSP1_START_IN_	0x00		ion control. Selects the	trigger for DSP1 firmware	
FE38)		SEL[4:0]		execution.	0.00 1000	0.40 5 11 4	
DSP1_External_Start				0x00 = DMA	0x0B = IRQ2	0x10 = Event Logger 1	
				All other codes are rese		DOD4.5	
				regardless of this field		DSP1 firmware execution,	
R1048158 (0xF_	15:0	DSP1_WDT_	0x0000	DSP1 watchdog reset.			
FE5E)		RESET[15:0]		Write 0x5555, followed	by 0xAAAA, to reset the	ne watchdog.	
DSP1_Watchdog_2	4.5	DOD4 WET		DOD4 (: : : ::			
R1048186 (0xF_	13	DSP1_WDT_	0	DSP1 watchdog timeou			
FE7A) DSP1_Region_lock_ ctrl_0		TIMEOUT_STS				timeout has occurred. This bit tchdog is disabled or reset.	

4.4.4 DSP Direct Memory Access (DMA) Control

The DSP provides a multichannel DMA function; this is configured using the registers described in Table 4-34.

There are eight WDMA (DSP input) and six RDMA (DSP output) channels; these are enabled using the DSP1_WDMA_CHANNEL_ENABLE and DSP1_RDMA_CHANNEL_ENABLE fields. The status of each WDMA channel is indicated in DSP1_WDMA_ACTIVE_CHANNELS.

The DMA can access the X-data memory or Y-data memory associated with the DSP block. The applicable memory is selected using bit [15] of the respective x_START_ADDRESS field for each DMA channel.

The start address of each DMA channel is configured as described in Table 4-34. Note that the required address is defined relative to the base address of the selected (X-data or Y-data) memory.

The buffer length of the DMA channels is configured using the DSP1_DMA_BUFFER_LENGTH field. The selected buffer length applies to all enabled DMA channels.

Note that the start-address fields and buffer-length fields are defined in 24-bit DSP data word units. This means that the LSB of these fields represents one 24-bit DSP memory word. This differs from the CS42L92 register map layout described in Table 4-29.

The parameters of a DMA channel (i.e., start address or offset address) must not be changed while the respective DMA is enabled. All of the DMA channels must be disabled before changing the DMA buffer length.

Each DMA channel uses a twin buffer mechanism to support uninterrupted data flow through the DSP. The buffers are called *ping* and *pong*, and are of configurable size, as noted above. Data is transferred to/from each of the buffers in turn.

When the ping input data buffer is full, the DSP1_PING_FULL bit is set, and a DSP start signal is generated. The start signal from the DMA is typically used to start firmware execution, as noted in Table 4-33. Meanwhile, further DSP input data fills up the pong buffer.

When the pong input buffer is full, the DSP1_PONG_FULL bit is set, and another DSP start signal is generated. The DSP firmware must take care to read the input data from the applicable buffer, in accordance with the DSP1_PING_FULL and DSP1_PONG_FULL status bits.

Twin buffers are also used on the DSP output (RDMA) channels. The output ping buffers are emptied at the same time as the input ping buffers are filled; the output pong buffers are emptied at the same time that the input pong buffers are filled.

The DSP core supports 24-bit signal processing. Under default conditions, the DSP audio data is in 2's complement Q3.20 format (i.e., 0xF00000 corresponds to the –1.0 level, and 0x100000 corresponds to the +1.0 level; a sine wave with peak values of ±1.0 corresponds to the 0 dBFS level). If DSP1_DMA_WORD_SEL is set, audio data is transferred to and from the DSP in Q0.23 format. The applicable format should be set according to the requirements of the specific DSP firmware.

Note that the DSP core is optimized for Q3.20 audio data processing; Q0.23 data can be supported, but the firmware implementation may incur a reduction in power efficiency due to the higher MIPS required for arithmetic operations in non-native data word format.

The DMA function is an input to the interrupt control circuit—see Section 4.4.5. The respective interrupt event is triggered if all enabled input (WDMA) channel buffers have been filled and all enabled output (RDMA) channel buffers have been emptied.

Further details of the DMA are provided in the software programming guide; contact your Cirrus Logic representative if required.

Table 4-34. DMA Control

Register Address	Bit	Label	Default	Description
R1048068 (0xF_FE04)	31	DSP1_PING_FULL	0	DSP1 WDMA Ping Buffer Status
DSP1_Status_1				0 = Not Full
				1 = Full
	30	DSP1_PONG_FULL	0	DSP1 WDMA Pong Buffer Status
				0 = Not Full
				1 = Full
	23:16	DSP1_WDMA_ACTIVE_	0x00	DSP1 WDMA Channel Status
		CHANNELS[7:0]		There are eight WDMA channels; each bit of this field indicates
				the status of the respective WDMA channel.
				Each bit is coded as follows:
				0 = Inactive 1 = Active
D1049090 (0vE EE10)	21.16	DSP1 START ADDRESS	0x0000	DSP1 WDMA Channel 1 Start Address
R1048080 (0xF_FE10)	31.10	WDMA BUFFER 1[15:0]	000000	
DSP1_WDMA_Buffer_1		[[[[[[[[[[[[[[[[[[[[Bit [15] = Memory select 0 = X-data memory
				1 = Y-data memory
				Bits [14:0] = Address select
				The address is defined relative to the base address of the
				applicable data memory. The LSB represents one 24-bit DSP memory word.
				Note that the start address is also controlled by the respective DSP1_WDMA_CHANNEL_OFFSET bit.
	15:0	DSP1_START_ADDRESS_	0x0000	DSP1 WDMA Channel 0 Start Address
		WDMA_BUFFER_0[15:0]		Field description is as above.
R1048082 (0xF_FE12)	31:16	DSP1_START_ADDRESS_	0x0000	DSP1 WDMA Channel 3 Start Address
DSP1_WDMA_Buffer_2		WDMA_BUFFER_3[15:0]		Field description is as above.
	15:0	DSP1_START_ADDRESS_	0x0000	DSP1 WDMA Channel 2 Start Address
		WDMA_BUFFER_2[15:0]		Field description is as above.
R1048084 (0xF_FE14)	31:16	DSP1_START_ADDRESS_	0x0000	DSP1 WDMA Channel 5 Start Address
DSP1_WDMA_Buffer_3		WDMA_BUFFER_5[15:0]		Field description is as above.
	15:0	DSP1_START_ADDRESS_	0x0000	DSP1 WDMA Channel 4 Start Address
		WDMA_BUFFER_4[15:0]		Field description is as above.
R1048086 (0xF_FE16)	31:16	DSP1_START_ADDRESS_ WDMA_BUFFER_7[15:0]	0x0000	DSP1 WDMA Channel 7 Start Address
DSP1_WDMA_Buffer_4	45.0		0.0000	Field description is as above.
	15:0	DSP1_START_ADDRESS_ WDMA_BUFFER_6[15:0]	0x0000	DSP1 WDMA Channel 6 Start Address
D1040006 (0vF FF20)	24.46		0,,000	Field description is as above. DSP1 RDMA Channel 1 Start Address
R1048096 (0xF_FE20)	31:16	DSP1_START_ADDRESS_ RDMA_BUFFER_1[15:0]	0x0000	
DSP1_RDMA_Buffer_1		[TENIN _ BOT T ET _ T[TO:0]		Bit [15] = Memory select 0 = X-data memory
				1 = Y-data memory
				Bits [14:0] = Address select
				The address is defined relative to the base address of the
				applicable data memory. The LSB represents one 24-bit DSP memory word.
				Note that the start address is also controlled by the respective DSP1_RDMA_CHANNEL_OFFSET bit.
	15:0	DSP1_START_ADDRESS_	0x0000	DSP1 RDMA Channel 0 Start Address
		RDMA_BUFFER_0[15:0]		Field description is as above.
R1048098 (0xF_FE22)	31:16	DSP1_START_ADDRESS_	0x0000	DSP1 RDMA Channel 3 Start Address
DSP1_RDMA_Buffer_2		RDMA_BUFFER_3[15:0]		Field description is as above.
	15:0	DSP1_START_ADDRESS_	0x0000	DSP1 RDMA Channel 2 Start Address
		RDMA_BUFFER_2[15:0]		Field description is as above.
R1048100 (0xF_FE24)	31:16	DSP1_START_ADDRESS_	0x0000	DSP1 RDMA Channel 5 Start Address
DSP1_RDMA_Buffer_3		RDMA_BUFFER_5[15:0]		Field description is as above.
	15:0	DSP1_START_ADDRESS_	0x0000	DSP1 RDMA Channel 4 Start Address
		RDMA_BUFFER_4[15:0]		Field description is as above.

Table 4-34. DMA Control (Cont.)

Register Address	Bit	Label	Default	Description
R1048112 (0xF_FE30)	23:16	DSP1_WDMA_CHANNEL_	0x00	DSP1 WDMA Channel Enable
DSP1_DMA_Config_1		ENABLE[7:0]		There are eight WDMA channels; each bit of this field enables the respective WDMA channel.
				Each bit is coded as follows:
				0 = Disabled
				1 = Enabled
	13:0	DSP1_DMA_BUFFER_	0x0000	DSP1 DMA Buffer Length
		LENGTH[13:0]		Selects the amount of data transferred in each DMA channel. The LSB represents one 24-bit DSP memory word.
R1048114 (0xF_FE32)	7:0	DSP1_WDMA_CHANNEL_	0x00	DSP1 WDMA Channel Offset
DSP1_DMA_Config_2		OFFSET[7:0]		There are eight WDMA channels; each bit of this field offsets the start Address of the respective WDMA channel.
				Each bit is coded as follows:
				0 = No offset
				1 = Offset by 0x8000
R1048116 (0xF_FE34)	21:16	DSP1_RDMA_CHANNEL_	0x00	DSP1 RDMA Channel Offset
DSP1_DMA_Config_3		OFFSET[5:0]		There are six RDMA channels; each bit of this field offsets the start Address of the respective RDMA channel.
				Each bit is coded as follows:
				0 = No offset
				1 = Offset by 0x8000
	5:0	DSP1_RDMA_CHANNEL_	0x00	DSP1 RDMA Channel Enable
		ENABLE[5:0]		There are six RDMA channels; each bit of this field enables the respective RDMA channel.
				Each bit is coded as follows:
				0 = Disabled
				1 = Enabled
R1048118 (0xF_FE36)	0	DSP1_DMA_WORD_SEL	0	DSP1 Data Word Format
DSP1_DMA_Config_4				0 = Q3.20 format (4 integer bits, 20 fractional bits)
				1 = Q0.23 format (1 integer bit, 23 fractional bits)
				The data word format should be set according to the requirements of the applicable DSP firmware.

4.4.5 DSP Interrupts

The DSP core provides inputs to the interrupt circuit and can be used to trigger an interrupt event when the associated conditions occur. The following interrupts are provided for DSP core:

- DMA interrupt—Asserted when all enabled DSP input (WDMA) channel buffers have been filled, and all enabled DSP output (RDMA) channel buffers have been emptied
- DSP Start 1, DSP Start 2 interrupts—Asserted when the respective start signal is triggered
- DSP Busy interrupt—Asserted when the DSP is busy (i.e., when firmware execution or DMA processes are started)
- DSP Bus Error interrupt—Asserted when a locked register address, invalid memory address, or watchdog timeout error is detected

The CS42L92 also provides 16 control bits that allow the DSP core to generate programmable interrupt events. When a 1 is written to these bits (see Table 4-35), the respective DSP interrupt (DSP_IRQn_EINTx) is triggered. The associated interrupt bits are latched once set; they can be polled at any time or used to control the IRQ signal.

See Section 4.15 for further details.

Table 4-35. DSP Interrupts

Register Address	Bit	Label	Default	Description
R5632 (0x1600)	1	DSP_IRQ2	0	DSP IRQ2. Write 1 to trigger the DSP_IRQ2_EINT <i>n</i> interrupt.
ADSP2_IRQ0	0	DSP_IRQ1	0	DSP IRQ1. Write 1 to trigger the DSP_IRQ1_EINT <i>n</i> interrupt.
R5633 (0x1601)	1	DSP_IRQ4	0	DSP IRQ4. Write 1 to trigger the DSP_IRQ4_EINT <i>n</i> interrupt.
ADSP2_IRQ1	0	DSP_IRQ3	0	DSP IRQ3. Write 1 to trigger the DSP_IRQ3_EINT <i>n</i> interrupt.

Register Address	Bit	Label	Default	Description
R5634 (0x1602)	1	DSP_IRQ6	0	DSP IRQ6. Write 1 to trigger the DSP_IRQ6_EINT <i>n</i> interrupt.
ADSP2_IRQ2	0	DSP_IRQ5	0	DSP IRQ5. Write 1 to trigger the DSP_IRQ5_EINT <i>n</i> interrupt.
R5635 (0x1603)	1	DSP_IRQ8	0	DSP IRQ8. Write 1 to trigger the DSP_IRQ8_EINT <i>n</i> interrupt.
ADSP2_IRQ3	0	DSP_IRQ7	0	DSP IRQ7. Write 1 to trigger the DSP_IRQ7_EINT <i>n</i> interrupt.
R5636 (0x1604)	1	DSP_IRQ10	0	DSP IRQ10. Write 1 to trigger the DSP_IRQ10_EINT <i>n</i> interrupt.
ADSP2_IRQ4	0	DSP_IRQ9	0	DSP IRQ9. Write 1 to trigger the DSP_IRQ9_EINT <i>n</i> interrupt.
R5637 (0x1605)	1	DSP_IRQ12	0	DSP IRQ12. Write 1 to trigger the DSP_IRQ12_EINT <i>n</i> interrupt.
ADSP2_IRQ5	0	DSP_IRQ11	0	DSP IRQ11. Write 1 to trigger the DSP_IRQ11_EINT <i>n</i> interrupt.
R5638 (0x1606)	1	DSP_IRQ14	0	DSP IRQ14. Write 1 to trigger the DSP_IRQ14_EINT <i>n</i> interrupt.
ADSP2_IRQ6	0	DSP_IRQ13	0	DSP IRQ13. Write 1 to trigger the DSP_IRQ13_EINT <i>n</i> interrupt.
R5639 (0x1607)	1	DSP_IRQ16	0	DSP IRQ16. Write 1 to trigger the DSP_IRQ16_EINT <i>n</i> interrupt.
ADSP2_IRQ7	0	DSP_IRQ15	0	DSP IRQ15. Write 1 to trigger the DSP_IRQ15_EINT <i>n</i> interrupt.

4.4.6 DSP Debug Support

General-purpose registers are provided for the DSP. These have no assigned function and can be used to assist in algorithm development.

The JTAG interface provides test and debug access to the CS42L92, as described in Section 4.20. The JTAG interface clock can be enabled for the DSP core using DSP1_DBG_CLK_ENA. Note that, when the JTAG interface is used to access the DSP core, the DSP1_CORE_ENA bit must also be set.

The DSP1_LOCK_ERR_STS bit indicates that the DSP attempted to write to a locked register address. The DSP1_ADDR_ERR_STS bit indicates that the DSP attempted to access an invalid memory address (i.e., an address whose contents are undefined). Once set, these bits remain set until a 1 is written to DSP1_ERR_CLEAR.

The DSP1_PMEM_ERR_ADDR and DSP1_XMEM_ERR_ADDR fields contain the program memory and X-data memory addresses associated with a locked register address error condition. If DSP1_LOCK_ERR_STS is set, these fields correspond to the first-detected locked register address error. Note that no subsequent error event can be reported in these fields until the DSP1_LOCK_ERR_STS is cleared.

Note: The DSP1_PMEM_ERR_ADDR value is the prefetched address of a code instruction that has not yet been executed; it does not point directly to the instruction that caused the error.

The DSP1_BUS_ERR_ADDR field indicates the register/memory address that resulted in a register-access error. The field relates either to a locked register address error or to an invalid memory address error, as follows:

- If DSP1_LOCK_ERR_STS is set, the DSP1_BUS_ERR_ADDR value corresponds to the first-detected locked register address error. Note that no subsequent error event can be reported in this field until DSP1_LOCK_ERR_ STS is cleared.
- If DSP1_ADDR_ERR_STS is set, and DSP1_LOCK_ERR_STS is clear, the DSP1_BUS_ERR_ADDR field corresponds to the most recent invalid memory address error.
- If the DSP1_LOCK_ERR_STS and DSP1_ADDR_ERR_STS are both clear, the DSP1_BUS_ERR_ADDR field is undefined.

Note: The DSP1_BUS_ERR_ADDR value is coded using a byte-referenced address, so the actual register address is equal to DSP1_BUS_ERR_ADDR / 2. If the register-access error is the result of an attempt to access the virtual DSP registers, a register address of 0 is reported.

If the DSP1_ERR_PAUSE bit is set, the DSP code execution stops immediately on detection of a locked register address error. This enables debug information to be retrieved from the DSP core during code development. In this event, code execution can be restarted by clearing the DSP1_ERR_PAUSE bit. Alternatively, the DSP core can restarted by clearing and setting DSP1_CORE_ENA (described in Section 4.4.3.3).

Table 4-36. DSP Debug Support

Register Address	Bit	Label	Default	Description
R1048064 (0xF_FE00)	3	DSP1_DBG_CLK_ENA	0	DSP1 Debug Clock Enable
DSP1_Config_1				0 = Disabled
				1 = Enabled
R1048128 (0xF_FE40)	31:16	DSP1_SCRATCH_1[15:0]	0x0000	DSP1 Scratch Register 1
DSP1_Scratch_1	15:0	DSP1_SCRATCH_0[15:0]	0x0000	DSP1 Scratch Register 0
R1048130 (0xF_FE42)		DSP1_SCRATCH_3[15:0]	0x0000	DSP1 Scratch Register 3
DSP1_Scratch_2	15:0	DSP1_SCRATCH_2[15:0]	0x0000	DSP1 Scratch Register 2
R1048146 (0xF_FE52)	23:0	DSP1_BUS_ERR_ADDR[23:0]	0x00_0000	Contains the register address of a memory region lock or memory address error event.
DSP1_Bus_Error_Addr				Note the associated register address is equal to DSP1_BUS_ERR_ADDR / 2.
R1048186 (0xF_FE7A)	15	DSP1_LOCK_ERR_STS	0	DSP1 memory region lock error status.
DSP1_Region_lock_ctrl_0				This bit, when set, indicates that DSP1 attempted to write to a locked register address.
				This bit is latched when set; it is cleared when a 1 is written to DSP1_ERR_CLEAR.
	14	DSP1_ADDR_ERR_STS	0	DSP1 memory address error status.
				This bit, when set, indicates that DSP1 attempted to access an undefined locked register address.
				This bit is latched when set; it is cleared when a 1 is written to DSP1_ERR_CLEAR.
	1	DSP1_ERR_PAUSE	0	DSP1 bus address error control.
				Configures the DSP1 response to a memory region lock error event.
				0 = No action
				1 = Pause DSP1 code execution
	0	DSP1_ERR_CLEAR	0	Write 1 to clear the memory region lock error and memory address error status bits.
R1048188 (0xF_FE7C) DSP1_PMEM_Err_Addr XMEM_ERR_Addr	30:16	DSP1_PMEM_ERR_ADDR[14:0]	0x0000	Contains the program memory address of a memory region lock error event. Note this is the prefetched address of a subsequent instruction; it does not point directly to the address that caused the error.
	15:0	DSP1_XMEM_ERR_ADDR[15:0]	0x0000	Contains the X-data memory address of a memory region lock error event.

4.4.7 Virtual DSP Registers

The DSP control registers are described throughout Section 4.4. Each control register has a unique location within the CS42L92 register map.

An additional set of DSP control registers is also defined, which can be used in firmware to access the DSP control fields: the virtual DSP (or DSP 0) registers are defined at address R4096 (0x1000) in the device register map. The full register map listing is provided in Section 6.

Note that read/write access to the virtual DSP registers is only possible via firmware running on the integrated DSP core. When DSP firmware accesses the virtual registers, the registers are automatically mapped onto the DSP1 control registers. The virtual DSP registers are designed to allow software to be transferable across different DSPs (e.g., on multicore devices) without modification to the software code.

The virtual DSP registers are defined at register addresses R4096–R4192 (0x1000–0x1060) in the device register map. Note that these registers cannot be accessed directly at the addresses shown; they can be only accessed through DSP firmware code, using the register window function shown in Fig. 4-34. The virtual DSP registers are located at address 0xD000 in the X-data memory map.

4.5 DSP Peripheral Control

The CS42L92 incorporates a suite of DSP peripheral functions that can be integrated together to provide an enhanced capability for DSP applications. Configurable event log functions provide multichannel monitoring of internal and external signals. The general-purpose timer provides time-stamp data for the event logger; it also supports the watchdog and other miscellaneous time-based functions. Maskable GPIO provides an efficient mechanism for the DSP core to access the required input and output signals.

The DSP peripherals are designed to provide a comprehensive DSP capability, operating with a high degree of autonomy from the host processor.

4.5.1 Event Logger

The CS42L92 provides an event log function, supporting multichannel, edge-sensitive monitoring and recording of internal or external signals.

4.5.1.1 Overview

The event logger allows status information to be captured from a large number of sources, to be prioritized and acted upon as required. For the purposes of the event logger, an event is recorded when a logic transition (edge) is detected on a selected signal source.

The logged events are held in a FIFO buffer, which is managed by the application software. A 32-bit time stamp, derived from the general-purpose timer, is associated and recorded with each FIFO index, to provide a comprehensive record of the detected events.

The event logger must be associated with the general-purpose timer. The timer is the source of time stamp data for any logged events. If DSPCLK is disabled, the timer also provides the clock source for the event logger. (If DSPCLK is enabled, DSPCLK is used as the clock source instead.)

A maximum of one event per cycle of the clock source can be logged. If more than one event occurs within the cycle time, the highest priority (lowest channel number) event is logged at the rising edge of the clock. In this case, any lower priority events are queued, and are logged as soon as no higher priority events are pending. It is possible for recurring events on a high-priority channel to be logged, while low-priority ones remain queued. Note that recurring instances of queued events are not logged.

The event logger can use a slow clock (e.g., 32 kHz), but higher clock frequencies may also be commonly used, depending on the application and use case. The clock frequency determines the maximum possible event logging rate.

4.5.1.2 Event Logger Control

The event logger is enabled by setting EVENTLOG1_ENA. The event logger can be reset by writing 1 to EVENTLOG1_RST—executing this function clears all the event logger status flags and clears the contents of the FIFO buffer.

The associated timer (and time-stamp source) is selected using EVENTLOG1_TIME_SEL. Note that the event logger must be disabled (EVENTLOG1_ENA = 0) when selecting the timer source.

4.5.1.3 Input Channel Configuration

The event logger allows up to 16 input channels to be configured for detection and logging. The EVENTLOG1_CHx_SEL field selects the applicable input source for each channel (where x identifies the channel number, 1 to 16). The polarity selection and debounce options are configured using the EVENTLOG1_CHx_POL and EVENTLOG1_CHx_DB bits respectively.

To avoid filling the FIFO buffer with repeated instances of any event, a selectable filter is provided for each input channel. If the EVENTLOG1_CHx_FILT bit is set, new events on the respective channel are ignored by the event logger if the unread entries in the FIFO buffer indicate a previous event of the same type (i.e., same input source and same polarity). The read/write pointers of the FIFO buffer (see Section 4.5.1.4) are used to determine which FIFO entries are unread (i.e., have not yet been read by the host processor).

The input channels can be enabled or disabled freely, using EVENTLOG1_CHx_ENA, without having to disable the event logger entirely. An input channel must be disabled whenever the associated x_SEL, x_FILT, x_POL, or x_DB fields are written. It is possible to reconfigure input channels while the event logger is enabled, provided the channels being reconfigured are disabled when doing so.

The available input sources include GPIO inputs, external accessory status (jack, mic, sensors), and signals generated by the integrated DSP core. A list of the valid input sources for the event logger is provided in Table 4-38. Note that, to log both rising and falling events from any source, two separate input channels must be configured—one for each polarity.

If an input channel is configured for rising edge detection (EVENTLOG1_CHx_POL = 0), and the corresponding input signal is asserted (Logic 1) at the time when the event logger is enabled, an event is logged in respect of this initial state. Similarly, if an input channel is configured for falling edge detection, and is deasserted (Logic 0) when the event logger is enabled, a corresponding event is logged. If rising and falling edges are both configured for detection, an event is always logged in respect of the initial condition.

4.5.1.4 FIFO Buffer

Each event (signal transition) that meets the criteria of an enabled channel is written to the 16-stage FIFO buffer. The buffer is filled cyclically, but does not overwrite unread data when full. A status bit is provided to indicate if the buffer fills up completely.

Note that the FIFO behavior is not enforced or fully implemented in the device hardware, but assumes that a compatible software implementation is in place. New events are written to the buffer in a cyclic manner, but the data can be read out in any order, if desired. The designed FIFO behavior requires the software to update the read pointer (RPTR) in the intended manner for smooth operation.

The entire contents of the 16-stage FIFO buffer can be accessed directly in the register map. Each FIFO index (y = 0 to 15) comprises the EVENTLOG1_FIFOy_ID (identifying the source signal of the associated log event), the EVENTLOG1_FIFOy_POL (the polarity of the respective event transition), and the EVENTLOG1_FIFOy_TIME field (containing the 32-bit time stamp from the timer).

The FIFO buffer is managed using EVENTLOG1_FIFO_WPTR and EVENTLOG1_FIFO_RPTR. The write pointer (WPTR) field identifies the index location (0 to 15) in which the next event is logged. The read pointer (RPTR) field identifies the index location of the first set of unread data, if any exists. Both of these fields are initialized to 0 when the event logger is reset.

- If RPTR ≠ WPTR, the buffer contains new data. The number of new events is equal to the difference between the two pointer values (WPTR RPTR, allowing for wraparound beyond Index 15). For example, if WPTR = 12 and RPTR = 8, this means that there are four unread data sets in the buffer, at index locations 8, 9, 10, and 11.
 After reading the new data from the buffer, the RPTR value should be incremented by the corresponding amount (e.g., increment by 4, in the example described above). Note that the RPTR value can either be incremented once for each read, or can be incremented in larger steps after a batch read.
- If RPTR = WPTR, the buffer is either empty (0 events) or full (16 events). In this case, the status bits described in Section 4.5.1.5 confirm the current status of the buffer.

4.5.1.5 Status Bits

The EVENTLOG1_CHx_STS bits indicate the status of the source signal for the respective input channel. Note that the status indication is not valid for all input source selections—it is not possible to provide indication of transitory events (e.g., microphone accessory detection).

The EVENTLOG1_NOT_EMPTY bit indicates whether the FIFO buffer is empty. If this bit is set, it indicates one or more new sets of data in the FIFO.

The EVENTLOG1_WMARK_STS bit indicates when the number of FIFO index locations available for new events reaches a configurable threshold, known as the watermark level. The watermark level is held in the EVENTLOG1_FIFO_WMARK field.

The EVENTLOG1_FULL bit indicates when the FIFO buffer is full. If this bit is set, it indicates that there are 16 sets of new event data in the FIFO. Note that this does not mean that a buffer overflow condition has occurred, but further events are not logged or indicated until the buffer has been cleared.

Note: Following a buffer full condition, the FIFO operation resumes as soon as the RPTR field has been updated to a new value. Writing the same value to RPTR does not restart the FIFO operation, even if the entire buffer contents have been read. After all of the required data has been read from the buffer, the RPTR value should be set equal to the WPTR value; an intermediate (different) value must also be written to the RPTR field in order to clear the buffer full status and restart the FIFO operation.

4.5.1.6 Interrupts, GPIO, Write Sequencer, and DSP Firmware Control

The control-write sequencer is automatically triggered whenever the NOT_EMPTY status of the event log buffer is asserted. See Section 4.18 for further details.

The event log status flags are inputs to the interrupt control circuit and can be used to trigger an interrupt event when the respective FIFO condition (full, not empty, or watermark level) occurs; see Section 4.15.

The event log status can be output directly on a GPIO pin as an external indication of the event logger; see Section 4.14 to configure a GPIO pin for this function.

The event log NOT_EMPTY status can also be selected as a start trigger for DSP firmware execution; see Section 4.4.

4.5.1.7 Event Logger Control Registers

The event logger control registers are described in Table 4-37.

Table 4-37. Event Logger (EVENTLOG1) Control

Register Address	Bit	Label	Default	Description
R294912 (0x4_8000)	1	EVENTLOG1_RST	0	Event Log Reset
EVENTLOG1 CONTROL				Write 1 to reset the status outputs and clear the FIFO buffer.
_	0	EVENTLOG1_ENA	0	Event Log Enable
				0 = Disabled
				1 = Enabled
R294916 (0x4_8004)	1:0	EVENTLOG1_TIMER_	00	Event Log Timer Source Select
EVENTLOG1_TIMER_SEL		SEL[1:0]		00 = Timer 1
				All other codes are reserved. Note that the event log must be disabled when updating this field.
R294924 (0x4_800C) EVENTLOG1_FIFO_ CONTROL1	3:0	EVENTLOG1_FIFO_ WMARK[3:0]	0x1	Event Log FIFO Watermark. The watermark status output is asserted when the number of FIFO locations available for new events is less than or equal to the FIFO watermark.
				Valid from 0 to 15.
R294926 (0x4_800E) EVENTLOG1_FIFO_ POINTER1	18	EVENTLOG1_FULL	0	Event Log FIFO Full Status. This bit, when set, indicates that the FIFO buffer is full. It is cleared when a new value is written to the FIFO read pointer, or when the event log is Reset.
	17	EVENTLOG1_WMARK_STS	0	Event Log FIFO Watermark Status. This bit, when set, indicates that the FIFO space available for new events to be logged is less than or equal to the watermark threshold.
	16	EVENTLOG1_NOT_EMPTY	0	Event Log FIFO Not-Empty Status. This bit, when set, indicates one or more new sets of logged event data in the FIFO.
	11:8	EVENTLOG1_FIFO_ WPTR[3:0]	0x0	Event Log FIFO Write Pointer. Indicates the FIFO index location in which the next event is logged. This is a read-only field.
	3:0	EVENTLOG1_FIFO_ RPTR[3:0]	0x0	Event Log FIFO Read Pointer. Indicates the FIFO index location of the first set of unread data, if any exists. For the intended FIFO behavior, this field must be incremented after the respective data has been read.

Table 4-37. Event Logger (EVENTLOG1) Control (Cont.)

Register Address	Bit	Label	Default	Description
R294944 (0x4_8020)	15	EVENTLOG1_CH16_ENA	0	Event Log Channel 16 Enable
EVENTLOG1_CH_ENABLE				0 = Disabled, 1 = Enabled
	14	EVENTLOG1_CH15_ENA	0	Event Log Channel 15 Enable
				0 = Disabled, 1 = Enabled
	13	EVENTLOG1_CH14_ENA	0	Event Log Channel 14 Enable
				0 = Disabled, 1 = Enabled
	12	EVENTLOG1_CH13_ENA	0	Event Log Channel 13 Enable
				0 = Disabled, 1 = Enabled
	11	EVENTLOG1 CH12 ENA	0	Event Log Channel 12 Enable
				0 = Disabled, 1 = Enabled
	10	EVENTLOG1_CH11_ENA	0	Event Log Channel 11 Enable
				0 = Disabled, 1 = Enabled
	9	EVENTLOG1 CH10 ENA	0	Event Log Channel 10 Enable
			_	0 = Disabled, 1 = Enabled
	8	EVENTLOG1_CH9_ENA	0	Event Log Channel 9 Enable
		2.010_2.07		0 = Disabled, 1 = Enabled
	7	EVENTLOG1_CH8_ENA	0	Event Log Channel 8 Enable
	l '	EVENTEGGT_CHG_ENA	0	0 = Disabled, 1 = Enabled
	6	EVENTLOG1_CH7_ENA	0	Event Log Channel 7 Enable
	0	EVENTEOGI_CIT_ENA	0	0 = Disabled, 1 = Enabled
		EVENTLOG1 CH6 ENA	0	Event Log Channel 6 Enable
	5	EVENTLOGI_CH6_ENA	0	S .
		EVENTLOG1 CH5 ENA		0 = Disabled, 1 = Enabled
	4	EVENTLOGI_CH5_ENA	0	Event Log Channel 5 Enable
		EVENTION OUT END		0 = Disabled, 1 = Enabled
	3	EVENTLOG1_CH4_ENA	0	Event Log Channel 4 Enable
		EVENTI COA CUIO ENIA		0 = Disabled, 1 = Enabled
	2	EVENTLOG1_CH3_ENA	0	Event Log Channel 3 Enable
		EVENTUO OLIO ENIA		0 = Disabled, 1 = Enabled
	1	EVENTLOG1_CH2_ENA	0	Event Log Channel 2 Enable
				0 = Disabled, 1 = Enabled
	0	EVENTLOG1_CH1_ENA	0	Event Log Channel 1 Enable
				0 = Disabled, 1 = Enabled
R294948 (0x4_8024)		EVENTLOG1_CH16_STS	0	Event Log Channel 16 Status
EVENTLOG1_CH_STATUS		EVENTLOG1_CH15_STS	0	Event Log Channel 15 Status
		EVENTLOG1_CH14_STS	0	Event Log Channel 14 Status
		EVENTLOG1_CH13_STS	0	Event Log Channel 13 Status
	11	EVENTLOG1_CH12_STS	0	Event Log Channel 12 Status
	10	EVENTLOG1_CH11_STS	0	Event Log Channel 11 Status
	9	EVENTLOG1_CH10_STS	0	Event Log Channel 10 Status
	8	EVENTLOG1_CH9_STS	0	Event Log Channel 9 Status
	7	EVENTLOG1_CH8_STS	0	Event Log Channel 8 Status
	6	EVENTLOG1_CH7_STS	0	Event Log Channel 7 Status
	5	EVENTLOG1_CH6_STS	0	Event Log Channel 6 Status
	4	EVENTLOG1_CH5_STS	0	Event Log Channel 5 Status
	3	EVENTLOG1_CH4_STS	0	Event Log Channel 4 Status
	2	EVENTLOG1_CH3_STS	0	Event Log Channel 3 Status
	1	EVENTLOG1_CH2_STS	0	Event Log Channel 2 Status
	0	EVENTLOG1_CH1_STS	0	Event Log Channel 1 Status
<u> </u>	•			

Table 4-37. Event Logger (EVENTLOG1) Control (Cont.)

	Register Address	Bit	Label	Default	·
Note that channel must be disabled when updating this field.	R294976 (0x4_8040)	15	EVENTLOG1_CHn_DB	0	Event Log Channel <i>n</i> debounce
R295006 (0x4_905E) EVENTLOG1_CHn_POL	EVENTLOG1_CH1_DEFINE				
Second Company					, ,
Note that channel must be disabled when updating this field.		14	EVENTLOG1_CHn_POL	0	
13	EVENTLOG1_CH16_DEFINE				3 3 33
0 - Disabled, 1 = Enabled 1					, ,
Page		13	EVENTLOG1_CHn_FILT	0	9
Contains unread events of the same source/polarity					·
9.0 EVENTLOG1_CHr_SEL[9:0] 0x000 Event Log Channel in source 1 Note that channel must be disabled when updating this field.					contains unread events of the same source/polarity.
Note that channel must be disabled when updating this field.					
EVENTLOG1_FIFO0_READ 12 EVENTLOG1_FIFO0_POL 0 Event Log FIFO Index 0 polarity 0 = Rising edge .1 = Falling edge 19.0 EVENTLOG1_FIFO0_ID[9.0] 0x0000 Event Log FIFO Index 0 source 1 19.0 EVENTLOG1_FIFO0_TIME 19.0 EVENTLOG1_FIFO0_TIME 19.0 EVENTLOG1_FIFO0_TIME 19.0 EVENTLOG1_FIFO1_D[9.0] 0x0000 Event Log FIFO Index 1 polarity 0 = Rising edge .1 = Falling edge 19.0 EVENTLOG1_FIFO1_D[9.0] 0x0000 Event Log FIFO Index 1 polarity 0 = Rising edge .1 = Falling edge 19.0 EVENTLOG1_FIFO1_D[9.0] 0x0000 Event Log FIFO Index 1 source 1 EVENTLOG1_FIFO1_TIME EVENTLOG1_FIFO1_D[9.0] 0x0000 Event Log FIFO Index 1 source 1 EVENTLOG1_FIFO1_TIME EVENTLOG1_FIFO2_POL 0 Event Log FIFO Index 1 source 1 EVENTLOG1_FIFO2_POL 0 Event Log FIFO Index 2 polarity 0 = Rising edge .1 = Falling edge EVENTLOG1_FIFO2_POL 0 Event Log FIFO Index 2 polarity 0 = Rising edge .1 = Falling edge EVENTLOG1_FIFO2_POL 0 Event Log FIFO Index 2 polarity 0 = Rising edge .1 = Falling edge EVENTLOG1_FIFO3_POL 0 EVENTLO		9:0	EVENTLOG1_CHn_SEL[9:0]	0x000	9
EVENTLOG1_FIFO0_READ 9:0 EVENTLOG1_FIFO0_ID[9:0] 0:000 Event Log FIFO Index 0 source 1 TIME[31:0] 0:000 Event Log FIFO Index 0 source 1 0:0000 Event Log FIFO Index 1 polarity 0 Event Log FIFO Index 1 source 1 0:0000 Event Log FIFO Index 2 polarity 0 Event Log FIFO Index 3 polarity 0 Event Log FIFO Index 4 polarity 0 Event Log FIFO Index 5 polarity Event Log FIFO Index 6 polarity 0 Event Log FIFO					
9:0 EVENTLOG1_FIFO0_ID[9:0] 0x0000 Event Log FIFO Index 0 source 1	` = '	12	EVENTLOG1_FIFO0_POL	0	, ,
R295042 (0x4_8082) 31.0 EVENTLOG1_FIFO0	EVENTLOG1_FIFO0_READ				
EVENTLOG1_FIFO0_TIME TIME[31:0]				1	
R295044 (0x4_8084) 12 EVENTLOG1_FIFO1_POL 0 Event Log FIFO Index 1 polarity 9.0 EVENTLOG1_FIFO1_ID[9:0] 0x000 Event Log FIFO Index 1 source 1 R295046 (0x4_8086) 2 EVENTLOG1_FIFO1_ID[9:0] 0x000 Event Log FIFO Index 1 source 1 R295046 (0x4_8088) 2 EVENTLOG1_FIFO2_POL 0 Event Log FIFO Index 2 polarity 0 = Rising edge, 1 = Falling edge event Log FIFO Index 2 polarity 0 = Rising edge, 1 = Falling edge event Log FIFO Index 2 polarity 0 = Rising edge, 1 = Falling edge event Log FIFO Index 2 polarity 0 = Rising edge, 1 = Falling edge event Log FIFO Index 2 polarity 0 = Rising edge, 1 = Falling edge event Log FIFO Index 2 polarity 0 = Rising edge, 1 = Falling edge event Log FIFO Index 2 polarity 0 = Rising edge, 1 = Falling edge event Log FIFO Index 2 polarity 0 = Rising edge, 1 = Falling edge event Log FIFO Index 2 polarity 0 = Rising edge, 1 = Falling edge event Log FIFO Index 2 polarity 0 = Rising edge, 1 = Falling edge event Log FIFO Index 2 polarity 0 = Rising edge, 1 = Falling edge event Log FIFO Index 3 polarity 0 = Rising edge, 1 = Falling edge event Log FIFO Index 3 polarity 0 = Rising edge, 1 = Falling edge event Log FIFO Index 3 polarity 0 = Rising edge, 1 = Falling edge event Log FIFO Index 3 polarity 0 = Rising edge, 1 = Falling edge event Log FIFO Index 3 polarity 0 = Rising edge, 1 = Falling edge event Log FIFO Index 4 polarity 0 = Rising edge, 1 = Falling edge event Log FIFO Index 4 polarity 0 = Rising edge, 1 = Falling edge event Log FIFO Index 4 polarity 0 = Rising edge, 1 = Falling edge event Log FIFO Index 4 polarity 0 = Rising edge, 1 = Falling edge event Log FIFO Index 5 event event Log FIFO Index 5 event event Log FIFO Index 5 event event Log FIFO Index 6 event		31:0			Event Log FIFO Index 0 Time
EVENTLOG1_FIFO1_READ					
Sy0 EVENTLOG1_FIFO1_ID[9:0] 0x000 Event Log FIFO Index 1 source 1	` - '	12	EVENTLOG1_FIFO1_POL	0	, ,
R295046 (0x4_8086) EVENTLOG1_FIFO1_ TIME SUENTLOG1_FIFO2_POL Devent Log FIFO Index 1 Time Devent Log FIFO Index 2 polarity Devent Log FIFO Index 3 polarity Devent Log FIFO Index 4 polarity Devent Log FIFO Index 5 polarity Devent Log FIFO Index 6 polarity Devent Log FIFO Index 7 polarity Devent Log FIFO Index 7 polarity Devent Log FIFO Index	EVENTLOG1_FIFO1_READ	0.0	EVENT 004 FIE 04 IBIO 01	0.000	
EVENTLOG1					_
R295048 (0X4_8088) 12 EVENTLOG1_FIFO2_POL 0 Event Log FIFO Index 2 polarity 0 = Rising edge, 1 = Falling edge 0	` - /	31:0			Event Log FIFO Index 1 Time
EVENTLOG1_FIFO2_READ		40			
9:0 EVENTLOG1_FIFO2_ID[9:0] 0x000 Event Log FIFO Index 2 source 1		12	EVENTLOG1_FIFO2_POL	0	
R295050 (0X4_808A) SVENTLOG1_FIFO2_ DX0000 Event Log FIFO Index 2 Time DX0000 EVENTLOG1_FIFO2_TIME TIME[31:0] DX0000 Event Log FIFO Index 3 polarity D = Rising edge, 1 = Falling edge DX0000 Event Log FIFO Index 3 polarity D = Rising edge, 1 = Falling edge DX0000 Event Log FIFO Index 3 polarity D = Rising edge, 1 = Falling edge DX0000 Event Log FIFO Index 3 polarity D = Rising edge, 1 = Falling edge DX0000 Event Log FIFO Index 3 polarity D = Rising edge, 1 = Falling edge DX0000 Event Log FIFO Index 3 polarity D = Rising edge, 1 = Falling edge DX0000 Event Log FIFO Index 3 polarity D = Rising edge, 1 = Falling edge DX0000 Event Log FIFO Index 4 polarity D = Rising edge, 1 = Falling edge DX0000 Event Log FIFO Index 4 polarity D = Rising edge, 1 = Falling edge DX0000 Event Log FIFO Index 4 polarity D = Rising edge, 1 = Falling edge DX0000 Event Log FIFO Index 4 polarity D = Rising edge, 1 = Falling edge DX0000 Event Log FIFO Index 4 polarity D = Rising edge, 1 = Falling edge DX0000 Event Log FIFO Index 4 polarity D = Rising edge, 1 = Falling edge DX0000 Event Log FIFO Index 4 polarity DX0000 Event Log FIFO Index 4 polarity Event Log FIFO Index 5 polarity DX0000 Event Log FIFO Index 5 polarity DX0000 Event Log FIFO Index 6 polarity DX0000 Event Log FIFO Index 7 polarity DX0000 Event Log FIFO In	EVENTLOG1_FIFO2_READ	0.0	EVENTI COA EJECO JEGO	0.000	
EVENTLOG1_FIFO2_TIME TIME[31:0]	D005050 (0. 4. 000A)			1	
EVENTLOG1_FIFO3_READ	EVENTLOG1_FIFO2_TIME	31:0	TIME[31:0]		
9:0 EVENTLOG1_FIFO3_ID[9:0] 0x000 Event Log FIFO Index 3 source 1	` - '	12	EVENTLOG1_FIFO3_POL	0	, ,
R295054 (0x4_808E) SVENTLOG1_FIFO3_ TIME SVENTLOG1_FIFO3_ TIME SVENTLOG1_FIFO4_POL SVENTLOG1_FIFO4_READ SVENTLOG1_FIFO4_POL SVENTLOG1_FIFO5_POL SVENTLOG1_FIFO6_POL SVENTLOG1_FIFO6_	EVENTLOG1_FIFO3_READ				
EVENTLOG1_FIFO3_TIME					_
EVENTLOG1_FIFO4_READ	` _ ′	31:0		0x0000 _0000	Event Log FIFO Index 3 Time
9:0 EVENTLOG1_FIFO4_ID[9:0] 0x000 Event Log FIFO Index 4 source 1	R295056 (0x4_8090)	12	EVENTLOG1_FIFO4_POL	0	Event Log FIFO Index 4 polarity
R295058 (0x4_8092) 31:0 EVENTLOG1_FIFO4_	EVENTLOG1_FIFO4_READ				
EVENTLOG1_FIFO4_TIME TIME[31:0]		9:0			
R295060 (0x4_8094) 12		31:0			Event Log FIFO Index 4 Time
9:0 EVENTLOG1_FIFO5_ID[9:0] 0x000 Event Log FIFO Index 5 source 1	R295060 (0x4_8094)	12	EVENTLOG1_FIFO5_POL	0	Event Log FIFO Index 5 polarity
R295062 (0x4_8096) EVENTLOG1_FIFO5_ DX0000 EVENT LOG FIFO Index 5 Time					Field description is as above.
EVENTLOG1_FIFO5_TIME TIME[31:0] 0000		9:0	EVENTLOG1_FIFO5_ID[9:0]	0x000	Event Log FIFO Index 5 source 1
R295064 (0x4_8098)	` — /	31:0			Event Log FIFO Index 5 Time
EVENTLOG1_FIFO6_READ 0 = Rising edge, 1 = Falling edge 9:0 EVENTLOG1_FIFO6_ID[9:0] 0x0000 Event Log FIFO Index 6 source 1 R295066 (0x4_809A) 31:0 EVENTLOG1_FIFO6_ TIME 0x0000 Event Log FIFO Index 6 Time R295068 (0x4_809C) 12 EVENTLOG1_FIFO7_POL 0 Event Log FIFO Index 7 polarity 0 = Rising edge, 1 = Falling edge EVENTLOG1_FIFO7_READ 9:0 EVENTLOG1_FIFO7_ID[9:0] 0x000 Event Log FIFO Index 7 source 1 R295070 (0x4_809E) 31:0 EVENTLOG1_FIFO7_ Ox0000		12			Event Log FIFO Index 6 polarity
9:0 EVENTLOG1_FIFO6_ID[9:0] 0x000 Event Log FIFO Index 6 source 1	` - '				, ,
R295066 (0x4_809A) 31:0 EVENTLOG1_FIFO6_ 0x0000 Event Log FIFO Index 6 Time TIME[31:0] 0000 Event Log FIFO Index 6 Time 0000 Event Log FIFO Index 7 polarity 0 = Rising edge, 1 = Falling edge 9:0 EVENTLOG1_FIFO7_ID[9:0] 0x000 Event Log FIFO Index 7 source 1 R295070 (0x4_809E) 31:0 EVENTLOG1_FIFO7_ 0x0000 Event Log FIFO Index 7 Time TIME[31:0] 0000 Event Log FIFO Index 8 polarity 0 = Rising edge, 1 = Falling edge 12 EVENTLOG1_FIFO7_ 0x0000 Event Log FIFO Index 8 polarity 0 = Rising edge, 1 = Falling edge 13 EVENTLOG1_FIFO8_READ EVENTLOG1_FIFO8_READ 0 Event Log FIFO Index 8 polarity 0 = Rising edge, 1 = Falling edge 13 EVENTLOG1_FIFO8_READ 0 Event Log FIFO Index 8 polarity 0 = Rising edge, 1 = Falling edge 14 EVENTLOG1_FIFO8_READ 0 Event Log FIFO Index 8 polarity 0 = Rising edge, 1 = Falling edge 15 EVENTLOG1_FIFO8_READ 0 Event Log FIFO Index 8 polarity 0 = Rising edge, 1 = Falling edge 15 EVENTLOG1_FIFO8_READ 0 Event Log FIFO Index 8 polarity 0 = Rising edge, 1 = Falling edge 15 EVENTLOG1_FIFO8_READ 0 Event Log FIFO Index 8 polarity 0 = Rising edge, 1 = Falling edge 15 EVENTLOG1_FIFO8_READ 0 Event Log FIFO Index 8 polarity 0 = Rising edge, 1 = Falling edge 15 EVENTLOG1_FIFO8_READ 0 Event Log FIFO Index 8 polarity 0 = Rising edge, 1 = Falling edge 15 EVENTLOG1_FIFO8_READ 0 Event Log FIFO Index 8 polarity 0 = Rising edge, 1 = Falling edge 15 EVENTLOG1_FIFO8_READ 0 Event Log FIFO Index 8 polarity 0 = Rising edge, 1 = Falling edge 15 EVENTLOG1_FIFO8_READ 0 EVENTLOG1_FIFO8_READ 0		9:0	EVENTLOG1_FIFO6_ID[9:0]	0x000	
EVENTLOG1_FIFO6_TIME TIME[31:0] _0000 R295068 (0x4_809C) 12 EVENTLOG1_FIFO7_POL 0 Event Log FIFO Index 7 polarity EVENTLOG1_FIFO7_READ 0 EVENTLOG1_FIFO7_ID[9:0] 0x000 Event Log FIFO Index 7 source 1 R295070 (0x4_809E) 31:0 EVENTLOG1_FIFO7_ 0x0000 Event Log FIFO Index 7 Time EVENTLOG1_FIFO7_TIME TIME[31:0] _0000 R295072 (0x4_80A0) 12 EVENTLOG1_FIFO8_POL 0 Event Log FIFO Index 8 polarity EVENTLOG1_FIFO8_READ 0 Event Log FIFO Index 8 polarity 0 = Rising edge, 1 = Falling edge	R295066 (0x4_809A)	31:0	EVENTLOG1_FIFO6_		Event Log FIFO Index 6 Time
EVENTLOG1_FIFO7_READ 0 = Rising edge, 1 = Falling edge 9:0 EVENTLOG1_FIFO7_ID[9:0] 0x0000 Event Log FIFO Index 7 source 1 R295070 (0x4_809E) 31:0 EVENTLOG1_FIFO7_ Ox0000 Event Log FIFO Index 7 Time EVENTLOG1_FIFO7_TIME TIME[31:0] _0000 R295072 (0x4_80A0) 12 EVENTLOG1_FIFO8_POL 0 Event Log FIFO Index 8 polarity EVENTLOG1_FIFO8_READ 0 = Rising edge, 1 = Falling edge	. – .		TIME[31:0]	_0000	
9:0 EVENTLOG1_FIFO7_ID[9:0] 0x000 Event Log FIFO Index 7 source 1 R295070 (0x4_809E) 31:0 EVENTLOG1_FIFO7_ 0x0000 Event Log FIFO Index 7 Time EVENTLOG1_FIFO7_TIME TIME[31:0]0000 R295072 (0x4_80A0) 12 EVENTLOG1_FIFO8_POL 0 Event Log FIFO Index 8 polarity EVENTLOG1_FIFO8_READ 0 Event Log FIFO Index 8 polarity 0 = Rising edge, 1 = Falling edge	R295068 (0x4_809C)	12	EVENTLOG1_FIFO7_POL	0	Event Log FIFO Index 7 polarity
R295070 (0x4_809E) 31:0 EVENTLOG1_FIFO7_ 0x0000 Event Log FIFO Index 7 Time 0000	EVENTLOG1_FIFO7_READ			1	
EVENTLOG1_FIFO7_TIME TIME[31:0]0000		9:0	EVENTLOG1_FIFO7_ID[9:0]	0x000	Event Log FIFO Index 7 source 1
R295072 (0x4_80A0) 12 EVENTLOG1_FIFO8_POL 0 Event Log FIFO Index 8 polarity 0 = Rising edge, 1 = Falling edge	R295070 (0x4_809E)	31:0			Event Log FIFO Index 7 Time
EVENTLOG1_FIFO8_READ 0 = Rising edge, 1 = Falling edge	EVENTLOG1_FIFO7_TIME		TIME[31:0]	_0000	
	R295072 (0x4_80A0)	12	EVENTLOG1_FIFO8_POL	0	Event Log FIFO Index 8 polarity
9:0 EVENTLOG1_FIFO8_ID[9:0] 0x000 Event Log FIFO Index 8 source ¹	EVENTLOG1_FIFO8_READ				
		9:0	EVENTLOG1_FIFO8_ID[9:0]	0x000	Event Log FIFO Index 8 source 1

Table 4-37. Event Logger (EVENTLOG1) Control (Cont.)

Register Address	Bit	Label	Default	•
R295074 (0x4_80A2)	31:0	EVENTLOG1_FIFO8_		Event Log FIFO Index 8 Time
EVENTLOG1_FIFO8_TIME		TIME[31:0]	_0000	
R295076 (0x4_80A4)	12	EVENTLOG1_FIFO9_POL	0	Event Log FIFO Index 9 polarity
EVENTLOG1_FIFO9_READ				0 = Rising edge, 1 = Falling edge
	9:0	EVENTLOG1_FIFO9_ID[9:0]	0x000	Event Log FIFO Index 9 source 1
R295078 (0x4_80A6)	31:0	EVENTLOG1_FIFO9_		Event Log FIFO Index 9 Time
EVENTLOG1_FIFO9_TIME		TIME[31:0]	_0000	
R295080 (0x4_80A8)	12	EVENTLOG1_FIFO10_POL	0	Event Log FIFO Index 10 polarity
EVENTLOG1_FIFO10_READ				0 = Rising edge, 1 = Falling edge
		EVENTLOG1_FIFO10_ID[9:0]		Event Log FIFO Index 10 source 1
R295082 (0x4_80AA)	31:0	EVENTLOG1_FIFO10_		Event Log FIFO Index 10 Time
EVENTLOG1_FIFO10_TIME		TIME[31:0]	_0000	
R295084 (0x4_80AC)	12	EVENTLOG1_FIFO11_POL	0	Event Log FIFO Index 11 polarity
EVENTLOG1_FIFO11_READ				0 = Rising edge, 1 = Falling edge
		EVENTLOG1_FIFO11_ID[9:0]		Event Log FIFO Index 11 source 1
R295086 (0x4_80AE)	31:0	EVENTLOG1_FIFO11_		Event Log FIFO Index 11 Time
EVENTLOG1_FIFO11_TIME		TIME[31:0]	_0000	
R295088 (0x4_80B0)	12	EVENTLOG1_FIFO12_POL	0	Event Log FIFO Index 12 polarity
EVENTLOG1_FIFO12_READ				0 = Rising edge, 1 = Falling edge
	9:0	EVENTLOG1_FIFO12_ID[9:0]	0x000	Event Log FIFO Index 12 source 1
R295090 (0x4_80B2)	31:0	EVENTLOG1_FIFO12_	0x0000	Event Log FIFO Index 12 Time
EVENTLOG1_FIFO12_TIME		TIME[31:0]	_0000	
R295092 (0x4_80B4)	12	EVENTLOG1_FIFO13_POL	0	Event Log FIFO Index 13 polarity
EVENTLOG1_FIFO13_READ				0 = Rising edge, 1 = Falling edge
		EVENTLOG1_FIFO13_ID[9:0]		Event Log FIFO Index 13 source ¹
R295094 (0x4_80B6)	31:0	EVENTLOG1_FIFO13_		Event Log FIFO Index 13 Time
EVENTLOG1_FIFO13_TIME		TIME[31:0]	_0000	
R295096 (0x4_80B8)	12	EVENTLOG1_FIFO14_POL	0	Event Log FIFO Index 14 polarity
EVENTLOG1_FIFO14_READ				0 = Rising edge, 1 = Falling edge
		EVENTLOG1_FIFO14_ID[9:0]		Event Log FIFO Index 14 source ¹
R295098 (0x4_80BA)	31:0	EVENTLOG1_FIFO14_		Event Log FIFO Index 14 Time
EVENTLOG1_FIFO14_TIME		TIME[31:0]	_0000	
R295100 (0x4_80BC)	12	EVENTLOG1_FIFO15_POL	0	Event Log FIFO Index 15 polarity
EVENTLOG1_FIFO15_READ				0 = Rising edge, 1 = Falling edge
	9:0	EVENTLOG1_FIFO15_ID[9:0]		Event Log FIFO Index 15 source 1
R295102 (0x4_80BE)	31:0	EVENTLOG1_FIFO15_		Event Log FIFO Index 15 Time
EVENTLOG1_FIFO15_TIME		TIME[31:0]	_0000	

^{1.} See Table 4-38 for valid channel source selections

4.5.1.8 Event Logger Input Sources

A list of the valid input sources for the event logger is provided in Table 4-38.

The EDGE type noted is coded as S (single edge) or D (dual edge). Note that a single-edge input source only provides valid input to the event logger in the default (rising edge triggered) polarity.

Take care when enabling IRQ1 or IRQ2 as an input source for the event logger; a recursive loop, where the IRQ*n* signal is also an output from the event logger, must be avoided.

Table 4-38. Event Logger Input Sources

	ID	Description	Edge
ĺ	3	irq1	D
ĺ	4	irq2	D
ĺ	9	sysclk_fail	S
ĺ	24	fll1_lock	D
ĺ	25	fll2_lock	D

ID	Description	Edge
137	asrc1_in2_lock	D
160	dsp_irq1	S
161	dsp_irq2	S
162	dsp_irq3	S
163	dsp_irq4	S

Ī	ID	Description	Edge
ĺ	258	gpio3	D
Ī	259	gpio4	D
	260	gpio5	D
Ī	261	gpio6	D
	262	gpio7	D

Table 4-38.	Event	Logger	Input	Sources	(Cont.)
-------------	--------------	--------	-------	---------	--------	---

ID	Description	Edge
28	sysclk_err	D
29	asyncclk_err	D
30	dspclk_err	D
32	frame_start_g1r1	S
33	frame_start_g1r2	S
34	frame_start_g1r3	S
40	frame_start_g2r1_sys	S
41	frame_start_g2r2_sys	S
80	hpdet	S
88	micdet1	S
89	micdet2	S
96	jd1_rise	S
97	jd1_fall	S
98	jd2_rise	S
99	jd2_fall	S
100	micd_clamp_rise	S
101	micd_clamp_fall	S
104	jd3_rise	S
105	jd3_fall	S
128	drc1_sig_det	D
129	drc2_sig_det	D
130	inputs_sig_det	D
136	asrc1_in1_lock	D

ID	Description	Edge			
164	dsp_irq5	S			
165	dsp_irq6	S			
166	dsp_irq7	S			
167	dsp_irq8	S			
168	dsp_irq9	S			
169	dsp_irq10	S			
170	dsp_irq11	S			
171	dsp_irq12	S			
172	dsp_irq13	S			
173	dsp_irq14	S			
174	dsp_irq15	S			
175	dsp_irq16	S			
176	hp1l_sc	S			
177	hp1r_sc	S			
178	hp2l_sc	S			
179	hp2r_sc	S			
180	hp3l_sc	S			
181	hp3r_sc	S			
184	hp4l_sc	S			
185	hp4r_sc	S			
236	dfc_saturate	S			
256	gpio1 D				
257	gpio2	D			

ID	Description	Edge
263	gpio8	D
264	gpio9	D
265	gpio10	D
266	gpio11	D
267	gpio12	D
268	gpio13	D
269	gpio14	D
270	gpio15	D
271	gpio16	D
320	Timer1	S
336	event1_not_empty	S
352	event1_full	S
368	event1_wmark	S
384	dsp1_dma	S
416	dsp1_start1	S
432	dsp1_start2	S
448	dsp1_start	S
464	dsp1_busy	D
512	dsp1_bus_err	S
560	alarm1_ch1	S
561	alarm1_ch2	S
562	alarm1_ch3	S
563	alarm1_ch4	S

4.5.2 Alarm Generators

The CS42L92 provides four alarm-generator circuits are associated with the general-purpose timer. These can be used to generate interrupt events according to the count value of the timer. The alarm interrupts can be either one-off events, or can be configured for cyclic (repeated) triggers.

4.5.2.1 Alarm Control

The alarm is enabled by writing 1 to the ALM1_CHn_START bit (where n identifies the respective alarm, 1–4). The alarm is disabled by writing 1 to ALM1_CHn_STOP.

The operating mode of each alarm is configured using ALM1_CH*n*_TRIG_MODE. In each mode, the alarm events are controlled by the alarm-trigger value, ALM1_CH*n*_TRIG_VAL.

- In Absolute Mode, the alarm output is triggered when the timer count value is equal to the alarm trigger value.
- In Relative Mode, the alarm output is triggered when the timer count value has incremented by a number equal to the alarm trigger value—this mode counts the number of clock cycles after the ALM1_CHn_START bit is written.
- In Combination Mode, the alarm output is initially triggered as described for the Absolute Mode; the alarm then operates as described for the Relative Mode.

When the alarm output is triggered, an output signal is asserted for the respective alarm. The output is asserted for a duration that is configured using ALM1_CH*n*_PULSE_DUR. The resulting signal can be output directly on a GPIO pin.

If an alarm is enabled and an update is written to ALM1_CHn_TRIG_VAL or ALM1_CHn_PULSE_DUR, the new value is loaded into the respective control register, but does not reconfigure the alarm immediately. If the ALM1_CHn_UPD bit is set, the alarm-trigger and pulse-duration values are updated when the alarm is next triggered. The alarm-trigger and pulse-duration settings can also be updated by writing 1 to ALM1_CHn_START.

Note that, if an alarm is enabled, the general-purpose timer must be configured for continuous, count-up operation. The TIMER1_MAX_COUNT value must be greater than the respective ALM1_CH*n*_TRIG_VAL setting.

4.5.2.2 Interrupts and GPIO Output

The alarm generators provide input to the interrupt control circuit and can be used to trigger an interrupt event when the alarm-trigger conditions are met. An interrupt event is triggered on the rising edge of the alarm output signal.

The alarm output status bits, TIMER_ALM1_CH*n*_STS*x*, are asserted for a duration that is configured using ALM1_CH*n*_PULSE_DUR. Note that the TIMER_ALM1_CH*n*_STS1 and TIMER_ALM1_CH*n*_STS2 bits provide the same information.

See Section 4.15 for details of the CS42L92 interrupt controller.

The alarm status can be output directly on a GPIO pin as an external indication of the alarm events. See Section 4.14 to configure a GPIO pin for this function.

4.5.2.3 Alarm Control Registers

The alarm control registers are described in Table 4-39.

Table 4-39. Alarm (ALM1) Control

				· ,
Register Address	Bit	Label	Default	Pro-
R303104 (0x4A000)	0	ALM1_TIMER_	0	Alarm block ALM1 timer source select
ALM1_CFG		SEL		0 = Timer 1
				All other codes are reserved.
				All ALM1 channels must be disabled when updating this register.
R303120 (0x4A010)	4	ALM1_CH1_	0	Channel 1 continuous mode select
ALM1_CONFIG1		CONT		0 = Single mode
				1 = Continuous mode
				Channel 1 must be disabled (ALM1_CH1_STS = 0) when updating this field.
	1:0	ALM1_CH1_	00	Channel 1 trigger mode select
		TRIG_MODE[1:0]		00 = Absolute Mode: Alarm is triggered when the count value of the timer source is equal to ALM1_CH1_TRIG_VAL.
				01 = Relative Mode: Alarm is triggered when the count value has incremented by a number equal to ALM1_CH1_TRIG_VAL.
				10 = Combination Mode: Alarm is initially triggered as described for Absolute Mode; the alarm then operates as described for Relative Mode.
				11 = Reserved
				Channel 1 must be disabled (ALM1_CH1_STS = 0) when updating this field.
R303122 (0x4A012) ALM1 CTRL1	15	ALM1_CH1_UPD	0	Channel 1 update control—Write 1 to indicate a new trigger value or pulse duration is ready to be applied.
				If Channel 1 is enabled and ALM1_CH1_UPD is set, the ALM1_CH1_TRIG_VAL and ALM1_CH1_PULSE_DUR settings are updated when the alarm is next triggered or by writing 1 to ALM1_CH1_START.
				If Channel 1 is disabled, the ALM1_CH1_UPD bit has no effect, and the ALM1_CH1_TRIG_VAL and ALM1_CH1_PULSE_DUR settings are updated immediately when writing to the respective fields.
	4	ALM1_CH1_ STOP	_	Channel 1 stop control—Write 1 to disable Channel 1
	0	ALM1_CH1_ START	_	Channel 1 start control—Write 1 to enable or restart Channel 1
R303124 (0x4A014)	31:0	ALM1_CH1_		Channel 1 alarm trigger value
ALM1_TRIG_VAL1		TRIG_VAL[31:0]	_0000	
R303126 (0x4A016)	31:0	ALM1_CH1_		Channel 1 alarm output pulse duration
ALM1_PULSE_DUR1		PULSE_ DUR[31:0]	_0000	The pulse duration is referenced to the count rate of the selected timer source
R303128 (0x4A018)	0	ALM1_CH1_STS	0	Channel 1 status
ALM1_STATUS1				0 = Disabled
				1 = Enabled
L		1		

Table 4-39. Alarm (ALM1) Control (Cont.)

Register Address	Bit	Label	Default	Description
R303136 (0x4A020)	4	ALM1_CH2_	0	Channel 2 continuous mode select
ALM1_CONFIG2		CONT		0 = Single mode
				1 = Continuous mode
				Channel 2 must be disabled (ALM1_CH2_STS = 0) when updating this field.
	1:0	ALM1_CH2_	00	Channel 2 trigger mode select
		TRIG_MODE[1:0]		00 = Absolute Mode: Alarm is triggered when the count value of the timer source is equal to ALM1_CH2_TRIG_VAL.
				01 = Relative Mode: Alarm is triggered when the count value has incremented by a number equal to ALM1 CH2 TRIG VAL.
				10 = Combination Mode: Alarm is initially triggered as described for Absolute Mode; the alarm then operates as described for Relative Mode.
				11 = Reserved
D000400 (0. 44000)	45	ALMA OLIO LIDD		Channel 2 must be disabled (ALM1_CH2_STS = 0) when updating this field.
R303138 (0x4A022) ALM1 CTRL2	15	ALM1_CH2_UPD	0	Channel 2 update control—Write 1 to indicate a new trigger value or pulse duration is ready to be applied.
				If Channel 2 is enabled and ALM1_CH2_UPD is set, the ALM1_CH2_TRIG_VAL and ALM1_CH2_PULSE_DUR settings are updated when the alarm is next triggered or by writing 1 to ALM1_CH2_START.
				If Channel 2 is disabled, the ALM1_CH2_UPD bit has no effect, and the ALM1_CH2_TRIG_VAL and ALM1_CH2_PULSE_DUR settings are updated immediately when writing to the respective fields.
	4	ALM1_CH2_ STOP	_	Channel 2 stop control—Write 1 to disable Channel 2
	0	ALM1_CH2_ START	_	Channel 2 start control—Write 1 to enable or restart Channel 2
R303140 (0x4A024)	31:0	ALM1 CH2	0x0000	Channel 2 alarm trigger value
ALM1_TRÌG_VAL2		TRIG_VAL[31:0]	_0000	
R303142 (0x4A026)	31:0	ALM1 CH2	0x0000	Channel 2 alarm output pulse duration
ALM1_PULSE_DUR2		PULSE_ DUR[31:0]	_0000	The pulse duration is referenced to the count rate of the selected timer source
R303144 (0x4A028)	0	ALM1_CH2_STS	0	Channel 2 status
ALM1_STATUS2				0 = Disabled
				1 = Enabled
R303152 (0x4A030)	4	ALM1_CH3_	0	Channel 3 continuous mode select
ALM1_CONFIG3		CONT		0 = Single mode
				1 = Continuous mode
				Channel 3 must be disabled (ALM1_CH3_STS = 0) when updating this field.
	1:0	ALM1_CH3_	00	Channel 3 trigger mode select
		TRIG_MODE[1:0]		00 = Absolute Mode: Alarm is triggered when the count value of the timer source is equal to ALM1_CH3_TRIG_VAL.
				01 = Relative Mode: Alarm is triggered when the count value has incremented by a number equal to ALM1_CH3_TRIG_VAL.
				10 = Combination Mode: Alarm is initially triggered as described for Absolute Mode; the alarm then operates as described for Relative Mode.
				11 = Reserved
				Channel 3 must be disabled (ALM1_CH3_STS = 0) when updating this field.
R303154 (0x4A032)	15	ALM1 CH3 UPD	0	Channel 3 update control—Write 1 to indicate a new trigger value or pulse duration
ALM1 CTRL3				is ready to be applied.
_				If Channel 3 is enabled and ALM1_CH3_UPD is set, the ALM1_CH3_TRIG_VAL and ALM1_CH3_PULSE_DUR settings are updated when the alarm is next triggered or by writing 1 to ALM1_CH3_START.
				If Channel 3 is disabled, the ALM1_CH3_UPD bit has no effect, and the ALM1_CH3_TRIG_VAL and ALM1_CH3_PULSE_DUR settings are updated immediately when writing to the respective fields.
	4	ALM1 CH3		Channel 3 stop control—Write 1 to disable Channel 3
	-	STOP		·
	0	ALM1_CH3_ START		Channel 3 start control—Write 1 to enable or restart Channel 3
R303156 (0x4A034) ALM1_TRIG_VAL3	31:0	ALM1_CH3_ TRIG_VAL[31:0]	0x0000 _0000	Channel 3 alarm trigger value
			L	

Table 4-39. Alarm (ALM1) Control (Cont.)

Register Address	Bit	Label	Default	Description
R303158 (0x4A036)	31:0	ALM1_CH3_		Channel 3 alarm output pulse duration
ALM1_PULSE_DUR3		PULSE_ DUR[31:0]	_0000	The pulse duration is referenced to the count rate of the selected timer source
R303160 (0x4A038)	0	ALM1_CH3_STS	0	Channel 3 status
ALM1_STATUS3				0 = Disabled
				1 = Enabled
R303168 (0x4A040)	4	ALM1_CH4_	0	Channel 4 continuous mode select
ALM1_CONFIG4		CONT		0 = Single mode
				1 = Continuous mode
				Channel 4 must be disabled (ALM1_CH4_STS = 0) when updating this field.
	1:0	ALM1_CH4_	00	Channel 4 trigger mode select
		TRIG_MODE[1:0]		00 = Absolute Mode: Alarm is triggered when the count value of the timer source is equal to ALM1_CH4_TRIG_VAL.
				01 = Relative Mode: Alarm is triggered when the count value has incremented by a number equal to ALM1_CH4_TRIG_VAL.
				10 = Combination Mode: Alarm is initially triggered as described for Absolute Mode; the alarm then operates as described for Relative Mode.
				11 = Reserved
				Channel 4 must be disabled (ALM1_CH4_STS = 0) when updating this field.
R303170 (0x4A042) ALM1 CTRL4	15	ALM1_CH4_UPD	0	Channel 4 update control—Write 1 to indicate a new trigger value or pulse duration is ready to be applied.
NEMI_OTNET				If Channel 4 is enabled and ALM1_CH4_UPD is set, the ALM1_CH4_TRIG_VAL and ALM1_CH4_PULSE_DUR settings are updated when the alarm is next triggered or by writing 1 to ALM1_CH4_START.
				If Channel 4 is disabled, the ALM1_CH4_UPD bit has no effect, and the ALM1_CH4_TRIG_VAL and ALM1_CH4_PULSE_DUR settings are updated immediately when writing to the respective fields.
	4	ALM1_CH4_ STOP	_	Channel 4 stop control—Write 1 to disable Channel 4
	0	ALM1_CH4_ START	_	Channel 4 start control—Write 1 to enable or restart Channel 4
R303172 (0x4A044)	31:0	ALM1_CH4_	0x0000	Channel 4 alarm trigger value
ALM1_TRIG_VAL4		TRIG_VAL[31:0]	_0000	
R303174 (0x4A046)	31:0	ALM1_CH4_		Channel 4 alarm output pulse duration
ALM1_PULSE_DUR4		PULSE_ DUR[31:0]	_0000	The pulse duration is referenced to the count rate of the selected timer source
R303176 (0x4A048)	0	ALM1_CH4_STS	0	Channel 4 status
ALM1_STATUS4				0 = Disabled
				1 = Enabled

4.5.3 General-Purpose Timer

The CS42L92 incorporates a general-purpose timer, which supports a wide variety of uses. The general-purpose timer provides time-stamp data for the event logger; it also supports the watchdog and other miscellaneous time-based functions, providing additional capability for signal-processing applications.

4.5.3.1 Overview

The timer allows time-stamp information to be associated with external signal detection, and other system events, enabling real-time data to be more easily integrated into user applications. The timer allows many advanced functions to be implemented with a high degree of autonomy from a host processor.

The timer can use either internal system clocks, or external clock signals, as a reference. The selected reference is scaled down, using configurable dividers, to the required clock count frequency.

4.5.3.2 Timer Control

The reference clock for the timer is selected using TIMER1_REFCLK_SRC.

If SYSCLK, ASYNCCLK, or DSPCLK is selected, a lower clock frequency, derived from the applicable system clock, can be selected using the TIMER1_REFCLK_FREQ_SEL field (for SYSCLK or ASYNCCLK source) or the TIMER1_DSPCLK_FREQ_SEL field (for DSPCLK source). The applicable division ratio is determined automatically, assuming the respective clock source has been correctly configured as described in Section 4.16.

Note that, depending on the DSPCLK frequency and the available clock dividers, the timer reference clock may differ from the selected clock if DSPCLK is the selected source. In most cases, the reference clock frequency equals or exceeds the requested frequency. A lower frequency is implemented if limited by either the DSPCLK frequency or the maximum TIMER1 clocking frequency.

If any source other than DSPCLK is selected, the clock can be further divided using TIMER1_REFCLK_DIV. Division ratios in the range 1 to 128 can be selected.

Note that, if DSPCLK is enabled, the CS42L92 synchronizes the selected reference clock to DSPCLK. As a result of this, if a non-DSPCLK is selected as source, the following additional constraints must be observed: the reference clock frequency (after TIMER1_REFCLK_FREQ_SEL and after TIMER1_REFCLK_DIV) must be less than DSPCLK / 3, and must be less than 12 MHz; it must also be close to 50% duty cycle. The TIMER1_REFCLK_DIV field can be used to ensure that these criteria are met.

One final division, controlled by TIMER1_PRESCALE, determines the timer count frequency. This field is valid for all clock reference sources; division ratios in the range 1 to 128 can be selected. The output from this division corresponds to the frequency at which the TIMER1 COUNT field is incremented (or decremented).

The maximum count value of the timer is determined by the TIMER1_MAX_COUNT field. This is the final count value (when counting up), or the initial count value (when counting down). The current value of the timer counter can be read from the TIMER1_CUR_COUNT field.

The timer is started by writing 1 to TIMER1_START. Note that, if the timer is already running, it restarts from its initial value. The timer is stopped by writing 1 to TIMER1_STOP. The count direction (up or down) is selected using the TIMER1_DIR bit.

The TIMER1_CONTINUOUS bit selects whether the timer automatically restarts after the end-of-count condition has been reached. The TIMER1_RUNNING_STS indicates whether the timer is running, or if it has stopped.

Note that the timer should be stopped before making any changes to the timer control registers. The timer configuration should only be changed if TIMER1_RUNNING_STS = 0.

4.5.3.3 Interrupts and GPIO Output

The timer status is an input to the interrupt control circuit and can be used to trigger an interrupt event after the final count value is reached; see Section 4.15. Note that the interrupt does not occur immediately when the final count value is reached; the interrupt is triggered at the point when the next update to the timer count value would be due.

The timer status can be output directly on a GPIO pin as an external indication of the timer activity. See Section 4.14 to configure a GPIO pin for this function.

4.5.3.4 Timer Block Diagram and Control Registers

The timer block is shown in Fig. 4-35.

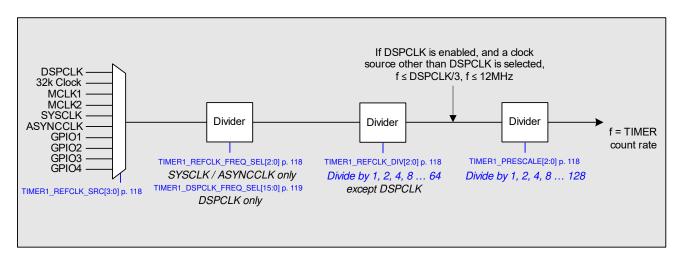


Figure 4-35. General-Purpose Timer

The timer control registers are described in Table 4-40.

Table 4-40. General-Purpose Timer (TIMER1) Control

Register Address	Bit	Label	Default	Description
R311296 (0x4_C000)	21	TIMER1_	0	Timer Continuous Mode select
Timer1_Control		CONTINUOUS		0 = Single mode
				1 = Continuous mode
				Timer must be stopped (TIMER1_RUNNING_STS = 0) when updating this field
	20	TIMER1_DIR	0	Timer Count Direction
		_		0 = Down
				1 = Up
				Timer must be stopped (TIMER1_RUNNING_STS = 0) when updating this field
	18:16	TIMER1_	000	Timer Count Rate Prescale
		PRESCALE[2:0]		000 = Divide by 1 011 = Divide by 8 110 = Divide by 64
				001 = Divide by 2 100 = Divide by 16 111 = Divide by 128
				010 = Divide by 4 101 = Divide by 32
				Timer must be stopped (TIMER1_RUNNING_STS = 0) when updating this field
	14:12	TIMER1_	000	Timer Reference Clock Divide (Not valid for DSPCLK source).
		REFCLK_DIV[2:0]		000 = Divide by 1 011 = Divide by 8 110 = Divide by 64
				001 = Divide by 2 100 = Divide by 16 111 = Divide by 128
				010 = Divide by 4 101 = Divide by 32
				If DSPCLK is enabled, and DSPCLK is not selected as source, the output
				frequency from this divider must be set less than or equal to DSPCLK / 3, and less
				than or equal to 12 MHz.
				If DSPCLK is disabled, the output of this divider is used as clock reference for the
				event logger. In this case, the divider output corresponds to the frequency of event logging opportunities on the respective modules.
				Timer must be stopped (TIMER1_RUNNING_STS = 0) when updating this field
	10:8	TIMER1_	000	Timer Reference Frequency Select (SYSCLK or ASYNCCLK source)
	10.0	REFCLK_FREQ_	000	000 = 6.144 MHz (5.6448 MHz) 010 = 24.576 MHz (22.5792 MHz)
		SEL[2:0]		000 = 0.144 MHz (3.0448 MHz) 010 = 24.376 MHz (22.3792 MHz) 001 = 12.288 MHz (11.2896 MHz) 011 = 49.152 MHz (45.1584 MHz)
				All other codes are reserved.
				The selected frequency must be less than or equal to the frequency of the source.
				Timer must be stopped (TIMER1 RUNNING STS = 0) when updating this field.
	3:0	TIMER1	0000	Timer Reference Source Select.
	3.0	REFCLK	0000	Timer must be stopped (TIMER1_RUNNING_STS=0) when updating this field.
		SRC[3:0]		0000 = DSPCLK 1000 = SYSCLK 1110 = GPIO3
				0000 = D3F CER 1000 = STSCER 1110 = GF103
				0100 = MCLK1
				0100 = MCLK1
R311298 (0x4 C002)	31:0	TIMER1 MAX	0	Timer Maximum Count.
Timer1 Count Preset	31.0	COUNT[31:0]		Final count value (when counting up). Starting count value (when counting down).
Timer I_Count_Freset		000.1.[00]		Timer must be stopped (TIMER1_RUNNING_STS = 0) when updating this field.
R311302 (0x4_C006)	4	TIMER1_STOP	0	Timer Stop Control
Timer1_Start_and_	_	TIMEITI_010I	U	Write 1 to stop.
Stop	0	TIMER1_START	0	Timer Start Control
	"	LIMENI_STANT	U	Write 1 to start.
				If the timer is already running, it restarts from its initial value.
D211204 (0v4 C000)	_	TIMER1	0	Timer Running Status
R311304 (0x4_C008)	0	RUNNING_STS	U	0 = Timer stopped
Timer1_Status				• • • • • • • • • • • • • • • • • • • •
				1 = Timer running

	Table 4-40.	General-Purpose	Timer	(TIMER1)	Control	(Cont.)
--	-------------	-----------------	-------	----------	---------	---------

Register Address	Bit	Label	Default	Description
R311306 (0x4_C00A)	31:0		0x0000	Timer Current Count value
Timer1_Count_		COUNT[31:0]		
Readback				
R311308 (0x4_C00C)	15:0		0x0000	Timer Reference Frequency Select (DSPCLK source)
Timer1_DSP_Clock_		DSPCLK_FREQ_		Coded as LSB = 1/64 MHz, Valid from 5.6 MHz to 148 MHz.
Config		SEL[15:0]		The timer reference frequency must be less than or equal to the DSPCLK frequency. The timer reference is generated by division of DSPCLK, and may differ from the selected frequency. The timer reference frequency can be read from TIMER1_DSPCLK_FREQ_STS.
				Timer must be stopped (TIMER1_RUNNING_STS=0) when updating this field.
R311310 (0x4_C00E)	15:0		0x0000	Timer Reference Frequency (Read only)
Timer1_DSP_Clock_		DSPCLK_FREQ_		Only valid when DSPCLK is the selected clock source.
Status		STS[15:0]		Coded as LSB = 1/64 MHz.

4.5.4 **DSP GPIO**

The DSP GPIO function provides an advanced I/O capability, supporting enhanced flexibility for signal-processing applications.

4.5.4.1 Overview

The CS42L92 supports up to 16 GPIO pins, which can be assigned to application-specific functions. There are 2 dedicated GPIO pins; the remaining 14 GPIOs are implemented as alternate functions to a pin-specific capability.

The GPIOs can be used to provide status outputs and control signals to external hardware; the supported functions include interrupt output, FLL clock output, accessory detection status, and S/PDIF or PWM-coded audio channels; see Section 4.14.

The GPIOs can support miscellaneous logic input and output, interfacing directly with the integrated DSPs, or with the host application software. A basic level of I/O functionality is described in Section 4.14, under the configuration where GPn_{-} FN = 0x001. The GPn_{-} FN field selects the functionality for the respective pin, $GPIOn_{-}$

The DSP GPIO pins are accessed using maskable sets of I/O control registers; this allows the selected combinations of GPIOs to be controlled with ease, regardless of how the allocation of GPIO pins has been implemented in hardware. In a typical use case, one GPIO mask is defined for each DSP function; this provides a highly efficient mechanism for the DSP to independently access the respective input and output signals.

4.5.4.2 DSP GPIO Control

The DSP GPIO function is selected by setting $GPn_FN = 0x002$ for the respective GPIO pin (where n identifies the applicable GPIOn pin).

Each DSP GPIO is controlled using bits that determine the direction (input/output) and the logic state (0/1) of the pin. These bits are replicated in eight control sets; each which can determine the logic level of any DSP GPIO.

Mask bits are provided within each control set, to determine which of the control sets has control of each DSP GPIO. To avoid logic contention, a DSP GPIO output must be controlled (unmasked) in a maximum of one control set at any time.

Note that write access to the direction control bits (DSPGPn_SETx_DIR) and level control bits (DSPGPn_SETx_LVL) is only valid when the channel (DSPGPn) is unmasked in the respective control set. Writes to these fields are implemented for the unmasked DSP GPIOs, and are ignored in respect of the masked DSP GPIOs. Note that the level control bits (DSPGPn_SETx_LVL) provide output level control only—they cannot be used to read the status of DSP GPIO inputs.

The logic level of the unmasked DSP GPIO outputs in any control set can be configured using a single register write. Writing to the output level control registers determines the logic level of the unmasked DSP GPIOs in that set only; all other outputs are unaffected.

DSP GPIO status bits are provided, indicating the logic level of every input or output pin that is configured as a DSP GPIO. The DSPGPn_STS bits also provide logic-level indication for any pin that is configured as a GPIO input, with GPn_FN = 0x001.Note that there is only one set of DSP GPIO status bits.

The status bits indicate the logic level of the DSP GPIO outputs. The respective pins are driven as outputs if configured as a DSP GPIO output, and unmasked in one of the control sets. Note that a DSP GPIO continues to be driven as an output, even if the mask bit is subsequently asserted in that set. The pin only ceases to be driven if it is configured as a DSP GPIO input and is unmasked in one of the control sets, or if the pin is configured as an input under a different GP*n*_FN field selection.

4.5.4.3 Common Functions to Standard GPIOs

The DSP GPIO functions are implemented alongside the standard GPIO capability, providing an alternative method of maskable I/O control for all of the GPIO pins. The DSP GPIO control bits in the register map are implemented in a manner that supports efficient read/write access for multiple GPIOs at once.

The DSP GPIO logic is shown in Fig. 4-36, which also shows the control fields relating to the standard GPIO.

The DSP GPIO function is selected by setting $GPn_FN = 0x002$ for the respective GPIO pin. Integrated pull-up and pull-down resistors are provided on each GPIO pin, which are also valid for DSP GPIO function. A bus keeper function is supported on the GPIO pins; this is enabled using the respective pull-up and pull-down control bits. The bus keeper function holds the logic level unchanged whenever the pin is undriven (e.g., if the signal is tristated). See Table 4-93 for details of the GPIO pull-up and pull-down control bits.

4.5.4.4 DSP GPIO Block Diagram and Control Registers

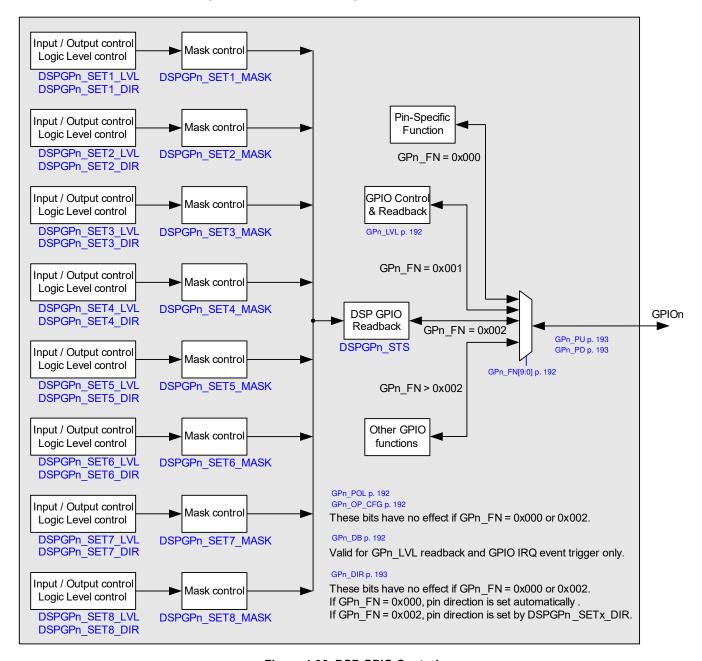


Figure 4-36. DSP GPIO Control

The control registers associated with the DSP GPIO are described in Table 4-41.

Table 4-41. DSP GPIO Control

Register Address	Bit	Label	Default	Description
R315392 (0x4_D000)	15	DSPGP16_STS	0	DSPGP16 Status
DSPGP_Status_1				Valid for DSPGP input and output
	14	DSPGP15_STS	0	DSPGP15 Status
	13	DSPGP14_STS	0	DSPGP14 Status
	12	DSPGP13_STS	0	DSPGP13 Status
	11	DSPGP12 STS	0	DSPGP12 Status
		DSPGP11 STS	0	DSPGP11 Status
	9	DSPGP10 STS	0	DSPGP10 Status
	8	DSPGP9 STS	0	DSPGP9 Status
		DSPGP8 STS	0	DSPGP8 Status
	6	DSPGP7 STS	0	DSPGP7 Status
		DSPGP6 STS	0	DSPGP6 Status
	4	DSPGP5 STS	0	DSPGP5 Status
	3	DSPGP4 STS	0	DSPGP4 Status
		DSPGP3 STS	0	DSPGP3 Status
	1	DSPGP2 STS	0	DSPGP2 Status
	0	DSPGP1 STS	0	DSPGP1 Status
R315424 (0x4 D020)		DSPGP16_SETn_MASK	1	DSP SETn GPIO16 Mask Control
DSPGP_SET1_Mask_1				0 = Unmasked, 1 = Masked
R315456 (0x4 D040)				A GPIO pin should be unmasked in a maximum of one SET at any time.
DSPGP_SET2_Mask_1	14	DSPGP15 SETn MASK	1	DSP SETn GPIO15 Mask Control
R315488 (0x4_D060)		DSPGP14 SETn MASK	1	DSP SETn GPIO14 Mask Control
DSPGP_SET3_Mask_1		DSPGP13_SETn_MASK	1	DSP SETn GPIO13 Mask Control
R315520 (0x4_D080)		DSPGP12 SETn MASK	1	DSP SETn GPIO12 Mask Control
DSPGP_SET4_Mask_1		DSPGP11 SETn MASK	1	DSP SETn GPIO11 Mask Control
R315552 (0x4_D0A0)	9	DSPGP10 SETn MASK	1	DSP SETn GPIO10 Mask Control
DSPGP_SET5_Mask_1	8	DSPGP9 SETn MASK	1	DSP SETn GPIO9 Mask Control
R315584 (0x4_D0C0) DSPGP_SET6_Mask_1	7	DSPGP8 SETn MASK	1	DSP SETn GPIO8 Mask Control
R315616 (0x4 D0E0)	6	DSPGP7_SETn_MASK	1	DSP SETn GPIO7 Mask Control
DSPGP_SET7_Mask_1	5	DSPGP6 SETn MASK	1	DSP SETn GPIO6 Mask Control
R315648 (0x4_D100)	4	DSPGP5 SETn MASK	1	DSP SETn GPIO5 Mask Control
DSPGP_SET8_Mask_1		DSPGP4_SETn_MASK	1	DSP SETn GPIO4 Mask Control
		DSPGP3 SETn MASK	1	DSP SETn GPIO3 Mask Control
	1	DSPGP2 SETn MASK	1	DSP SETn GPIO3 Mask Control
		DSPGP1 SETn MASK	1	DSP SETn GPIO2 Mask Control
R315432 (0x4 D028)		DSPGP16 SETn DIR	1	DSP SETn GPIO1 Mask Control
DSPGP_SET1_Direction_1	15	DSFGF10_SETII_DIK		0 = Output, 1 = Input
R315464 (0x4_D048)	11	DODOD15 SETs DID	1	DSP SETn GPIO15 Direction Control
DSPGP_SET2_Direction_1		DSPGP15_SETn_DIR DSPGP14 SETn DIR	1	DSP SETh GPIO13 Direction Control
R315496 (0x4 D068)		DSPGP14_SETIL_DIR	1	DSP SETn GPIO14 Direction Control
DSPGP_SET3_Direction_1		DSPGP13_SETII_DIR DSPGP12_SETII_DIR	1	DSP SETn GPIO13 Direction Control
R315528 (0x4_D088)				
DSPGP_SET4_Direction_1		DSPGP11_SETn_DIR	1	DSP SET
R315560 (0x4_D0A8)	9	DSPGP10_SETn_DIR	1	DSP SETn GPI010 Direction Control
DSPGP_SET5_Direction_1	8	DSPGP9_SETn_DIR	1	DSP SETh CPIOS Direction Control
R315592 (0x4_D0C8)	7	DSPGP8_SETn_DIR	1	DSP SETn GPIO8 Direction Control
DSPGP_SET6_Direction_1	6	DSPGP7_SETn_DIR	1	DSP SETn GPIO7 Direction Control DSP SETn GPIO6 Direction Control
R315624 (0x4_D0E8) DSPGP_SET7_Direction_1	5	DSPGP6_SETn_DIR	1	
R315656 (0x4 D108)	4	DSPGP5_SETn_DIR	1	DSP SETn GPIO5 Direction Control
DSPGP_SET8_Direction_1	3	DSPGP4_SETn_DIR	1	DSP SETh CPIO2 Direction Control
	2	DSPGP3_SETn_DIR	1	DSP SETn GPIO3 Direction Control
	1	DSPGP2_SETn_DIR	1	DSP SETn GPIO2 Direction Control
	0	DSPGP1_SETn_DIR	1	DSP SETn GPIO1 Direction Control

Table 4-41. DSP GPIO Control (Cont.)

Register Address	Bit	Label	Default	Description
R315440 (0x4_D030)	15	DSPGP16_SETn_LVL	0	DSP SETn GPIO16 Output Level
DSPGP_SET1_Level_1				0 = Logic 0, 1 = Logic 1
R315472 (0x4_D050)	14	DSPGP15_SETn_LVL	0	DSP SETn GPIO15 Output Level
DSPGP_SET2_Level_1	13	DSPGP14_SETn_LVL	0	DSP SETn GPIO14 Output Level
R315504 (0x4_D070) DSPGP_SET3_Level_1	12	DSPGP13_SETn_LVL	0	DSP SETn GPIO13 Output Level
R315536 (0x4 D090)	11	DSPGP12_SETn_LVL	0	DSP SETn GPIO12 Output Level
DSPGP SET4 Level 1	10	DSPGP11_SETn_LVL	0	DSP SETn GPIO11 Output Level
R315568 (0x4 D0B0)	9	DSPGP10_SETn_LVL	0	DSP SETn GPIO10 Output Level
DSPGP_SET5_Level_1	8	DSPGP9_SETn_LVL	0	DSP SETn GPIO9 Output Level
R315600 (0x4_D0D0)	7	DSPGP8_SETn_LVL	0	DSP SETn GPIO8 Output Level
DSPGP_SET6_Level_1	6	DSPGP7_SETn_LVL	0	DSP SETn GPIO7 Output Level
R315632 (0x4_D0F0)	5	DSPGP6_SETn_LVL	0	DSP SETn GPIO6 Output Level
DSPGP_SET7_Level_1	4	DSPGP5_SETn_LVL	0	DSP SETn GPIO5 Output Level
R315664 (0x4_D110)	3	DSPGP4_SETn_LVL	0	DSP SETn GPIO4 Output Level
DSPGP_SET8_Level_1	2	DSPGP3_SETn_LVL	0	DSP SETn GPIO3 Output Level
	1	DSPGP2_SETn_LVL	0	DSP SETn GPIO2 Output Level
	0	DSPGP1_SETn_LVL	0	DSP SETn GPIO1 Output Level

4.6 Digital Audio Interface

The CS42L92 provides three audio interfaces, AIF1–AIF3. Each interface is independently configurable on the respective transmit (TX) and receive (RX) paths. Each AIF supports up to eight channels of input and output signal paths.

The data sources for the audio interface transmit (TX) paths can be selected from any of the CS42L92 input signal paths, or from the digital-core processing functions. The audio interface receive (RX) paths can be selected as inputs to any of the digital-core processing functions or digital-core outputs. See Section 4.3 for details of the digital-core routing options.

The digital audio interfaces provide flexible connectivity for multiple processors and other audio devices. Typical connections include applications processor, baseband processor, and wireless transceiver. Note that the SLIMbus interface also provides digital audio input/output paths, providing options for additional interfaces. A typical configuration is shown in Fig. 4-37.

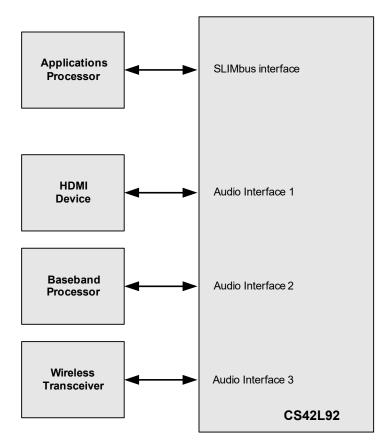


Figure 4-37. Typical AIF Connections

In the general case, the digital audio interface uses four pins:

TXDAT: data outputRXDAT: data input

BCLK: bit clock, for synchronizationLRCLK: left/right data-alignment clock

In Master Mode, the clock signals BCLK and LRCLK are outputs from the CS42L92. In Slave Mode, these signals are inputs, as shown in Section 4.6.1.

The following interface formats are supported on AIF1-AIF3:

- DSP Mode A
- DSP Mode B
- I2S
- · Left-justified

The left-justified and DSP-B formats are valid in Master Mode only (i.e., BCLK and LRCLK are outputs from the CS42L92). These modes cannot be supported in Slave Mode.

The audio interface formats are described in Section 4.6.2. The bit order is MSB-first in each case. Mono PCM operation can be supported using the DSP modes. Refer to Table 3-16 through Table 3-18 for signal timing information.

For typical applications, AIF data is encoded in 2's complement (signed, fixed-point) format. This format is compatible with all of the digital mixing and signal-processing functions on the CS42L92. Other data types, including floating point formats, can be supported using the DFCs. Note that, if unsigned or floating point data is present within the digital core, some restrictions on the valid signal routing options apply—see Section 4.3.13.

4.6.1 Master and Slave Mode Operation

The CS42L92 digital audio interfaces can operate as a master or slave, as shown in Fig. 4-38 and Fig. 4-39. The associated control bits are described in Section 4.7.

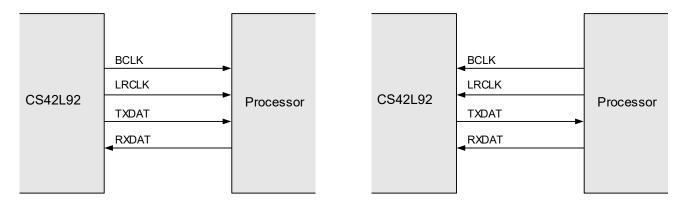


Figure 4-38. Master Mode

Figure 4-39. Slave Mode

4.6.2 Audio Data Formats

The CS42L92 digital audio interfaces can be configured to operate in I²S, left-justified, DSP-A, or DSP-B interface modes. Note that left-justified and DSP-B modes are valid in Master Mode only (i.e., BCLK and LRCLK are outputs from the CS42L92).

The digital audio interfaces also provide flexibility to support multiple slots of audio data within each LRCLK frame. This flexibility allows multiple audio channels to be supported within a single LRCLK frame.

The data formats described in this section are generic descriptions, assuming only one stereo pair of audio samples per LRCLK frame. In these cases, the AIF is configured to transmit (or receive) in the first available position in each frame (i.e., the Slot 0 position).

The options for multichannel operation are described in Section 4.6.3.

The audio data modes supported by the CS42L92 are described as follows. Note that the polarity of the BCLK and LRCLK signals can be inverted if required; the following descriptions all assume the default, noninverted polarity of these signals.

- In DSP modes, the left channel MSB is available on either the first (Mode B) or second (Mode A) rising edge of BCLK following a rising edge of LRCLK. Right-channel data immediately follows left channel data. Depending on word length, BCLK frequency, and sample rate, there may be unused BCLK cycles between the LSB of the right channel data and the next sample.
 - In Master Mode, the LRCLK output resembles the frame pulse shown in Fig. 4-40 and Fig. 4-41. In Slave Mode, it is possible to use any length of frame pulse less than 1/Fs, providing the falling edge of the frame pulse occurs at least one BCLK period before the rising edge of the next frame pulse.

PCM operation is supported in DSP interface mode. CS42L92 data that is output on the left channel is read as mono data by the receiving equipment. Mono PCM data received by the CS42L92 is treated as left-channel data. This may be routed to the left/right playback paths using the control fields described in Section 4.3.

DSP Mode A data format is shown in Fig. 4-40.

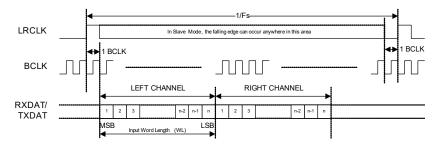


Figure 4-40. DSP Mode A Data Format

DSP Mode B data format is shown in Fig. 4-41.

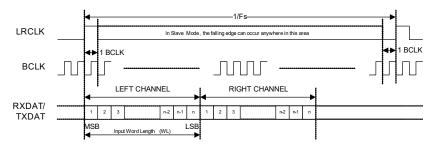


Figure 4-41. DSP Mode B Data Format

In I²S Mode, the MSB is available on the second rising edge of BCLK following a LRCLK transition. The other bits
up to the LSB are then transmitted in order. Depending on word length, BCLK frequency, and sample rate, there
may be unused BCLK cycles between the LSB of one sample and the MSB of the next.
 I²S Mode data format is shown in Fig. 4-42.

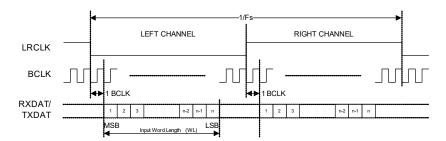


Figure 4-42. I2S Data Format (Assuming n-Bit Word Length)

In Left-Justified Mode, the MSB is available on the first rising edge of BCLK following a LRCLK transition. The other
bits up to the LSB are then transmitted in order. Depending on word length, BCLK frequency, and sample rate, there
may be unused BCLK cycles before each LRCLK transition.

Left-Justified Mode data format is shown in Fig. 4-43.

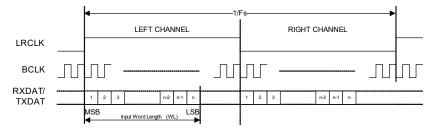


Figure 4-43. Left-Justified Data Format (Assuming n-Bit Word Length)

4.6.3 AIF Time-Slot Configuration

Multichannel operation is supported on AIF1–AIF3, with up to eight channels of input and output on each. A high degree of flexibility is provided to define the position of the audio samples within each LRCLK frame; the audio channel samples may be arranged in any order within the frame. Note that, on each interface, all input and output channels must operate at the same sample rate (Fs).

Each audio channel can be enabled or disabled independently on the transmit (TX) and receive (RX) signal paths. For each enabled channel, the audio samples are assigned to one time slot within the LRCLK frame.

In DSP modes, the time slots are ordered consecutively from the start of the LRCLK frame. In I²S and left-justified modes, the even-numbered time slots are arranged in the first half of the LRCLK frame, and the odd-numbered time slots are arranged in the second half of the frame.

The time slots are assigned independently for the transmit (TX) and receive (RX) signal paths. There is no requirement to assign every available time slot to an audio sample; slots may be left unused, if desired. Care is required, however, to ensure that no time slot is allocated to more than one audio channel.

The number of BCLK cycles within a slot is configurable; this is the slot length. The number of valid data bits within a slot is also configurable; this is the word length. The number of BCLK cycles per LRCLK frame must be configured; it must be ensured that there are enough BCLK cycles within each LRCLK frame to transmit or receive all of the enabled audio channels.

Examples of the AIF time-slot configurations are shown in Fig. 4-44 through Fig. 4-47. One example is shown for each of the four possible data formats.

Fig. 4-44 shows an example of DSP Mode A format. Four enabled audio channels are shown, allocated to time slots 0 through 3.

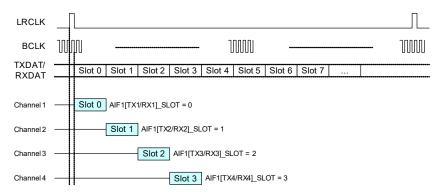


Figure 4-44. DSP Mode A Example

Fig. 4-45 shows an example of DSP Mode B format. Six enabled audio channels are shown, with time slots 4 and 5 unused.

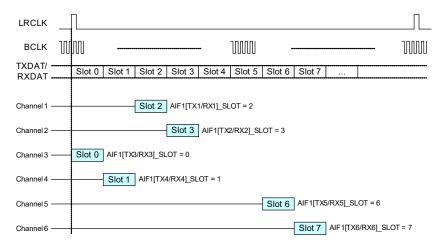


Figure 4-45. DSP Mode B Example

Fig. 4-46 shows an example of I2S format. Four enabled channels are shown, allocated to time slots 0 through 3.

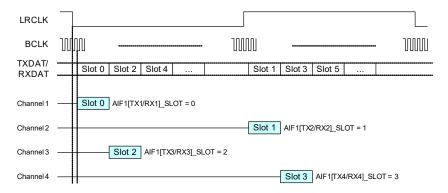


Figure 4-46. I²S Example

Fig. 4-47 shows an example of left-justified format. Six enabled channels are shown.

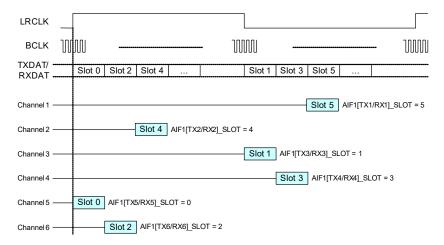


Figure 4-47. Left-Justified Example

4.6.4 TDM Operation Between Three or More Devices

The AIF operation described in Section 4.6.3 illustrates how multiple audio channels can be interleaved on a single TXDAT or RXDAT pin. The interface uses TDM to allocate time periods to each audio channel in turn.

This form of TDM is implemented between two devices, using the electrical connections shown Fig. 4-38 or Fig. 4-39.

It is also possible to implement TDM between three or more devices. This allows one codec to receive audio data from two other devices simultaneously on a single audio interface, as shown in Fig. 4-48, Fig. 4-49, and Fig. 4-50.

The CS42L92 provides full support for TDM operation. The TXDAT pin can be tristated when not transmitting data, in order to allow other devices to transmit on the same wire. The behavior of the TXDAT pin is configurable, to allow maximum flexibility to interface with other devices in this way.

Typical configurations of TDM operation between three devices are shown in Fig. 4-48, Fig. 4-49, and Fig. 4-50.

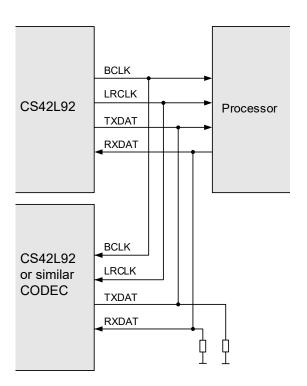


Figure 4-48. TDM with CS42L92 as Master

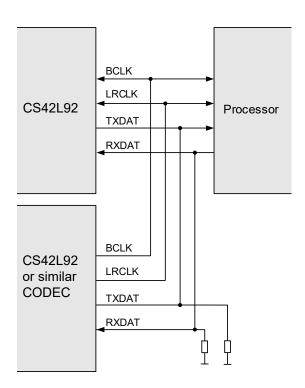


Figure 4-49. TDM with Other Codec as Master

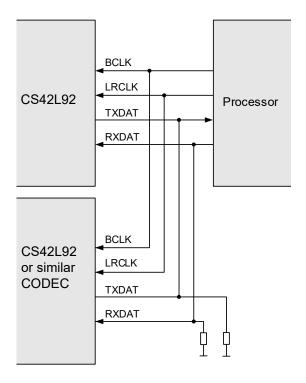


Figure 4-50. TDM with Processor as Master

4.7 Digital Audio Interface Control

This section describes the configuration of the CS42L92 digital audio interface paths.

Each AIF supports up to eight input signal paths and up to eight output signal paths. The digital audio interfaces can be configured as master or slave interfaces; mixed master/slave configurations are also possible.

Each input and output signal path can be independently enabled or disabled. The AIF output (TX) and AIF input (RX) paths use shared BCLK and LRCLK control signals.

The digital audio interface supports flexible data formats, selectable word length, configurable time-slot allocations, and TDM tristate control.

The AIF1 and AIF3 interfaces provide full support for 32-bit data words (input and output). Audio data samples up to 32 bits can be routed to the AIF1, AIF3, SLIMbus, S/PDIF, and DAC output paths. Note that other signal paths and signal-processing blocks within the digital core are limited to 24-bit data length; data samples are truncated to 24-bit length if they are routed through any function that does not support 32-bit data words.

The audio interfaces can be reconfigured while enabled, including changes to the LRCLK frame length and the channel time-slot configurations. Care is required to ensure that any on-the-fly reconfiguration does not cause corruption to the active signal paths. Wherever possible, it is recommended to disable all channels before changing the AIF configuration.

4.7.1 AIF Sample-Rate Control

The AIF RX inputs may be selected as input to the digital mixers or signal-processing functions within the CS42L92 digital core. The AIF TX outputs are derived from the respective output mixers.

The sample rate for each digital audio interface AIFn is configured using the respective AIFn RATE field—see Table 4-26.

Note that sample-rate conversion is required when routing the AIF paths to any signal chain that is asynchronous or configured for a different sample rate.

4.7.2 AIF Pin Configuration

The external connections associated with each digital audio interface (AIF) are implemented on multifunction GPIO pins, which must be configured for the respective AIF functions when required. The AIF connections are pin-specific alternative functions available on specific GPIO pins. See Section 4.14 to configure the GPIO pins for AIF operation.

Integrated pull-up and pull-down resistors can be enabled on the AIF*n*LRCLK, AIF*n*BCLK and AIF*n*RXDAT pins. This is provided as part of the GPIO functionality, and provides a flexible capability for interfacing with other devices. Each pull-up and pull-down resistor can be configured independently using the fields described in Table 4-93.

If the pull-up and pull-down resistors are both enabled, the CS42L92 provides a bus keeper function on the respective pin. The bus-keeper function holds the logic level unchanged whenever the pin is undriven (e.g., if the signal is tristated).

4.7.3 AIF Master/Slave Control

The digital audio interfaces can operate in master or slave modes and also in mixed master/slave configurations. In Master Mode, the BCLK and LRCLK signals are generated by the CS42L92 when any of the respective digital audio interface channels is enabled. In Slave Mode, these outputs are disabled by default to allow another device to drive these pins.

Master Mode is selected on the AIF*n*BCLK pin by setting AIF*n*_BCLK_MSTR. In Master Mode, the AIF*n*BCLK signal is generated by the CS42L92 when one or more AIF*n* channels is enabled.

If the AIF*n*_BCLK_FRC bit is set in BCLK Master Mode, the AIF*n*BCLK signal is output at all times, including when none of the AIF*n* channels is enabled.

The AIF nBCLK signal can be inverted in master or slave modes using the AIF n BCLK INV bit.

Master Mode is selected on the AIF*n*LRCLK pin by setting AIF*n*_LRCLK_MSTR. In Master Mode, the AIF*n*LRCLK signal is generated by the CS42L92 when one or more AIF*n* channels is enabled.

If AIF*n*_LRCLK_FRC is set in LRCLK Master Mode, the AIF*n*LRCLK signal is output at all times, including when none of the AIF*n* channels is enabled. Note that AIF*n*LRCLK is derived from AIF*n*BCLK, and an internal or external AIF*n*BCLK signal must be present to generate AIF*n*LRCLK.

The AIF nLRCLK signal can be inverted in master or slave modes using the AIF n LRCLK INV bit.

The timing of the AIF*n*LRCLK signal is selectable using AIF*n*_LRCLK_ADV. If this bit is set, the LRCLK signal transition is advanced to the previous BCLK phase (as compared with the default behavior). Further details of this option, and conditions for valid use cases, are described in Section 4.7.3.1.

The AIF1 master/slave control registers are described in Table 4-42.

Table 4-42. AIF1 Master/Slave Control

Register Address	Bit	Label	Default	Description
R1280 (0x0500)	7	AIF1_	0	AIF1 Audio Interface BCLK Invert
AIF1_BCLK_Ctrl		BCLK_INV		0 = AIF1BCLK not inverted
				1 = AIF1BCLK inverted
	6	AIF1_	0	AIF1 Audio Interface BCLK Output Control
		BCLK_FRC		0 = Normal
				1 = AIF1BCLK always enabled in Master Mode
	5	AIF1_	0	AIF1 Audio Interface BCLK Master Select
		BCLK_		0 = AIF1BCLK Slave Mode
		MSTR		1 = AIF1BCLK Master Mode

Table 4-42. AIF1 Master/Slave Control (Cont.)

Register Address	Bit	Label	Default	Description		
R1282 (0x0502)	4	AIF1_	0	AIF1 Audio Interface LRCLK Advance		
AIF1_Rx_Pin_Ctrl		LRCLK_		0 = Normal		
		ADV		1 = AIF1LRCLK transition is advanced to the previous BCLK phase		
		AIF1_	0	AIF1 Audio Interface LRCLK Invert		
		LRCLK_INV		0 = AIF1LRCLK not inverted		
				1 = AIF1LRCLK inverted		
	-	AIF1_	0	AIF1 Audio Interface LRCLK Output Control		
		LRCLK_		0 = Normal		
		FRC		1 = AIF1LRCLK always enabled in Master Mode		
	-	AIF1_	0	AIF1 Audio Interface LRCLK Master Select		
	LRCLK_			0 = AIF1LRCLK Slave Mode		
		MSTR		1 = AIF1LRCLK Master Mode		

The AIF2 master/slave control registers are described in Table 4-43.

Table 4-43. AIF2 Master/Slave Control

Register Address	Bit	Label	Default	Description		
R1344 (0x0540)	7	AIF2_BCLK_	0	AIF2 Audio Interface BCLK Invert		
AIF2_BCLK_Ctrl		INV		0 = AIF2BCLK not inverted		
				1 = AIF2BCLK inverted		
		AIF2_BCLK_	0	AIF2 Audio Interface BCLK Output Control		
		FRC		0 = Normal		
				1 = AIF2BCLK always enabled in Master Mode		
	5	AIF2_BCLK_	0	AIF2 Audio Interface BCLK Master Select		
		MSTR		0 = AIF2BCLK Slave Mode		
				1 = AIF2BCLK Master Mode		
R1346 (0x0542)	4			AIF2 Audio Interface LRCLK Advance		
AIF2_Rx_Pin_Ctrl		LRCLK_ADV		0 = Normal		
				1 = AIF2LRCLK transition is advanced to the previous BCLK phase		
	2 AIF2_		0	AIF2 Audio Interface LRCLK Invert		
		LRCLK_INV		0 = AIF2LRCLK not inverted		
				1 = AIF2LRCLK inverted		
	1 AIF2_ LRCLK_FRC		0	AIF2 Audio Interface LRCLK Output Control		
				0 = Normal		
				1 = AIF2LRCLK always enabled in Master Mode		
	0 AI		0	AIF2 Audio Interface LRCLK Master Select		
		LRCLK_		0 = AIF2LRCLK Slave Mode		
		MSTR		1 = AIF2LRCLK Master Mode		

The AIF3 master/slave control registers are described in Table 4-44.

Table 4-44. AIF3 Master/Slave Control

Register Address	Bit	Label	Default	Description
R1408 (0x0580)	7	AIF3_BCLK_	0	AIF3 Audio Interface BCLK Invert
AIF3_BCLK_Ctrl		INV		0 = AIF3BCLK not inverted
				1 = AIF3BCLK inverted
	6	AIF3_BCLK_	0	AIF3 Audio Interface BCLK Output Control
		FRC		0 = Normal
				1 = AIF3BCLK always enabled in Master Mode
	5	AIF3_BCLK_	0	AIF3 Audio Interface BCLK Master Select
		MSTR		0 = AIF3BCLK Slave Mode
				1 = AIF3BCLK Master Mode

Register Address	Bit	Label	Default	Description		
R1410 (0x0582)	4	AIF3_	0	AIF3 Audio Interface LRCLK Advance		
AIF3_Rx_Pin_Ctrl		LRCLK_ADV		0 = Normal		
				1 = AIF3LRCLK transition is advanced to the previous BCLK phase		
	2	AIF3_	0	AIF3 Audio Interface LRCLK Invert		
		LRCLK_INV		0 = AIF3LRCLK not inverted		
				1 = AIF3LRCLK inverted		
	1	AIF3_		AIF3 Audio Interface LRCLK Output Control		
		LRCLK_FRC		0 = Normal		
				1 = AIF3LRCLK always enabled in Master Mode		
	0	AIF3_	0	AIF3 Audio Interface LRCLK Master Select		
	LRCLK_			0 = AIF3LRCLK Slave Mode		
		MSTR		1 = AIF3LRCLK Master Mode		

Table 4-44. AIF3 Master/Slave Control (Cont.)

4.7.3.1 LRCLK Advance

The timing of the AIF nLRCLK signal can be adjusted using AIF n_LRCLK_ADV. If this bit is set, the LRCLK signal transition is advanced to the previous BCLK phase (as compared with the default behavior).

The LRCLK-advance option (AIFn LRCLK ADV = 1) is valid for DSP-A mode only, operating in Master Mode.

Note: BCLK inversion must be enabled (AIF n BCLK INV = 1) if the LRCLK-advance option is enabled.

The adjusted interface timing (AIFn_LRCLK_ADV = 1), is shown in Fig. 4-51. The left-channel MSB is available on the second rising edge of BCLK, 1.5 BCLK cycles after the LRCLK rising edge—assuming the BCLK output is inverted.

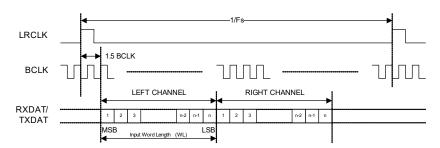


Figure 4-51. LRCLK advance—DSP-A Master Mode

4.7.4 AIF Signal Path Enable

The AIF1–AIF3 interfaces support up to eight input (RX) channels and up to eight output (TX) channels. Each channel is enabled or disabled using the bits defined in Table 4-45, Table 4-46 and Table 4-47.

The system clock, SYSCLK, must be configured and enabled before any audio path is enabled. The ASYNCCLK may also be required, depending on the path configuration. See Section 4.16 for details of the system clocks.

The audio interfaces can be reconfigured if enabled, including changes to the LRCLK frame length and the channel time-slot configurations. Care is required to ensure that this on-the-fly reconfiguration does not cause corruption to the active signal paths. Wherever possible, it is recommended to disable all channels before changing the AIF configuration.

The CS42L92 performs automatic checks to confirm that the SYSCLK and ASYNCCLK frequencies are high enough to support the commanded signal paths and processing functions. If the frequency is too low, an attempt to enable an AIF signal path fails. Note that active signal paths are not affected under such circumstances.

The AIF1 signal-path-enable bits are described in Table 4-45.

Table 4-45. AIF1 Signal Path Enable

Register Address	Bit	Label	Default	Description
R1305 (0x0519)	7	AIF1TX8_ENA	0	AIF1 Audio Interface TX Channel <i>n</i> Enable
AIF1_Tx_Enables	6	AIF1TX7_ENA	0	0 = Disabled
	5	AIF1TX6_ENA	0	1 = Enabled
	4	AIF1TX5_ENA	0	
	3	AIF1TX4_ENA	0	
	2	AIF1TX3_ENA	0	
	1	AIF1TX2_ENA	0	
	0	AIF1TX1_ENA	0	
R1306 (0x051A)	7	AIF1RX8_ENA	0	AIF1 Audio Interface RX Channel <i>n</i> Enable
AIF1_Rx_Enables	6	AIF1RX7_ENA	0	0 = Disabled
	5	AIF1RX6_ENA	0	1 = Enabled
	4	AIF1RX5_ENA	0	
	3	AIF1RX4_ENA	0	
	2	AIF1RX3_ENA	0	
	1	AIF1RX2_ENA	0	
	0	AIF1RX1_ENA	0	

The AIF2 signal-path-enable bits are described in Table 4-46.

Table 4-46. AIF2 Signal Path Enable

Register Address	Bit	Label	Default	Description
R1369 (0x0559)	7	AIF2TX8_ENA	0	AIF2 Audio Interface TX Channel <i>n</i> Enable
AIF2_Tx_Enables	6	AIF2TX7_ENA	0	0 = Disabled
	5	AIF2TX6_ENA	0	1 = Enabled
	4	AIF2TX5_ENA	0	
	3	AIF2TX4_ENA	0	
	2	AIF2TX3_ENA	0	
	1	AIF2TX2_ENA	0	
	0	AIF2TX1_ENA	0	
R1370 (0x055A)	7	AIF2RX8_ENA	0	AIF2 Audio Interface RX Channel <i>n</i> Enable
AIF2_Rx_Enables	6	AIF2RX7_ENA	0	0 = Disabled
	5	AIF2RX6_ENA	0	1 = Enabled
	4	AIF2RX5_ENA	0	
	3	AIF2RX4_ENA	0	
	2	AIF2RX3_ENA	0	
	1	AIF2RX2_ENA	0	
	0	AIF2RX1_ENA	0	

The AIF3 signal-path-enable bits are described in Table 4-47.

Table 4-47. AIF3 Signal Path Enable

Register Address	Bit	Label	Default	Description
R1433 (0x0599)	7	AIF3TX8_ENA	0	AIF3 Audio Interface TX Channel n Enable
AIF3_Tx_Enables	6	AIF3TX7_ENA	0	0 = Disabled
	5	AIF3TX6_ENA	0	1 = Enabled
	4	AIF3TX5_ENA	0	
	3	AIF3TX4_ENA	0	
	2	AIF3TX3_ENA	0	
	1	AIF3TX2_ENA	0	
	0	AIF3TX1_ENA	0	

Table 4-47.	AIF3 Sign	nal Path E	nable (Cont.)	į
-------------	-----------	------------	---------------	---

Register Address	Bit	Label	Default	Description
R1434 (0x059A)	7	AIF3RX8_ENA	0	AIF3 Audio Interface RX Channel <i>n</i> Enable
AIF3_Rx_Enables	6	AIF3RX7_ENA	0	0 = Disabled
	5	AIF3RX6_ENA	0	1 = Enabled
	4	AIF3RX5_ENA	0	
	3	AIF3RX4_ENA	0	
	2	AIF3RX3_ENA	0	
	1	AIF3RX2_ENA	0	
	0	AIF3RX1_ENA	0	

4.7.5 AIF BCLK and LRCLK Control

The AIF nBCLK frequency is selected using the AIF n_BCLK_FREQ field. For each setting of this field, the actual frequency depends on whether AIF n is configured for a 48-kHz-related sample rate, as described in Table 4-48 through Table 4-50.

- If AIFn_RATE < 1000 (Table 4-26), AIFn is referenced to the SYSCLK clocking domain and the applicable frequency depends upon the SAMPLE RATE 1, SAMPLE RATE 2 or SAMPLE RATE 3 fields.
- If AIFn_RATE ≥ 1000, AIFn is referenced to the ASYNCCLK clocking domain and the applicable frequency depends upon the ASYNC SAMPLE RATE 1 or ASYNC SAMPLE RATE 2 fields.

The selected AIF nBCLK rate must be less than or equal to SYSCLK/2, or ASYNCCLK/2, as applicable. See Section 4.16 for details of SYSCLK and ASYNCCLK clock domains, and the associated control registers.

The AIF nLRCLK frequency is controlled relative to AIF nBCLK by the AIF n_BCPF divider.

Note that the BCLK rate must be configured in master and slave modes, using the AIF*n_*BCLK_FREQ fields. The LRCLK rates only require to be configured in Master Mode.

The AIF1 BCLK/LRCLK control fields are described in Table 4-48.

Table 4-48. AIF1 BCLK and LRCLK Control

Register Address	Bit	Label	Default	Description			
R1280 (0x0500) AIF1_ BCLK_Ctrl	4:0	AIF1_ BCLK_ FREQ[4:0]	0x0C	0x02 = 64 kHz (58.8 kHz) 0x 0x03 = 96 kHz (88.2 kHz) 0x 0x04 = 128 kHz (117.6 kHz) 0x 0x05 = 192 kHz (176.4 kHz) 0x	x07 = 384 kHz (352.8 kHz) x08 = 512 kHz (470.4 kHz) x09 = 768 kHz (705.6 kHz) x0A = 1.024 MHz (940.8 kHz) x0B = 1.536 MHz (1.4112 MHz) x0C = 2.048 MHz (1.8816 MHz) ply for 44.1 kHz-related sample eferenced to the SYSCLK clock pply if SAMPLE_RATE_n = 01X eferenced to the ASYNCCLK clock	0x0D = 3.072 MHz (2.8824 MHz) 0x0E = 4.096 MHz (3.7632 MHz) 0x0F = 6.144 MHz (5.6448 MHz) 0x10 = 8.192 MHz (7.5264 MHz) 0x11 = 12.288 MHz (11.2896 MHz) 0x12 = 24.576 MHz (22.5792 MHz) rates only. domain. In this case, the 0xX. ock domain. In this case, the	
R1286 (0x0506) AIF1_Rx_ BCLK_Rate		AIF1_ BCPF[12:0]	0x0040	AIF1LRCLK Rate. Selects the n AIF1BCLK/AIF1_BCPF. Integer (LSB = 1), Valid from 8 to	, ,	1LRCLK frame. AIF1LRCLK clock =	

The AIF2 BCLK/LRCLK control fields are described in Table 4-49.

Table 4-49. AIF2 BCLK and LRCLK Control

Register Address	Bit	Label	Default		Description					
R1344	4:0	AIF2_	0x0C	AIF2BCLK Rate. The AIF2BCLK rate must be less than or equal to SYSCLK/2.						
(0x0540)		BCLK_		0x00-0x01 = Reserved	0x07 = 384 kHz (352.8 kHz)	0x0D = 3.072 MHz (2.8824 MHz)				
AIF2_		FREQ[4:0]		0x02 = 64 kHz (58.8 kHz)	0x08 = 512 kHz (470.4 kHz)	0x0E = 4.096 MHz (3.7632 MHz)				
BCLK_Ctrl				0x03 = 96 kHz (88.2 kHz)	0x09 = 768 kHz (705.6 kHz)	0x0F = 6.144 MHz (5.6448 MHz)				
				0x04 = 128 kHz (117.6 kHz)	0x0A = 1.024 MHz (940.8 kHz)	0x10 = 8.192 MHz (7.5264 MHz)				
				0x05 = 192 kHz (176.4 kHz)	0x0B = 1.536 MHz (1.4112 MHz)	0x11 = 12.288 MHz (11.2896 MHz)				
				0x06 = 256 kHz (235.2 kHz)	0x0C = 2.048 MHz (1.8816 MHz)	0x12 = 24.576 MHz (22.5792 MHz)				
				The frequencies in brackets apply for 44.1 kHz–related sample rates only. If AIF2_RATE < 1000, AIF2 is referenced to the SYSCLK clock domain. In this case, the 44.1 kHz–related frequencies apply if SAMPLE_RATE_n = 01XXX.						
				_	s referenced to the ASYNCCLK cl s apply if ASYNC_SAMPLE_RATE	,				
R1350 (0x0546)	12:0	AIF2_ BCPF[12:0]		AIF2LRCLK Rate. Selects th AIF2BCLK/AIF2_BCPF.	e number of BCLK cycles per AIF	2LRCLK frame. AIF2LRCLK clock =				
AIF2_Rx_ BCLK_Rate				Integer (LSB = 1), Valid from	8 to 8191.					

The AIF3 BCLK/LRCLK control fields are described in Table 4-50.

Table 4-50. AIF3 BCLK and LRCLK Control

Register Address	Bit	Label	Default		Description	
R1408 (0x0580) AIF3_ BCLK_Ctrl	4:0	AIF3_ BCLK_ FREQ[4:0]	0x0C	0x00–0x01 = Reserved 0x02 = 64 kHz (58.8 kHz) 0x03 = 96 kHz (88.2 kHz) 0x04 = 128 kHz (117.6 kHz) 0x05 = 192 kHz (176.4 kHz) 0x06 = 256 kHz (235.2 kHz) The frequencies in brackets If AIF3_RATE < 1000, AIF3 i 44.1 kHz–related frequencies If AIF3_RATE ≥ 1000, AIF3 i	,	0x0D = 3.072 MHz (2.8824 MHz) 0x0E = 4.096 MHz (3.7632 MHz) 0x0F = 6.144 MHz (5.6448 MHz) 0x10 = 8.192 MHz (7.5264 MHz) 0x11 = 12.288 MHz (11.2896 MHz) 0x12 = 24.576 MHz (22.5792 MHz) e rates only. c domain. In this case, the XXX. lock domain. In this case, the
R1414 (0x0586) AIF3_Rx_ BCLK_Rate	12:0	AIF3_ BCPF[12:0]	0x0040	AIF3LRCLK Rate. Selects th AIF3BCLK/AIF3_BCPF. Integer (LSB = 1), Valid from	, ,	3LRCLK frame. AIF3LRCLK clock =

4.7.6 AIF Digital Audio Data Control

The fields controlling the audio data format, word length, and slot configurations for AIF1–AIF3 are described in Table 4-51 through Table 4-53 respectively.

Note that left-justified and DSP-B modes are valid in Master Mode only (i.e., BCLK and LRCLK are outputs from the CS42L92).

The AIF *n* slot length is the number of BCLK cycles in one time slot within the overall LRCLK frame. The word length is the number of valid data bits within each time slot. If the word length is less than the slot length, there are unused BCLK cycles at the end of each time slot. The AIF *n* word length and slot length are independently selectable for the input (RX) and output (TX) paths.

For each AIF input (RX) and AIF output (TX) channel, the position of the audio data sample within the LRCLK frame is configurable. The x_SLOT fields define the time-slot position of the audio sample for the associated audio channel. Valid selections are Slot 0 upwards. The time slots are numbered as shown in Fig. 4-44 through Fig. 4-47.

Note that, in DSP modes, the time slots are ordered consecutively from the start of the LRCLK frame. In I2S and left-justified modes, the even-numbered time slots are arranged in the first half of the LRCLK frame, and the odd-numbered time slots are arranged in the second half of the frame.

The AIF1 data control fields are described in Table 4-51.

Table 4-51. AIF1 Digital Audio Data Control

Register Address	Bit	Label	Default	Description
R1284 (0x0504)	2:0	AIF1_FMT[2:0]	000	AIF1 Audio Interface Format
AIF1_Format				000 = DSP Mode A
				001 = DSP Mode B
				010 = I ² S mode
				011 = Left-Justified mode
				Other codes are reserved.
R1287 (0x0507)	13:8	AIF1TX_WL[5:0]	0x18	AIF1 TX Word Length (Number of valid data bits per slot)
AIF1_Frame_Ctrl_1				Integer (LSB = 1); Valid from 16 to 32
	7:0	AIF1TX_SLOT_	0x18	AIF1 TX Slot Length (Number of BCLK cycles per slot)
		LEN[7:0]		Integer (LSB = 1); Valid from 16 to 128
R1288 (0x0508)	13:8	AIF1RX_WL[5:0]	0x18	AIF1 RX Word Length (Number of valid data bits per slot)
AIF1_Frame_Ctrl_2				Integer (LSB = 1); Valid from 16 to 32
	7:0	AIF1RX_SLOT_	0x18	AIF1 RX Slot Length (Number of BCLK cycles per slot)
		LEN[7:0]		Integer (LSB = 1); Valid from 16 to 128
R1289 (0x0509)	5:0	AIF1TX1_SLOT[5:0]	0x0	AIF1 TX Channel n Slot position
to	5:0	AIF1TX2_SLOT[5:0]	0x1	Defines the TX time slot position of the Channel n audio sample
R1296 (0x0510)	5:0	AIF1TX3_SLOT[5:0]	0x2	Integer (LSB=1); Valid from 0 to 63
	5:0	AIF1TX4_SLOT[5:0]	0x3	
	5:0	AIF1TX5_SLOT[5:0]	0x4	
	5:0	AIF1TX6_SLOT[5:0]	0x5	
	5:0	AIF1TX7_SLOT[5:0]	0x6	
	5:0	AIF1TX8_SLOT[5:0]	0x7	
R1297 (0x0511)	5:0	AIF1RX1_SLOT[5:0]	0x0	AIF1 RX Channel n Slot position
to	5:0	AIF1RX2_SLOT[5:0]	0x1	Defines the RX time slot position of the Channel n audio sample
R1304 (0x0518)	5:0	AIF1RX3_SLOT[5:0]	0x2	Integer (LSB=1); Valid from 0 to 63
	5:0	AIF1RX4_SLOT[5:0]	0x3	
	5:0	AIF1RX5_SLOT[5:0]	0x4	
	5:0	AIF1RX6_SLOT[5:0]	0x5	
	5:0	AIF1RX7_SLOT[5:0]	0x6	
	5:0	AIF1RX8_SLOT[5:0]	0x7	

The AIF2 data control fields are described in Table 4-52.

Table 4-52. AIF2 Digital Audio Data Control

Register Address	Bit	Label	Default	Description	
R1348 (0x0544)	2:0	AIF2_FMT[2:0]	000	AIF2 Audio Interface Format	
AIF2_Format				000 = DSP Mode A	
				001 = DSP Mode B	
				010 = I ² S mode	
				011 = Left-Justified mode	
				Other codes are reserved.	
R1351 (0x0547)	13:8	AIF2TX_WL[5:0]	0x18	AIF2 TX Word Length	
AIF2_Frame_Ctrl_1				(Number of valid data bits per slot)	
				Integer (LSB = 1); Valid from 16 to 32	
	7:0	AIF2TX_SLOT_	0x18	AIF2 TX Slot Length	
		LEN[7:0]		(Number of BCLK cycles per slot)	
				Integer (LSB = 1); Valid from 16 to 128	

Table 4-52. AIF2 Digital Audio Data Control (Cont.)

Register Address	Bit	Label	Default	Description
R1352 (0x0548)	13:8	AIF2RX_WL[5:0]	0x18	AIF2 RX Word Length
AIF2_Frame_Ctrl_2				(Number of valid data bits per slot)
				Integer (LSB = 1); Valid from 16 to 32
	7:0	AIF2RX_SLOT_	0x18	AIF2 RX Slot Length
		LEN[7:0]		(Number of BCLK cycles per slot)
				Integer (LSB = 1); Valid from 16 to 128
R1353 (0x0549)	5:0	AIF2TX1_SLOT[5:0]	0x0	AIF2 TX Channel n Slot position
to	5:0	AIF2TX2_SLOT[5:0]	0x1	Defines the TX time slot position of the Channel n audio sample
R1360 (0x0550)	5:0	AIF2TX3_SLOT[5:0]	0x2	Integer (LSB=1); Valid from 0 to 63
	5:0	AIF2TX4_SLOT[5:0]	0x3	
	5:0	AIF2TX5_SLOT[5:0]	0x4	
	5:0	AIF2TX6_SLOT[5:0]	0x5	
	5:0	AIF2TX7_SLOT[5:0]	0x6	
	5:0	AIF2TX8_SLOT[5:0]	0x7	
R1361 (0x0551)	5:0	AIF2RX1_SLOT[5:0]	0x0	AIF2 RX Channel n Slot position
to	5:0	AIF2RX2_SLOT[5:0]	0x1	Defines the RX time slot position of the Channel n audio sample
R1368 (0x0558)	5:0	AIF2RX3_SLOT[5:0]	0x2	Integer (LSB=1); Valid from 0 to 63
	5:0	AIF2RX4_SLOT[5:0]	0x3	
	5:0	AIF2RX5_SLOT[5:0]	0x4	
	5:0	AIF2RX6_SLOT[5:0]	0x5	
	5:0	AIF2RX7_SLOT[5:0]	0x6	
	5:0	AIF2RX8_SLOT[5:0]	0x7	

The AIF3 data control fields are described in Table 4-53.

Table 4-53. AIF3 Digital Audio Data Control

Register Address	Bit	Label	Default	Description
R1412 (0x0584)	2:0	AIF3_FMT[2:0]	000	AIF3 Audio Interface Format
AIF3_Format				000 = DSP Mode A
				001 = DSP Mode B
				010 = I2S mode
				011 = Left-Justified mode
				Other codes are reserved.
R1415 (0x0587)	13:8	AIF3TX_WL[5:0]	0x18	AIF3 TX Word Length (Number of valid data bits per slot)
AIF3_Frame_Ctrl_1				Integer (LSB = 1); Valid from 16 to 32
	7:0	AIF3TX_SLOT_	0x18	AIF3 TX Slot Length (Number of BCLK cycles per slot)
		LEN[7:0]		Integer (LSB = 1); Valid from 16 to 128
R1416 (0x0588)	13:8	AIF3RX_WL[5:0]	0x18	AIF3 RX Word Length (Number of valid data bits per slot)
AIF3_Frame_Ctrl_2				Integer (LSB = 1); Valid from 16 to 32
	7:0	AIF3RX_SLOT_	0x18	AIF3 RX Slot Length (Number of BCLK cycles per slot)
		LEN[7:0]		Integer (LSB = 1); Valid from 16 to 128
R1417 (0x0589)	5:0	AIF3TX1_SLOT[5:0]	0x0	AIF3 TX Channel n Slot position
to	5:0	AIF3TX2_SLOT[5:0]	0x1	Defines the TX time slot position of the Channel n audio sample
R1424 (0x0590)	5:0	AIF3TX3_SLOT[5:0]	0x2	Integer (LSB=1); Valid from 0 to 63
	5:0	AIF3TX4_SLOT[5:0]	0x3	
	5:0	AIF3TX5_SLOT[5:0]	0x4	
	5:0	AIF3TX6_SLOT[5:0]	0x5	
	5:0	AIF3TX7_SLOT[5:0]	0x6	
	5:0	AIF3TX8_SLOT[5:0]	0x7	

Register Address	Bit	Label	Default	Description
R1425 (0x0591)	5:0	AIF3RX1_SLOT[5:0]	0x0	AIF3 RX Channel n Slot position
to	5:0	AIF3RX2_SLOT[5:0]	0x1	Defines the RX time slot position of the Channel n audio sample
R1432 (0x0598)	5:0	AIF3RX3_SLOT[5:0]	0x2	Integer (LSB=1); Valid from 0 to 63
	5:0	AIF3RX4_SLOT[5:0]	0x3	
	5:0	AIF3RX5_SLOT[5:0]	0x4	
	5:0	AIF3RX6_SLOT[5:0]	0x5	
	5:0	AIF3RX7_SLOT[5:0]	0x6	
	5:0	AIF3RX8_SLOT[5:0]	0x7	

4.7.7 AIF TDM and Tristate Control

The AIF*n* output pins are tristated when the AIF*n*_TRI bit is set. Note that this function only affects output pins configured for the respective AIF*n* function—a GPIO pin that is configured for a different function is not affected by AIF*n*_TRI. See Section 4.14 to configure the GPIO pins.

Under default conditions, the AIF*n*TXDAT output is held at Logic 0 when the CS42L92 is not transmitting data (i.e., during time slots that are not enabled for output by the CS42L92). If the AIF*n*TX_DAT_TRI bit is set, the CS42L92 tristates the respective AIF*n*TXDAT pin when not transmitting data, allowing other devices to drive the AIF*n*TXDAT connection.

The AIF1 TDM and tristate control fields are described in Table 4-54.

Table 4-54. AIF1 TDM and Tristate Control

Register Address	Bit	Label	Default	Description
R1281 (0x0501)	5	AIF1TX_DAT_TRI	0	AIF1TXDAT Tristate Control
AIF1_Tx_Pin_Ctrl				0 = Logic 0 during unused time slots
				1 = Tristated during unused time slots
R1283 (0x0503)	6	AIF1_TRI	0	AIF1 Audio Interface Tristate Control
AIF1_Rate_Ctrl				0 = Normal
				1 = AIF1 Outputs are tristated
				Note that this bit only affects output pins configured for the respective AIF1 function.

The AIF2 TDM and tristate control fields are described in Table 4-55.

Table 4-55. AIF2 TDM and Tristate Control

Register Address	Bit	Label	Default	Description
R1345 (0x0541)	5	AIF2TX_DAT_TRI	0	AIF2TXDAT Tristate Control
AIF2_Tx_Pin_Ctrl				0 = Logic 0 during unused time slots
				1 = Tristated during unused time slots
R1347 (0x0543)	6	AIF2_TRI	0	AIF2 Audio Interface Tristate Control
AIF2_Rate_Ctrl				0 = Normal
				1 = AIF2 Outputs are tristated
				Note that this bit only affects output pins configured for the respective AIF2 function.

The AIF3 TDM and tristate control fields are described in Table 4-56.

Table 4-56. AIF3 TDM and Tristate Control

Register Address	Bit	Label	Default	Description
R1409 (0x0581)	5	AIF3TX_DAT_TRI	0	AIF3TXDAT Tristate Control
AIF3_Tx_Pin_Ctrl				0 = Logic 0 during unused time slots
				1 = Tristated during unused time slots
R1411 (0x0583)	6	AIF3_TRI	0	AIF3 Audio Interface Tristate Control
AIF3_Rate_Ctrl				0 = Normal
				1 = AIF3 Outputs are tristated
				Note that this bit only affects output pins configured for the respective AIF3 function.

4.8 SLIMbus Interface

The SLIMbus protocol is highly configurable and adaptable, supporting multiple audio signal paths, and mixed sample rates simultaneously. It also supports control messaging and associated communications between devices.

4.8.1 SLIMbus Devices

The SLIMbus components comprise different device classes (manager, framer, interface, generic). Each component on the bus has an interface device, which provides bus management services for the respective component. One or more components on the bus provide manager and framer device functions; the manager has the capabilities to administer the bus, although the framer is responsible for driving the CLK line and for driving the DATA required to establish the frame structure on the bus. Note that only one manager and one framer device is active at any time. The framer function can be transferred between devices when required. Generic devices provide the basic SLIMbus functionality for the associated ports, and for the transport protocol by which audio signal paths are established on the bus.

4.8.2 SLIMbus Frame Structure

The SLIMbus bit stream is formatted within a defined structure of cells, slots, subframes, frames, and superframes:

- · A single data bit is known as a cell.
- Four cells make a slot.
- · A frame consists of 192 slots.
- Eight frames make a superframe.

The bit stream structure is configurable to some extent, but the superframe definition always comprises 1536 slots. The transmitted/received bit rate can be configured according to system requirements and can be changed dynamically without interruption to active audio paths.

The SLIMbus CLK frequency (also the bus bit rate) is defined by a root frequency (RF) and a clock gear (CG). In the top clock gear (Gear 10), the CLK frequency is equal to the root frequency. Each reduction in the clock gear halves the CLK frequency, and doubles the duration of the superframe.

The SLIMbus bandwidth typically comprises control space (for bus messages, synchronization, etc.) and data space (for audio paths). The precise allocation is configurable and can be entirely control space, if required.

The subframe definition comprises the number of slots per subframe (6, 8, 24 or 32) and the number of these slots per subframe allocated as control space. The applicable combination of subframe length and control space width are defined by the Subframe Mode (SM) parameter.

The SLIMbus frame always comprises 192 slots, regardless of the subframe definition. A number of slots are allocated to control space, as noted above; the remaining slots are allocated to data space. Some of the control space is required for framing information and for the guide channel (see Section 4.8.3); the remainder of the control space are allocated to the message channel.

Multiline SLIMbus comprises one or more secondary data line, supporting additional bandwidth and flexibility for data transfer over the bus. All data lines are synchronized to the bus clock; the RF and CG parameters are common to all data lines. Note that control space is allocated on the primary data line only—secondary lines are used exclusively for data space. Accordingly, the SM parameter is defined for the primary line only.

4.8.3 Control Space

Framing information is provided in slots 0 and 96 of every frame. Slot 0 contains a 4-bit synchronization code; slot 96 contains the 32-bit framing information, transmitted 4 bits at a time over the eight frames that make up the SLIMbus superframe. The clock gear, root frequency, subframe configuration, along with some other parameters, are encoded within the framing information.

The guide channel occupies two slots within Frame 0. This provides the necessary information for a SLIMbus component to acquire and verify the frame synchronization. The guide channel occupies the first two control space slots within the first frame of the bit stream, excluding the framing information slots. Note that the exact slot allocation depends upon the applicable subframe mode.

The message channel is allocated all of the control space not used by the framing information or the guide channel. The message channel enables SLIMbus devices to communicate with each other, using a priority-based mechanism defined in the MIPI specification.

Messages may be broadcast to all devices on the bus, or can be addressed to specific devices using their allocated logical address (LA) or enumeration address (EA). Note that, device-specific messages are directed to a particular device (i.e., manager, framer, interface, or generic) within a component on the bus.

4.8.4 Data Space

The data space can be organized into a maximum of 256 data channels. Each channel, identified by a unique channel number (CN), is a stream of one or more contiguous slots, organized in a consistent data structure that repeats at a fixed interval.

A data channel is defined by its segment length (SL), (number of contiguous slots allocated), segment interval (spacing between the first slots of successive segments), and segment offset (the slot number of the first allocated slot within the superframe). The segment interval and segment offset are collectively defined by a segment distribution (SD), by which the SLIMbus manager may configure or reconfigure any data channel.

Each segment may comprise TAG, AUX, and DATA portions. Any of these portions may have a length of zero; the exact composition depends on the transport protocol (TP) for the associated channel. The DATA portion must be wide enough to accommodate one full word of the data channel contents. Data words cannot be spread across multiple segments.

The segment interval for each data channel represents the minimum spacing between consecutive data samples for that channel. (Note that the minimum spacing applies if every allocated segment is populated with new data; in many cases, additional bandwidth is allocated and not every allocated segment is used.)

The segment interval gives rise to segment windows for each data channel, aligned to the start of every superframe. The segment window boundaries define the times within which each new data sample must be buffered, ready for transmission—adherence to these fixed boundaries allows slot allocations to be moved within a segment window, without altering the signal latency. The segment interval may be either shorter or longer than the frame length, but there is always an integer number of segment windows per superframe.

To transfer data between devices on the SLIMbus interface, a data channel connection is established between a source and one or more destination (sink) ports. A unique port number (PN) address is defined for every active TX/RX port. Multiple data channels can share the same port address by assigning different end point (EP) values to each channel.

The TP defines the flow control or handshaking method used by the ports associated with a data channel. The applicable flow control modes depend on the relationship between the audio sample rate (flow rate) and the SLIMbus CLK frequency. If the two rates are synchronized and integer related, no flow control is needed. In other cases, the flow may be regulated by the use of a presence bit, which can be set by the source device (pushed protocol) or by the sink device (pulled protocol).

The data-channel structure is defined in terms of the TP, SD, SL, and data line (LN) parameters. For multiline operation, the LN value identifies the data line on which the channel is present. Note that the mapping of secondary data lines (1–7) with respect to the secondary data pins is configurable on each multiline SLIMbus component, using value elements associated with the respective interface device. See Section 4.9.3 for details of value elements.

The data-channel content definition includes a presence rate (PR) parameter (describing the nominal sample rate for the audio channel) and a frequency locked (FL) bit (identifying whether the data source is synchronized to the SLIMbus CLK). The data length (DL) parameter defines the size of each data sample (number of slots). The auxiliary bits format (AF) and data type (DT) parameters provide support for non-PCM encoded data channels; the channel link (CL) parameter is an indicator that channel CN is related to the previous channel, CN-1.

For a given root frequency and clock gear, the SL and SD parameters define the amount of SLIMbus bandwidth that is allocated to a given data channel. The minimum bandwidth requirements of a data channel are represented by the presence rate (PR) and data length (DL) parameters. The allocated SLIMbus bandwidth must be equal to or greater than the bandwidth of the data to be transferred.

The segment interval defines the repetition rate of the SLIMbus slots allocated to consecutive data samples for a given data channel. The presence rate (PR) is the nominal sample rate of the audio path. The segment rate (determined by the segment interval value) must be equal to or greater than the presence rate for a given data channel. The following constraints must be observed when configuring a SLIMbus channel:

- If pushed or pulled transport protocol is selected, the segment rate must be greater than the presence rate to ensure that samples are not dropped as a result of clock drift.
- If isochronous transport protocol is selected, the segment rate must be equal to the presence rate. Isochronous transport protocol should be selected only if the data source is frequency locked to the SLIMbus CLK (i.e., the data source is synchronized to the SLIMbus framer device).

4.9 SLIMbus Control Sequences

This section describes the messages and general protocol associated with the SLIMbus system.

Note: The SLIMbus specification permits flexibility in core message support for different components. See Section 4.10 for details regarding which messages are supported on each of the SLIMbus devices present on the CS42L92.

4.9.1 Device Management and Configuration

This section describes the SLIMbus messages associated with configuring all devices on the SLIMbus interface.

When the SLIMbus interface starts up, it is required that only one component provides the manager and framer device functions. Other devices can request connection to the bus after they have gained synchronization.

The REPORT_PRESENT (DC, DCV) message may be issued by devices attempting to connect to the bus. The payload of this message contains the device class (DC) and device class version (DCV) parameters, describing the type of device that is attempting to connect. This message may be issued autonomously by the connecting device, or else in response to a REQUEST_SELF_ANNOUNCEMENT message from the manager device.

After positively acknowledging the REPORT_PRESENT message, the manager device then issues the ASSIGN_LOGICAL_ADDRESS (LA) message to allow the other device to connect to the bus. The payload of this message contains the logical address (LA) parameter only; this is the unique address by which the connected device sends and receives SLIMbus messages. The device is then said to be enumerated.

Once a device has been successfully connected to the bus, the logical address (LA) parameter can be changed at any time using the CHANGE LOGICAL ADDRESS (LA) message.

The RESET_DEVICE message commands an individual SLIMbus device to perform its reset procedure. As part of the reset, all associated ports are reset, and any associated data channels are canceled. Note that, if the RESET_DEVICE command is issued to an interface device, it causes a component reset (i.e., all devices within the associated component are reset). Under a component reset, every associated device releases its logical address, and the component becomes disconnected from the bus.

4.9.2 Information Management

A memory map of information elements is defined for each device. This is arranged in 3 x 1-kB blocks, comprising core value elements, device class-specific value elements, and user value elements respectively, as described in the MIPI specification. Note that the contents of the user information portion for each CS42L92 SLIMbus device are reserved.

Read/write access is implemented using the messages described as follows. Specific elements within the information map are identified using the element code (EC) parameter. In the case of read access, a unique transaction ID (TID) is assigned to each message relating to a particular read/write request.

- The REQUEST_INFORMATION (TID, EC) message is used to instruct a device to respond with the indicated information. The payload of this message contains the transaction ID (TID) and the element code (EC).
- The REQUEST_CLEAR_INFORMATION (TID, EC, CM) message is used to instruct a device to respond with the indicated information, and also to clear all, or parts, of the same information slice. The payload of this message contains the transaction ID (TID), element code (EC), and clear mask (CM). The clear mask field is used to select which elements are to be cleared as part of the instruction.
- The REPLY_INFORMATION (TID, IS) message is used to provide output of a requested parameter. The payload of this message contains the transaction ID (TID) and the information slice (IS). The information slice bytes contain the value of the requested parameter.
- The CLEAR_INFORMATION (EC, CM) message is used to clear all, or parts, of the indicated information slice. The payload of this message contains the element code (EC) and clear mask (CM). The clear mask field is used to select which elements are to be cleared as part of the instruction.
- The REPORT_INFORMATION (EC, IS) message is used to inform other devices about a change in a specified element in the information map. The payload of this message contains the element code (EC) and the information slice (IS). The information slice bytes contain the new value of the applicable parameter.

4.9.3 Value Management (Including Register Access)

A memory map of value elements is defined for each device. This is arranged in 3 x 1-kB blocks, comprising core value elements, device class-specific value elements, and user value elements respectively, as described in the MIPI specification. These elements are typically parameters used to configure device behavior.

The user value elements of the interface device are used on CS42L92 to support read/write access to the register map. Details of how to access specific registers are described in Section 4.10. Note that, with the exception of the user value elements of the interface device, the contents of the user value portion for each CS42L92 SLIMbus device are reserved.

Read/write access is implemented using the messages described as follows. Specific elements within the value map are identified using the element code (EC) parameter. In the case of read access, a unique transaction ID (TID) is assigned to each message relating to a particular read/write request.

- The REQUEST_VALUE (TID, EC) message is used to instruct a device to respond with the indicated information. The payload of this message contains the transaction ID (TID) and the element code (EC).
- The REPLY_VALUE (TID, VS) message is used to provide output of a requested parameter. The payload of this
 message contains the transaction ID (TID) and the value slice (VS). The value slice bytes contain the value of the
 requested parameter.
- The CHANGE_VALUE (EC, VU) message is used to write data to a specified element in the value map. The payload of this message contains the element code (EC) and the value update (VU). The value update bytes contain the new value of the applicable parameter.

4.9.4 Frame and Clocking Management

This section describes the SLIMbus messages associated with changing the frame or clocking configuration. One or more configuration messages may be issued as part of a reconfiguration sequence; all of the updated parameters become active at once, when the reconfiguration boundary is reached.

- The BEGIN_RECONFIGURATION message is issued to define a reconfiguration boundary point: subsequent NEXT_* messages become active at the first valid superframe boundary following receipt of the RECONFIGURE_ NOW message. (A valid boundary must be at least two slots after the end of the RECONFIGURE_NOW message.)
 Both of these messages have no payload content.
- The NEXT_ACTIVE_FRAMER (LAIF, NCo, NCi) message is used to select a new device as the active framer. The payload of this message includes the logical address, incoming framer (LAIF). Two other fields (NCo, NCi) define the number of clock cycles for which the CLK line shall be inactive during the handover.
- The NEXT_SUBFRAME_MODE (SM) and NEXT_CLOCK_GEAR (CG) messages are used to reconfigure the SLIMbus clocking or framing definition. The payload of each is the respective subframe mode (SM) or clock gear (CG) respectively.

- The NEXT_PAUSE_CLOCK (RT) message instructs the active framer to pause the bus. The payload of the
 message contains the restart time (RT), which indicates whether the interruption is to be of a specified time and/or
 phase duration.
- The NEXT_RESET_BUS message instructs all components on the bus to be reset. In this case, all devices on the
 bus are reset and are disconnected from the bus. Subsequent reconnection to the bus follows the same process as
 when the bus is first initialized.
- The NEXT_SHUTDOWN_BUS message instructs all devices that the bus is to be shut down.

4.9.5 Data Channel Configuration

This section describes the SLIMbus messages associated with configuring a SLIMbus data channel. Note that the manager device is responsible for allocating the available bandwidth as required for each data channel.

- The CONNECT_SOURCE (PN, EP, CN) and CONNECT_SINK (PN, EP, CN) messages are issued to the
 respective devices, defining the ports between which a data channel is to be established. The end point parameter
 allows up to eight channels to share the same port number. Multiple destinations (sinks) can be configured for a
 channel, if required. The payload of each message contains the port number (PN), end point (EP), and the channel
 number (CN) parameters.
- The BEGIN_RECONFIGURATION message is issued to define a Reconfiguration Boundary point: subsequent NEXT_* messages become active at the first valid superframe boundary following receipt of the RECONFIGURE_ NOW message. A valid boundary must be at least two slots after the end of the RECONFIGURE NOW message.
- The NEXT_DEFINE_CHANNEL (CN, TP, SD, SL, LN) message informs the associated devices of the structure of the data channel. The payload of this message contains the channel number (CN), TP, SD, SL, and LN parameters for the data channel.
- The NEXT_DEFINE_CONTENT (CN, FL, PR, AF, DT, CL, DL), or CHANGE_CONTENT (CN, FL, PR, AF, DT, CL, DL) message provides more detailed information about the data channel contents. The payload of this message contains the channel number (CN), frequency locked (FL), presence rate (PR), auxiliary bits format (AF), data type (DT), channel link (CL), and data length (DL) parameters.
- The NEXT_ACTIVATE_CHANNEL (CN) message instructs the channel to be activated at the next reconfiguration boundary. The payload of this message contains the channel number (CN) only.
- The RECONFIGURE_NOW message completes the reconfiguration sequence, causing all of the NEXT_ messages since the BEGIN_RECONFIGURATION to become active at the next valid superframe boundary. (A valid boundary must be at least two slots after the end of the RECONFIGURE_NOW message.)
- Active channels can be reconfigured using the CHANGE_CONTENT, NEXT_DEFINE_CONTENT, or NEXT_DEFINE_CHANNEL messages. Note that these changes can be effected without interrupting the data channel; the NEXT_DEFINE_CHANNEL, for example, may be used to change a segment distribution, in order to reallocate the SLIMbus bandwidth.
- An active channel can be paused using the NEXT_DEACTIVATE_CHANNEL message and reinstated using the NEXT_ACTIVATE_CHANNEL message.
- Data channels can be disconnected using the DISCONNECT_PORT or NEXT_REMOVE_CHANNEL messages.
 These messages provide equivalent functionality, but use different parameters (PN or CN respectively) to identify
 the affected signal path.

4.10 SLIMbus Interface Control

The CS42L92 features a MIPI-compliant SLIMbus interface. It supports multichannel audio input/output and control register read/write access.

The SLIMbus interface on CS42L92 comprises a generic device, framer device, interface device, and 16 data ports, providing up to 8 input (RX) channels and up to 8 output (TX) channels. Multiline capability is supported, offering additional bandwidth and system-level flexibility.

The interface supports up to eight audio input channels and up to eight audio output channels. Mixed sample rates can be supported simultaneously. The audio signal paths associated with the SLIMbus interface are described in Section 4.3.

The SLIMbus interface also supports read/write access to the CS42L92 control registers via the value map of the interface device, as described in Section 4.10.5.

The SLIMbus clocking rate and channel allocations are controlled by the manager device. The message channel and data channel bandwidth may be dynamically adjusted according to the application requirements. Note that the manager device functions are not implemented on the CS42L92, and these bandwidth allocation requirements are outside the scope of this data sheet.

The SLIMbus interface provides full support for 32-bit data words (input and output). Audio data samples up to 32 bits can be routed to the AIF1, AIF3, SLIMbus, S/PDIF, and DAC output paths. Note that other signal paths and signal-processing blocks within the digital core are limited to 24-bit data length; data samples are truncated to 24-bit length if they are routed through any function that does not support 32-bit data words.

4.10.1 **SLIMbus Device Parameters**

The SLIMbus interface on the CS42L92 comprises three devices. The enumeration address of each device within the SLIMbus interface is derived from the parameters noted in Table 4-57.

Description **Product Code** Device ID Instance Value | Enumeration Address Manufacturer ID Generic 0x01FA 0x6371 0x00 0x00 01FA 6371 0000 Framer 0x01FA 0x6371 0x55 0x00 01FA 6371 5500 Interface 0x01FA 0x6371 0x7F 0x00 01FA 6371 7F00

Table 4-57. SLIMbus Device Parameters

SLIMbus Message Support 4.10.2

The SLIMbus interface on the CS42L92 supports bus messages as described in Table 4-58 and Table 4-59.

Category	Message Code MC[6:0]	Description	Generic	Framer	Interface
Device Management	0x01	REPORT_PRESENT (DC, DCV)	S	S	S
Messages	0x02	ASSIGN_LOGICAL_ADDRESS (LA)	D	D	D
	0x04	RESET_DEVICE ()	D	D	D
	0x08	CHANGE_LOGICAL_ADDRESS (LA)	D	D	D
	0x09	CHANGE_ARBITRATION_PRIORITY (AP)	_	_	_
	0x0C	REQUEST_SELF_ANNOUNCEMENT ()	D	D	D
	0x0F	REPORT_ABSENT ()	_	_	_
Data Channel	0x10	CONNECT_SOURCE (PN, EP, CN)	D	_	_
Management Messages	0x11	CONNECT_SINK (PN, EP, CN)	D	_	_
	0x14	DISCONNECT_PORT (PN)	D	_	_
	0x18	CHANGE_CONTENT (CN, FL, PR, AF, DT, CL, DL)	D	_	_
Information	0x20	REQUEST_INFORMATION (TID, EC)	D	D	D
Management	0x21	REQUEST_CLEAR_INFORMATION (TID, EC, CM)	D	D	D
Messages	0x24	REPLY_INFORMATION (TID, IS)	S	S	S
	0x28	CLEAR_INFORMATION (EC, CM)	D	D	D
	0x29	REPORT_INFORMATION (EC, IS)	_	_	S

Table 4-58. SLIMbus Message Support

Table 4-58.	SLIMbus	Message	Support	(Cont.)

Category	Message Code MC[6:0]	Description	Generic	Framer	Interface
Reconfiguration	0x40	BEGIN_RECONFIGURATION ()	D	D	D
Messages	0x44	NEXT_ACTIVE_FRAMER (LAIF, NCo, NCi)	_	D	_
	0x45	NEXT_SUBFRAME_MODE (SM)	_	D	D
	0x46	NEXT_CLOCK_GEAR (CG)	_	D	_
	0x47	NEXT_ROOT_FREQUENCY (RF)	_	D	_
	0x4A	NEXT_PAUSE_CLOCK (RT)	_	D	_
	0x4B	NEXT_RESET_BUS ()	_	D	_
	0x4C	NEXT_SHUTDOWN_BUS ()	_	D	_
	0x50	NEXT_DEFINE_CHANNEL (CN, TP, SD, SL, LN)	D	_	_
	0x51	NEXT_DEFINE_CONTENT (CN, FL, PR, AF, DT, CL, DL)	D	_	_
	0x54	NEXT_ACTIVATE_CHANNEL (CN)	D	_	_
	0x55	NEXT_DEACTIVATE_CHANNEL (CN)	D	_	_
	0x58	NEXT_REMOVE_CHANNEL (CN)	D	_	_
	0x5F	RECONFIGURE_NOW ()	D	D	D
Value Management	0x60	REQUEST_VALUE (TID, EC)	_	_	D
Messages	0x61	REQUEST_CHANGE_VALUE (TID, EC, VU)	_	_	_
	0x64	REPLY_VALUE (TID, VS)	_	_	S
	0x68	CHANGE_VALUE (EC, VU)			D

Notes:

- S = Supported as a source device only.
- D = Supported as a destination device only.

The CS42L92 SLIMbus component must be reset prior to scheduling a hardware reset or power-on reset. This can be achieved using the RESET_DEVICE message (issued to the CS42L92 interface device), or else using the NEXT_RESET_BUS message.

Additional notes on specific SLIMbus parameters are described in Table 4-59.

Table 4-59. SLIMbus Parameter Support

Parameter Code	Description	Comments
AF	Auxiliary Bits Format	_
CG	Clock Gear	_
CL	Channel Link	_
СМ	Clear Mask	CS42L92 does not fully support this function. The CM bytes of the REQUEST_CLEAR_INFORMATION or CLEAR_INFORMATION messages must not be sent to CS42L92 Devices. When either of these messages is received, all bits within the specified Information Slice are cleared.
CN	Channel Number	_
DC	Device Class	_
DCV	Device Class Variation	_
DL	Data Length	_
DT	Data Type	CS42L92 supports the following DT codes: 0x0 = Not indicated 0x1 = LPCM audio Note that 2's complement PCM can be supported with DT = 0x0.
EC	Element Code	_
EP	End Point	_
FL	Frequency Locked	_
IS	Information Slice	_
LA	Logical Address	_
LAIF	Logical Address, Incoming Framer	_
LN	Data Line	All LN codes $(0-7)$ are supported. The LN value must be equal to one of the data lines that is mapped to one of the CS42L92 SLIMDAT n pins.
		The mapping of the secondary SLIMDAT <i>n</i> pins onto the SLIMbus data lines is configurable, using the value elements of the interface device. (Note that the primary data pin, SLIMDAT1, is always mapped to SLIMbus data line DATA0.)
NCi	Number of Incoming Framer Clock Cycles	_
NCo	Number of Outgoing Framer Clock Cycles	_

Table 4-59. SLIMbus Parameter Support (Cont.)	Table 4-59.	SLIMbus	Parameter	Support	(Cont.)
---	-------------	----------------	------------------	---------	---------

Parameter Code	Description	Comments
PN	Port Number	Note that the Port Numbers of the CS42L92 SLIMbus paths are register-configurable, as described in Table 4-62.
PR	Presence Rate	Note that the Presence Rate must be the same as the sample rate selected for the associated CS42L92 SLIMbus path.
RF	Root Frequency	CS42L92 supports the following RF codes as Active Framer:
		0x1 = 24.576 MHz
		0x2 = 22.5792 MHz
		All codes are supported when CS42L92 is not the Active Framer.
RT	Restart Time	CS42L92 supports the following RT codes:
		0x0 = Fast Recovery
		0x2 = Unspecified Delay
		When either of these values is specified, the CS42L92 resumes toggling the CLK line within four cycles of the CLK line frequency.
SD	Segment Distribution	Note that any audio channels that are assigned the same SAMPLE_RATE_n or ASYNC_SAMPLE_RATE_n value must also be assigned the same Segment Interval.
SL	Segment Length	Note that any active data channels that are assigned the same Port Number must also be assigned the same Segment Length.
SM	Subframe Mode	_
TID	Transaction ID	_
TP	Transport Protocol	CS42L92 supports the following TP codes, according to the applicable audio channel port:
		Audio TX channel ports: 0x0 (Isochronous Protocol) or 0x1 (Pushed Protocol)
		Audio RX channel ports: 0x0 (Isochronous Protocol) or 0x2 (Pulled Protocol)
		Note that any active data channels that are assigned the same Port Number must also be assigned the same Transport Protocol.
VS	Value Slice	_
VU	Value Update	_

4.10.3 SLIMbus Clocking Control

The clock frequency of the SLIMbus interface is not fixed, and may be set according to the application requirements. The clock frequency can be reconfigured dynamically as required.

The CS42L92 SLIMbus interface includes a framer device. When configured as the active framer, the SLIMbus clock (SLIMCLK) is an output from the CS42L92. At other times, SLIMCLK is an input. The framer function can be transferred from one device to another; this is known as framer handover, and is controlled by the manager device.

The supported root frequencies in active framer mode are 24.576 or 22.5792 MHz only. At other times, the supported root frequencies are as defined in the MIPI Alliance specification for SLIMbus.

Under normal operating conditions, the SLIMbus interface operates with a fixed root frequency (RF); dynamic updates to the bus rate are applied using a selectable clock gear (CG) function. The root frequency and the clock gear setting are controlled by the manager device; these parameters are transmitted in every SLIMbus superframe to all devices on the bus.

In Gear 10 (the highest clock gear setting), the SLIMCLK input (or output) frequency is equal to the root frequency. In lower gears, the SLIMCLK frequency is reduced by increasing powers of 2.

The clock gear definition is shown in Table 4-60.

Note: The 24.576MHz root frequency is an example only; other frequencies are also supported.

Table 4-60. SLIMbus Clock Gear Selection

Clock Gear	Description	SLIMCLK Frequency ¹
10	Divide by 1	24.576 MHz
9	Divide by 2	12.288 MHz
8	Divide by 4	6.144 MHz
7	Divide by 8	3.072 MHz

Table 4-60.	SLIMbus	Clock	Gear S	Selection	(Cont.)	
-------------	---------	-------	--------	-----------	---------	--

Clock Gear	Description	SLIMCLK Frequency ¹
6	Divide by 16	1.536 MHz
5	Divide by 32	768 kHz
4	Divide by 64	384 kHz
3	Divide by 128	192 kHz
2	Divide by 256	96 kHz
1	Divide by 512	48 kHz

^{1.} Assuming 24.576-MHz root frequency

If the CS42L92 is the active framer, the SLIMCLK output is synchronized to the SYSCLK or ASYNCCLK system clock, as selected by the SLIMCLK_SRC bit. The applicable system clock must be enabled and configured at the SLIMbus root frequency, whenever the CS42L92 is the active framer.

If the CS42L92 is not the active framer, the SLIMCLK input can be used to provide a reference source for the FLLs. The frequency of this reference is controlled using SLIMCLK_REF_GEAR, as described in Table 4-61.

The input clock reference for the FLLs is selected by using FLLn_REFCLK_SRC. If SLIMbus is selected as the clock source, the reference signal is generated using an adaptive divider on the SLIMCLK input. The divider automatically adapts to the SLIMbus clock gear (CG). If the clock gear on the bus is lower than the SLIMCLK_REF_GEAR, the selected reference frequency cannot be supported, and the SLIMbus clock reference is disabled.

See Section 4.16 for details of system clocking and the FLLs.

Table 4-61. SLIMbus Clock Reference Control

Register Address	Bit	Label	Default	Description
R1507 (0x05E3)	4	SLIMCLK_SRC	0	SLIMbus Clock source
SLIMbus_Framer_				Selects the SLIMbus reference clock in Active Framer mode.
Ref_Gear				0 = SYSCLK
				1 = ASYNCCLK
				Note that the applicable clock must be enabled, and configured at the SLIMbus Root Frequency, in Active Framer mode.
	3:0	SLIMCLK_REF_ GEAR[3:0]	0x0	SLIMbus Clock Reference control. Sets the SLIMbus reference clock relative to the SLIMbus Root Frequency (RF).
				0x0 = Clock stopped 0x4 = Gear 4. (RF/64) 0x8 = Gear 8. (RF/4)
				0x1 = Gear 1. (RF/512) 0x5 = Gear 5. (RF/32) 0x9 = Gear 9. (RF/2)
				0x2 = Gear 2. (RF/256) 0x6 = Gear 6. (RF/16) 0xA = Gear 10. (RF)
				0x3 = Gear 3. (RF/128) 0x7 = Gear 7. (RF/8) All other codes are reserved

4.10.4 SLIMbus Audio Channel Control

4.10.4.1 Port Number Control

The CS42L92 SLIMbus interface supports up to eight audio input (RX) channels and up to eight audio output (TX) channels. The port number and end point number for each channel is configurable using the fields described in Table 4-62.

Table 4-62. SLIMbus Audio Port Number Control

Register Address	Bit	Label	Default	Description
R1490 (0x05D2)	15:8	SLIMRX2_PORT_ADDR[7:0]	0x01	SLIMbus RX Channel n Port number
SLIMbus_RX_Ports0	7:0	SLIMRX1_PORT_ADDR[7:0]	0x00	Bits [7:5] specify the End Point (valid from
R1491 (0x05D3)	15:8	SLIMRX4_PORT_ADDR[7:0]	0x03	0–7). Bits [4:0] specify the Port Number
SLIMbus_RX_Ports1	7:0	SLIMRX3_PORT_ADDR[7:0]	0x02	(valid from 0–31)
R1492 (0x05D4)	15:8	SLIMRX6_PORT_ADDR[7:0]	0x05	
SLIMbus_RX_Ports2	7:0	SLIMRX5_PORT_ADDR[7:0]	0x04	
R1493 (0x05D5)	15:8	SLIMRX8_PORT_ADDR[7:0]	0x07	
SLIMbus_RX_Ports3	7:0	SLIMRX7_PORT_ADDR[7:0]	0x06]

Table 4-62.	SLIMbus	Audio	Port	Number	Control	(Cont.))

Register Address	Bit	Label	Default	Description
R1494 (0x05D6)	15:8	SLIMTX2_PORT_ADDR[7:0]	0x09	SLIMbus TX Channel n Port number
SLIMbus_TX_Ports0	7:0	SLIMTX1_PORT_ADDR[7:0]	0x08	Valid from 0–31
R1495 (0x05D7)	15:8	SLIMTX4_PORT_ADDR[7:0]		Bits [7:5] specify the End Point (valid from
SLIMbus_TX_Ports1	7:0	SLIMTX3_PORT_ADDR[7:0]	0x0A	0–7). Bits [4:0] specify the Port Number
R1496 (0x05D8)	15:8	SLIMTX6_PORT_ADDR[7:0]	0x0D	(valid from 0–31)
SLIMbus_TX_Ports2	7:0	SLIMTX5_PORT_ADDR[7:0]	0x0C	
R1497 (0x05D9)	15:8	SLIMTX8_PORT_ADDR[7:0]	0x0F	
SLIMbus_TX_Ports3	7:0	SLIMTX7_PORT_ADDR[7:0]	0x0E	

4.10.4.2 Sample-Rate Control

The SLIMbus audio inputs may be selected as input to the digital mixers or signal-processing functions within the CS42L92 digital core. The SLIMbus audio outputs are derived from the respective output mixers.

The sample rate for each SLIMbus channel is configured using SLIMRXn RATE and SLIMTXn RATE—see Table 4-26.

Note that the SLIMbus interface provides simultaneous support for SYSCLK-referenced and ASYNCCLK-referenced sample rates on different channels. For example, 48-kHz and 44.1-kHz SLIMbus audio paths can be simultaneously supported.

Sample-rate conversion is required when routing the SLIMbus paths to any signal chain that is asynchronous or configured for a different sample rate.

4.10.4.3 Signal Path Enable

The SLIMbus interface supports up to eight audio input (RX) channels and up to eight audio output (TX) channels. Each channel can be enabled or disabled using the fields defined in Table 4-63.

Note: SLIMbus audio channels can be supported only when the corresponding ports have been enabled by the manager device (i.e., in addition to setting the respective enable bits). The status bits in Registers R1527 and R1528 indicate the status of each SLIMbus port.

The system clock, SYSCLK, must be configured and enabled before any audio path is enabled. The ASYNCCLK may also be required, depending on the path configuration. See Section 4.16 for details of the system clocks.

Table 4-63. SLIMbus Signal Path Enable

Register Address	Bit	Label	Default	Description
R1525 (0x05F5)	7	SLIMRX8_ENA	0	SLIMbus RX Channel n Enable
SLIMbus_RX_	6	SLIMRX7_ENA	0	0 = Disabled
Channel_Enable	5	SLIMRX6_ENA	0	1 = Enabled
	4	SLIMRX5_ENA	0	
	3	SLIMRX4_ENA	0	
	2	SLIMRX3_ENA	0	
	1	SLIMRX2_ENA	0	
	0	SLIMRX1_ENA	0	
R1526 (0x05F6)	7	SLIMTX8_ENA	0	SLIMbus TX Channel n Enable
SLIMbus_TX_	6	SLIMTX7_ENA	0	0 = Disabled
Channel_Enable	5	SLIMTX6_ENA	0	1 = Enabled
	4	SLIMTX5_ENA	0	
	3	SLIMTX4_ENA	0	
	2	SLIMTX3_ENA	0	
	1	SLIMTX2_ENA	0	
	0	SLIMTX1_ENA	0	

Register Address	Bit	Label	Default	Description
R1527 (0x05F7)	7	SLIMRX8_PORT_STS	0	SLIMbus RX Channel n Port Status
SLIMbus_RX_	6	SLIMRX7_PORT_STS	0	(Read only)
Port_Status	5	SLIMRX6_PORT_STS	0	0 = Disabled
	4	SLIMRX5_PORT_STS	0	1 = Configured and active
	3	SLIMRX4_PORT_STS	0	
	2	SLIMRX3_PORT_STS	0	
	1	SLIMRX2_PORT_STS	0	
	0	SLIMRX1_PORT_STS	0	
R1528 (0x05F8)	7	SLIMTX8_PORT_STS	0	SLIMbus TX Channel n Port Status
SLIMbus_TX_	6	SLIMTX7_PORT_STS	0	(Read only)
Port_Status	5	SLIMTX6_PORT_STS	0	0 = Disabled
	4	SLIMTX5_PORT_STS	0	1 = Configured and active
	3	SLIMTX4_PORT_STS	0	
	2	SLIMTX3_PORT_STS	0	
	1	SLIMTX2_PORT_STS	0	
	0	SLIMTX1_PORT_STS	0	

Table 4-63. SLIMbus Signal Path Enable (Cont.)

4.10.5 SLIMbus Control Register Access

The SLIMbus interface supports read/write access to the CS42L92 control registers via the value map of the interface device. Full read/write access to all registers is possible, via the user value elements portion of the value map.

Note that if multibyte transfers of more than 8 bytes are scheduled (see Section 4.10.5.3), system clocking constraints must be observed to ensure control interface limits are not exceeded. Full details of the applicable clocking requirements are provided in Section 4.16.7.

4.10.5.1 Control Register Write

Register write operations are implemented using the CHANGE_VALUE message. A maximum of two messages may be required, depending on circumstances: the first CHANGE VALUE message selects the register page (bits [23:8] of the control register address); the second message contains the data and bits [7:0] of the register address. The first message may be omitted if the register page is unchanged from the previous read or write operation.

The required SLIMbus parameters are described in Table 4-64 and Table 4-65, for the generic case of writing the value 0xVVVV to control register address 0xYYYYZZ. Note that it is also possible to write blocks of up to 16 bytes (to consecutive register addresses), as described in Section 4.10.5.3.

Parameter	Value	Description
Source Address	0xSS	SS is the 8-bit logical address of the message source. This could be any active device on the bus, but is typically the manager device (0xFF).
Destination Address	0xLL	LL is the 8-bit logical address of the message destination (i.e., the CS42L92 SLIMbus interface device). The value is assigned by the SLIMbus manager device.
Access Mode	0b1	Selects byte-based access mode.
Byte Address	0x800	Identifies the user value element for selecting the control register page address.
Slice Size	0b001	Selects 2-byte slice size
Value Update	0xYYYY	YYYY is bits [23:8] of the applicable control register address.

Table 4-64. Register Write Message (1)—CHANGE_VALUE

Table 4-65. Register Write Message (2)—CHANGE VALUE

Parameter	Value	Description
Source Address	0xSS	SS is the 8-bit logical address of the message source. This could be any active device on the bus, but is typically the manager device (0xFF).
Destination Address	0xLL	LL is the 8-bit logical address of the message destination (i.e., the CS42L92 SLIMbus interface device). The value is assigned by the SLIMbus manager device.
Access Mode	0b1	Selects byte-based access mode.

Table 4-65.	Register Write	Message (2)—CHANGE	VALUE (Cont.)
-------------	-----------------------	------------	----------	---------------

Parameter	Value	Description	
Byte Address	0xUUU	pecifies the value map address, calculated as	
		0xA00 + (2 x 0xZZ), where ZZ is bits [7:0] of the applicable control register address.	
Slice Size	0b001	Selects 2-byte slice size	
Value Update	0xVVVV	VVVV is the 16-bit data to be written.	

Note: The first message may be omitted if its contents are unchanged from the previous CHANGE_VALUE message sent to the CS42L92.

4.10.5.2 Control Register Read

Register read operations are implemented using the CHANGE_VALUE and REQUEST_VALUE messages. A maximum of two messages may be required, depending on circumstances: the CHANGE_VALUE message selects the register page (bits [23:8] of the control register address); the REQUEST_VALUE message contains bits [7:0] of the register address. The first message may be omitted if the register page is unchanged from the previous read or write operation.

The required SLIMbus parameters are described in Table 4-66 and Table 4-67, for the generic case of reading the contents of control register address 0xYYYYZZ. Note that it is also possible to read blocks of up to 8 bytes (to consecutive register addresses), as described in Section 4.10.5.3.

Table 4-66. Register Read Message (1)—CHANGE_VALUE

Parameter	Value	Description
Source Address		SS is the 8-bit logical address of the message source. This could be any active device on the bus, but is typically the manager device (0xFF).
Destination Address	0xLL	LL is the 8-bit logical address of the message destination (i.e., the CS42L92 SLIMbus interface device). The value is assigned by the SLIMbus manager device.
Access Mode	0b1	Selects byte-based access mode.
Byte Address	0x800	Identifies the user value element for selecting the control register page address.
Slice Size	0b001	Selects 2-byte slice size
Value Update	0xYYYY	YYYY is bits [23:8] of the applicable control register address.

Table 4-67. Register Read Message (2)—REQUEST_VALUE

Parameter	Value	Description	
Source Address	0xSS	SS is the 8-bit logical address of the message source. This could be any active device on the bus, but is typically the manager device (0xFF).	
Destination Address	0xLL	is the 8-bit logical address of the message destination (i.e., the CS42L92 SLIMbus interface device). The lue is assigned by the SLIMbus manager device.	
Access Mode	0b1	Selects byte-based access mode.	
Byte Address	0xUUU	Specifies the value map address, calculated as 0xA00 + (2 x 0xZZ), where ZZ is bits [7:0] of the applicable control register address.	
Slice Size	0b001	Selects 2-byte slice size	
Transaction ID	0xTTTT	TTTT is the 16-bit transaction ID for the message. The value is assigned by the SLIMbus manager device.	

Note: The first message may be omitted if its contents are unchanged from the previous CHANGE_VALUE message sent to the CS42L92.

The CS42L92 responds to the register read commands in accordance with the normal SLIMbus protocols.

Note that the CS42L92 assumes that sufficient control space slots are available in which to provide its response before the next REQUEST_VALUE message is received. The CS42L92 response is made using a REPLY_VALUE message; the SLIMbus manager should wait until the REPLY_VALUE message has been received before sending the next REQUEST_VALUE message. If additional REQUEST_VALUE messages are received before the CS42L92 response has been made, the earlier REQUEST_VALUE messages are ignored (i.e., only the last REQUEST_VALUE message is serviced).

4.10.5.3 Multibyte Control Register Access

Register data transfers of up to 16 bytes can be configured using the slice size parameter in the second message of the applicable protocol (see Table 4-65 or Table 4-67). Additional value update words are appended to respective data message in this case, with the applicable data contents.

Multibyte register read/write access is supported with slice size of 2, 4, 8, 12, or 16 bytes. Note that if multibyte transfers of more than 8 bytes are scheduled, system clocking constraints must be observed to ensure control interface limits are not exceeded. See Section 4.16.7.

When a 2-byte transfer is selected, the register address 0xYYYYZZ is used (using the same naming conventions as above). When more than 2 bytes are transferred, the register address is automatically incremented as described in Table 4-68.

Register Address (<0x3000)	Byte Sequence
Base address (0xYYYYZZ)	Bytes 2 and 1 (0xVVVV)
Base address + 1	Bytes 4 and 3
Base address + 2	Bytes 6 and 5
Base address + 3	Bytes 8 and 7

Table 4-68. SLIMbus Register Read/Write Sequence—16-Bit Register Space (< 0x3000)

Note: Register addresses from R12288 (0x3000) upwards are formatted as 32-bit words. When accessing these addresses, the slice size should be a multiple of 4 bytes and the byte address should be aligned with the 32-bit data word boundaries (i.e., an even number). The byte ordering for these register addresses is described in Table 4-69.

Bytes 10 and 9

Bytes 12 and 11

Bytes 14 and 13

Bytes 16 and 15

Table 4-69. SLIMbus Register Read/Write Sequence—32-Bit Register Space (≥ 0x3000)

Register Address (≥0x3000)	Byte Sequence
Base address (0xYYYYZZ)	Bytes 4, 3, 2, 1
Base address + 2	Bytes 8, 7, 6, 5
Base address + 4	Bytes 12, 11, 10, 9
Base address + 6	Bytes 16, 15, 14, 13

4.11 Output Signal Path

The CS42L92 provides four stereo pairs of audio output signal paths. These outputs comprise ground-referenced headphone drivers, and a digital output interface suitable for external speaker drivers. The output signal paths are summarized in Table 4-70.

Table 4-70. Output Signal Path Summary

Signal Path	Descriptions	Output Pins
OUT1L, OUT1R	Ground-referenced headphone/earpiece output	HPOUT1L, HPOUT1R
OUT2L, OUT2R	Ground-referenced headphone/earpiece output	HPOUT2L, HPOUT2R
OUT3L, OUT3R		HPOUT3L, HPOUT3R or HPOUT4L, HPOUT4R
OUT5L, OUT5R	Digital speaker (PDM) output	SPKDAT, SPKCLK

The analog output paths incorporate high performance 32-bit sigma-delta DACs.

Base address + 4
Base address + 5

Base address + 6

Base address + 7

Under default conditions, the headphone drivers provide a stereo, single-ended output. A mono mode is also supported, providing a differential (BTL) output configuration. The ground-referenced headphone output paths incorporate a common mode feedback path for rejection of system-related noise. These outputs support direct connection to headphone loads, with no requirement for AC coupling capacitors.

The OUT1 and OUT2 paths can be configured in High Performance Mode, offering exceptional performance on the respective headphone outputs. Balanced stereo headphone loads can be supported by assigning the OUT1 and OUT2 signal paths for the left and right channels respectively, with the associated drivers configured for differential output.

The digital output path provides a stereo pulse-density modulation (PDM) output interface, for connection to external audio devices. A total of two digital output channels are provided.

Digital filters can be enabled in the output signal paths, supporting audiophile-quality DAC playback options. These hi-fi filters allow user selection of the preferred characteristics, (e.g., linear phase, antialiasing, or apodizing filter responses).

Digital volume control is available on all outputs (analog and digital), with programmable ramp control for smooth, glitch-free operation. A configurable noise-gate function is available on each output signal path. Any two of the output signal paths may be selected as input to the AEC loop-back paths.

The CS42L92 provides short-circuit detection on the headphone output paths. See Section 4.21 for further details.

The CS42L92 output signal paths are shown in Fig. 4-52. Note that the OUT4 path is not implemented on this device.

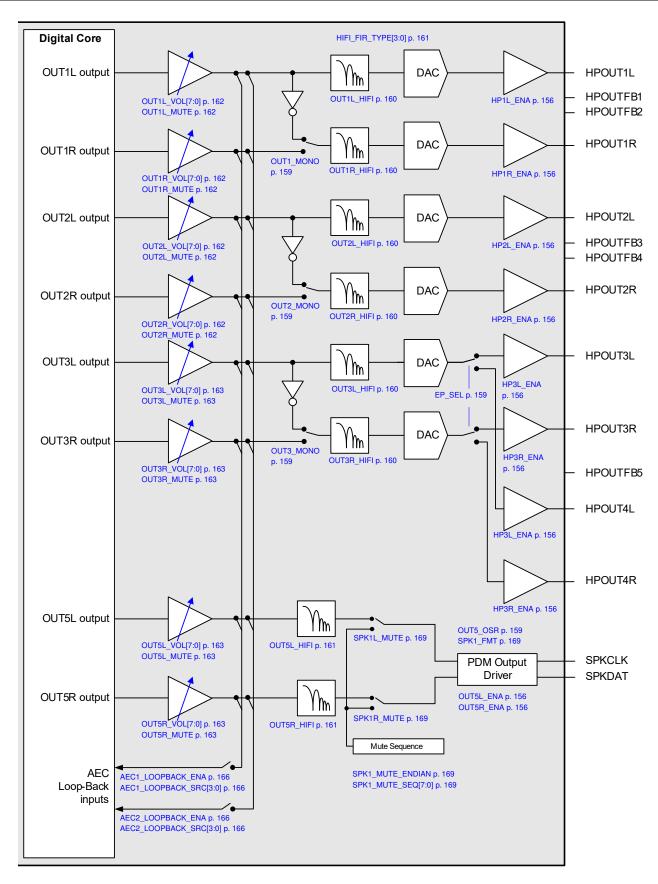


Figure 4-52. Output Signal Paths

4.11.1 Output Signal Path Enable

The output signal paths are enabled using the bits described in Table 4-71. The respective bits must be enabled for analog or digital output on the respective output paths.

The OUT3 path is associated with the HPOUT3 and HPOUT4 output drivers. The HP3L_ENA and HP3R_ENA bits control either the HPOUT3 or HPOUT4 drivers, depending on the EP_SEL register bit selection. See Table 4-74 for details of the EP_SEL register bit.

The output signal paths are muted by default. It is recommended that deselecting the mute should be the final step of the path enable control sequence. Similarly, the mute should be selected as the first step of the path disable control sequence. The output signal path mute functions are controlled using the bits described in Table 4-71.

The supply rails for the analog outputs (HPOUT1–HPOUT4) are generated using an integrated dual-mode charge pump, CP1. The charge pump is enabled automatically by the CS42L92 when required by the output drivers; see Section 4.19.

The CS42L92 schedules a pop-suppressed control sequence to enable or disable the HPOUT1–HPOUT4 signal paths. This is automatically managed by the control-write sequencer in response to setting the respective HP*nx*_ENA bits; see Section 4.18 for further details.

The output signal path enable/disable control sequences are inputs to the interrupt circuit and can be used to trigger an interrupt event when a sequence completes; see Section 4.15.

The system clock, SYSCLK, must be configured and enabled before any audio path is enabled. The ASYNCCLK may also be required, depending on the path configuration. See Section 4.16 for details of the system clocks.

The CS42L92 performs automatic checks to confirm that the SYSCLK frequency is high enough to support the output signal paths and associated DACs. If the frequency is too low, an attempt to enable an output signal path fails. Note that active signal paths are not affected under such circumstances.

The status bits in Register R1025 and R1030 indicate the status of each output signal path. If an underclocked error condition occurs, these bits indicate which signal paths have been enabled.

Table 4-71. Output Signal Path Enable

Register Address	Bit	Label	Default	Description
R1024 (0x0400)	9	OUT5L_ENA	0	Output Path 5 (left) enable
Output_Enables_1				0 = Disabled
				1 = Enabled
	8	OUT5R_ENA	0	Output Path 5 (right) enable
				0 = Disabled
				1 = Enabled
	5	HP3L ENA	0	Output Path 3 (left) enable
		_		If EP_SEL = 0, this bit controls the HPOUT3L output driver.
				If EP_SEL = 1, this bit controls the HPOUT4L output driver.
				0 = Disabled
				1 = Enabled
	4	HP3R ENA	0	Output Path 3 (right) enable
		_		If EP_SEL = 0, this bit controls the HPOUT3R output driver.
				If EP_SEL = 1, this bit controls the HPOUT4R output driver.
				0 = Disabled
				1 = Enabled
	3	HP2L_ENA	0	Output Path 2 (left) enable
				0 = Disabled
				1 = Enabled
	2	HP2R ENA	0	Output Path 2 (right) enable
			,	0 = Disabled
				1 = Enabled
	1	HP1L ENA	0	Output Path 1 (left) enable
	•		Ŭ	0 = Disabled
				1 = Enabled
	0	HP1R ENA	0	Output Path 1 (right) enable
	ľ		Ŭ	0 = Disabled
				1 = Enabled
R1025 (0x0401)	9	OUT5L ENA STS	0	Output Path 5 (left) enable status
Output Status 1				0 = Disabled
				1 = Enabled
	8	OUT5R ENA STS	0	Output Path 5 (right) enable status
				0 = Disabled
				1 = Enabled
R1030 (0x0406)	5	OUT3L ENA STS	0	Output Path 3 (left) enable status
Raw Output Status 1				0 = Disabled
				1 = Enabled
	4	OUT3R_ENA_STS	0	Output Path 3 (right) enable status
	-			0 = Disabled
				1 = Enabled
	3	OUT2L_ENA_STS	0	Output Path 2 (left) enable status
				0 = Disabled
				1 = Enabled
	2	OUT2R_ENA_STS	0	Output Path 2 (right) enable status
	-			0 = Disabled
				1 = Enabled
	1	OUT1L_ENA_STS	0	Output Path 1 (left) enable status
	'			0 = Disabled
				1 = Enabled
	0	OUT1R_ENA_STS	0	Output Path 1 (right) enable status
				0 = Disabled
				1 = Enabled
				I - LIIGNIGU

4.11.2 Output Signal Path Sample-Rate Control

The output signal paths are derived from the respective output mixers within the CS42L92 digital core. The sample rate for the output signal paths is configured using OUT RATE—see Table 4-26.

Note that sample-rate conversion is required when routing the output signal paths to any signal chain that is asynchronous or configured for a different sample rate.

A clocking signal is required by the DACs and output signal path circuits. This clock can be provided internally from the SYSCLK or ASYNCCLK system clocks, or can be provided externally via the MCLK*n* pins. The clock source is selected using OUT CLK SRC.

The output signal path clock must be synchronized with whichever clock domain is associated with the OUT_RATE setting.

- If OUT_RATE is configured for one of the SYSCLK-related sample rates (SAMPLE_RATE_n), then ASYNCCLK is not a valid selection for OUT_CLK_SRC.
- If OUT_RATE is configured for one of the ASYNCCLK-related sample rates (ASYNC_SAMPLE_RATE_n), then SYSCLK is not a valid selection for OUT_CLK_SRC.
- If MCLK n is selected as the clock source (OUT_CLK_SRC = 100–110), the respective MCLK frequency must be an integer multiple of the sample rate selected by OUT_RATE. The required clock frequency is either 6.144 MHz (for 48-kHz-related sample rates) or 5.6448 MHz (44.1-kHz-related sample rates). A configurable divider is provided in order to provide flexibility in matching the MCLK input with the required frequency.

If a suitable external MCLK source is available, then the choice exists between selecting the internal SYSCLK/ASYNCCLK or the external MCLK as the output path clock. If the external MCLK source is high quality, then MCLK is the recommended source. If the MCLK source is not high quality, then the SYSCLK/ASYNCCLK source (generated by one of the FLLs) may provide a better clock.

The clocking configuration for the output signal path is shown in Fig. 4-53.

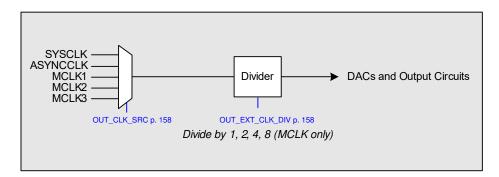


Figure 4-53. Output Signal Path Clocking Control

The output signal path clocking control registers are defined in Table 4-72. The OUT_RATE field is defined in Table 4-26.

Register Address	Bit	Label	Default	Description
R1032 (0x0408)	5:4	OUT_EXT_CLK_DIV	00	Output Signal Path Clock Divider
Output_Rate_1				(only valid if OUT_CLK_SRC selects MCLKn as the clock source)
				00 = Divide by 1
				01 = Divide by 2
				10 = Divide by 4
				11 = Divide by 8
	2:0	OUT_CLK_SRC	000	Output Signal Path Clock Source
				000 = SYSCLK
				001 = ASYNCCLK
				100 = MCLK1
				101 = MCLK2
				110 = MCLK3

All other codes are reserved

Note that the selected clock must be synchronized with whichever

clock domain is associated with the OUT RATE setting.

Table 4-72. Output Signal Path Clocking Control

4.11.3 Output Signal Path Control

The OUT1 and OUT2 paths support selectable configuration for low-power or high-performance operation. The applicable mode is selected using the CP_DAC_MODE bit, as described in Table 4-74. The High Performance Mode is configured by default.

Under default register conditions, the headphone output (HPOUT1–HPOUT4) paths are configured for stereo output. The headphone paths can be configured for mono differential (BTL) output using the OUT n_MONO bits; this is ideal for driving an earpiece or hearing aid coil.

If the OUT *n*_MONO bit is set, the respective right channel output is an inverted copy of the left channel output signal; this creates a differential output between the respective outputs. The left and right channel output drivers must both be enabled in Mono Mode; both channels should be enabled simultaneously using the bits described in Table 4-71.

The mono (BTL) signal paths are shown in Fig. 4-52. Note that, in Mono Mode, the effective gain of the signal path is increased by 6 dB.

Note that the EP_SEL and OUT3_MONO bits should not be changed if the HPOUT3 or HPOUT4 drivers are enabled. These bits should be configured before enabling the respective drivers, and should remain unchanged until after the drivers have been disabled. The HPOUT3 and HPOUT4 drivers are enabled using the HP3L_ENA and HP3R_ENA bits, as described in Table 4-71.

The SPKCLK frequency of the PDM output path (OUT5) is controlled by OUT5_OSR, as described in Table 4-73. When the OUT5_OSR bit is set, the audio performance is improved, but power consumption is also increased.

Note that the SPKCLK frequencies noted in Table 4-73 assume that the SYSCLK frequency is a multiple of 6.144 MHz (SYSCLK_FRAC=0). If the SYSCLK frequency is a multiple of 5.6448 MHz (SYSCLK_FRAC = 1), the SPKCLK frequency is scaled accordingly.

Table 4-73. SPKCLK Frequency

Condition	SPKCLK Frequency
OUT5_OSR = 0	3.072 MHz
OUT5_OSR = 1	6.144 MHz

The output signal path control registers are defined in Table 4-74.

Table 4-74. Output Signal Path Contro	Table 4-74.	Output	Signal	Path	Contro
---------------------------------------	-------------	--------	--------	------	--------

Register Address	Bit	Label	Default	Description
R1024 (0x0400)	15	EP_SEL	0	Output Path 3 Output Driver select
Output_Enables_1				0 = HPOUT3L and HPOUT3R
				1 = HPOUT4L and HPOUT4R
R1032 (0x408)	6	CP_DAC_MODE	1	Output Path 1 and 2 Performance Mode select
Output_Rate_1				0 = Low Power Mode
				1 = High Performance Mode
R1040 (0x0410)	12	OUT1_MONO	0	Output Path 1 Mono Mode
Output_Path_				(Configures HPOUT1L and HPOUT1R as a mono differential output.)
Config_1L				0 = Disabled
				1 = Enabled
				The gain of the signal path is increased by 6 dB in differential (mono) mode.
R1048 (0x0418)	12	OUT2_MONO	0	Output Path 2 Mono Mode
Output_Path_				(Configures HPOUT2L and HPOUT2R as a mono differential output.)
Config_2L				0 = Disabled
				1 = Enabled
				The gain of the signal path is increased by 6 dB in differential (mono) mode.
R1056 (0x0420)	12	OUT3_MONO	0	Output Path 3 Mono Mode
Output_Path_				(Configures HPOUT3 and HPOUT4 as a mono differential output.)
Config_3L				0 = Disabled
				1 = Enabled
				The gain of the signal path is increased by 6 dB in differential (mono) mode.
R1072 (0x0430)	13	OUT5_OSR	0	Output Path 5 Oversample Rate
Output_Path_				0 = Normal mode
Config_5L				1 = High Performance mode

4.11.4 Output Signal Path Digital Filter Control

An integrated signal-processing engine on the CS42L92 supports digital filter requirements for range of hi-fi applications. Preset filter coefficients are held in on-board ROM, and can be configured and enabled as required. The hi-fi filters are tailored to specific sample rates, and provide options relating to passband frequency, stopband attenuation, and phase-response characteristics.

The filter type is selected using the HIFI_FIR_TYPE field. The available filters are each described in Table 4-75. The digital filter can be enabled in any output path, using the respective OUT*nx*_HIFI bits.

Note that only one filter type can be selected at any time, but the applicable filter can be enabled on any number of output paths simultaneously. The supported sample rates for each filter type are noted in Table 4-75—the selected filter must be consistent with the output sample rate (OUT_RATE) setting.

The digital filter can be enabled or disabled independently in any output path. A short interruption to the playback if the filter type is changed while the hi-fi filters are enabled on any output path.

The hi-fi digital filters are described in Table 4-75.

Table 4-75. Output Signal Path Digital Filter Types

Туре	Sample Rate	Description	Passband	Stopband	Passband Ripple	Stopband Attenuation
0	48 kHz, 96 kHz,	Deep stopband, linear phase	0.454 fs	0.546 fs	0.001 dB	120 dB
1	192 kHz, 44.1 kHz, 88.2 kHz, 176.4 kHz	Deep stopband, minimum phase	0.454 fs	0.546 fs	0.001 dB	120 dB
2	48 kHz, 44.1 kHz	Antialias, linear phase	0.417 fs	0.5 fs	0.001 dB	110 dB
3		Antialias, minimum phase	0.417 fs	0.5 fs	0.001 dB	110 dB
4	96 kHz, 192 kHz,	Non-apodizing, linear phase	0.227 fs	0.5 fs	0.001 dB	120 dB
5	384 kHz, 88.2 kHz,	Non-apodizing, minimum phase	0.227 fs	0.5 fs	0.001 dB	120 dB
6	176.4 kHz, 352.8 kHz	Apodizing, linear phase	0.227 fs	0.454 fs	0.001 dB	120 dB
7	302.0 KHZ	Apodizing, minimum phase	0.227 fs	0.454 fs	0.001 dB	120 dB

Туре	Sample Rate	Description	Passband	Stopband	Passband Ripple	Stopband Attenuation
8	192 kHz, 384 kHz,	Non-apodizing, linear phase	0.114 fs	0.5 fs	0.001 dB	125 dB
9	176.4 kHz,	Non-apodizing, minimum phase	0.114 fs	0.5 fs	0.001 dB	125 dB
10	352.8 kHz	Apodizing, linear phase	0.114 fs	0.454 fs	0.001 dB	125 dB
11		Apodizing, minimum phase	0.114 fs	0.454 fs	0.001 dB	125 dB
12	192 kHz, 384 kHz,	Non-apodizing, non-interpolating linear phase	0.114 fs	0.499 fs	0.001 dB	125 dB
13	176.4 kHz,	Non-apodizing, non-interpolating minimum phase	0.114 fs	0.499 fs	0.001 dB	125 dB
14	352.8 kHz	Apodizing, non-interpolating linear phase	0.114 fs	0.499 fs	0.001 dB	125 dB
15		Apodizing, non-interpolating minimum phase	0.114 fs	0.499 fs	0.001 dB	125 dB

At 48 kHz (or 44.1 kHz) sample rate, the key parameters of the hi-fi digital filters are the stopband attenuation and phase response. The stopband characteristics are noted in Table 4-75.

The choice between linear phase and minimum phase filters determines time-domain effects of the filter transfer function. Linear phase offers zero group delay, and equal levels of pre- and postringing. Minimum phase offers minimum preringing and latency, but higher levels of postringing and group delay distortion.

For sample rates above 48kHz, a choice between apodizing and non-apodizing filters is available. Apodizing filters have the capability to reduce time-domain distortion—this can be used to eliminate time smear effects introduced by other filters in the signal chain, provided the other filters have a flat frequency response throughout the apodizing filter's cut-off region. The cut-off (stopband) frequency of the apodizing filters are slightly lower than the respective non-apodizing filter response.

The hi-fi digital filter control registers are described in Table 4-76.

Table 4-76. Output Signal Path Digital Filter Control

Register Address	Bit	Label	Default	Description
R1040 (0x0410)	14	OUT1L_HIFI	0	Output Path 1 (Left) Hi-Fi Filter Enable
Output_Path_				0 = Disabled
Config_1L				1 = Enabled
R1044 (0x0414)	14	OUT1R_HIFI	0	Output Path 1 (Right) Hi-Fi Filter Enable
Output_Path_				0 = Disabled
Config_1R				1 = Enabled
R1048 (0x0418)	14	OUT2L_HIFI	0	Output Path 2 (Left) Hi-Fi Filter Enable
Output_Path_				0 = Disabled
Config_2L				1 = Enabled
R1052 (0x041C)	14	OUT2R_HIFI	0	Output Path 2 (Right) Hi-Fi Filter Enable
Output_Path_				0 = Disabled
Config_2R				1 = Enabled
R1056 (0x0420)	14	OUT3L_HIFI	0	Output Path 3 (Left) Hi-Fi Filter Enable
Output_Path_				0 = Disabled
Config_3L				1 = Enabled
R1060 (0x0424)	14	OUT3R_HIFI	0	Output Path 3 (Right) Hi-Fi Filter Enable
Output_Path_				0 = Disabled
Config_3R				1 = Enabled

Register Address	Bit	Label	Default	Description
R1072 (0x0430)	14	OUT5L_HIFI	0	Output Path 5 (Left) Hi-Fi Filter Enable
Output_Path_				0 = Disabled
Config_5L				1 = Enabled
R1076 (0x0434)	14	OUT5R_HIFI	0	Output Path 5 (Right) Hi-Fi Filter Enable
Output_Path_				0 = Disabled
Config_5R				1 = Enabled
R1102 (0x044E)	3:0	HIFI_FIR_	0x0	Output Path Hi-Fi Filter Select
Filter_Control		TYPE[3:0]		0x0 = 192 kHz deep stopband, linear phase
				0x1 = 192 kHz deep stopband, minimum phase
				0x2 = 48 kHz antialias, linear phase
				0x3 = 48 kHz antialias, minimum phase
				0x4 = 384 kHz non-apodizing, linear phase
				0x5 = 384 kHz non-apodizing, minimum phase
				0x6 = 384 kHz apodizing, linear phase
				0x7 = 384 kHz apodizing, minimum phase
				0x8 = 384 kHz non-apodizing, linear phase
				0x9 = 384 kHz non-apodizing, minimum phase
				0xA = 384 kHz apodizing, linear phase
				0xB = 384 kHz apodizing, minimum phase
				0xC = 384 kHz non-apodizing, non-interpolating linear phase
				0xD = 384 kHz non-apodizing, non-interpolating minimum phase
				0xE = 384 kHz apodizing, non-interpolating linear phase
				0xF = 384 kHz apodizing, non-interpolating minimum phase

4.11.5 Output Signal Path Digital Volume Control

A digital volume control is provided on each output signal path, providing –64 to +31.5 dB gain control in 0.5-dB steps. An independent mute control is also provided for each output signal path.

Whenever the gain or mute setting is changed, the signal path gain is ramped up or down to the new settings at a programmable rate. For increasing gain (or unmute), the rate is controlled by OUT_VI_RAMP. For decreasing gain (or mute), the rate is controlled by OUT_VD_RAMP.

Note: The OUT VI RAMP and OUT VD RAMP fields should not be changed while a volume ramp is in progress.

The OUT_VU bits control the loading of the output signal path digital volume and mute controls. When OUT_VU is cleared, the digital volume and mute settings are loaded into the respective control register, but do not change the signal path gain. The digital volume and mute settings on all of the output signal paths are updated when a 1 is written to OUT_VU. This makes it possible to update the gain of multiple signal paths simultaneously.

Note that, although the digital-volume controls provide 0.5-dB steps, the internal circuits provide signal gain adjustment in 0.125-dB steps. This allows a very high degree of gain control—smooth volume ramping under all operating conditions.

Note: The 0 dBFS level of the OUT5 digital output path is not equal to the 0 dBFS level of the CS42L92 digital core. The maximum digital output level is –6 dBFS (see Table 3-8). Under 0 dB gain conditions, a 0 dBFS output from the digital core corresponds to a –6 dBFS level in the PDM output.

The digital volume control registers are described in Table 4-77 and Table 4-78.

Table 4-77. Output Signal Path Digital Volume Control

R1033 (0x0409)	ns ns ess. ns
Ramp	ns ns ess. ns
001 = 0.5 ms	ess. ns
010 = 1 ms	ess. ns ns
2:0 OUT_VI_ RAMP[2:0] 010 Output Volume Increasing Ramp Rate (seconds/6 dB) This field should not be changed while a volume ramp is in progra 000 = 0 ms 011 = 2 ms 110 = 15 m 001 = 0.5 ms 100 = 4 ms 111 = 30 m 010 = 1 ms 101 = 8 ms R1041 (0x0411) DAC_Digital_ Volume_1L 0 Output Signal Paths Volume Update. Writing 1 to this bit causes the Paths Volume and Mute settings to be updated simultaneously 0 Output Path 1 (Left) Digital Mute 0 = Unmute	ns ns
RAMP[2:0] This field should not be changed while a volume ramp is in progression of the	ns ns
000 = 0 ms	ns ns
R1041 (0x0411) DAC_Digital Volume_1L 001 = 0.5 ms 010 = 1 ms 101 = 8 ms Output Signal Paths Volume Update. Writing 1 to this bit causes the Paths Volume and Mute settings to be updated simultaneously Output Path 1 (Left) Digital Mute 0 = Unmute	ns
R1041 (0x0411) DAC_Digital_ Volume_1L OUT_LWU See Footnote 1 Output Signal Paths Volume Update. Writing 1 to this bit causes the Paths Volume and Mute settings to be updated simultaneously Output Path 1 (Left) Digital Mute O = Unmute	
R1041 (0x0411) DAC_Digital_ Volume_1L 9 OUT_VU See Footnote 1 Paths Volume and Mute settings to be updated simultaneously 0 Utput Path 1 (Left) Digital Mute 0 = Unmute	A Output Signal
DAC_Digital_ Volume_1L	A Output Signal
Volume_1L 8 OUT1L_MUTE 1 Output Path 1 (Left) Digital Mute 0 = Unmute	e Output Signal
7:0 OUT1L_VOL[7:0] 0x80 Output Path 1 (Left) Digital Volume (see Table 4-78 for volume req	gister definition).
-64 dB to +31.5 dB in 0.5-dB steps	
	xFF = Reserved
0x01 = -63.5dB $(0.5-dB steps)$	
(0.5-dB steps) 0xBF = +31.5 dB	
R1045 (0x0415) 9 OUT_VU See Output Signal Paths Volume Update. Writing 1 to this bit causes the	ie Output Signal
DAC_Digital	
Volume_1R 8 OUT1R_MUTE 1 Output Path 1 (Right) Digital Mute 0 = Unmute	
0 = Orimute 1 = Mute	
7:0 OUT1R VOL[7:0] 0x80 Output Path 1 (Right) Digital Volume (see Table 4-78 for volume is	rogistor
definition).	register
-64 dB to +31.5 dB in 0.5-dB steps 0x00 = -64 dB	xFF = Reserved
0x00 = -64 dB	(FF - Reserved
(0.5-dB steps) 0xBF = +31.5 dB	
R1049 (0x0419) 9 OUT_VU See Output Signal Paths Volume Update. Writing 1 to this bit causes the	oe Output Signal
DAC_Digital_ Footnote 1 Paths Volume and Mute settings to be updated simultaneously	e Output Signal
Volume_2L 8 OUT2L_MUTE 1 Output Path 2 (Left) Digital Mute	
0 = Unmute	
1 = Mute	
7:0 OUT2L_VOL[7:0] 0x80 Output Path 2 (Left) Digital Volume (see Table 4-78 for volume reg	gister definition).
-64 dB to +31.5 dB in 0.5-dB steps	
0x00 = -64 dB $0x80 = 0 dB$ $0xC0 to 0x$	xFF = Reserved
0x01 = -63.5 dB $(0.5 - dB steps)$	
(0.5-dB steps) 0xBF = +31.5 dB	
R1053 (0x041D) 9 OUT_VU See Output Signal Paths Volume Update. Writing 1 to this bit causes the Footnote 1 Paths Volume and Mute settings to be updated simultaneously	e Output Signal
Volume_2R 8 OUT2R_MUTE 1 Output Path 2 (Right) Digital Mute	
0 = Unmute	
1 = Mute	
7:0 OUT2R_VOL[7:0] 0x80 Output Path 2 (Right) Digital Volume (see Table 4-78 for volume definition).	register
-64 dB to +31.5 dB in 0.5-dB steps	
0x00 = -64 dB $0x80 = 0 dB$ $0xC0 to 0x$	xFF = Reserved
0x01 = -63.5 dB $(0.5-dB steps)$	
(0.5-dB steps) 0xBF = +31.5 dB	

Table 4-77. Output Signal Path Digital Volume Control (Cont.)

Register Address	Bit	Label	Default	Description
R1057 (0x0421)	9	OUT_VU	See	Output Signal Paths Volume Update. Writing 1 to this bit causes the Output Signal
DAC_Digital_				
Volume_3L	8	OUT3L_MUTE	1	Output Path 3 (Left) Digital Mute
				0 = Unmute
				1 = Mute
	7:0	OUT3L_VOL[7:0]	0x80	Output Path 3 (Left) Digital Volume (see Table 4-78 for volume register definition)
				-64 dB to +31.5 dB in 0.5-dB steps
				0x00 = -64 dB $0x80 = 0 dB$ $0xC0 to 0xFF = Reserved$
				0x01 = -63.5 dB $(0.5 -dB steps)$
				$(0.5-dB \text{ steps})$ 0xBF = +31.5 dB
R1061 (0x0425) DAC_Digital_	9	OUT_VU	See Footnote 1	Output Signal Paths Volume Update. Writing 1 to this bit causes the Output Signal Paths Volume and Mute settings to be updated simultaneously
Volume_3R	8	OUT3R_MUTE	1	Output Path 3 (Right) Digital Mute
				0 = Unmute
				1 = Mute
	7:0	OUT3R_VOL[7:0]	0x80	Output Path 3 (Right) Digital Volume (see Table 4-78 for volume register definition).
				-64 dB to +31.5 dB in 0.5-dB steps
				0x00 = -64 dB $0x80 = 0 dB$ $0xC0 to 0xFF = Reserved$
				0x01 = -63.5 dB $(0.5-dB steps)$
				(0.5-dB steps) 0xBF = +31.5 dB
R1073 (0x0431)	9	OUT_VU	See	Output Signal Paths Volume Update. Writing 1 to this bit causes the Output Signal
DAC_Digital_			Footnote 1	,
Volume_5L	8	OUT5L_MUTE	1	Output Path 5 (Left) Digital Mute
				0 = Unmute
				1 = Mute
	7:0	OUT5L_VOL[7:0]	0x80	Output Path 5 (Left) Digital Volume (see Table 4-78 for volume register definition)
				-64 dB to +31.5 dB in 0.5-dB steps
				0x00 = -64 dB $0x80 = 0 dB$ $0xC0 to 0xFF = Reserved$
				0x01 = -63.5 dB (0.5-dB steps)
D4077 (0.0405)		OUT VIII		(0.5-dB steps) 0xBF = +31.5 dB
R1077 (0x0435) DAC_Digital_	9	OUT_VU	See Footnote 1	,
Volume_5R	8	OUT5R_MUTE	1	Output Path 5 (Right) Digital Mute
				0 = Unmute
				1 = Mute
	7:0	OUT5R_VOL[7:0]	0x80	Output Path 5 (Right) Digital Volume (see Table 4-78 for volume register definition).
				-64 dB to +31.5 dB in 0.5-dB steps
				0x00 = -64 dB
				0x01 = -63.5 dB (0.5-dB steps)
				$(0.5-dB \text{ steps})$ 0xBF = +31.5 dB

Default is not applicable to these write-only bits

Table 4-78 lists the output signal path digital volume settings.

Table 4-78. Output Signal Path Digital Volume Range

Output Volume Register	Volume (dB)						
0x00	-64.0	0x31	-39.5	0x62	-15.0	0x93	9.5
0x01	-63.5	0x32	-39.0	0x63	-14.5	0x94	10.0
0x02	-63.0	0x33	-38.5	0x64	-14.0	0x95	10.5
0x03	-62.5	0x34	-38.0	0x65	-13.5	0x96	11.0
0x04	-62.0	0x35	-37.5	0x66	-13.0	0x97	11.5
0x05	-61.5	0x36	-37.0	0x67	-12.5	0x98	12.0
0x06	-61.0	0x37	-36.5	0x68	-12.0	0x99	12.5
0x07	-60.5	0x38	-36.0	0x69	-11.5	0x9A	13.0

Table 4-78. Output Signal Path Digital Volume Range (Cont.)

Output Volume Register	Volume (dB)						
0x08	-60.0	0x39	-35.5	0x6A	-11.0	0x9B	13.5
0x09	-59.5	0x3A	-35.0	0x6B	-10.5	0x9C	14.0
0x0A	-59.0	0x3B	-34.5	0x6C	-10.0	0x9D	14.5
0x0B	-58.5	0x3C	-34.0	0x6D	-9.5	0x9E	15.0
0x0C	-58.0	0x3D	-33.5	0x6E	-9.0	0x9F	15.5
0x0D	-57.5	0x3E	-33.0	0x6F	-8.5	0xA0	16.0
0x0E	-57.0	0x3F	-32.5	0x70	-8.0	0xA1	16.5
0x0F	-56.5	0x40	-32.0	0x71	-7.5	0xA2	17.0
0x10	-56.0	0x41	-31.5	0x72	-7.0	0xA3	17.5
0x11	-55.5	0x42	-31.0	0x73	-6.5	0xA4	18.0
0x12	-55.0	0x43	-30.5	0x74	-6.0	0xA5	18.5
0x13	-54.5	0x44	-30.0	0x75	-5.5	0xA6	19.0
0x14	-54.0	0x45	-29.5	0x76	-5.0	0xA7	19.5
0x15	-53.5	0x46	-29.0	0x77	-4.5	0xA8	20.0
0x16	-53.0	0x47	-28.5	0x78	-4.0	0xA9	20.5
0x17	-52.5	0x48	-28.0	0x79	-3.5	0xAA	21.0
0x18	-52.0	0x49	-27.5	0x7A	-3.0	0xAB	21.5
0x19	-51.5	0x4A	-27.0	0x7B	-2.5	0xAC	22.0
0x1A	-51.0	0x4B	-26.5	0x7C	-2.0	0xAD	22.5
0x1B	-50.5	0x4C	-26.0	0x7D	-1.5	0xAE	23.0
0x1C	-50.0	0x4D	-25.5	0x7E	-1.0	0xAF	23.5
0x1D	-49.5	0x4E	-25.0	0x7F	-0.5	0xB0	24.0
0x1E	-49.0	0x4F	-24.5	0x80	0.0	0xB1	24.5
0x1F	-48.5	0x50	-24.0	0x81	0.5	0xB2	25.0
0x20	-48.0	0x51	-23.5	0x82	1.0	0xB3	25.5
0x21	-47.5	0x52	-23.0	0x83	1.5	0xB4	26.0
0x22	-47.0	0x53	-22.5	0x84	2.0	0xB5	26.5
0x23	-46.5	0x54	-22.0	0x85	2.5	0xB6	27.0
0x24	-46.0	0x55	-21.5	0x86	3.0	0xB7	27.5
0x25	-45.5	0x56	-21.0	0x87	3.5	0xB8	28.0
0x26	-45.0	0x57	-20.5	0x88	4.0	0xB9	28.5
0x27	-44.5	0x58	-20.0	0x89	4.5	0xBA	29.0
0x28	-44.0	0x59	-19.5	0x8A	5.0	0xBB	29.5
0x29	-43.5	0x5A	-19.0	0x8B	5.5	0xBC	30.0
0x2A	-43.0	0x5B	-18.5	0x8C	6.0	0xBD	30.5
0x2B	-42.5	0x5C	-18.0	0x8D	6.5	0xBE	31.0
0x2C	-42.0	0x5D	-17.5	0x8E	7.0	0xBF	31.5
0x2D	-41.5	0x5E	-17.0	0x8F	7.5	0xC0-0xFF	Reserved
0x2E	-41.0	0x5F	-16.5	0x90	8.0		
0x2F	-40.5	0x60	-16.0	0x91	8.5		
0x30	-40.0	0x61	-15.5	0x92	9.0		

4.11.6 Output Signal Path Noise-Gate Control

The CS42L92 provides a digital noise-gate function for each output signal path. The noise gate ensures best noise performance when the signal path is idle. When the noise gate is enabled, and the applicable signal level is below the noise-gate threshold, the noise gate is activated, causing the signal path to be muted.

The noise-gate function is enabled by setting NGATE_ENA, as described in Table 4-79.

For each output path, the noise gate may be associated with one or more of the signal path threshold detection functions using the x_NGATE_SRC fields. When more than one signal threshold is selected, the output-path noise gate is only activated (i.e., muted) when all of the respective signal thresholds are satisfied.

For example, if the OUT1L noise gate is associated with the OUT1L and OUT1R signal paths, the OUT1L signal path is only muted if both the OUT1L and OUT1R signal levels are below the respective thresholds.

The noise-gate threshold (the signal level below which the noise gate is activated) is set using NGATE_THR. Note that, for each output path, the noise-gate threshold represents the signal level at the respective output pins; the threshold is therefore independent of the digital volume and PGA gain settings.

Note that, although there is only one noise-gate threshold level (NGATE_THR), each output-path noise gate may be activated independently, according to the respective signal content and the associated threshold configurations.

To prevent erroneous triggering, a time delay is applied before the gate is activated; the noise gate is only activated (i.e., muted) when the output levels are below the applicable signal level thresholds for longer than the noise-gate hold time. The hold time is set using the NGATE HOLD field.

When the noise gate is activated, the CS42L92 gradually attenuates the respective signal path at the rate set by OUT_VD_RAMP (see Table 4-77). When the noise gate is deactivated, the output volume increases at the rate set by OUT_VI_RAMP.

Register Address	Bit	Label	Default	Description				
R1043 (0x0413)	11:0	OUT1L_NGATE_	0x001	Output Signal Path Noise-Gate Source. Enables one of more signal paths as				
Noise_Gate_Select_1L		SRC[11:0]		inputs to the respective noise gate. If more than one signal path is enabled as				
R1047 (0x0417)	11:0	OUT1R_NGATE_	0x002	an input, the noise gate is only activated (i.e., muted) when all of the respective signal thresholds are satisfied.				
Noise_Gate_Select_1R		SRC[11:0]		Each bit is coded as 0 = Disabled, 1 = Enabled				
R1051 (0x041B)	11:0	OUT2L_NGATE_	0x004	[11] = Reserved				
Noise_Gate_Select_2L		SRC[11:0]		[10] = Reserved				
R1055 (0x041F)	11:0	OUT2R_NGATE_	0x008	[9] = OUT5R				
Noise_Gate_Select_2R		SRC[11:0]		[8] = OUT5L				
R1059 (0x0423)	11:0	OUT3L_NGATE_	0x010	[7] = Reserved				
Noise_Gate_Select_3L		SRC[11:0]		[/] = Reserved				
R1063 (0x0427)	11:0	OUT3R_NGATE_	0x020	[5] = OUT3R				
Noise_Gate_Select_3R		SRC[11:0]		[6] = OUT3L				
R1075 (0x0433)	11:0	OUT5L_NGATE_	0x100	[3] = OUT2R				
Noise_Gate_Select_5L		SRC[11:0]		[3] = OUT2K [2] = OUT2L				
R1079 (0x0437)	11:0	OUT5R_NGATE_	0x200	[1] = OUT1R				
Noise_Gate_Select_5R		SRC[11:0]		[0] = OUT1L				
R1112 (0x0458)	5.1	NGATE	00	Output Signal Path Noise-Gate Hold Time (delay before noise gate is activated)				
Noise Gate Control	5.4	HOLD[1:0]	00	00 = 30 ms 10 = 250 ms				
TVOISE_Gate_Control				01 = 120 ms				
	3.1	NGATE THR[2:0]	000	Output Signal Path Noise-Gate Threshold				
	3.1	NOATE_TTIN[2.0]		000 = -78 dB 011 = -96 dB 110 = -114 dB				
				001 = -84 dB				
				010 = -90 dB				
	0	NGATE ENA	0	Output Signal Path Noise-Gate Enable				
		INO/NIL_LINA	-	0 = Disabled				
				1 = Enabled				
				I - Lilabieu				

Table 4-79. Output Signal Path Noise-Gate Control

4.11.7 Output Signal Path AEC Loop-Back

The CS42L92 incorporates two loop-back signal paths, which are ideally suited as a reference for AEC processing. Any two of the output signal paths may be selected as the AEC loop-back sources.

When configured with suitable DSP firmware, the CS42L92 can provide an integrated AEC capability. The AEC loop-back feature also enables convenient hook-up to an external device for implementing the required signal-processing algorithms.

The AEC loop-back source is connected after the respective digital volume controls, as shown in Fig. 4-52. The AEC loop-back signals can be selected as input to any of the digital mixers within the CS42L92 digital core. The sample rate for the AEC loop-back paths is configured using OUT_RATE—see Table 4-26.

The AEC loop-back function is enabled using the AEC*n*_LOOPBACK_ENA bits (where *n* identifies the applicable path, AEC1 or AEC2). The source signals for the Transmit Path AEC function are selected using the AEC*n*_LOOPBACK_SRC bits.

The CS42L92 performs automatic checks to confirm that the SYSCLK frequency is high enough to support the AEC loop-back function. If the frequency is too low, an attempt to enable this function fails. Note that active signal paths are not affected under such circumstances.

The AEC*n*_ENA_STS bits indicate the status of the AEC loop-back functions. If an underclocked error condition occurs, these bits indicate whether the AEC loop-back function has been enabled.

Register Address	Bit	Label	Default		Descriptio	n
R1104 (0x0450)	5:2	AEC1_LOOPBACK_	0000	Input source for Tx	AEC1 function	
DAC_AEC_		SRC[3:0]		0000 = OUT1L	0100 = OUT3L	All other codes are reserved
Control_1				0001 = OUT1R	0101 = OUT3R	
				0010 = OUT2L	1000 = OUT5L	
				0011 = OUT2R	1001 = OUT5R	
	1	AEC1_ENA_STS	0	Transmit (Tx) Path A	AEC1 Control Status	
				0 = Disabled		
				1 = Enabled		
	0	AEC1_LOOPBACK_	0	Transmit (Tx) Path A	AEC1 Control	
		ENA		0 = Disabled		
				1 = Enabled		
R1105 (0x0451)	5:2	AEC2_LOOPBACK_	0000	Input source for Tx	AEC2 function	
DAC_AEC_		SRC[3:0]		0000 = OUT1L	0100 = OUT3L	All other codes are reserved
Control_2				0001 = OUT1R	0101 = OUT3R	
				0010 = OUT2L	1000 = OUT5L	
				0011 = OUT2R	1001 = OUT5R	
	1	AEC2_ENA_STS	0	Transmit (Tx) Path A	AEC2 Control Status	
				0 = Disabled		
				1 = Enabled		
	0	AEC2_LOOPBACK_	0	Transmit (Tx) Path A	AEC2 Control	
		ENA		0 = Disabled		
				1 = Enabled		

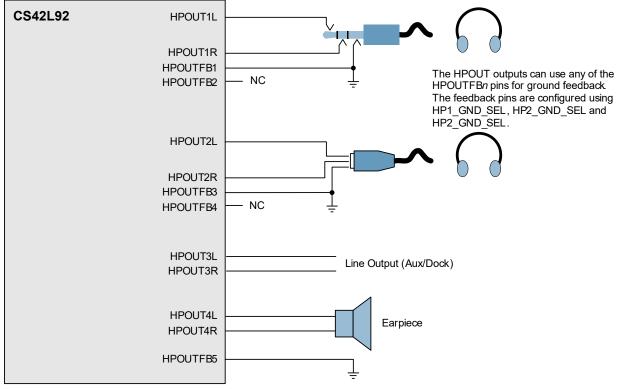
Table 4-80. Output Signal Path AEC Loop-Back Control

4.11.8 Headphone Outputs

The headphone/earpiece driver outputs, HPOUT1–HPOUT4, are suitable for direct connection to external headphones and earpieces. The outputs are ground referenced, eliminating any requirement for AC coupling capacitors.

The headphone outputs incorporate a common mode, or ground loop, feedback path that provides rejection of system-related ground noise. The feedback connection is configurable for each output path. Five feedback pins are provided (HPOUTFB*n*). The selected feedback pins must be connected to ground for normal operation of the headphone outputs.

Note that the feedback pins should be connected to GND as close as possible to the respective headphone jack ground pin, as shown in Fig. 4-54. In mono (differential) mode, the feedback pins should be connected to the ground plane that is closest to the earpiece output PCB tracks.


The ground feedback path for HPOUT1 and HPOUT2 headphone outputs is selected using the HP1_GND_SEL and HP2_GND_SEL register fields respectively—see Table 4-81. The ground feedback path for HPOUT3 and HPOUT4 headphone outputs is selected using the HP3_GND_SEL field.

If none of the HPOUTFBn pins are available for use as a ground feedback connection, an internal ground (AGND) can be selected by setting the respective HPn_GND_SEL field to 101.

Register Address	Bit	Label	Default	Description
R1042 (0x0412)	2:0	HP1_GND_	000	HPOUT1 ground feedback pin select
Output_Path_		SEL[2:0]		000 = HPOUTFB1
Config_1				001 = HPOUTFB2
				010 = HPOUTFB3
				011 = HPOUTFB4
				100 = HPOUTFB5
				101 = AGND (internal connection)
				All other codes are reserved
R1050 (0x041A)	2:0	HP2_GND_	010	HPOUT2 ground feedback pin select
Output_Path_		SEL[2:0]		000 = HPOUTFB1
Config_2	Config_2			001 = HPOUTFB2
				010 = HPOUTFB3
				011 = HPOUTFB4
				100 = HPOUTFB5
				101 = AGND (internal connection)
				All other codes are reserved
R1058 (0x0422)	2:0	HP3_GND_	010	HPOUT3/HPOUT4 ground feedback pin select
Output_Path_		SEL[2:0]		000 = HPOUTFB1
Config_3				001 = HPOUTFB2
				010 = HPOUTFB3
				011 = HPOUTFB4
				100 = HPOUTFB5
				101 = AGND (internal connection)
				All other codes are reserved

The headphone and earpiece connections are shown in Fig. 4-54.

Each headphone output can support stereo (single-ended) or mono (differential) output. The illustration shows the configuration for a typical application.

Figure 4-54. Headphone and Earpiece Connection

4.11.9 Speaker Outputs (Digital PDM)

The CS42L92 supports a two-channel pulse-density modulation (PDM) digital speaker interface; the PDM outputs are associated with the OUT5L and OUT5R output signal paths.

The external connections associated with the PDM outputs are implemented on multifunction GPIO pins, which must be configured for the respective PDM functions when required. The PDM output connections are pin-specific alternative functions available on specific GPIO pins. See Section 4.14 to configure the GPIO pins for the PDM output.

The PDM digital speaker interface is a stereo interface; the OUT5L and OUT5R output signal paths are interleaved on the SPKDAT output, and clocked using SPKCLK.

Note that the PDM interface supports two different operating modes; these are selected using SPK1_FMT. See Table 3-15 for detailed timing information in both modes.

- If SPK1_FMT = 0 (Mode A), the Left PDM channel is valid at the rising edge of SPKCLK; the Right PDM channel is valid at the falling edge of SPKCLK.
- If SPK1_FMT = 1 (Mode B), the Left PDM channel is valid during the low phase of SPKCLK; the Right PDM channel is valid during the high phase of SPKCLK.

The PDM interface timing is shown in Fig. 4-55.

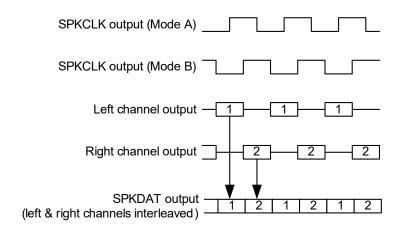


Figure 4-55. Digital Speaker (PDM) Interface Timing

Clocking for the PDM interface is derived from SYSCLK. Note that SYSCLK_ENA must also be set. See Section 4.16 for further details of the system clocks and control registers.

If the OUT5L or OUT5R output signal path is enabled, the PDM interface clock signal is output on the SPKCLK pin.

The output signal paths support normal and high performance operating modes, as described in Section 4.11.3. The SPKCLK frequency is set according to the operating mode of the relevant output path, as described in Table 4-82. The OUT5_OSR bit is defined in Table 4-74.

Note that the SPKCLK frequencies noted in Table 4-82 assume that the SYSCLK frequency is a multiple of 6.144 MHz (SYSCLK_FRAC = 0). If the SYSCLK frequency is a multiple of 5.6448 MHz (SYSCLK_FRAC=1), the SPKCLK frequency is scaled accordingly.

OUT5_OSR	Description	SPKCLK Frequency
0	Normal mode	3.072 MHz
1	High Performance mode	6.144 MHz

Table 4-82. SPKCLK Frequency

The PDM output channels can be independently muted. When muted, the default output on each channel is a DSD-compliant silent stream (0110_1001b). The mute output code can be programmed to other values if required, using the SPK1_MUTE_SEQ field. The mute output code can be transmitted MSB-first or LSB-first; this is selectable using the SPK1_MUTE_ENDIAN bit.

Note that the PDM Mute function is not a soft-mute; the audio output is interrupted immediately when the PDM mute is asserted. It is recommended to use the output signal path mute function before applying the PDM mute. See Table 4-77 for details of the OUT5L_MUTE and OUT5R_MUTE bits.

The PDM output interface registers are described in Table 4-83.

Register Address	Bit	Label	Default	Description
R1168 (0x0490)	13	SPK1R_MUTE	0	PDM Speaker Output 1 (Right) Mute
PDM_SPK1_				0 = Audio output (OUT5R)
CTRL_1				1 = Mute Sequence output
	12	SPK1L_MUTE	0	PDM Speaker Output 1 (Left) Mute
				0 = Audio output (OUT5L)
				1 = Mute Sequence output
	8	SPK1_MUTE_	0	PDM Speaker Output 1 Mute Sequence Control
		ENDIAN		0 = Mute sequence is LSB first
				1 = Mute sequence output is MSB first
	7:0	SPK1_MUTE_	0x69	PDM Speaker Output 1 Mute Sequence
		SEQ[7:0]		Defines the 8-bit code that is output on SPKDAT (left) or SPKDAT (right) when muted.
R1169 (0x0491)	0	SPK1_FMT	0	PDM Speaker Output 1 timing format
PDM_SPK1_				0 = Mode A (PDM data is valid at the rising/falling edges of SPKCLK)
CTRL_2				1 = Mode B (PDM data is valid during the high/low phase of SPKCLK)

Table 4-83. Digital Speaker (PDM) Output Control

The digital speaker (PDM) outputs SPKDAT and SPKCLK are intended for direct connection to a compatible external speaker driver. A typical configuration is shown in Fig. 4-56.

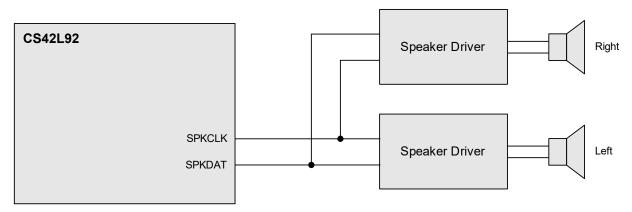


Figure 4-56. Digital Speaker (PDM) Connection

4.12 External Accessory Detection

The CS42L92 provides external accessory detection functions that can sense the presence and impedance of external components. This can be used to detect the insertion or removal of an external headphone or headset, and to provide an indication of key/button push events.

Jack insertion is detected using the JACKDETn pins (where n = 1, 2, or 3), which are typically connected to a switch contact within the jack sockets. An interrupt event is generated whenever a jack insertion or jack removal event is detected.

Suppression of pops and clicks caused by jack insertion or removal is provided using the MICDET clamp function. (The CS42L92 incorporates two MICDET clamps.) This function can also be used to trigger interrupt events, and to trigger the control-write sequencer. The integrated general-purpose switches can be synchronized with the MICDET clamps, to provide additional pop-suppression capability.

Microphones, push buttons and other accessories can be detected via the MICDET*n* pins. The presence of a microphone, and the status of a hook switch can be detected. This feature can also be used to detect push-button operation. (Note that accessory detection is also possible via the HPDET*n* and JACKDET*n* pins, subject to some additional constraints.)

Headphone impedance can be measured via the HPDET1 and HPDET2 pins; this can be used to set different gain levels or other configuration settings according to the type of load connected. For example, different settings may be applicable to headphone or line output loads. (Note that impedance measurement is also possible via the MICDET*n* and JACKDET*n* pins, subject to some additional constraints.)

The MICVDD power domain must be enabled when using the microphone detect function. (Note that MICVDD is not required for the jack detect or headphone detect functions.) The MICVDD power domain is provided using an internal charge pump (CP2) and LDO regulator (LDO2). See Section 4.19 for details of these circuits.

The internal 32-kHz clock must be present and enabled when using the microphone detect or headphone detect functions; the 32-kHz clock is also required for the jack detect function, assuming input debounce is enabled. See Section 4.16 for details of the internal 32-kHz clock and associated control fields.

4.12.1 Jack Detect

The CS42L92 provides support for jack insertion switch detection. The jack insertion status can be read using the relevant register status bits. A jack insertion or removal can also be used to trigger an interrupt event.

The jack-detect interrupt (IRQ) functionality is maintained in Sleep Mode (see Section 4.13). This enables a jack insertion event to be used to trigger a wake-up of the CS42L92.

Jack insertion and removal is detected using the JACKDET*n* pins. The recommended external connections are shown in Fig. 4-57. Note that the logic thresholds associated with the JACKDET*n* pins differ from each other, as described in Table 3-11—this provides support for different jack switch configurations.

The jack detect feature is enabled using the JDn_ENA bits (where n = 1, 2, or 3 for JACKDET1, JACKDET2, or JACKDET3 respectively); the jack insertion status can be read using JDn_STSx. Note that the JDn_STS1 and JDn_STS2 bits provide the same information in respect of the applicable JACKDETn input.

The jack detect input debounce is selected using the JDn_DB bits, as described in Table 4-84. Note that, under normal operating conditions, the debounce circuit uses the 32-kHz clock, which must be enabled whenever input debounce functions are required. Input debounce is not provided in Sleep Mode; the JDn_DB bits have no effect in Sleep Mode.

Note that the jack detect signals (JDn) can be used as inputs to the MICDET clamp function—this provides additional functionality relating to jack insertion and removal events.

An interrupt request (IRQ) event is generated whenever a jack insertion or jack removal is detected (see Section 4.15). Separate mask bits are provided, to allow IRQ events on the rising and/or falling edges of the JDn signals.

The control registers associated with the jack detect function are described in Table 4-84.

Table 4-84. Jack Detect Control

Register Address	Bit	Label	Default	Description
R723 (0x02D3)	2	JD3_ENA	0	JACKDET3 enable
Jack_detect_				0 = Disabled
analog				1 = Enabled
	1	JD2_ENA	0	JACKDET2 enable
				0 = Disabled
				1 = Enabled
	0	JD1_ENA	0	JACKDET1 enable
				0 = Disabled
				1 = Enabled

Table 4-84. Jack Detect Control (Cont.)

Register Address	Bit	Label	Default	Description
R6278 (0x1886)	8	JD3_STS1	0	JACKDET3 input status
IRQ1_Raw_				0 = Jack not detected
Status_7				1 = Jack is detected
				(Assumes the JACKDET3 pin is pulled low on jack insertion.)
	2	JD2_STS1	0	JACKDET2 input status
				0 = Jack not detected
				1 = Jack is detected
				(Assumes the JACKDET2 pin is pulled low on jack insertion.)
	0	JD1_STS1	0	JACKDET1 input status
				0 = Jack not detected
				1 = Jack is detected
				(Assumes the JACKDET1 pin is pulled low on jack insertion.)
R6534 (0x1986)	8	JD3_STS2	0	JACKDET3 input status
IRQ2_Raw_				0 = Jack not detected
Status_7				1 = Jack is detected
				(Assumes the JACKDET3 pin is pulled low on jack insertion.)
	2	JD2_STS2	0	JACKDET2 input status
				0 = Jack not detected
				1 = Jack is detected
				(Assumes the JACKDET2 pin is pulled low on jack insertion.)
	0	JD1_STS2	0	JACKDET1 input status
				0 = Jack not detected
				1 = Jack is detected
				(Assumes the JACKDET1 pin is pulled low on jack insertion.)
R6662 (0x1A06)	8	JD3_DB	0	JACKDET3 input debounce
Interrupt_				0 = Disabled
Debounce_7				1 = Enabled
	2	JD2_DB	0	JACKDET2 input debounce
				0 = Disabled
				1 = Enabled
	0	JD1_DB	0	JACKDET1 input debounce
				0 = Disabled
				1 = Enabled

A recommended connection circuit, including headphone output on HPOUT1 and microphone connections, is shown in Fig. 4-57. See Section 5.1 for details of recommended external components.

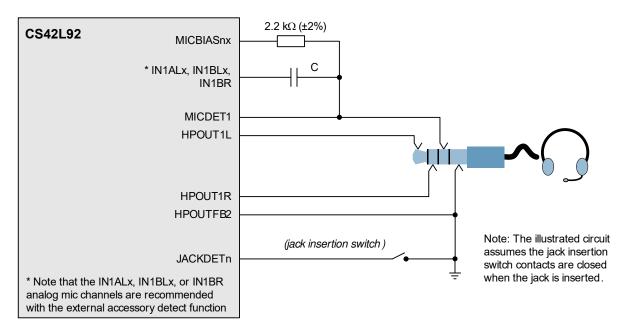


Figure 4-57. Jack Detect and External Accessory Connections

The internal comparator circuit used to detect the JACKDET*n* status is shown in Fig. 4-58. The threshold voltages for the jack detect circuit are noted in Table 3-11. Note that separate thresholds are defined for jack insertion and removal.

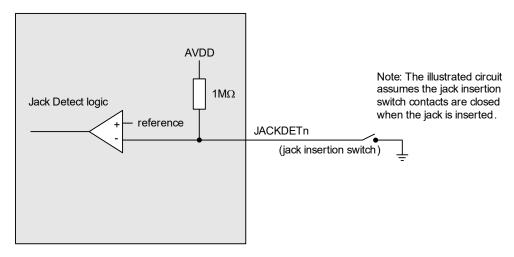


Figure 4-58. Jack Detect Comparator

4.12.2 Jack Pop Suppression (MICDET Clamp and GP Switch)

Under typical configuration of a 3.5-mm headphone/accessory jack connection, there is a risk of pops and clicks arising from jack insertion or removal. This can occur if the headphone load makes momentary contact with the MICBIAS output when the jack is not fully inserted.

The CS42L92 provides a MICDET clamp function to suppress pops and clicks caused by jack insertion or removal. Two MICDET clamps are incorporated; each clamp can be controlled directly, or can be activated by a logic function derived from the JACKDET*n* inputs. The clamp status can be read using the relevant register status bits. The clamp status can also be used to trigger an interrupt (IRQ) event or to trigger the control-write sequencer.

Two general-purpose analog switches are incorporated; these can be configured to augment the MICDET clamp functions and used to support the pop-suppression circuits, as described in Section 4.12.2.3.

Note that, due to control logic that is shared between the two MICDET clamps, some restrictions regarding the operation of the clamps must be observed, as described in Section 4.12.2.1.

4.12.2.1 MICDET Clamp Control

The MICDET clamp function can be configured using the MICD_CLAMPn_MODE fields (where n = 1 or 2 for Clamp 1 or Clamp 2 respectively). Selectable logic conditions (derived from the JD1, JD2, or JD3 signals—see Table 4-84) provide support for different jack detect circuit configurations. Setting the MICD_CLAMPn_OVD bit enables the respective MICDET clamp, regardless of other conditions.

Note: The MICD_CLAMP*n*_OVD bits are set by default. Accordingly, the MICDET clamps are always enabled following power-on reset, hardware reset, or software reset.

The MICDET clamp functionality (including the external IRQ) is maintained in Sleep Mode (see Section 4.13). This enables a jack insertion event to be used to trigger a wake-up of the CS42L92. The recommended control sequence for the jack detect and MICDET clamp control is described in Section 4.12.2.5.

The MICDET clamps are effective on pins MICDET1-MICDET4, as follows:

- If MICDET Clamp 1 is enabled, the MICDET1/HPOUTFB1 and MICDET2/HPOUTFB2 pins are shorted together.
- If MICDET Clamp 2 is enabled, the MICDET3/HPOUTFB3 and MICDET4/HPOUTFB4 pins are shorted together.

If either clamp is enabled, the grounding of the applicable MICDET is achieved via the HPOUTFB function of the other pin associated with the respective clamp. It is assumed that the HPOUTFB connection is grounded externally, as shown in Fig. 4-59.

The selectable logic conditions supported by the MICD_CLAMP*n*_MODE fields provide flexibility in selecting the appropriate conditions for controlling each MICDET clamp. The MICD_CLAMP1_MODE field allows Clamp 1 to be controlled by the JD1 or JD2 signals. The MICD_CLAMP2_MODE field allows Clamp 2 to be controlled by the JD3 signal.

Note that, due to control logic that is shared between the two clamps, the option to control both clamps in response to the JDn signals cannot be supported at the same time. If automatic (JACKDET-triggered) operation is selected on one of the clamps, the other clamp must be held in a fixed state. It is recommended that the unused clamp should be enabled by setting the respective MICD_CLAMPn_OVD bit.

The status of the clamps can be read using the MICD_CLAMP_STSx bits. Note that the MICD_CLAMP_STS1 and MICD_CLAMP_STS2 bits provide the same information. The MICD_CLAMP_STSx bits indicate the status of the active clamp only (i.e., the clamp that is not in the overridden state). The status of a clamp in the overridden (MICD_CLAMPn_OVD = 1) state is not indicated. It is assumed that a maximum of one clamp is active at any time.

The MICDET clamp debounce is selected by setting MICD_CLAMP_DB bit, as described in Table 4-85. Note that, under normal operating conditions, the debounce circuit uses the 32-kHz clock, which must be enabled whenever input debounce functions are required. Input debounce is not provided in Sleep Mode; the MICD_CLAMP_DB bit has no effect in Sleep Mode.

The MICDET clamp function is shown in Fig. 4-59. Note that the jack plug is shown partially removed, with the MICDET1 pin in contact with the headphone load.

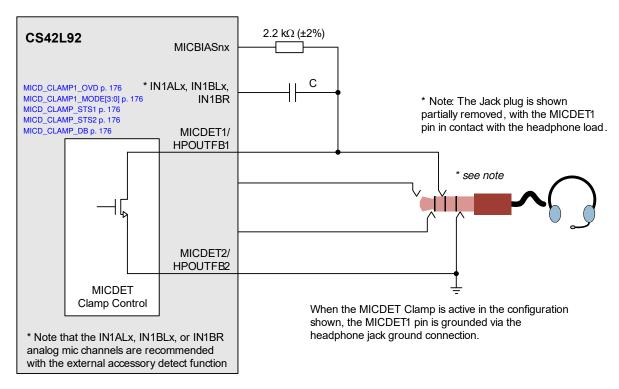


Figure 4-59. MICDET Clamp Circuit

4.12.2.2 Interrupts and Write-Sequencer Control

An interrupt request (IRQ) event can be generated in response to the MICDET clamp status. A MICDET clamp interrupt is generated whenever the logic condition of the JD*n* signals cause a change in the clamp status. Separate maskable interrupts are provided for the rising and falling edges of the MICDET clamp status—see Section 4.15.

The control-write sequencer can be triggered by the MICDET clamp status. This is enabled using the WSEQ_ENA_MICD_CLAMP_FALL and WSEQ_ENA_MICD_CLAMP_RISE bits. Note that these control-sequencer events are only valid if the clamp status changed in response to the JDn signals. See Section 4.18 for details of the control-write sequencer.

Note that, due to control logic that is shared between the two MICDET clamps, the option to control both clamps in response to the JD*n* signals cannot be supported at the same time. It is assumed that a maximum of one clamp is active at any time. Accordingly, only the active clamp is capable of generating an interrupt event or triggering the control-write sequencer.

4.12.2.3 Pop Suppression using General-Purpose Switch

In applications where a large decoupling capacitance is present on the MICBIAS output, the MICDET clamp function may be unable to discharge the capacitor sufficiently to eliminate pops and clicks associated with jack insertion and removal. In this case, it may be desirable to use one of the general-purpose switches on the CS42L92 to provide isolation from the MICBIAS output.

There are two general-purpose switches, configured using the respective SWn_MODE fields (where n = 1 or 2). The SWn_MODE fields allow the switches to be disabled, enabled, or synchronized to the MICDET clamp status, as described in Table 4-85.

For jack pop suppression, it is recommended to set $SWn_MODE = 11$ for the applicable switch. In this case, the switch contacts are open whenever the MICDET clamp status bits are set (clamp enabled), and the switch contacts are closed whenever the MICDET clamp status bits are clear (clamp disabled).

Note that the MICDET clamp status (MICD_CLAMP_STSx) is shared between the two clamps. Under recommended operating conditions, a maximum of one clamp should be active at any time (see Section 4.12.2.1). In this case, the MICD_CLAMP_STSx bits indicate the status of the active clamp only.

A typical pop-suppression circuit, incorporating the general-purpose switch and MICDET clamp function, is shown in Fig. 4-60. Normal accessory functions are supported when the switch contacts (GPSWnP and GPSWnN) are closed, and the MICDET clamp is disabled. Ground clamping of MICDET, and isolation of MICBIAS, are achieved when the switch contacts are open and the MICDET clamp is enabled.

Note that the MICDET clamp function must also be configured appropriately if using this method of pop-suppression control.

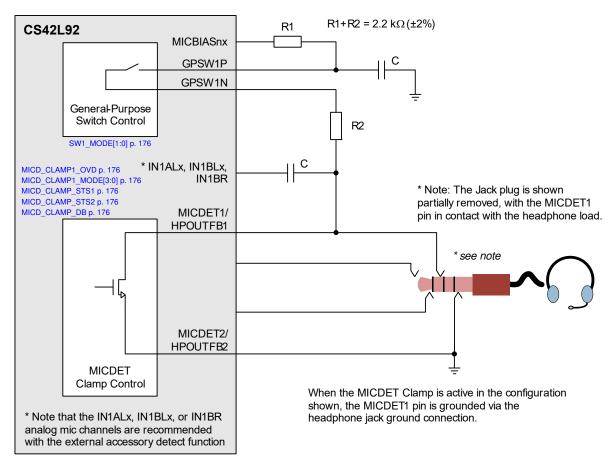


Figure 4-60. General-Purpose Switch Circuit

4.12.2.4 MICDET Clamp Control Registers

The control registers associated with the MICDET clamp and general-purpose switch functions are described in Table 4-85.

Table 4-85. MICDET Clamp and General-Purpose Switch Control

Register Address	Bit	Label	Default	Description
R65 (0x0041)		WSEQ_ENA_	0	MICDET Clamp (Falling) Write Sequencer Select
Sequence_control		MICD_CLAMP_		0 = Disabled
		FALL		1 = Enabled
		WSEQ_ENA_	0	MICDET Clamp (Rising) Write Sequencer Select
		MICD_CLAMP_		0 = Disabled
		RISE		1 = Enabled

Table 4-85. MICDET Clamp and General-Purpose Switch Control (Cont.)

Register Address	Bit	Label	Default	Description		
R710 (0x02C6)	9	MICD_	1	MICDET Clamp 2 Override		
Micd_Clamp_		CLAMP2_OVD		0 = Disabled (clamp is controlled by MICD_CLAMP2_MODE)		
control				1 = Enabled (clamp is enabled)		
	8:6	MICD_ CLAMP2_ MODE[2:0]		MICDET Clamp 2 Mode		
				0x0 = Disabled		
				0x1 = Enabled (MICDET3/MICDET4 shorted together)		
				0x2 = Enabled if JD3=0		
				0x3 = Enabled if JD3=1		
	4	MICD_ CLAMP1_OVD		MICDET Clamp 10verride		
				0 = Disabled (clamp is controlled by MICD_CLAMP1_MODE)		
				1 = Enabled (clamp is enabled)		
	3:0	MICD_ CLAMP1_ MODE[3:0]		MICDET Clamp 1 Mode		
				0x0 = Disabled 0x9 = Enabled if JD1=0 or JD2=1		
				0x1 = Enabled (MICDET1/MICDET2 shorted together) 0xA = Enabled if JD1=1 or JD2=0		
				0x2–0x3 = Reserved 0xB = Enabled if JD1=1 or JD2=1		
				0x4 = Enabled if JD1=0 0xC = Enabled if JD1=0 and JD2=0		
				0x5 = Enabled if JD1=1 0xD = Enabled if JD1=0 and JD2=1		
				0x6 = Enabled if JD2=0		
				0x7 = Enabled if JD2=1		
				0x8 = Enabled if JD1=0 or JD2=0		
R712 (0x02C8)	3:2	SW2_ MODE[1:0]	00	General-purpose Switch 2 control		
GP_Switch_1				00 = Disabled (switch open) 10 = Enabled if MICDET clamp status is set		
				01 = Enabled (switch closed) 11 = Enabled if MICDET clamp status is clear		
	1:0	SW1_ MODE[1:0]	00	General-purpose Switch 1 control		
				00 = Disabled (switch open) 10 = Enabled if MICDET clamp status is set		
				01 = Enabled (switch closed) 11 = Enabled if MICDET clamp status is clear		
R6278 (0x1886)	4	MICD_CLAMP_	0	MICDET Clamp status		
IRQ1_Raw_Status_		STS1		0 = Clamp disabled		
7				1 = Clamp enabled		
				Note: Separate _STS bits are not provided for each clamp—it is assumed that a		
				maximum of one clamp is active at any time. The clamp override condition (MICD_ $CLAMPn$ OVD = 1) is not indicated.		
R6534 (0x1986)	4	MICD CLAMD	0	MICDET Clamp status		
` ,	4	MICD_CLAMP_ STS2	0	0 = Clamp disabled		
IRQ2_Raw_Status_ 7				1 = Clamp enabled		
				Note: Separate _STS bits are not provided for each clamp—it is assumed that a		
				maximum of one clamp is active at any time. The clamp override condition (MICD		
D6662 (0v1A06) 4 MICD CLAMD			0	CLAMPn_OVD = 1) is not indicated.		
R6662 (0x1A06)				0 = Disabled		
Interrupt_ Debounce_7						
D 0 0 0 0 1 0 0 _ 1	1	1	ĺ	1 = Enabled		

4.12.2.5 Control Sequence for Jack Detect and MICDET Clamp

A summary of the jack detect and MICDET clamp functionality, and the recommended usage in typical applications, is described as follows:

 On device power-up, and following reset, the MICDET clamps are enabled due to the default setting of the MICD_ CLAMPn_OVD bits; this ensures no spurious output can occur during jack insertion. It is recommended to keep the MICDET clamps enabled (MICD_CLAMPn_OVD = 1) until after a jack insertion has been detected.

To control MICDET Clamp 1 according to the JD1/JD2 signals, the MICDET_CLAMP1_MODE field should be set according to the required logic condition (configured to enable the clamp when jack is removed).

To control MICDET Clamp 2 according to the JD3 signal, the MICDET_CLAMP2_MODE field should be set according to the required logic condition (configured to enable the clamp when jack is removed).

Note that, due to control logic that is shared between the two MICDET clamps, the option to control both clamps in response to the JDn signals cannot be supported at the same time. It is assumed that a maximum of one clamp is active at any time.

- Jack insertion is indicated using the JDn signals or MICDET clamp interrupts (assuming that the MICD_CLAMPn_MODE field has been correctly set for the applicable JDn signal configuration); the associated status bits can be read directly, or associated signals can be unmasked as inputs to the interrupt controller.
 - After jack insertion has been detected, the applicable headset functions (headphone, microphone, accessory detect) may then be enabled.
 - If the headset function requires MICBIAS to be enabled on the respective jack, the associated MICDET clamp should be disabled (MICD_CLAMPn_OVD = 0) immediately before enabling the MICBIAS (or immediately before enabling MICDn_ENA). Note that, if MICBIAS is not required on the respective jack, the clamp should not be disabled (e.g., for headphone-only operation).
- Jack removal is also indicated using the JDn signals or MICDET clamp interrupts. The associated status bits can be read directly, or can be unmasked as inputs to the interrupt controller. The MICDET clamp ensures fast and automatic silencing of the jack outputs.
 - Under typical use cases, the respective MICBIAS generator and headset audio paths should all be disabled following jack removal.
 - After jack removal has been detected, the MICDET clamp override bit (MICD_CLAMP*n*_OVD) should be set, to make the system ready for a jack insertion.

The recommended control sequence for jack detect and MICDET clamp is summarized in Table 4-86.

Event	Device Actions	Recommended User Actions
Initial condition	Clamp enabled by default	Configure MICD_CLAMPn_MODE
Jack insertion	Jack insertion signaled via IRQ	For headphone-only operation:
		Enable output signal paths
		For other use cases:
		Disable clamp, MICD_CLAMP n _OVD = 0
		Enable MICBIAS and MICDET
		Enable I/O signal paths
Jack removal	Jack removal signaled via IRQ,	Disable MICBIAS and MICDET
	Clamp enabled automatically	Disable I/O signal paths
		Enable clamp MICD_CLAMP <i>n</i> _OVD = 1

Table 4-86. Control Sequence for Jack Detect and MICDET Clamp

4.12.3 Microphone Detect

The CS42L92 microphone detection circuit measures the impedance of an external load connected to one of the MICDET pins. This feature can be used to detect the presence of a microphone, and the status of the associated hook switch. It can also be used to detect push-button status or the connection of other external accessories.

4.12.3.1 Microphone Detect Control

The microphone detection circuit measures the external impedance connected to the MICDET*n* pins. In the discrete measurement mode, the function reports whether the measured impedance lies within one of eight predefined levels. In the ADC measurement mode, a more specific result is provided in the form of a 7-bit ADC output.

Note that microphone/accessory detection is also possible via the HPDETn and JACKDETn pins, subject to some additional constraints. If the measurement (sense) pin is connected to MICVDD or MICBIASnx (typically via a 2.2-k Ω bias resistor), MICDETn must always be used.

The microphone detection circuit typically uses one of the MICBIAS outputs as a reference. The CS42L92 automatically enables the appropriate MICBIAS output when required in order to perform the detection function; this allows the detection function to be supported in low-power standby operating conditions.

The MICVDD power domain must be enabled when using the microphone detection function. This power domain is provided using an internal charge pump (CP2) and LDO regulator (LDO2). See Section 4.19 for details of these circuits. The internal 32-kHz clock must be present and enabled when using the microphone detection function; see Section 4.16 for details.

The CS42L92 provides two microphone detection circuits, which are independently configurable. Detection can be enabled on both circuits simultaneously.

To configure the microphone detection circuit, the applicable pin connections for the intended measurement must be written to the $MICDn_SENSE_SEL$ and $MICDn_GND_SEL$ fields (where n identifies the respective detection circuit, 1 or 2). The respective detection circuit measures the external impedance between the pins selected by these two fields; the valid selections for each are defined in Table 4-87.

Note: There is no requirement for the SENSE and GND pin selections to be uniquely assigned between the microphone detect and headphone detect functions—the same pin may be used as a SENSE or GND connection for more than one of the detection functions. If multiple microphone/headphone detections are enabled, the respective measurements are automatically scheduled in isolation to each other. See Section 4.12.4 for details of the headphone detect function.

The microphone detection circuit uses MICVDD, or any one of the MICBIASxy sources, as a reference. The applicable source is configured using the MICDn_BIAS_SRC field. If HPDETn or JACKDETn is selected as the measurement pin, MICDn_BIAS_SRC should be set to 1111.

The microphone detection function is enabled by setting MICDn ENA.

When microphone detection is enabled, the CS42L92 performs a number of measurements in order to determine the external impedance between the selected pins. The measurement process is repeated at a cyclic rate controlled by MICD*n*_RATE. The MICD*n*_RATE field selects the delay between completion of one measurement and the start of the next. When the microphone detection result has settled, the CS42L92 indicates valid data by setting MICD*n*_VALID.

The discrete measurement mode and ADC measurement mode provide different capabilities for microphone detection. The control requirements and the measurement indication mechanisms differ according to the selected mode, as follows:

- In the discrete measurement mode (MICD*n_*ADC_MODE = 0), the measured impedance is only deemed valid after more than one successive measurement has produced the same result. The MICD*n_*DBTIME field provides control of the debounce period; this can be either two measurements or four measurements.
 - When the microphone detection result has settled (i.e., after the applicable debounce period), the CS42L92 indicates valid data by setting the $MICDn_VALID$ bit. The measured impedance is indicated using the $MICDn_LVL$ and $MICDn_STS$ bits, as described in Table 4-87.
 - The MICDn_VALID bit, when set, remains asserted for as long as the microphone detection function is enabled (i.e., while MICDn_ENA = 1). If the detected impedance changes, the MICDn_LVL and MICDn_STS fields change, but the MICDn_VALID bit remains set, indicating valid data at all times.
 - The detection circuit supports up to eight impedance levels (including the no-accessory-detected level), enabling detection of a typical microphone and up to six push buttons. Each measurement level can be enabled or disabled independently; this provides flexibility according to the required thresholds, and offers a faster measurement time in some applications. The MICD n_L V L_S EL field is described in Section 4.12.3.3. The default configuration supports a maximum of four push buttons, in accordance with the Android wired headset specification.
 - Note that, for typical headset detection, the choice of external resistance values must take into account the impedance of the microphone—the detected impedance corresponds to the combined parallel resistance of the microphone and any asserted push button. Examples of suitable external components are described in Section 5.1.7.
- In the ADC measurement mode (MICDn_ADC_MODE = 1), the detection function generates two output results, contained within the MICDn_ADCVAL and MICDn_ADCVAL_DIFF fields. These fields contain the most recent measurement value (MICDn_ADCVAL) and the measurement difference value (MICDn_ADCVAL_DIFF). The difference value indicates the difference between the latest measurement and the previous measurement; this can be used to determine whether the measurement is stable and reliable.
 - In ADC measurement mode, the detection function must be disabled before the measurement can be read. When the CS42L92 indicates valid data (MICD $n_VALID = 1$), the detection must be disabled by setting MICD $n_ENA = 0$. Note that MICD n_ADCVAL and MICD n_ADCVAL_DIFF do not follow a linear coding. The appropriate test condition for accepting the measurement value (or for rescheduling the measurement) varies depending on the application requirements, and depending on the expected impedance value.

The microphone detection functions are inputs to the interrupt control circuit and can be used to trigger an interrupt event every time an accessory insertion, removal, or impedance change is detected; see Section 4.15.

The fields associated with microphone detection (or other accessories) are described in Table 4-87. The external circuit configuration is shown in Fig. 4-61.

Table 4-87. Microphone Detect Control

Register Address	Bit	Label	Default	Description		
R674 (0x02A2)	15	MICD1_ADC_	0	Mic Detect 1 Measurement Mode		
Mic_Detect_1_		MODE		0 = Discrete Mode		
Control_0				1 = ADC Mode		
	7:4	MICD1_SENSE_	0001	Mic Detect 1 Sense Select		
		SEL[3:0]		0000 = MICDET1	0100 = HPDET1	1000 = MICDET5
				0001 = MICDET2	0101 = HPDET2	1001 = JACKDET3
				0010 = MICDET3	0110 = JACKDET1	All other codes are
				0011 = MICDET4	0111 = JACKDET2	reserved
	2:0	MICD1_GND_	000	Mic Detect 1 Ground Select		
		SEL[2:0]		000 = MICDET1/HPOUTFE	31 011 = MIC	DET4/HPOUTFB4
				001 = MICDET2/HPOUTFE	32 100 = MIC	DET5/HPOUTFB5
				010 = MICDET3/HPOUTFE	All other o	odes are reserved
R675 (0x02A3) Mic Detect 1	15:12	MICD1_BIAS_ STARTTIME[3:0]	0001	Mic Detect 1 Bias Start-up MICBIASnx reference and	ime between enabling the unction.)	
Control 1				0000 = 0 ms (continuous)		1010 = 128 ms
_				0001 = 0.25 ms	0110 = 8 ms	1011 = 256 ms
				0010 = 0.5 ms	0111 = 16 ms	1100 = 512 ms
				0011 = 1 ms	1000 = 32 ms	1101 = 24 ms
				0100 = 2 ms	1001 = 64 ms	1110 to 1111 = 512 ms
	11:8 MICD1_ 0001 Mic Detect 1 Rate (Selects the delay between successive MICDET measure					
		RATE[3:0]		0000 = 0 ms (continuous)	0101 = 4 ms	1010 = 128 ms
				0001 = 0.25 ms	0110 = 8 ms	1011 = 256 ms
				0010 = 0.5 ms	0111 = 16 ms	1100 = 512 ms
				0011 = 1 ms	1000 = 32 ms	1101 = 24 ms
				0100 = 2 ms	1001 = 64 ms	1110 to 1111 = 512 ms
	7:4	MICD1_BIAS_	0000	Mic Detect 1 Reference Select		
		SRC[3:0]		0000 = MICBIAS1A	0011 = MICBIAS1D	1111 = MICVDD
				0001 = MICBIAS1B	0100 = MICBIAS2A	All other codes are
				0010 = MICBIAS1C	0101 = MICBIAS2B	reserved
	1	MICD1_DBTIME	1	Mic Detect 1 Debounce		
				0 = 2 measurements		
				1 = 4 measurements		
		Only valid when MICD1_ADC_MODE = 0.				
	0	MICD1_ENA	0	Mic Detect 1 Enable		
				0 = Disabled		
				1 = Enabled		
R676 (0x02A4)	7:0	MICD1_LVL_	1001_ 1111	Mic Detect 1 Level Select (er [7] = Enable 1–30 kΩ detection		tion in specific impedance ranges)
Mic_Detect_1_		SEL[7:0]	used			
Control_2				[6] = Not used	[2] = Enab	ble 360–680 Ω detection
				[5] = Not used	[1] = Enab	ble 210–290 Ω detection
				[4] = Not used	[0] = Enab	ble 110–180 Ω detection
				Only valid when MICD1_Al	DC_MODE = 0.	

Table 4-87. Microphone Detect Control (Cont.)

Register Address	Bit	Label	Default	Description		
R677 (0x02A5)	10:2	MICD1_LVL[8:0]	0_0000_	Mic Detect 1 Level (indicates the measured impedance)		
Mic_Detect_1_			0000	[8] = 1–30 kΩ	[3] = 360-6	680 Ω
Control_3				[7] = Not used	[2] = 210-2	290 Ω
				[6] = Not used	[1] = 110-1	180 Ω
				[5] = Not used	[0] = 0-70	Ω
				[4] = Not used		
				Accessory detection is assured within the specified impedance limits. Note that other impedance conditions, including loads >30 k Ω , may also be indicated using these bits. Only valid when MICD1_ADC_MODE = 0.		
	1	MICD1_VALID	0	Mic Detect 1 Data Valid		
				0 = Not Valid		
				1 = Valid		
	MICD1_STS	0	Mic Detect 1 Status			
0 = Mic/accessory not detected						
				1 = Mic/accessory detected		
				ce up to 30 kΩ.		
				Only valid when MICD1_ADC_MODE = 0.		
R683 (0x02AB) 15:8 MICD1 0x00 Mic Detect 1 ADC Level (Difference)						
Mic_Detect_1_ Control_4		ADCVAL_ DIFF[7:0]		Only valid when MICD1_ADC_MODE = 1.		
	6:0					
		ADCVAL[6:0]		Only valid when MICD1_ADC_MODE = 1.		
R690 (0x02B2)	15	MICD2_ADC_	0	inii Dalaat I maaaan amana maaa		
Mic_Detect_2_ MODE 0 = Discrete Mode						
Control_0				1 = ADC Mode		
	7:4		0001	Mic Detect 2 Sense Select		
		SEL[3:0]		0000 = MICDET1	0100 = HPDET1	1000 = MICDET5
				0001 = MICDET2	0101 = HPDET2	1001 = JACKDET3
				0010 = MICDET3	0110 = JACKDET1	All other codes are
				0011 = MICDET4	0111 = JACKDET2	reserved
	2:0	MICD2_GND_ SEL[2:0]	000	Mic Detect 2 Ground Select		
				000 = MICDET1/HPOUTFE		DET4/HPOUTFB4
				001 = MICDET2/HPOUTFE		DET5/HPOUTFB5
				010 = MICDET3/HPOUTFE	All other co	odes are reserved

Table 4-87. Microphone Detect Control (Cont.)

Register Address	Bit	Label	Default		Description	
R691 (0x02B3)	15:12	MICD2_BIAS_	0001	Mic Detect 2 Bias Start-up	Delay (Selects the delay tim	e between enabling the
Mic Detect 2		STARTTIME[3:0]			performing the MICDET fun	
Control_1				0000 = 0 ms (continuous)	0101 = 4 ms	1010 = 128 ms
				0001 = 0.25 ms	0110 = 8 ms	1011 = 256 ms
				0010 = 0.5 ms	0111 = 16 ms	1100 = 512 ms
				0011 = 1 ms	1000 = 32 ms	1101 = 24 ms
				0100 = 2 ms	1001 = 64 ms	1110 to 1111 = 512 ms
	11:8	MICD2_	0001	Mic Detect 2 Rate (Selects	the delay between success	ive MICDET measurements.)
		RATE[3:0]		0000 = 0 ms (continuous)	0101 = 4 ms	1010 = 128 ms
				0001 = 0.25 ms	0110 = 8 ms	1011 = 256 ms
				0010 = 0.5 ms	0111 = 16 ms	1100 = 512 ms
				0011 = 1 ms	1000 = 32 ms	1101 = 24 ms
				0100 = 2 ms	1001 = 64 ms	1110 to 1111 = 512 ms
	7:4	MICD2_BIAS_	0000	Mic Detect 2 Reference Sel	lect	
		SRC[3:0]		0000 = MICBIAS1A	0011 = MICBIAS1D	1111 = MICVDD
				0001 = MICBIAS1B	0100 = MICBIAS2A	All other codes are
				0010 = MICBIAS1C	0101 = MICBIAS2B	reserved
	1	MICD2_DBTIME	1	Mic Detect 2 Debounce		
				0 = 2 measurements		
				1 = 4 measurements		
				Only valid when MICD2_A	DC_MODE = 0.	
	0	MICD2_ENA	0	Mic Detect 2 Enable		
				0 = Disabled		
				1 = Enabled		
R692 (0x02B4)	7:0	MICD2_LVL_	1001_	Mic Detect 2 Level Select (en	nables mic/accessory detection	n in specific impedance ranges)
Mic_Detect_2_		SEL[7:0]	1111	[7] = Enable 1–30 k Ω detec	ction [3] = Not use	ed
Control_2				[6] = Not used	[2] = Enable	$360–680~\Omega$ detection
				[5] = Not used	[1] = Enable	210–290 Ω detection
				[4] = Not used	[0] = Enable	110–180 Ω detection
				Only valid when MICD2_AD	DC_MODE = 0.	
R693 (0x02B5)	10:2	MICD2_LVL[8:0]	0_0000_	Mic Detect 2 Level (indicate	es the measured impedance	*)
Mic_Detect_2_			0000	[8] = 1–30 k Ω	[3] = 360–68	30 Ω
Control_3				[7] = Not used	[2] = 210–29	90 Ω
				[6] = Not used	[1] = 110–18	30 Ω
				[5] = Not used	$[0] = 0-70 \ \Omega$	2
				[4] = Not used		
						edance limits. Note that other
					uding loads >30 k Ω , may als	so be indicated using these
	4	MICDO VALID		bits. Only valid when MICD	DZ_ADC_MODE = 0.	
	1	MICD2_VALID	0	Mic Detect 2 Data Valid		
				0 = Not Valid		
	0	MICDO CTC		1 = Valid		
	0	MICD2_STS	0	Mic Detect 2 Status	eted	
			1	0 = Mic/accessory not dete1 = Mic/accessory detected		
			1	_	assured for load impedance	oun to 20 kO
			1	Only valid when MICD2_AL		5 up 10 30 ksz.
R699 (0x02BB)	15.0	MICD2	0x00			
	13:8	ADCVAL	UXUU	Mic Detect 2 ADC Level (D		
Mic_Detect_2_ Control_4		DIFF[7:0]	1	Only valid when MICD2_AL	DO_IVIODE - 1.	
5311131_1	6:0	MICD2_	0x00	Mic Detect 2 ADC Level		
		ADCVAL[6:0]		Only valid when MICD2_AD	DC_MODE = 1.	
		l	1			

The external connections for the microphone detect circuit are shown in Fig. 4-61. In typical applications, it can be used to detect a microphone or button press.

Note that, when using the microphone detect circuit, it is recommended to use the IN1ALx, IN1BLx, or IN1BR analog microphone input paths to ensure best immunity to electrical transients arising from the external accessory.

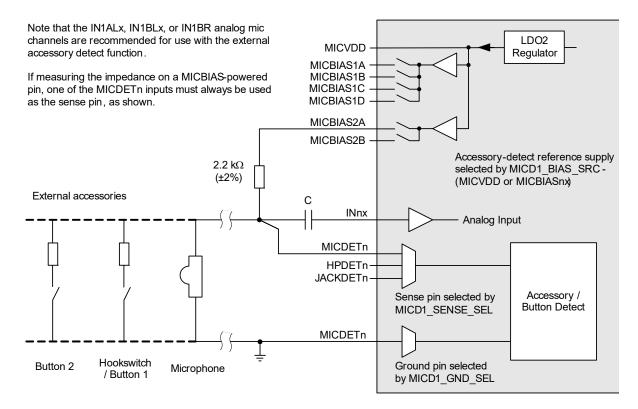


Figure 4-61. Microphone- and Accessory-Detect Interface

4.12.3.2 MICBIAS Reference Control

The voltage reference for the microphone detection is configured using the MICD*n_BIAS_SRC* field, as described in Table 4-87. The microphone detection function automatically enables the applicable reference when required for impedance measurement.

If the selected reference (MICBIASxy) is not already enabled, the microphone detect circuit automatically enables the respective MICBIAS output for short periods of time only, every time the impedance measurement is scheduled. To allow time for the associated circuitry to stabilize, a time delay is applied before the measurement is performed; this is configured using MICDn_BIAS_STARTTIME, as described in Table 4-87. If the measurement rate setting (MICDn_RATE) is greater than 0x0, the delay (MICDn_BIAS_STARTTIME) should be set to 0.25 ms or more.

Note: The microphone detection automatically enables the applicable MICBIAS *xy* output switch, every time the impedance measurement is scheduled. The respective MICBIAS generator (MICBIAS1 or MICBIAS2) is not controlled automatically—the applicable generators must be enabled using the MICB1_ENA and MICB2_ENA bits, as described in Table 4-124.

The timing of the microphone detect function is shown in Fig. 4-62. Two different cases are shown, according to whether MICBIASxy is enabled periodically by the impedance measurement function, or is enabled at all times.

If the selected reference (MICBIASxy) is not enabled continuously, the respective MICBIASxy discharge bits should be cleared. The MICBIAS control registers are described in Section 4.19.

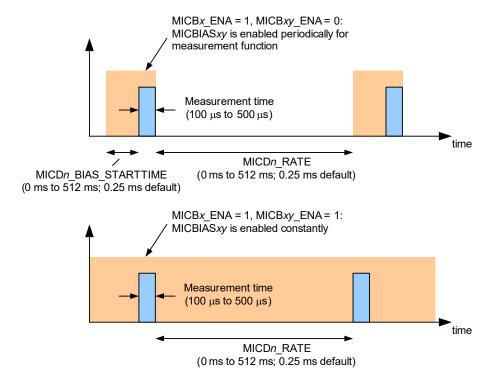


Figure 4-62. Microphone- and Accessory-Detect Timing

4.12.3.3 Measurement Range Control

When the discrete measurement mode is selected (MICDn_ADC_MODE = 0), the MICDn_LVL_SEL[7:0] bits allow each impedance measurement level to be enabled or disabled independently. This allows the function to be tailored to the particular application requirements.

If one or more bits within MICD*n*_LVL_SEL is cleared, the corresponding impedance level is disabled. Any measured impedance which lies in a disabled level is reported as the next lowest, enabled level.

For example, the MICD $n_LVL_SEL[2]$ bit enables the detection of a 360–680 Ω impedance. If MICD $n_LVL_SEL[2]$ = 0, an external impedance in this range is indicated in the next lowest detection range (210–290 Ω); this would be reported in the MICD n_LVL field as MICD $n_LVL[2]$ = 1.

With default register configuration, and all measurement levels enabled, the CS42L92 can detect the presence of a typical microphone and up to four push buttons. It is possible to configure the detection circuit for up to eight push buttons, by adjusting the impedance detection thresholds. However, adjustment of the detection thresholds is outside the scope of this data sheet—please contact your local Cirrus Logic representative for further information, if required.

The measurement time varies between 100–500 μ s, depending on the impedance of the external load, and depending on how many impedance measurement levels are enabled. A high impedance is measured faster than a low impedance.

4.12.3.4 External Components

The external connections for the microphone detect circuit are shown in Fig. 4-61. Examples of suitable external components are described in Section 5.1.7.

The accuracy of the microphone detect function is assured whenever the connected load is within the applicable limits specified in Table 3-11. It is required that a 2.2-k Ω (2%) resistor must also be connected between the measurement (SENSE) pin and the selected MICBIAS reference—different resistor values lead to inaccuracy in the impedance measurement.

Note that, for typical headset detection, the choice of external resistance values must take into account the impedance of the microphone—the detected impedance corresponds to the combined parallel resistance of the microphone and any asserted push button.

4.12.4 Headphone Detect

The CS42L92 headphone detection circuit measures the impedance of an external headphone load. This feature can be used to set different gain levels or to apply other configuration settings according to the type of load connected. Separate monitor pins are provided for headphone detection on the left and right channels of HPOUT*n*.

4.12.4.1 Headphone Detection Control

The headphone detection circuit measures the external impedance connected to the HPDET*n* pins. In typical usage, this provides measurement of the load impedance on one or more of the headphone outputs (HPOUT1–4).

Note that impedance measurement is also possible via the MICDET*n* and JACKDET*n* pins, subject to some additional constraints. If the measurement (sense) pin is connected to one of the headphone outputs, then HPDET1, HPDET2, or JACKDET1 must always be used. The valid measurement range and the measurement accuracy are reduced, if using the MICDET*n* or JACKDET*n* pins.

To configure the headphone detection circuit, the applicable pin connections for the intended measurement must be written to the HPD_SENSE_SEL and HPD_GND_SEL fields. The headphone detection circuit measures the external impedance between the pins selected by these two fields; the valid selections for each are defined in Table 4-90.

When measuring the load impedance on one the HPOUT*n* output paths, the HPD_GND_SEL selection should be the same MICDET*n*/HPOUTFB*n* pin as the ground feedback pin for the applicable headphone output. See Section 4.11.8 to configure the ground feedback pin for the HPOUT*n* outputs.

The HPD_FRC_SEL field must also be configured, to select where the measurement current is applied. As a general rule, this should be the same as the HPD_SENSE_SEL pin. Other configurations can be used if required—for example, to improve measurement accuracy in cases where the SENSE input path includes significant unwanted resistance.

Note: There is no requirement for the SENSE and GND pin selections to be uniquely assigned between the microphone detect and headphone detect functions—the same pin may be used as a SENSE or GND connection for more than one of the detection functions. If multiple microphone/headphone detections are enabled, the respective measurements are automatically scheduled in isolation to each other. See Section 4.12.3 for details of the microphone detect function.

Headphone detection is commanded by writing 1 to HPD POLL.

The impedance measurement range is configured using HPD_IMPEDANCE_RANGE. This field should be set in accordance with the expected load impedance. Note that a number of separate measurements are typically required to determine the load impedance; the recommended control requirements are described in Section 4.12.4.2.

Note: Setting HPD_IMPEDANCE_RANGE is not required for detection on the MICDET*n* or JACKDET*n* pins. The impedance measurement range, and measurement accuracy, in these cases are different to the HPDET1 and HPDET2 measurements.

If headphone detection is performed using a measurement pin connected to one of the headphone outputs, the respective output driver must be disabled before the measurement is commanded. The required settings are shown in Table 4-88.

Description	Requirement
HPOUT1L Impedance measurement	HPD_OVD_ENA = 1, HPD_OUT_SEL = 000, HP1L_ENA = 0
HPOUT1R Impedance measurement	HPD_OVD_ENA = 1, HPD_OUT_SEL = 001, HP1R_ENA = 0
HPOUT2L Impedance measurement	HPD_OVD_ENA = 1, HPD_OUT_SEL = 010, HP2L_ENA = 0
HPOUT2R Impedance measurement	HPD_OVD_ENA = 1, HPD_OUT_SEL = 011, HP2R_ENA = 0
HPOUT3L or HPOUT4L Impedance measurement	HPD_OVD_ENA = 1, HPD_OUT_SEL = 100, HP3L_ENA = 0
HPOUT3R or HPOUT4R Impedance measurement	HPD_OVD_ENA = 1, HPD_OUT_SEL = 101, HP3R_ENA = 0

Table 4-88. Output Configuration for Headphone Detect

Note: The applicable headphone outputs configuration must be maintained until after the headphone detection has completed. See Table 4-71 for details of the HP*nx* ENA bits.

If headphone detection is performed using a measurement pin that is not connected to one of the headphone outputs, the HPD_OVD_ENA bit should be cleared.

If headphone detection is performed using a measurement pin that is also connected to one of the MICBIAS outputs, the respective MICBIAS output must be disabled and floating (MICBnx ENA = 0, MICBnx DISCH = 0).

When headphone detection is commanded, the CS42L92 uses an adjustable current source to determine the connected impedance. A sweep of measurement currents is applied. The rate of this sweep can be adjusted using HPD_CLK_DIV and HPD_RATE.

4.12.4.2 Measurement Output

The headphone detection process typically comprises a number of separate measurements (for different impedance ranges). Completion of each measurement is indicated by HPD_DONE. When this bit is set, the measurement result can be read from the HPD_DACVAL field, and decoded as described in Eq. 4-3.

$$\text{Impedance } (\Omega) = \frac{\text{C}_0 + (\text{C}_1 \times \textit{Offset})}{\left[\frac{(\text{HPD_DACVAL} + 0.5)}{\text{C}_2}\right] - \left[\frac{1}{\text{C}_3 (1 + (\text{C}_4 \times \textit{Gradient}))}\right]} - \text{C}_5$$

Equation 4-3. Headphone Impedance Calculation

The associated parameters for decoding the measurement result are defined Table 4-89. The applicable values are dependent on the HPD_IMPEDANCE_RANGE setting in each case. The *Offset* and *Gradient* values are derived from register fields that are factory-calibrated for each device.

Parameter	HPD_IMPEDANCE_ RANGE = 00	HPD_IMPEDANCE_ RANGE = 01	HPD_IMPEDANCE_ RANGE = 10	HPD_IMPEDANCE_ RANGE = 11
C ₀	1.007	1.007	9.744	100.684
C ₁	-0.0072	-0.0072	-0.0795	-0.9494
C ₂	4005	7975	7300	7300
C ₃	69.3	69.6	62.9	63.2
C ₄	0.0055	0.0055	0.0055	0.0055
C ₅	0.6	0.6	0.6	0.6
Offset	HP_OFFSET_00	HP_OFFSET_01	HP_OFFSET_10	HP_OFFSET_11
Gradient	HP GRADIENT 0X	HP GRADIENT 0X	HP GRADIENT 1X	HP GRADIENT 1X

Table 4-89. Headphone Measurement Decode Parameters

Note that, to achieve the specified measurement accuracy, the above equation must be calculated to an accuracy of at least 5 decimal places throughout.

The impedance measurement result is valid if 169 ≤ HPD_DACVAL ≤ 1019. (In case of any contradiction with the HPD_IMPEDANCE_RANGE description, the HPD_DACVAL validity takes precedence.)

If the external impedance is entirely unknown (i.e., it could lie in any of the HPD_IMPEDANCE_RANGE regions), it is recommended to test initially with HPD_IMPEDANCE_RANGE = 00. If the resultant HPD_DACVAL is < 169, the impedance is higher than the selected measurement range, so the test should be scheduled again, after incrementing HPD_IMPEDANCE_RANGE.

Each measurement is triggered by writing 1 to HPD_POLL. Completion of each measurement is indicated by HPD_DONE. Note that, after HPD_DONE bit has been asserted, it remains asserted until the next measurement has been commanded.

Note: A simpler, but less accurate, procedure for headphone impedance measurement is also supported, using the HPD_LVL field. When the HPD_DONE bit is set, indicating completion of a measurement, the impedance can be read directly from the HPD_LVL field, provided that the value lies within the range of the applicable HPD_IMPEDANCE RANGE setting.

Note that, for detection using the MICDET*n* or JACKDET*n* pins, the HPD_LVL field is the only supported measurement output option. The HPD_IMPEDANCE_RANGE field is not valid for detection on the MICDET*n* or JACKDET*n* pins. See Table 4-90 for further description of the HPD_LVL field.

The headphone detection function is an input to the interrupt control circuit and can be used to trigger an interrupt event on completion of the headphone detection; see Section 4.15.

The fields associated with headphone detection are described in Table 4-90. The external circuit configuration is shown Fig. 4-63.

Note that 32-bit register addressing is used from R12888 (0x3000) upwards; 16-bit format is used otherwise. The registers noted in Table 4-90 contain a mixture of 16- and 32-bit register addresses.

Table 4-90. Headphone Detect Control

Register Address	Bit	Label	Default	Des	scription
R665 (0x0299)	15	HPD_OVD_ENA	0	Headphone Detect Output Overri	ide Enable
Headphone_ Detect_0				This bit, when set, causes the HPD_OUT_SEL headphone output channel to be automatically configured for headphone detection each time headphone detection is scheduled. Note that the respective output driver must also be disabled (HPnx_ENA = 0) for the duration of a headphone output impedance measurement. 0 = Disabled 1 = Enabled	
	14:12	HPD_OUT_SEL[2:0]	000	Headphone Detect Output Chann	nel Select
				000 = HPOUT1L	100 = HPOUT3L
				001 = HPOUT1R	101 = HPOUT3R
				010 = HPOUT2L	All other codes are reserved
				011 = HPOUT2R	
	11:8	HPD_FRC_SEL[3:0]	0000	Headphone Detect Measuremen	t Current Pin Select
				0000 = MICDET1	0110 = JACKDET1
				0001 = MICDET2	0111 = JACKDET2
				0010 = MICDET3	1000 = MICDET5
				0011 = MICDET4	1001 = JACKDET3
				0100 = HPDET1	All other codes are reserved
				0101 = HPDET2	
	7:4	HPD_SENSE_SEL[3:0]	0000	Headphone Detect Sense Pin Se	elect
				0000 = MICDET1	0110 = JACKDET1
				0001 = MICDET2	0111 = JACKDET2
				0010 = MICDET3	1000 = MICDET5
				0011 = MICDET4	1001 = JACKDET3
				0100 = HPDET1	All other codes are reserved
				0101 = HPDET2	
	2:0	HPD_GND_SEL[2:0]	000	Headphone Detect Ground Pin S	
				000 = MICDET1/HPOUTFB1	011 = MICDET4/HPOUTFB4
				001 = MICDET2/HPOUTFB2	100 = MICDET5/HPOUTFB5
				010 = MICDET3/HPOUTFB3	All other codes are reserved

Table 4-90. Headphone Detect Control (Cont.)

Register Address	Bit	Label	Default	Description
R667 (0x029B)	10:9	HPD_IMPEDANCE_	00	Headphone Detect Range
Headphone_		RANGE[1:0]		$00 = 4 \Omega$ to 30Ω
Detect_1				$01 = 8 \Omega$ to 100Ω
				$10 = 100 \Omega$ to $1 \text{ k}\Omega$
				11 = 1 kΩ to 10 kΩ
				Only valid when HPD_SENSE_SEL = 0100 or 0101.
	4:3	HPD_CLK_DIV[1:0]	00	Headphone Detect Clock Rate (Selects the clocking rate of the headphone detect adjustable current source. Decreasing the clock rate gives a slower measurement time.)
				00 = 32 kHz
				01 = 16 kHz
				10 = 8 kHz
				11 = 4 kHz
	2:1	HPD_RATE[1:0]	00	Headphone Detect Sweep Rate
				(Selects the step size between successive measurements. Increasing the step size gives a faster measurement time.)
				00 = 1
				01 = 2
				10 = 4
				11 = Reserved
	0	HPD_POLL	0	Headphone Detect Enable
				Write 1 to start HP Detect function
R668 (0x029C)	15	HPD_DONE	0	Headphone Detect Status
Headphone_				0 = HP Detect not complete
Detect_2				1 = HP Detect done
	14:0	HPD_LVL[14:0]	0x0000	Headphone Detect Level
				LSB = 0.5Ω
				$8 = 4 \Omega \text{ or less}$
				$9 = 4.5 \Omega$
				10 = 5 Ω
				$11 = 5.5 \Omega$
				$20,000 = 10 \text{ k}\Omega$ or more
				For HPDET1 or HPDET2 measurement (HPD_SENSE_SEL = 0100 or 0101), HPD_LVL is valid from 4 Ω to10 k Ω , within the range selected by HPD_IMPEDANCE_RANGE.
				For other measurements, HPD_LVL is valid from 400 Ω to 6 k Ω only.
				If HPD_LVL reports a value outside the valid range, the range should be adjusted and the measurement repeated. A 0-Ω result may be reported if the measurement is less than the minimum value for the selected range.
R669 (0x029D)	9:0	HPD DACVAL[9:0]	0x000	Headphone Detect Level (Coded as integer, LSB = 1).
Headphone_ Detect_3	0.0	S_5/10 W.E[0.0]	0,000	See separate description for full decode information.

Register Address	Bit	Label	Default	Description
R131076	31:24	HP_OFFSET_11[7:0]	See	Headphone Detect Calibration field.
(0x20004)			Footnote 1	Signed number, LSB = 0.25.
OTP_HPDET_Cal_				Range is –31.75 to +31.75.
1				Default value is factory-set per device.
	23:16	HP_OFFSET_10[7:0]	See	Headphone Detect Calibration field.
			Footnote 1	Signed number, LSB = 0.25.
				Range is –31.75 to +31.75.
				Default value is factory-set per device.
	15:8	HP_OFFSET_01[7:0]	See	Headphone Detect Calibration field.
			Footnote 1	Signed number, LSB = 0.25.
				Range is –31.75 to +31.75.
				Default value is factory-set per device.
	7:0	HP_OFFSET_00[7:0]	See	Headphone Detect Calibration field.
			Footnote 1	Signed number, LSB = 0.25.
				Range is –31.75 to +31.75.
				Default value is factory-set per device.
R131078	15:8	HP_GRADIENT_1X[7:0]	See	Headphone Detect Calibration field.
(0x20006)			Footnote 1	Signed number, LSB = 0.25.
OTP_HPDET_Cal_				Range is –31.75 to +31.75.
2				Default value is factory-set per device.
	7:0	HP_GRADIENT_0X[7:0]	See	Headphone Detect Calibration field.
			Footnote 1	Signed number, LSB = 0.25.
				Range is –31.75 to +31.75.
				Default value is factory-set per device.

^{1.} Default value is factory-set per device.

The external connections for the headphone detect circuit are shown in Fig. 4-63.

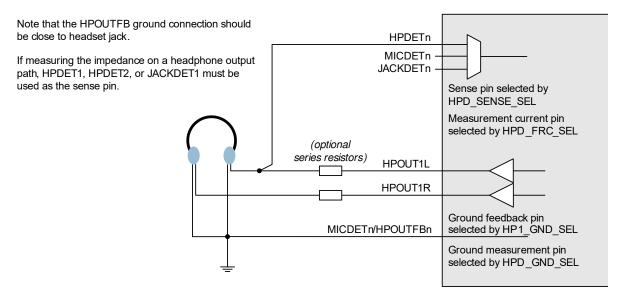


Figure 4-63. Headphone Detect Interface

Note that, where external resistors are connected in series with the headphone load, as shown, it is recommended that the HPDET*n* connection is to the headphone side of the resistors. If the HPDET*n* connection is made to the CS42L92 end of these resistors, this leads to a corresponding offset in the measured impedance.

Under default conditions, the measurement time varies between 17–244 ms, depending on the impedance of the external load. A high impedance is measured faster than a low impedance.

4.13 Low Power Sleep Configuration

The CS42L92 supports a low-power Sleep Mode, in which most functions are disabled and power consumption is minimized. The CS42L92 enters Sleep Mode when the DCVDD supply is removed. Note that the AVDD and DBVDD supplies must be present throughout the Sleep Mode duration.

In Sleep Mode, the CS42L92 can generate an interrupt event in response to a change in voltage on the JACKDET1, JACKDET2, or JACKDET3 pins. This enables a jack insertion event (or other digital logic transition) to be used to trigger a wake-up of the CS42L92.

In Sleep Mode, the CS42L92 can provide an unregulated voltage output on the MICBIAS1A pin. This can be used to power an external microphone during Sleep Mode—see Section 4.19.

The system clocks (SYSCLK, ASYNCCLK, DSPCLK) should be disabled before selecting Sleep Mode. The external clock input (MCLKn) may also be stopped, if desired.

The functionality and control fields associated with Sleep Mode are supported via an internal always-on supply domain. The always-on control registers are listed in Table 4-91. These fields are maintained (i.e., not reset) in Sleep Mode.

Note that the control interface is not supported in Sleep Mode; read/write access to the always-on registers is not possible. Access to the register map using any of the control interfaces should be ceased before selecting Sleep Mode.

Register Address	Label	Reference
R710 (0x02C6)	MICD_CLAMP2_OVD	See Section 4.12
	MICD_CLAMP2_MODE[2:0]	
	MICD_CLAMP1_OVD	
	MICD_CLAMP1_MODE[3:0]	
R723 (0x02D3)	MICB1A_AOD_ENA	See Section 4.19
	JD3_ENA	See Section 4.12
	JD2_ENA	
	JD1_ENA	
R6150 (0x1806)	MICD_CLAMP2_FALL_EINT1	See Section 4.15
	MICD_CLAMP2_RISE_EINT1	
	JD3_FALL_EINT1	
	JD3_RISE_EINT1	
	MICD_CLAMP1_FALL_EINT1	
	MICD_CLAMP1_RISE_EINT1	
	JD2_FALL_EINT1	
	JD2_RISE_EINT1	
	JD1_FALL_EINT1	
	JD1_RISE_EINT1	
R6214 (0x1846)	IM_MICD_CLAMP2_FALL_EINT1	
	IM_MICD_CLAMP2_RISE_EINT1	
	IM_JD3_FALL_EINT1	
	IM_JD3_RISE_EINT1	
	IM_MICD_CLAMP1_FALL_EINT1	
	IM_MICD_CLAMP1_RISE_EINT1	
	IM_JD2_FALL_EINT1	
	IM_JD2_RISE_EINT1	
	IM_JD1_FALL_EINT1	
	IM_JD1_RISE_EINT1	
R6784 (0x1A80)	IM_IRQ1	
	IRQ_POL	
	IRQ_OP_CFG	
R6864 (0x1AD0)	RESET_PU	See Section 4.23
	RESET_PD	

Table 4-91. Sleep Mode Always-On Control Registers

The always-on digital I/O pins are listed in Table 4-92. All other digital input pins have no effect in Sleep Mode; all other digital output pins are undriven (floating).

Note: The IN*nx*/DMIC*x* connections are isolated from the CS42L92 circuits in Sleep Mode. This enables a microphone that is connected to the CS42L92 to be used by another circuit while Sleep Mode is selected.

The IRQ output is normally deasserted in Sleep Mode. In Sleep Mode, the IRQ output can be asserted only in response to the JACKDET1, JACKDET2, or JACKDET3 inputs. If the IRQ output is asserted in Sleep Mode, it can be deasserted only after a wake-up transition.

Output drivers and bus keepers are disabled in Sleep Mode, for all pins not on the always-on domain; this means that the logic level on these pins is undefined. If a defined logic state is required during Sleep Mode (e.g., as input to another device), an external pull resistor may be required. If an external pull resistor is connected to a pin that also supports a bus keeper function, the pull resistance should be chosen carefully, taking into account the resistance of the bus keeper. See Section 4.14.1 for specific notes concerning the GPIO pins.

Pin Name	Description	Reference
ĪRQ	Interrupt Request output	See Section 4.15
JACKDET1	Jack Detect input 1	See Section 4.12
JACKDET2	Jack Detect input 2	
JACKDET3	Jack Detect input 3	
RESET	Digital Reset input (active low)	See Section 4.23

Table 4-92. Sleep Mode Always-On Digital Input/Output Pins

The always-on functionality includes the JD1, JD2, and JD3 control signals, which provide support for the low-power Sleep Mode. The MICDET clamp status signal is also supported; this is controlled by a selectable logic function, derived from JD1, JD2, or JD3.

The JD1, JD2, JD3, and MICDET clamp status signals are derived from the JACKDET1, JACKDET2, and JACKDET3 inputs, and can be used to trigger the interrupt controller.

- The JD1, JD2, and JD3 signals are derived from the jack detect function (see Section 4.12). These inputs can be used to trigger a response to a jack insertion or jack removal detection.
 - If these signals are enabled, the JD1, JD2, and JD3 signals indicate the status of the JACKDET1, JACKDET2, and JACKDET3 input pins respectively. See Table 4-84 for details of the associated control fields.
- The MICDET clamp status is controlled by the JD1, JD2, or JD3 signals (see Section 4.12). The configurable logic provides flexibility in selecting the appropriate conditions for activating the MICDET clamp. The clamp status can be used to trigger a response to a jack insertion or jack removal detection.
 - The MICDET clamp function is configured using MICD_CLAMP1_MODE and MICD_CLAMP2_MODE, as described in Table 4-85. Note that, due to control logic that is shared between the two clamps, the option to control both clamps in response to the JDn signals cannot be supported at the same time. It is assumed that a maximum of one clamp is active at any time—the MICDET clamp status provides an indication for the active clamp only.

The interrupt functionality associated with these signals is part of the always-on functionality, enabling the CS42L92 to provide indication of jack insertion or jack removal to the host processor in Sleep Mode; see Section 4.15.

Note that the JACKDET*n* inputs do not result in a wake-up transition directly; a wake-up transition only occurs by reapplication of DCVDD. In a typical application, the JACKDET*n* inputs provide a signal to the applications processor, via the IRQ output; if a wake-up transition is required, this is triggered by the applications processor enabling the DCVDD supply.

4.14 General-Purpose I/O

The CS42L92 supports up to 16 GPIO pins, which can be assigned to application-specific functions. The GPIOs enable interfacing and detection of external hardware and can provide logic outputs to other devices. The GPIO input functions can be used to generate an interrupt (IRQ) event.

There are 2 dedicated GPIO pins; the remaining 14 GPIOs are implemented as alternate functions to a pin-specific capability. The GPIO and interrupt circuits support the following functions:

- Pin-specific alternative functions for external interfaces (AIF, PDM)
- Logic input/button detect (GPIO input)
- · Logic 1 and Logic 0 output (GPIO output)
- Interrupt (IRQ) status output
- · Clock output
- Frequency-locked loop (FLL) status output
- FLL clock output
- IEC-60958-3-compatible S/PDIF output
- · Pulse-width modulation (PWM) signal output
- · ASRC lock status
- General-purpose timer status output
- Event logger FIFO buffer status output
- · Alarm generator status output
- · Auxiliary PDM interface

Logic input and output (GPIO) can be supported in two different ways on the CS42L92. The standard mechanism described in this section provides a comprehensive suite of options including input debounce, and selectable output drive configuration. The DSP GPIO circuit is tailored towards more advanced requirements typically demanded by DSP software features. The DSP GPIO functions are described in Section 4.5.4.

The CS42L92 also incorporates two general-purpose switches; these are analog switches, described in Section 4.14.18.

If the JTAG interface is enabled, the GPIO13–15 pins are configured as a JTAG interface that provides test and debug access to the CS42L92. The respective GPIO configuration registers have no effect in this case, and the GPIO pins cannot be assigned any other function. See Section 4.20 for details of the JTAG interface.

4.14.1 GPIO Control

For each GPIO, the selected function is determined by the GPn_FN field, where n identifies the GPIO pin (1–16). The pin direction, set by GPn_DIR , must be set according to function selected by GPn_FN .

If a pin is configured as a GPIO input ($GPn_DIR = 1$, $GPn_FN = 0x001$), the logic level at the pin can be read from the respective GPn_LVL bit. Note that GPn_LVL is not affected by the GPn_POL bit.

A debounce circuit can be enabled on any GPIO input, to avoid false event triggers. This is enabled on each pin by setting the respective GPn_DB bit. The debounce circuit uses the 32-kHz clock, which must be enabled whenever input debounce functions are required. The debounce time is configurable using the GP_DBTIME field. See Section 4.16 for further details of the CS42L92 clocking configuration.

Each GPIO pin is an input to the interrupt control circuit and can be used to trigger an interrupt event. An interrupt event is triggered on the rising and falling edges of the GPIO input. The associated interrupt bit is latched once set; it can be polled at any time or used to control the IRQ signal. See Section 4.15 for details of the interrupt event handling.

Integrated pull-up and pull-down resistors are provided on each GPIO pin; these can be configured independently using the GPn_PU and GPn_PD fields. When the pull-up and pull-down control bits are both enabled, the CS42L92 provides a bus keeper function on the respective pin. The bus keeper function holds the logic level unchanged whenever the pin is undriven (e.g., if the signal is tristated).

Note: The bus keeper is enabled by default on all GPIO pins and, if not actively driven, may result in either a Logic 0 or Logic 1 at the respective input on start-up. If an external pull resistor is connected (e.g., to control the logic level in Sleep Mode), the chosen resistance should take account of the bus keeper resistance (see Table 3-10). A strong pull resistor (e.g., 10 kΩ) is required, if a specific start-up condition is to be forced by the external pull component.

If a pin is configured as a GPIO output ($GPn_DIR = 0$, $GPn_FN = 0x001$), its level can be set to Logic 0 or Logic 1 using the GPn_LVL field. Note that the GPn_LVL bits are write-only when the respective GPIO pin is configured as an output.

If a pin is configured as an output ($GPn_DIR = 0$), the polarity can be inverted using the GPn_POL bit. When $GPn_POL = 1$, the selected output function is inverted. In the case of logic level output ($GPn_FN = 0x001$), the external output is the opposite logic level to GPn_LVL when $GPn_POL = 1$. Note that, if $GPn_FN = 0x000$ or 0x002, the GPn_POL bit has no effect on the respective GPIO pin.

A GPIO output can be either CMOS driven or open drain. This is selected on each pin using the respective GPn_OP_CFG bit. Note that if $GPn_FN = 0x000$ the GPn_OP_CFG bit has no effect on the respective GPIO pin—see Table 4-93 for further details. If $GPn_FN = 0x002$, the respective pin output is CMOS.

The register fields that control the GPIO pins are described in Table 4-93.

Table 4-93. GPIO Control

Register Address	Bit	Label	Default	Description
R5888 (0x1700) GPIO1 CTRL 1	15	GPn_LVL	See Footnote 2	GPIOn level. Write to this bit to set a GPIO output. Read from this bit to read GPIO input level.
to R5918 (0x171E)				For output functions only, if GPn_POL is set, the GPn_LVL bit is the opposite logic level to the external pin.
GPIO16 CTRL1				Note that, if $GPn_DIR = 0$, the GPn_LVL bit is write-only.
011010_011L1	14	GPn_OP_CFG	0	GPIOn Output Configuration
				0 = CMOS
				1 = Open drain
				Note that, if $GPn_FN = 0x000$ or $0x002$, this bit has no effect on the $GPIOn$ output. If $GPn_FN = 0x000$, the pin configuration is set according to the applicable pin-specific function (see Table 4-95). If $GPn_FN = 0x002$, the pin configuration is CMOS.
	13	GPn_DB	1	GPIOn Input Debounce
				0 = Disabled
				1 = Enabled
	12	GPn_POL	0	GPIOn Output Polarity Select
				0 = Noninverted (Active High)
				1 = Inverted (Active Low)
				Note that, if $GPn_FN = 0x000$ or $0x002$, this bit has no effect on the $GPIOn$ output.
	9:0	GP <i>n</i> _FN[9:0]	0x001	GPIOn Pin Function
				(see Table 4-94 for details)

Table 4-93. GPIO Control (Cont.)

Register Address	Bit	Label	Default	Description
R5889 (0x1701)	15	GPn_DIR	1	GPIOn Pin Direction
GPIO1_CTRL_2				0 = Output
to				1 = Input
R5919 (0x171F) GPIO16_CTRL2				Note that, if $GPn_FN = 0x000$ or $0x002$, this bit has no effect on the $GPIOn$ pin. If $GPn_FN = 0x000$, the pin direction is set according to the applicable pin-specific function (see Table 4-95). If $GPn_FN = 0x002$, the pin direction is set according to the DSP GPIO configuration.
	14	GPn_PU	1	GPIOn Pull-Up Enable
				0 = Disabled
				1 = Enabled
				Note: If GPn_PD and GPn_PU are both set, a bus keeper function is enabled on the respective $GPIOn$ pin.
	13	GPn_PD	1	GPIOn Pull-Down Enable
				0 = Disabled
				1 = Enabled
				Note: If GPn_PD and GPn_PU are both set, a bus keeper function is enabled on the respective $GPIOn$ pin.
R6848 (0x1AC0)	3:0	GP_DBTIME[3:0]	0x0	GPIO Input debounce time
GPIO_Debounce_				$0x0 = 100 \mu s$
Config				0x1 = 1.5 ms
				0x2 = 3 ms
				0x3 = 6 ms
				0x4 = 12 ms
				0x5 = 24 ms
				0x6 = 48 ms
				0x7 = 96 ms
				0x8 = 192 ms
				0x9 = 384 ms
				0xA = 768 ms
				0xB to 0xF = Reserved

^{1.} *n* is a number (1–16) that identifies the individual GPIO.

4.14.2 GPIO Function Select

The available GPIO functions are described in Table 4-94. The function of each GPIO is set using GPn_FN , where n identifies the GPIO pin (1–16). Note that the respective GPn_DIR must also be set according to whether the function is an input or output.

Table 4-94. GPIO Function Select

GPn_FN	Valid On	Description	Comments
0x000	GPIO3–16 only	Pin-specific alternate function	Alternate functions supporting digital microphone, digital audio interface, master control interface, and PDM output functions.
0x001	All GPIOs (1–16)	Button-detect input/logic-level output	GPn_DIR = 0: GPIO pin logic level is set by GPn_LVL.
			GPn_DIR = 1: Button detect or logic level input.
0x002	All GPIOs (1–16)	DSP GPIO	Low latency input/output for DSP functions.
0x003	All GPIOs (1–16)	IRQ1 output	Interrupt (IRQ1) output
			0 = IRQ1 not asserted
			1 = IRQ1 asserted
0x004	All GPIOs (1–16)	IRQ2 output	Interrupt (IRQ2) output
			0 = IRQ2 not asserted
			1 = IRQ2 asserted
0x010	GPIO1-4 only	FLL1 clock	Clock output from FLL1
0x011	GPIO1-4 only	FLL2 clock	Clock output from FLL2

^{2.} The default value of GPn_LVL depends upon whether the pin is actively driven by another device. If the pin is actively driven, the bus keeper maintains this logic level. If the pin is not actively driven, the bus keeper may establish either a Logic 1 or Logic 0 as the initial input level.

Table 4-94. GPIO Function Select (Cont.)

GPn_FN	Valid On	Description	Comments
0x018	GPIO1-4 only	FLL1 lock	Indicates FLL1 lock status
			0 = Not locked
			1 = Locked
0x019	GPIO1-4 only	FLL2 lock	Indicates FLL2 lock status
			0 = Not locked
			1 = Locked
0x040	GPIO1-4 only	OPCLK clock output	Configurable clock output derived from SYSCLK
0x041	GPIO1-4 only	OPCLK async clock output	Configurable clock output derived from ASYNCCLK
0x048	All GPIOs (1-16)	PWM1 output	Configurable PWM output PWM1
0x049	All GPIOs (1–16)	PWM2 output	Configurable PWM output PWM2
0x04C	All GPIOs (1-16)	S/PDIF output	IEC-60958-3-compatible S/PDIF output
0x088	GPIO1-4 only	ASRC1 IN1 lock	Indicates ASRC1 IN1 Lock status
			(ASRC IN1 paths convert from the ASRC1_RATE1 sample rate to the ASRC1_RATE2 sample rate.)
			0 = Not locked
			1 = Locked
0x089	GPIO1-4 only	ASRC1 IN2 lock	Indicates ASRC1 IN2 Lock status
			(ASRC IN2 paths convert from the ASRC1_RATE2 sample rate to the ASRC1_RATE1 sample rate.)
			0 = Not locked
			1 = Locked
0x140	All GPIOs (1–16)	Timer 1 status	Timer 1 Status
	, ,		A pulse is output after the respective timer reaches its final count value.
0x150	GPIO1-4 only	Event Log 1 FIFO not-empty status	Event Log 1 FIFO Not-Empty status
			0 = FIFO Empty
			1 = FIFO Not Empty
0x230	All GPIOs (1–16)	Alarm 1 Channel 1 status	Alarm 1 Channel 1 Status
			A pulse is output when the respective alarm-trigger conditions are met. The pulse duration is configurable.
0x231	All GPIOs (1-16)	Alarm 1 Channel 2 status	Alarm 1 Channel 2 Status
			A pulse is output when the respective alarm-trigger conditions are met. The pulse duration is configurable.
0x232	All GPIOs (1-16)	Alarm 1 Channel 3 status	Alarm 1 Channel 3 Status
	,		A pulse is output when the respective alarm-trigger conditions are met. The pulse duration is configurable.
0x233	All GPIOs (1–16)	Alarm 1 Channel 4 status	Alarm 1 Channel 4 Status
			A pulse is output when the respective alarm-trigger conditions are met. The pulse duration is configurable.
0x280	GPIO3 or GPIO10	Auxiliary PDM clock input/output	Auxiliary PDM interface clock
0x281	GPIO4 or GPIO9	Auxiliary PDM data output	Auxiliary PDM interface data

4.14.3 Pin-Specific Alternate Function—GPn_FN = 0x000

The CS42L92 provides two dedicated GPIO pins (1–2). The remaining 14 GPIOs are multiplexed with the pin-specific functions listed in Table 4-95. The alternate functions are selected by setting the respective GP*n*_FN fields to 0x000, as described in Section 4.14.1. Note that each function is unique to the associated pin and can be supported only on that pin.

If the alternate function is selected on a GPIO pin, the pin direction (input or output) and the output driver configuration (CMOS or open drain) are set automatically as described in Table 4-95. The respective GPn_DIR and GPn_OP_CFG bits have no effect in this case.

Table 4-95. GPIO Alternate Functions

Name	Condition	Description	Direction	Output Driver Configuration
AIF1BCLK/GPIO6	GP6_FN = 0x000	Audio Interface 1 bit clock	Digital I/O	CMOS
AIF1LRCLK/GPIO8	GP8_FN = 0x000	Audio Interface 1 left/right clock	Digital I/O	CMOS
AIF1RXDAT/GPIO7	GP7_FN = 0x000	Audio Interface 1 RX digital audio data	Digital input	_

Name	Condition	Description	Direction	Output Driver Configuration
AIF1TXDAT/GPIO5	GP5_FN = 0x000	Audio Interface 1 TX digital audio data	Digital output	CMOS
AIF2BCLK/GPIO10	GP10_FN = 0x000	Audio Interface 2 bit clock	Digital I/O	CMOS
AIF2LRCLK/GPIO12	GP12_FN = 0x000	Audio Interface 2 left/right clock	Digital I/O	CMOS
AIF2RXDAT/GPIO11	GP11_FN = 0x000	Audio Interface 2 RX digital audio data	Digital input	_
AIF2TXDAT/GPIO9	GP9_FN = 0x000	Audio Interface 2 TX digital audio data	Digital output	CMOS
AIF3BCLK/GPIO14	GP14_FN = 0x000	Audio Interface 3 bit clock	Digital I/O	CMOS
AIF3LRCLK/GPIO16	GP16_FN = 0x000	Audio Interface 3 left/right clock	Digital I/O	CMOS
AIF3RXDAT/GPIO15	GP15_FN = 0x000	Audio Interface 3 RX digital audio data	Digital input	_
AIF3TXDAT/GPIO13	GP13_FN = 0x000	Audio Interface 3 TX digital audio data	Digital output	CMOS
SPKCLK/GPIO3	GP3_FN = 0x000	Digital speaker (PDM) clock	Digital output	CMOS
SPKDAT/GPIO4	GP4_FN = 0x000	Digital speaker (PDM) data	Digital output	CMOS

Note that if the JTAG interface is enabled, the GPIO13–15 pins are configured as a JTAG interface. Under these conditions, the respective GPIO configuration registers have no effect, and the GPIO pins cannot be assigned any other function. See Section 4.20 for details of the JTAG interface.

4.14.4 Button Detect (GPIO Input)—GPn_FN = 0x001

Button-detect functionality can be selected on a GPIO pin by setting the respective GPIO fields as described in Section 4.14.1. The same functionality can be used to support a jack-detect input function.

It is recommended to enable the GPIO input debounce feature when using GPIOs as button input or jack-detect input.

The GPn_LVL fields may be read to determine the logic levels on a GPIO input, after the selectable debounce controls. Note that GPn_LVL is not affected by the GPn_LVL in GPn_LVL in GPn_LVL in GPn_LVL is not affected by GPn_LVL in GPn_LVL in GPn_LV

The debounced GPIO signals are also inputs to the interrupt-control circuit. An interrupt event is triggered on the rising and falling edges of the GPIO input. The associated interrupt bits are latched once set; they can be polled at any time or used to control the IRQ signal. See Section 4.15 for details of the interrupt event handling.

4.14.5 Logic 1 and Logic 0 Output (GPIO Output)—GP $n_FN = 0x001$

The CS42L92 can be programmed to drive a logic high or logic low level on a GPIO pin by selecting the GPIO Output function as described in Section 4.14.1.

The output logic level is selected using the respective GPn_LVL bit. Note that, if a GPIO pin is configured as an output, the respective GPn_LVL bits are write-only.

The polarity of the GPIO output can be inverted using the GPn_POL bits. If $GPn_POL = 1$, the external output is the opposite logic level to GPn_LVL .

4.14.6 DSP GPIO (Low-Latency DSP Input/Output)—GPn_FN = 0x002

The DSP GPIO function provides an advanced I/O capability for signal-processing applications. The DSP GPIO pins are accessed using maskable sets of I/O control registers; this allows the selected combinations of GPIOs to be controlled with ease, regardless of how the allocation of GPIO pins has been implemented in hardware.

The DSP GPIO function is selected by setting the respective GPIO fields as described in Section 4.14.1.

A full description of the DSP GPIO function is provided in Section 4.5.4.

Note that, if GPn_FN is set to 0x002, the respective pin direction (input or output) is set according to the DSP GPIO configuration for that pin—the GPn_F DIR control bit has no effect in this case.

4.14.7 Interrupt (IRQ) Status Output—GPn_FN = 0x003, 0x004

The CS42L92 has an interrupt controller, which can be used to indicate when any selected interrupt events occur. Individual interrupts may be masked in order to configure the interrupt as required. See Section 4.15 for a full definition of all supported interrupt events.

The interrupt controller supports two separate interrupt request (IRQ) outputs. The IRQ1 or IRQ2 status may be output directly on a GPIO pin by setting the respective GPIO fields as described in Section 4.14.1.

Note that the IRQ1 status is output on the IRQ pin at all times.

4.14.8 Frequency-Locked Loop (FLL) Clock Output—GPn_FN = 0x010, 0x011

Clock outputs derived from the FLLs may be output on a GPIO pin. The GPIO output from each FLLn (FLL1 or FLL2) is controlled by the respective FLLn GPCLK DIV and FLLn GPCLK ENA fields, as described in Table 4-96.

It is recommended to disable the clock output ($FLLn_GPCLK_ENA = 0$) before making any change to the respective $FLLn_GPCLK_DIV$ field.

Note that FLL*n*_GPCLK_DIV and FLL*n*_GPCLK_ENA affect the GPIO outputs only; they do not affect the FLL frequency. The maximum output frequency supported for GPIO output is noted in Table 3-10.

The FLL clock outputs may be output directly on a GPIO pin by setting the respective GPIO fields as described in Section 4.14.1.

See Section 4.16 for details of the CS42L92 system clocking and how to configure the FLLs.

Register Address	Bit	Label	Default	Description
R398 (0x018E)	7:1	FLL1_GPCLK_	0x02	FLL1 GPIO Clock Divider
FLL1_GPIO_Clock		DIV[6:0]		0x00 = Reserved
				0x01 = Reserved
				0x02 = Divide by 2
				0x03 = Divide by 3
				0x04 = Divide by 4
				0x7F = Divide by 127
				$(F_{GPIO} = F_{FLL}/FLL1_GPCLK_DIV)$
	0	FLL1_GPCLK_	0	FLL1 GPIO Clock Enable
		ENA		0 = Disabled
				1 = Enabled
R430 (0x01AE)	7:1	FLL2_GPCLK_	0x02	FLL2 GPIO Clock Divider
FLL2_GPIO_Clock		DIV[6:0]		0x00 = Reserved
				0x01 = Reserved
				0x02 = Divide by 2
				0x03 = Divide by 3
				0x04 = Divide by 4
				0x7F = Divide by 127
				$(F_{GPIO} = F_{FLL}/FLL2_GPCLK_DIV)$
	0	FLL2_GPCLK_	0	FLL2 GPIO Clock Enable
		ENA		0 = Disabled
				1 = Enabled

Table 4-96. FLL Clock Output Control

4.14.9 Frequency-Locked Loop (FLL) Status Output—GPn_FN = 0x018, 0x019

The CS42L92 provides FLL status flags, which may be used to control other events. The FLL lock signals indicate whether FLL lock has been achieved. See Section 4.16.8 for details of the FLLs.

The FLL lock signals may be output directly on a GPIO pin by setting the respective GPIO fields as described in Section 4.14.1.

The FLL lock signals are inputs to the interrupt controller circuit. An interrupt event is triggered on the rising and falling edges of these signals. The associated interrupt bits are latched once set; they can be polled at any time or used to control the IRQ signal. See Section 4.15 for details of the interrupt event handling.

4.14.10 OPCLK and OPCLK_ASYNC Clock Output—GPn_FN = 0x040, 0x041

A clock output (OPCLK) derived from SYSCLK can be output on a GPIO pin. The OPCLK frequency is controlled by OPCLK DIV and OPCLK SEL. The OPCLK output is enabled by setting OPCLK ENA, as described in Table 4-97.

A clock output (OPCLK_ASYNC) derived from ASYNCCLK can be output on a GPIO pin. The OPCLK_ASYNC frequency is controlled by OPCLK_ASYNC_DIV and OPCLK_ASYNC_SEL. The OPCLK_ASYNC output is enabled by setting OPCLK_ASYNC_ENA.

It is recommended to disable the clock output (OPCLK_ENA = 0 or OPCLK_ASYNC_ENA = 0) before making any change to the respective OPCLK_DIV, OPCLK_SEL, OPCLK_ASYNC_DIV, or OPCLK_ASYNC_SEL fields.

The OPCLK or OPCLK_ASYNC clock can be output directly on a GPIO pin by setting the respective GPIO fields as described in Section 4.14.1.

Note that the OPCLK source frequency cannot be higher than the SYSCLK frequency. The OPCLK_ASYNC source frequency cannot be higher than the ASYNCCLK frequency. The maximum output frequency supported for GPIO output is noted in Table 3-10.

See Section 4.16 for details of the system clocks (SYSCLK and ASYNCCLK).

Register Address	Bit	Label	Default	Description	1
R329 (0x0149)	15	OPCLK_ENA	0	OPCLK Enable	1
Output_system_				0 = Disabled	
clock				1 = Enabled	
	7:3	OPCLK_DIV[4:0]	0x00	OPCLK Divider	Ī
				0x02 = Divide by 2	
				0x04 = Divide by 4	
				0x06 = Divide by 6	
				(even numbers only)	
				0x1E = Divide by 30	
				Note that only even numbered divisions (2, 4, 6, etc.) are valid selections.	
				All other codes are reserved when the OPCLK signal is enabled.	
	2:0	OPCLK_SEL[2:0]	000	OPCLK Source Frequency	Ī
				000 = 6.144 MHz (5.6448 MHz)	
				001 = 12.288 MHz (11.2896 MHz)	
				010 = 24.576 MHz (22.5792 MHz)	
				011 = 49.152 MHz (45.1584 MHz)	
				All other codes are reserved	
				The frequencies in brackets apply for 44.1 kHz–related SYSCLK rates only (i.e., SAMPLE_RATE_n = 01XXX).	
				The OPCLK Source Frequency must be less than or equal to the SYSCLK frequency.	

Table 4-97. OPCLK Control

Table 4-97. OPCLK Control (Cont.)

Register Address	Bit	Label	Default	Description	
R330 (0x014A)	15	OPCLK_ASYNC_	0	OPCLK_ASYNC Enable	
Output_async_		ENA		0 = Disabled	
lock				1 = Enabled	
	7:3	OPCLK_ASYNC_	0x00	OPCLK_ASYNC Divider	
		DIV[4:0]		0x02 = Divide by 2	
				0x04 = Divide by 4	
				0x06 = Divide by 6	
				(even numbers only)	
				0x1E = Divide by 30	
				Note that only even numbered divisions (2, 4, 6, etc.) are valid selections.	
				All other codes are reserved when the OPCLK_ASYNC signal is enabled.	
		OPCLK_ASYNC_	000	OPCLK_ASYNC Source Frequency	
		SEL[2:0]		000 = 6.144 MHz (5.6448 MHz)	
				001 = 12.288 MHz (11.2896 MHz)	
				010 = 24.576 MHz (22.5792 MHz)	
				011 = 49.152 MHz (45.1584 MHz)	
				All other codes are reserved	
				The frequencies in brackets apply for 44.1 kHz–related ASYNCCLK rates only (i.e., ASYNC_SAMPLE_RATE_n = 01XXX).	
				The OPCLK_ASYNC Source Frequency must be less than or equal to the ASYNCCLK frequency.	

4.14.11 Pulse-Width Modulation (PWM) Signal Output—GPn FN = 0x048, 0x049

The CS42L92 incorporates two PWM signal generators, which can be enabled as GPIO outputs. The duty cycle of each PWM signal can be modulated by an audio source, or can be set to a fixed value using a control register setting.

The PWM outputs may be output directly on a GPIO pin by setting the respective GPIO fields as described in Section 4.14.1.

See Section 4.3.12 for details of how to configure the PWM signal generators.

4.14.12 S/PDIF Audio Output—GPn FN = 0x04C

The CS42L92 incorporates an IEC-60958-3–compatible S/PDIF transmitter, which can be selected as a GPIO output. The S/PDIF transmitter supports stereo audio channels and allows full control over the S/PDIF validity bits and channel status information.

The S/PDIF signal may be output directly on a GPIO pin by setting the respective GPIO fields as described in Section 4.14.1.

See Section 4.3.8 for details of how to configure the S/PDIF output generator.

4.14.13 ASRC Lock Status Output—GPn_FN = 0x088, 0x089

The CS42L92 provides ASRC status flags, which may be used to control other events. The ASRC-lock signals indicate whether ASRC lock has been achieved. See Section 4.3.15 for details of the ASRCs.

The ASRC lock signals may be output directly on a GPIO pin by setting the respective GPIO fields as described in Section 4.14.1.

The ASRC lock signals are inputs to the interrupt control circuit. An interrupt event is triggered on the rising and falling edges of the ASRC lock signals. The associated interrupt bits are latched once set; they can be polled at any time or used to control the IRQ signal. See Section 4.15 for details of the interrupt event handling.

4.14.14 General-Purpose Timer Status Output—GPn_FN = 0x140

The general-purpose timer can count up or down, and supports continuous or single count modes. A status output, indicating the progress of the timer, is provided. See Section 4.5.3 for details of the general-purpose timer.

A logic signal from the general-purpose timer may be output directly on a GPIO pin by setting the respective GPIO fields as described in Section 4.14.1. This logic signal is pulsed high whenever the timer reaches its final count value.

The general-purpose timer also provides input to the interrupt control circuit. An interrupt event is triggered whenever the timer reaches its final count value. The associated interrupt bit is latched once set; it can be polled at any time or used to control the IRQ signal. See Section 4.15 for details of the interrupt event handling.

4.14.15 Event Logger FIFO Buffer Status Output—GPn FN = 0x150

The event logger incorporates a 16-stage FIFO buffer, in which any detected events (signal transitions) are recorded. A status output for the FIFO buffer is provided. See Section 4.5.1 for details of the event logger.

A logic signal from the event logger may be output directly on a GPIO pin by setting the respective GPIO fields as described in Section 4.14.1. This logic signal is set high whenever the FIFO not-empty condition is true.

The event logger also provides input to the interrupt control circuit. An interrupt event is triggered whenever the FIFO condition occurs. The associated interrupt bit is latched once set; it can be polled at any time or used to control the IRQ signal. See Section 4.15 for details of the interrupt event handling.

4.14.16 Alarm Generator Status Output—GPn_FN = 0x230, 0x231, 0x232, 0x233

The CS42L92 incorporates four alarm-generator circuits that are associated with the general-purpose timer. A status output is provided by each alarm; these can be used to indicate one-off events, or can be configured for cyclic (repeated) triggers. See Section 4.5.2 for details of the alarm-control circuits.

The alarm status may be output directly on a GPIO pin by setting the respective GPIO fields as described in Section 4.14.1. The alarm status is asserted when the respective alarm-trigger conditions are met. The signal is asserted for a duration that is configurable as described in Section 4.5.2.1.

The alarm generators also provide input to the interrupt control circuit. An interrupt event is triggered whenever the alarm-trigger conditions are met. The associated interrupt bit is latched once set; it can be polled at any time or used to control the IRQ signal. See Section 4.15 for details of the interrupt event handling.

4.14.17 Auxiliary PDM Interface—GPn_FN = 0x280, 0x281

The CS42L92 provides an auxiliary PDM interface that can be used to provide an audio path between an analog microphone connected to the CS42L92 and a digital input to an external audio processor. The external connections to the auxiliary PDM interface are supported on GPIO pins as follows:

- In Master Mode (AUXPDM1_MSTR = 1), the CLK output can be configured on the GPIO3 or GPIO10 pins. The DAT output can be configured on GPIO4 or GPIO9.
- In Slave Mode (AUXPDM1_MSTR = 0), the CLK input is supported on GPIO10 only. The DAT output is supported on GPIO9 only.

The applicable GPIO pins are configured by setting the respective GPIO fields as described in Section 4.14.1.

See Section 4.2.10 for details of how to configure the auxiliary PDM interface.

4.14.18 General-Purpose Switch

The CS42L92 provides two general-purpose switches, which can be used as controllable analog switches for external functions. The switches support bidirectional analog operation, offering flexibility in the potential circuit applications. Refer to Table 3-2 and Table 3-10 for further details. Note that this feature is entirely independent of the GPIO*n* pins.

- The GP1 switch is implemented between the GPSW1P and GPSW1N pins; it is configured using SW1 MODE.
- · The GP2 switch is implemented between the GPSW2P and GPSW2N pins; it is configured using SW2_MODE.

The SWn_MODE fields allow the switches to be disabled, enabled, or synchronized to the MICDET clamp status, as described in Table 4-98.

The switches can be used in conjunction with the MICDET clamp function to suppress pops and clicks associated with jack insertion and removal. An example circuit is shown in Fig. 4-60 within Section 4.12.2. Note that the MICDET clamp function must also be configured appropriately when using this method of pop suppression.

Register Address Bit Label Default Description SW2_MODE[1:0] General-purpose Switch 2 control R712 (0x02C8) 3:2 00 GP Switch 1 00 = Disabled (switch open) 01 = Enabled (switch closed) 10 = Enabled if MICDET clamp status is set 11 = Enabled if MICDET clamp status is clear SW1 MODE[1:0] General-purpose Switch 1 control 1:0 00 00 = Disabled (switch open) 01 = Enabled (switch closed) 10 = Enabled if MICDET clamp status is set 11 = Enabled if MICDET clamp status is clear

Table 4-98. General-Purpose Switch Control

4.15 Interrupts

The interrupt controller has multiple inputs. These include the jack detect and GPIO input pins, DSP_IRQn flags, headphone/accessory detection, FLL/ASRC lock detection, and status flags from DSP peripheral functions. See Table 4-99 and Table 4-100 for a full definition of the interrupt controller inputs. Any combination of these inputs can be used to trigger an interrupt request event.

The interrupt controller supports two sets of interrupt registers. This allows two separate interrupt request (IRQ) outputs to be generated, and for each IRQ to report a different set of input or status conditions.

For each interrupt request (IRQ1 and IRQ2) output, there is an interrupt register field associated with each interrupt input. These fields are asserted whenever a logic edge is detected on the respective input. Some inputs are triggered on rising edges only; some are triggered on both edges. Separate rising and falling interrupt bits are provided for the JD1 and JD2 signals. The interrupt register fields for IRQ1 are described in Table 4-99. The interrupt register fields for IRQ2 are described in Table 4-100. The interrupt flags can be polled at any time or in response to the interrupt request output being signaled via the IRQ pin or a GPIO pin.

All interrupts are edge triggered, as noted above. Many are triggered on both the rising and falling edges and, therefore, the interrupt bits cannot indicate which edge has been detected. The raw status fields described in Table 4-99 and Table 4-100 indicate the current value of the corresponding inputs to the interrupt controller. Note that the raw status bits associated with IRQ1 and IRQ2 provide the same information. The status of any GPIO (or DSP GPIO) inputs can also be read using the GPIO (or DSP GPIO) control fields, as described in Table 4-93 and Table 4-41.

Individual mask bits can enable or disable different functions from the interrupt controller. The mask bits are described in Table 4-99 (for IRQ1) and Table 4-100 (for IRQ2). Note that a masked interrupt input does not assert the corresponding interrupt register field and does not cause the associated interrupt request output to be asserted.

The interrupt request outputs represent the logical OR of the associated interrupt registers. IRQ1 is derived from the x_EINT1 registers; IRQ2 is derived from the x_EINT2 registers. The interrupt register fields are latching fields and, once they are set, they are not reset until a 1 is written to the respective bits. The interrupt request outputs are not reset until each of the associated interrupts has been reset.

A debounce circuit can be enabled on any GPIO input, to avoid false event triggers. This is enabled on each pin using the fields described in Table 4-93. The GPIO debounce circuit uses the 32-kHz clock, which must be enabled whenever the GPIO debounce function is required.

A debounce circuit is always enabled on the FLL status inputs—either the 32-kHz clock or the SYSCLK signal must be enabled to trigger an interrupt from the FLL status inputs. Note that the raw status fields (described in Table 4-99 and Table 4-100) are valid without clocking; these fields can be used to provide FLL status readback if system clocks are not available.

The IRQ outputs can be globally masked using the IM_IRQ1 and IM_IRQ2 bits. When not masked, the IRQ status can be read from IRQ1 STS and IRQ2 STS for the respective IRQ outputs.

The IRQ1 output is provided externally on the IRQ pin. Under default conditions, this output is active low. The polarity can be inverted using IRQ_POL. The IRQ output can be either CMOS driven or open drain; this is selected using the IRQ_OP_CFG bit. The IRQ output is active low and is referenced to the DBVDD power domain.

The IRQ2 status can be used to trigger DSP firmware execution; see Section 4.4. This allows the DSP firmware execution to be linked to external events (e.g., jack detection, or GPIO input), or to any of the status conditions flagged by the interrupt registers.

The IRQ1 and IRQ2 signals may be output on a GPIO pin; see Section 4.14.

The CS42L92 interrupt controller circuit is shown in Fig. 4-64. (Note that not all interrupt inputs are shown.) The control fields associated with IRQ1 and IRQ2 are described in Table 4-99 and Table 4-100 respectively. The global interrupt mask bits, status bits, and output configuration fields are described Table 4-101.

Note that, under default register conditions, the boot done status is the only unmasked interrupt source; a falling edge on the \overline{IRQ} pin indicates completion of the boot sequence.

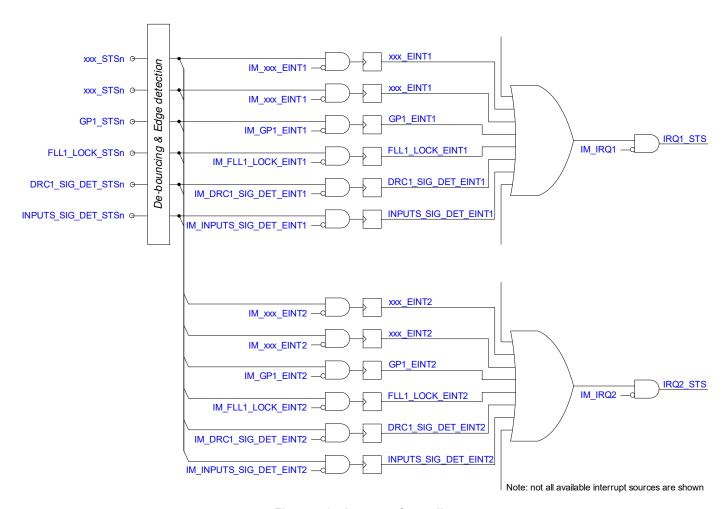


Figure 4-64. Interrupt Controller

The IRQ1 interrupt, mask, and status control registers are described in Table 4-99.

Table 4-99. Interrupt 1 Control Registers

Register Address	Bit	Label	Default	Description
R6144 (0x1800)	12	CTRLIF_ERR_EINT1	0	Control Interface Error Interrupt (Rising edge triggered)
IRQ1_Status_1				Note: Cleared when a 1 is written.
	9	SYSCLK_FAIL_EINT1	0	SYSCLK Fail Interrupt (Rising edge triggered)
				Note: Cleared when a 1 is written.
	7	BOOT_DONE_EINT1	0	Boot Done Interrupt (Rising edge triggered)
				Note: Cleared when a 1 is written.
R6145 (0x1801)	14	DSPCLK_ERR_EINT1	0	DSPCLK Error Interrupt (Rising edge triggered)
IRQ1_Status_2				Note: Cleared when a 1 is written.
	13	ASYNCCLK_ERR_EINT1	0	ASYNCCLK Error Interrupt (Rising edge triggered)
				Note: Cleared when a 1 is written.
	12	SYSCLK_ERR_EINT1	0	SYSCLK Error Interrupt (Rising edge triggered)
				Note: Cleared when a 1 is written.
	9	FLL2_LOCK_EINT1	0	FLL2 Lock Interrupt (Rising and falling edge triggered)
	Ü	LEZ_EOOK_E		Note: Cleared when a 1 is written.
	8	FLL1_LOCK_EINT1	0	FLL1 Lock Interrupt (Rising and falling edge triggered)
	O	TET_EOOK_EINTT	O	Note: Cleared when a 1 is written.
	6	FLL2 REF LOST EINT1	0	FLL2 Reference Lost Interrupt (Rising edge triggered)
	O	FLLZ_REF_LOST_EINTT	U	Note: Cleared when a 1 is written.
		FILA DEE LOCK FINITA	-	
	5	FLL1_REF_LOST_EINT1	0	FLL1 Reference Lost Interrupt (Rising edge triggered)
D0440 (0. 4005)	_	MODETO FINITA		Note: Cleared when a 1 is written.
R6149 (0x1805)	9	MICDET2_EINT1	0	Mic/Accessory Detect 2 Interrupt (Detection event triggered)
IRQ1_Status_6				Note: Cleared when a 1 is written.
	8	MICDET1_EINT1	0	Mic/Accessory Detect 1 Interrupt (Detection event triggered)
				Note: Cleared when a 1 is written.
	0	HPDET_EINT1	0	Headphone Detect Interrupt (Rising edge triggered)
				Note: Cleared when a 1 is written.
R6150 (0x1806)	11	MICD_CLAMP2_FALL_EINT1	0	MICDET Clamp 2 Interrupt (Falling edge triggered)
IRQ1_Status_7				Note: Cleared when a 1 is written.
	10	MICD_CLAMP2_RISE_EINT1	0	MICDET Clamp 2 Interrupt (Rising edge triggered)
				Note: Cleared when a 1 is written.
	9	JD3_FALL_EINT1	0	JD3 Interrupt (Falling edge triggered)
				Note: Cleared when a 1 is written.
	8	JD3_RISE_EINT1	0	JD3 Interrupt (Rising edge triggered)
				Note: Cleared when a 1 is written.
	5	MICD CLAMP1 FALL EINT1	0	MICDET Clamp 1 Interrupt (Falling edge triggered)
				Note: Cleared when a 1 is written.
	4	MICD_CLAMP1_RISE_EINT1	0	MICDET Clamp 1 Interrupt (Rising edge triggered)
				Note: Cleared when a 1 is written.
	3	JD2_FALL_EINT1	0	JD2 Interrupt (Falling edge triggered)
	ŭ	02		Note: Cleared when a 1 is written.
	2	JD2_RISE_EINT1	0	JD2 Interrupt (Rising edge triggered)
	_			Note: Cleared when a 1 is written.
	1	JD1_FALL_EINT1	0	JD1 Interrupt (Falling edge triggered)
	'			Note: Cleared when a 1 is written.
	0	JD1_RISE_EINT1	0	JD1 Interrupt (Rising edge triggered)
	U	JD I_INISE_EINI I		Note: Cleared when a 1 is written.
				INOIE. CIEGIEU WHEIT A T IS WHILLETT.

Register Address	Bit	Label	Default	Description
R6152 (0x1808)	9	ASRC1_IN2_LOCK_EINT1	0	ASRC1 IN2 Lock Interrupt (Rising and falling edge triggered)
IRQ1_Status_9				Note: Cleared when a 1 is written.
	8	ASRC1_IN1_LOCK_EINT1	0	ASRC1 IN1 Lock Interrupt (Rising and falling edge triggered)
				Note: Cleared when a 1 is written.
	2	INPUTS_SIG_DET_EINT1	0	Input Path Signal-Detect Interrupt (Rising and falling edge triggered)
				Note: Cleared when a 1 is written.
	1	DRC2_SIG_DET_EINT1	0	DRC2 Signal-Detect Interrupt (Rising and falling edge triggered)
				Note: Cleared when a 1 is written.
	0	DRC1_SIG_DET_EINT1	0	DRC1 Signal-Detect Interrupt (Rising and falling edge triggered)
				Note: Cleared when a 1 is written.
R6154 (0x180A)	15	DSP_IRQ16_EINT1	0	DSP IRQ16 Interrupt (Rising edge triggered)
IRQ1_Status_11				Note: Cleared when a 1 is written.
	14	DSP_IRQ15_EINT1	0	DSP IRQ15 Interrupt (Rising edge triggered)
				Note: Cleared when a 1 is written.
	13	DSP_IRQ14_EINT1	0	DSP IRQ14 Interrupt (Rising edge triggered)
				Note: Cleared when a 1 is written.
	12	DSP_IRQ13_EINT1	0	DSP IRQ13 Interrupt (Rising edge triggered)
				Note: Cleared when a 1 is written.
	11	DSP_IRQ12_EINT1	0	DSP IRQ12 Interrupt (Rising edge triggered)
				Note: Cleared when a 1 is written.
	10	DSP_IRQ11_EINT1	0	DSP IRQ11 Interrupt (Rising edge triggered)
				Note: Cleared when a 1 is written.
	9	DSP_IRQ10_EINT1	0	DSP IRQ10 Interrupt (Rising edge triggered)
				Note: Cleared when a 1 is written.
	8	DSP_IRQ9_EINT1	0	DSP IRQ9 Interrupt (Rising edge triggered)
				Note: Cleared when a 1 is written.
	7	DSP_IRQ8_EINT1	0	DSP IRQ8 Interrupt (Rising edge triggered)
				Note: Cleared when a 1 is written.
	6	DSP_IRQ7_EINT1	0	DSP IRQ7 Interrupt (Rising edge triggered)
				Note: Cleared when a 1 is written.
	5	DSP_IRQ6_EINT1	0	DSP IRQ6 Interrupt (Rising edge triggered)
				Note: Cleared when a 1 is written.
	4	DSP_IRQ5_EINT1	0	DSP IRQ5 Interrupt (Rising edge triggered)
				Note: Cleared when a 1 is written.
	3	DSP_IRQ4_EINT1	0	DSP IRQ4 Interrupt (Rising edge triggered)
				Note: Cleared when a 1 is written.
	2	DSP_IRQ3_EINT1	0	DSP IRQ3 Interrupt (Rising edge triggered)
				Note: Cleared when a 1 is written.
	1	DSP_IRQ2_EINT1	0	DSP IRQ2 Interrupt (Rising edge triggered)
				Note: Cleared when a 1 is written.
	0	DSP_IRQ1_EINT1	0	DSP IRQ1 Interrupt (Rising edge triggered)
				Note: Cleared when a 1 is written.

Register Address	Bit	Label	Default	Description
R6155 (0x180B)	9	HP4R_SC_EINT1	0	HPOUT4R Short Circuit Interrupt (Rising edge triggered)
IRQ1_Status_12				Note: Cleared when a 1 is written.
	8	HP4L_SC_EINT1	0	HPOUT4L Short Circuit Interrupt (Rising edge triggered)
				Note: Cleared when a 1 is written.
	5	HP3R_SC_EINT1	0	HPOUT3R Short Circuit Interrupt (Rising edge triggered)
				Note: Cleared when a 1 is written.
	4	HP3L_SC_EINT1	0	HPOUT3L Short Circuit Interrupt (Rising edge triggered)
				Note: Cleared when a 1 is written.
	3	HP2R_SC_EINT1	0	HPOUT2R Short Circuit Interrupt (Rising edge triggered)
				Note: Cleared when a 1 is written.
	2	HP2L_SC_EINT1	0	HPOUT2L Short Circuit Interrupt (Rising edge triggered)
				Note: Cleared when a 1 is written.
	1	HP1R_SC_EINT1	0	HPOUT1R Short Circuit Interrupt (Rising edge triggered)
				Note: Cleared when a 1 is written.
	0	HP1L_SC_EINT1	0	HPOUT1L Short Circuit Interrupt (Rising edge triggered)
				Note: Cleared when a 1 is written.
R6156 (0x180C)	5	HP3R_ENABLE_DONE_EINT1	0	HPOUT3R/HPOUT4R Enable Interrupt (Rising edge triggered)
IRQ1_Status_13				Note: Cleared when a 1 is written.
	4	HP3L_ENABLE_DONE_EINT1	0	HPOUT3L/HPOUT4L Enable Interrupt (Rising edge triggered)
				Note: Cleared when a 1 is written.
	3	HP2R_ENABLE_DONE_EINT1	0	HPOUT2R Enable Interrupt (Rising edge triggered)
				Note: Cleared when a 1 is written.
	2	HP2L_ENABLE_DONE_EINT1	0	HPOUT2L Enable Interrupt (Rising edge triggered)
				Note: Cleared when a 1 is written.
	1	HP1R_ENABLE_DONE_EINT1	0	HPOUT1R Enable Interrupt (Rising edge triggered)
				Note: Cleared when a 1 is written.
	0	HP1L_ENABLE_DONE_EINT1	0	HPOUT1L Enable Interrupt (Rising edge triggered)
				Note: Cleared when a 1 is written.
R6157 (0x180D)	5	HP3R_DISABLE_DONE_EINT1	0	HPOUT3R/HPOUT4R Disable Interrupt (Rising edge triggered)
IRQ1_Status_14				Note: Cleared when a 1 is written.
	4	HP3L_DISABLE_DONE_EINT1	0	HPOUT3L/HPOUT4L Disable Interrupt (Rising edge triggered)
				Note: Cleared when a 1 is written.
	3	HP2R_DISABLE_DONE_EINT1	0	HPOUT2R Disable Interrupt (Rising edge triggered)
				Note: Cleared when a 1 is written.
	2	HP2L_DISABLE_DONE_EINT1	0	HPOUT2L Disable Interrupt (Rising edge triggered)
				Note: Cleared when a 1 is written.
	1	HP1R_DISABLE_DONE_EINT1	0	HPOUT1R Disable Interrupt (Rising edge triggered)
				Note: Cleared when a 1 is written.
	0	HP1L_DISABLE_DONE_EINT1	0	HPOUT1L Disable Interrupt (Rising edge triggered)
				Note: Cleared when a 1 is written.
R6158 (0x180E)	12	DFC_SATURATE_EINT1	0	DFC Saturate Interrupt (Rising edge triggered)
IRQ1_Status_15				Note: Cleared when a 1 is written.

Register Address	Bit	Label	Default	Description
R6160 (0x1810)	15	GP16_EINT1	0	GPIO16 Interrupt (Rising and falling edge triggered)
IRQ1_Status_17				Note: Cleared when a 1 is written.
	14	GP15_EINT1	0	GPIO15 Interrupt (Rising and falling edge triggered)
				Note: Cleared when a 1 is written.
	13	GP14_EINT1	0	GPIO14 Interrupt (Rising and falling edge triggered)
				Note: Cleared when a 1 is written.
	12	GP13_EINT1	0	GPIO13 Interrupt (Rising and falling edge triggered)
				Note: Cleared when a 1 is written.
	11	GP12_EINT1	0	GPIO12 Interrupt (Rising and falling edge triggered)
				Note: Cleared when a 1 is written.
	10	GP11_EINT1	0	GPIO11 Interrupt (Rising and falling edge triggered)
				Note: Cleared when a 1 is written.
	9	GP10_EINT1	0	GPIO10 Interrupt (Rising and falling edge triggered)
				Note: Cleared when a 1 is written.
	8	GP9_EINT1	0	GPIO9 Interrupt (Rising and falling edge triggered)
				Note: Cleared when a 1 is written.
	7	GP8_EINT1	0	GPIO8 Interrupt (Rising and falling edge triggered)
				Note: Cleared when a 1 is written.
	6	GP7_EINT1	0	GPIO7 Interrupt (Rising and falling edge triggered)
				Note: Cleared when a 1 is written.
	5	GP6_EINT1	0	GPIO6 Interrupt (Rising and falling edge triggered)
				Note: Cleared when a 1 is written.
	4	GP5_EINT1	0	GPIO5 Interrupt (Rising and falling edge triggered)
				Note: Cleared when a 1 is written.
	3	GP4_EINT1	0	GPIO4 Interrupt (Rising and falling edge triggered)
				Note: Cleared when a 1 is written.
	2	GP3_EINT1	0	GPIO3 Interrupt (Rising and falling edge triggered)
				Note: Cleared when a 1 is written.
	1	GP2_EINT1	0	GPIO2 Interrupt (Rising and falling edge triggered)
				Note: Cleared when a 1 is written.
	0	GP1_EINT1	0	GPIO1 Interrupt (Rising and falling edge triggered)
				Note: Cleared when a 1 is written.
R6164 (0x1814)	0	TIMER1_EINT1	0	Timer 1 Interrupt (Rising edge triggered)
IRQ1_Status_21				Note: Cleared when a 1 is written.
R6165 (0x1815)	0	EVENT1_NOT_EMPTY_EINT1	0	Event Log 1 FIFO Not Empty Interrupt (Rising edge triggered)
IRQ1_Status_22				Note: Cleared when a 1 is written.
R6166 (0x1816)	0	EVENT1_FULL_EINT1	0	Event Log 1 FIFO Full Interrupt (Rising edge triggered)
IRQ1_Status_23				Note: Cleared when a 1 is written.
R6167 (0x1817)	0	EVENT1_WMARK_EINT1	0	Event Log 1 FIFO Watermark Interrupt (Rising edge triggered)
IRQ1_Status_24				Note: Cleared when a 1 is written.
R6168 (0x1818)	0	DSP1_DMA_EINT1	0	DSP1 DMA Interrupt (Rising edge triggered)
IRQ1_Status_25				Note: Cleared when a 1 is written.
R6170 (0x181A)	0	DSP1_START1_EINT1	0	DSP1 Start 1 Interrupt (Rising edge triggered)
IRQ1_Status_27				Note: Cleared when a 1 is written.
R6171 (0x181B)	0	DSP1_START2_EINT1	0	DSP1 Start 2 Interrupt (Rising edge triggered)
IRQ1_Status_28				Note: Cleared when a 1 is written.
R6173 (0x181D)	0	DSP1 BUSY EINT1	0	DSP1 Busy Interrupt (Rising edge triggered)
IRQ1_Status_30				Note: Cleared when a 1 is written.
R6176 (0x1820)	0	DSP1 BUS ERR EINT1	0	DSP1 Bus Error Interrupt (Rising edge triggered)
IRQ1_Status_33	-			Note: Cleared when a 1 is written.
			l	ga. miena i io miaom

Register Address	Bit	Label	Default	Description
R6179 (0x1823)	3	TIMER_ALM1_CH4_EINT1	0	Alarm 1 Channel 4 Interrupt (Rising edge triggered)
IRQ1_Status_36				Note: Cleared when a 1 is written.
	2	TIMER_ALM1_CH3_EINT1	0	Alarm 1 Channel 3 Interrupt (Rising edge triggered)
				Note: Cleared when a 1 is written.
	1	TIMER_ALM1_CH2_EINT1	0	Alarm 1 Channel 2 Interrupt (Rising edge triggered)
				Note: Cleared when a 1 is written.
	0	TIMER_ALM1_CH1_EINT1	0	Alarm 1 Channel 1 Interrupt (Rising edge triggered)
				Note: Cleared when a 1 is written.
R6208 (0x1840)		IM_*	See	For each x_EINT1 interrupt bit in R6144 to R6179, a
to			Footnote 1	corresponding mask bit (IM_*) is provided in R6208 to R6243.
R6243 (0x1863)				The mask bits are coded as follows:
				0 = Do not mask interrupt
				1 = Mask interrupt
R6272 (0x1880)	12	CTRLIF_ERR_STS1	0	Control Interface Error Status
IRQ1_Raw_				0 = Normal
Status_1				1 = Control Interface Error
	7	BOOT_DONE_STS1	0	Boot Status
				0 = Busy (boot sequence in progress)
				1 = Idle (boot sequence completed)
				Control register writes should not be attempted until Boot
				Sequence has completed.
R6273 (0x1881)	14	DSPCLK_ERR_STS1	0	DSPCLK Error Interrupt Status
IRQ1_Raw_				0 = Normal
Status_2				1 = Insufficient DSPCLK cycles for one or more of the
	10	ACVACCILL EDD CTC4	0	requested DSP1 clock frequencies ASYNCCLK Error Interrupt Status
	13	ASYNCCLK_ERR_STS1	0	0 = Normal
				1 = Insufficient ASYNCCLK cycles for the requested signal path functionality
	12	SYSCLK ERR STS1	0	SYSCLK Error Interrupt Status
	'-	010021(_2111(_0101		0 = Normal
				1 = Insufficient SYSCLK cycles for the requested signal path
				functionality
	9	FLL2_LOCK_STS1	0	FLL2 Lock Status
				0 = Not locked
				1 = Locked
	8	FLL1_LOCK_STS1	0	FLL1 Lock Status
				0 = Not locked
				1 = Locked
	6	FLL2_REF_LOST_STS1	0	FLL2 Reference Lost Status
		_		0 = Normal
				1 = Reference Lost
	5	FLL1_REF_LOST_STS1	0	FLL1 Reference Lost Status
		_		0 = Normal
				1 = Reference Lost

Register Address	Bit	Label	Default	Description
R6278 (0x1886)	8	JD3_STS1	0	JACKDET3 input status
IRQ1_Raw_				0 = Jack not detected
Status_7				1 = Jack is detected
				(Assumes the JACKDET3 pin is pulled low on jack insertion.)
	4	MICD_CLAMP_STS1	0	MICDET Clamp status
				0 = Clamp disabled
				1 = Clamp enabled
				Separate _STS bits are not provided for each clamp—it is assumed that a maximum of one clamp is active at any time. The clamp override condition (MICD_CLAMP <i>n</i> _OVD = 1) is not indicated.
	2	JD2_STS1	0	JACKDET2 input status
				0 = Jack not detected
				1 = Jack is detected
				(Assumes the JACKDET2 pin is pulled low on jack insertion.)
	0	JD1_STS1	0	JACKDET1 input status
				0 = Jack not detected
				1 = Jack is detected
				(Assumes the JACKDET1 pin is pulled low on jack insertion.)
R6280 (0x1888)	9	ASRC1_IN2_LOCK_STS1	0	ASRC1 IN2 Lock Status
IRQ1_Raw_				0 = Not locked
Status_9				1 = Locked
	8	ASRC1_IN1_LOCK_STS1	0	ASRC1 IN1 Lock Status
				0 = Not locked
				1 = Locked
	2	INPUTS_SIG_DET_STS1	0	Input Path Signal-Detect Status
				0 = Normal
				1 = Signal detected
	1	DRC2_SIG_DET_STS1	0	DRC2 Signal-Detect Status
				0 = Normal
				1 = Signal detected
	0	DRC1_SIG_DET_STS1	0	DRC1 Signal-Detect Status
				0 = Normal
				1 = Signal detected

Register Address	Bit	Label	Default	Description
R6283 (0x188B)	9	HP4R_SC_STS1	0	HPOUT4R Short Circuit Status
IRQ1_Raw_				0 = Normal
Status_12				1 = Short Circuit detected
	8	HP4L_SC_STS1	0	HPOUT4L Short Circuit Status
				0 = Normal
				1 = Short Circuit detected
	5	HP3R_SC_STS1	0	HPOUT3R Short Circuit Status
				0 = Normal
				1 = Short Circuit detected
	4	HP3L_SC_STS1	0	HPOUT3L Short Circuit Status
				0 = Normal
				1 = Short Circuit detected
	3	HP2R_SC_STS1	0	HPOUT2R Short Circuit Status
				0 = Normal
				1 = Short Circuit detected
	2	HP2L SC STS1	0	HPOUT2L Short Circuit Status
				0 = Normal
-				1 = Short Circuit detected
	1	HP1R_SC_STS1	0	HPOUT1R Short Circuit Status
				0 = Normal
				1 = Short Circuit detected
-	0	HP1L SC STS1	0	HPOUT1L Short Circuit Status
				0 = Normal
				1 = Short Circuit detected
R6284 (0x188C)	5	HP3R ENABLE DONE STS1	0	HPOUT3R/HPOUT4R Enable Status
IRQ1_Raw_				0 = Busy (sequence in progress)
Status_13				1 = Idle (sequence completed)
-	4	HP3L ENABLE DONE STS1	0	HPOUT3L/HPOUT4L Enable Status
				0 = Busy (sequence in progress)
				1 = Idle (sequence completed)
-	3	HP2R ENABLE DONE STS1	0	HPOUT2R Enable Status
				0 = Busy (sequence in progress)
				1 = Idle (sequence completed)
-	2	HP2L ENABLE DONE STS1	0	HPOUT2L Enable Status
				0 = Busy (sequence in progress)
				1 = Idle (sequence completed)
	1	HP1R ENABLE DONE STS1	0	HPOUT1R Enable Status
	•			0 = Busy (sequence in progress)
				1 = Idle (sequence completed)
	0	HP1L ENABLE DONE STS1	0	HPOUT1L Enable Status
	•			0 = Busy (sequence in progress)
				1 = Idle (sequence completed)

Register Address	Bit	Label	Default	Description
R6285 (0x188D)	5	HP3R_DISABLE_DONE_STS1	0	HPOUT3R/HPOUT4R Disable Status
IRQ1_Raw_				0 = Busy (sequence in progress)
Status_14				1 = Idle (sequence completed)
	4	HP3L_DISABLE_DONE_STS1	0	HPOUT3L/HPOUT4L Disable Status
				0 = Busy (sequence in progress)
				1 = Idle (sequence completed)
	3	HP2R_DISABLE_DONE_STS1	0	HPOUT2R Disable Status
				0 = Busy (sequence in progress)
				1 = Idle (sequence completed)
	2	HP2L_DISABLE_DONE_STS1	0	HPOUT2L Disable Status
				0 = Busy (sequence in progress)
				1 = Idle (sequence completed)
	1	HP1R_DISABLE_DONE_STS1	0	HPOUT1R Disable Status
				0 = Busy (sequence in progress)
				1 = Idle (sequence completed)
	0	HP1L_DISABLE_DONE_STS1	0	HPOUT1L Disable Status
				0 = Busy (sequence in progress)
				1 = Idle (sequence completed)
R6288 (0x1890)	15	GP16_STS1	0	GPIOn Input status. Reads back the logic level of GPIOn.
IRQ1_Raw_	14	GP15_STS1	0	Only valid for pins configured as GPIO input (does not include
Status_17	13	GP14_STS1	0	DSPGPIO inputs).
	12	GP13_STS1	0	
	11	GP12_STS1	0	
	10	GP11_STS1	0	
	9	GP10_STS1	0	
	8	GP9_STS1	0	
	7	GP8_STS1	0	
	6	GP7_STS1	0	
	5	GP6_STS1	0	
	4	GP5_STS1	0	
	3	GP4_STS1	0	
	2	GP3_STS1	0	
	1	GP2_STS1	0	
	0	GP1_STS1	0	
R6293 (0x1895)	0	EVENT1_NOT_EMPTY_STS1	0	Event Log 1 FIFO Not-Empty status
IRQ1_Raw_				0 = FIFO Empty
Status_22				1 = FIFO Not Empty
R6294 (0x1896)	0	EVENT1_FULL_STS1	0	Event Log 1 FIFO Full status
IRQ1_Raw_				0 = FIFO Not Full
Status_23				1 = FIFO Full
R6295 (0x1897)	0	EVENT1_WMARK_STS1	0	Event Log 1 FIFO Watermark status
IRQ1_Raw_				0 = FIFO Watermark not reached
Status_24				1 = FIFO Watermark reached
R6296 (0x1898)	0	DSP1_DMA_STS1	0	DSP1 DMA status
IRQ1_Raw_				0 = Normal
Status_25				1 = All enabled WDMA buffers filled, and all enabled RDMA
D6301 (0×190D)	0	DSP1_BUSY_STS1	0	buffers emptied
R6301 (0x189D)	U	DOF 1_DUST_S1S1	0	DSP1 Busy status 0 = DSP Idle
IRQ1_Raw_				
Status_30				1 = DSP Busy

Register Address	Bit	Label	Default	Description
R6307 (0x18A3)	3	TIMER_ALM1_CH4_STS1	0	Alarm 1 Channel 4 status
IRQ1_Raw_				0 = Alarm idle
Status_36				1 = Alarm output asserted
	2	TIMER_ALM1_CH3_STS1	0	Alarm 1 Channel 3 status
				0 = Alarm idle
				1 = Alarm output asserted
	1	TIMER_ALM1_CH2_STS1	0	Alarm 1 Channel 2 status
				0 = Alarm idle
				1 = Alarm output asserted
	0	TIMER_ALM1_CH1_STS1	0	Alarm 1 Channel 1 status
				0 = Alarm idle
				1 = Alarm output asserted

^{1.} The BOOT_DONE_EINT1 interrupt is 0 (unmasked) by default; all other interrupts are 1 (masked) by default.

The IRQ2 interrupt, mask, and status control registers are described in Table 4-100.

Table 4-100. Interrupt 2 Control Registers

Register Address	Bit	Label	Default	Description
R6400 (0x1900)	12	CTRLIF_ERR_EINT2	0	Control Interface Error Interrupt (Rising edge triggered)
IRQ2_Status_1				Note: Cleared when a 1 is written.
	9	SYSCLK_FAIL_EINT2	0	SYSCLK Fail Interrupt (Rising edge triggered)
				Note: Cleared when a 1 is written.
	7	BOOT_DONE_EINT2	0	Boot Done Interrupt (Rising edge triggered)
				Note: Cleared when a 1 is written.
R6401 (0x1901)	14	DSPCLK_ERR_EINT2	0	DSPCLK Error Interrupt (Rising edge triggered)
IRQ2_Status_2				Note: Cleared when a 1 is written.
	13	ASYNCCLK_ERR_EINT2	0	ASYNCCLK Error Interrupt (Rising edge triggered)
				Note: Cleared when a 1 is written.
	12	SYSCLK_ERR_EINT2	0	SYSCLK Error Interrupt (Rising edge triggered)
				Note: Cleared when a 1 is written.
	9	FLL2_LOCK_EINT2	0	FLL2 Lock Interrupt (Rising and falling edge triggered)
				Note: Cleared when a 1 is written.
	8	FLL1_LOCK_EINT2	0	FLL1 Lock Interrupt (Rising and falling edge triggered)
				Note: Cleared when a 1 is written.
	6	FLL2_REF_LOST_EINT2	0	FLL2 Reference Lost Interrupt (Rising edge triggered)
				Note: Cleared when a 1 is written.
	5	FLL1_REF_LOST_EINT2	0	FLL1 Reference Lost Interrupt (Rising edge triggered)
				Note: Cleared when a 1 is written.
R6405 (0x1905)	9	MICDET2_EINT2	0	Mic/Accessory Detect 2 Interrupt (Detection event triggered)
IRQ2_Status_6				Note: Cleared when a 1 is written.
	8	MICDET1_EINT2	0	Mic/Accessory Detect 1 Interrupt (Detection event triggered)
				Note: Cleared when a 1 is written.
	0	HPDET_EINT2	0	Headphone Detect Interrupt (Rising edge triggered)
				Note: Cleared when a 1 is written.

Register Address	Bit	Label	Default	Description
R6406 (0x1906)	3	JD3_FALL_EINT2	0	JD3 Interrupt (Falling edge triggered)
IRQ2_Status_7				Note: Cleared when a 1 is written.
	2	JD3_RISE_EINT2	0	JD3 Interrupt (Rising edge triggered)
				Note: Cleared when a 1 is written.
	5	MICD_CLAMP_FALL_EINT2	0	MICDET Clamp Interrupt (Falling edge triggered)
				Indicates a falling edge transition on MICDET Clamp 1 or MICDET Clamp 2. Separate x_EINT2 bits are not provided—it is assumed that a maximum of one clamp is active at any time.
				Note: Cleared when a 1 is written.
	4	MICD_CLAMP_RISE_EINT2	0	MICDET Clamp Interrupt (Rising edge triggered)
				Indicates a rising edge transition on MICDET Clamp 1 or MICDET Clamp 2. Separate x_EINT2 bits are not provided—it is assumed that a maximum of one clamp is active at any time.
				Note: Cleared when a 1 is written.
	3	JD2_FALL_EINT2	0	JD2 Interrupt (Falling edge triggered)
				Note: Cleared when a 1 is written.
	2	JD2_RISE_EINT2	0	JD2 Interrupt (Rising edge triggered)
				Note: Cleared when a 1 is written.
	1	JD1_FALL_EINT2	0	JD1 Interrupt (Falling edge triggered)
				Note: Cleared when a 1 is written.
	0	JD1_RISE_EINT2	0	JD1 Interrupt (Rising edge triggered)
				Note: Cleared when a 1 is written.
R6408 (0x1908)	9	ASRC1_IN2_LOCK_EINT2	0	ASRC1 IN2 Lock Interrupt (Rising and falling edge triggered)
IRQ2_Status_9				Note: Cleared when a 1 is written.
	8	ASRC1_IN1_LOCK_EINT2	0	ASRC1 IN1 Lock Interrupt (Rising and falling edge triggered)
				Note: Cleared when a 1 is written.
	2	INPUTS_SIG_DET_EINT2	0	Input Path Signal-Detect Interrupt (Rising and falling edge triggered)
				Note: Cleared when a 1 is written.
	1	DRC2_SIG_DET_EINT2	0	DRC2 Signal-Detect Interrupt (Rising and falling edge triggered)
				Note: Cleared when a 1 is written.
	0	DRC1_SIG_DET_EINT2	0	DRC1 Signal-Detect Interrupt (Rising and falling edge triggered)
				Note: Cleared when a 1 is written.

Register Address	Bit	Label	Default	Description
R6410 (0x190A)	15	DSP_IRQ16_EINT2	0	DSP IRQ16 Interrupt (Rising edge triggered)
IRQ2_Status_11				Note: Cleared when a 1 is written.
	14	DSP_IRQ15_EINT2	0	DSP IRQ15 Interrupt (Rising edge triggered)
				Note: Cleared when a 1 is written.
	13	DSP_IRQ14_EINT2	0	DSP IRQ14 Interrupt (Rising edge triggered)
				Note: Cleared when a 1 is written.
	12	DSP_IRQ13_EINT2	0	DSP IRQ13 Interrupt (Rising edge triggered)
				Note: Cleared when a 1 is written.
	11	DSP_IRQ12_EINT2	0	DSP IRQ12 Interrupt (Rising edge triggered)
				Note: Cleared when a 1 is written.
	10	DSP IRQ11 EINT2	0	DSP IRQ11 Interrupt (Rising edge triggered)
				Note: Cleared when a 1 is written.
	9	DSP_IRQ10_EINT2	0	DSP IRQ10 Interrupt (Rising edge triggered)
				Note: Cleared when a 1 is written.
	8	DSP_IRQ9_EINT2	0	DSP IRQ9 Interrupt (Rising edge triggered)
				Note: Cleared when a 1 is written.
	7	DSP_IRQ8_EINT2	0	DSP IRQ8 Interrupt (Rising edge triggered)
	•			Note: Cleared when a 1 is written.
	6	DSP_IRQ7_EINT2	0	DSP IRQ7 Interrupt (Rising edge triggered)
	Ū			Note: Cleared when a 1 is written.
	5	DSP IRQ6 EINT2	0	DSP IRQ6 Interrupt (Rising edge triggered)
	Ŭ			Note: Cleared when a 1 is written.
	4	DSP_IRQ5_EINT2	0	DSP IRQ5 Interrupt (Rising edge triggered)
	7			Note: Cleared when a 1 is written.
	3	DSP_IRQ4_EINT2	0	DSP IRQ4 Interrupt (Rising edge triggered)
	3			Note: Cleared when a 1 is written.
	2	DSP_IRQ3_EINT2	0	DSP IRQ3 Interrupt (Rising edge triggered)
	2			Note: Cleared when a 1 is written.
	1	DSP_IRQ2_EINT2	0	DSP IRQ2 Interrupt (Rising edge triggered)
	•			Note: Cleared when a 1 is written.
	0	DSP_IRQ1_EINT2	0	DSP IRQ1 Interrupt (Rising edge triggered)
	U	DSF_INQT_EINTZ		Note: Cleared when a 1 is written.
R6411 (0x190B)	9	HP4R_SC_EINT2	0	HPOUT4R Short Circuit Interrupt (Rising edge triggered)
IRQ2_Status_12	9	HF4K_3O_EINT2	0	Note: Cleared when a 1 is written.
INQZ_Status_12	8	HP4L_SC_EINT2	0	HPOUT4L Short Circuit Interrupt (Rising edge triggered)
	0	HF4L_3C_EIN12	0	Note: Cleared when a 1 is written.
		LIDAD CC FINITA		
	5	HP3R_SC_EINT2	0	HPOUT3R Short Circuit Interrupt (Rising edge triggered)
		LIDOL CO FINTO		Note: Cleared when a 1 is written.
	4	HP3L_SC_EINT2	0	HPOUT3L Short Circuit Interrupt (Rising edge triggered)
		LIDOR CO FINITO		Note: Cleared when a 1 is written.
	3	HP2R_SC_EINT2	0	HPOUT2R Short Circuit Interrupt (Rising edge triggered)
		LIDOL OO FINITO		Note: Cleared when a 1 is written.
	2	HP2L_SC_EINT2	0	HPOUT2L Short Circuit Interrupt (Rising edge triggered)
				Note: Cleared when a 1 is written.
	1	HP1R_SC_EINT2	0	HPOUT1R Short Circuit Interrupt (Rising edge triggered)
			_	Note: Cleared when a 1 is written.
	0	HP1L_SC_EINT2	0	HPOUT1L Short Circuit Interrupt (Rising edge triggered)
				Note: Cleared when a 1 is written.

Register Address	Bit	Label	Default	Description
R6412 (0x190C)	5	HP3R_ENABLE_DONE_EINT2	0	HPOUT3R/HPOUT4R Enable Interrupt (Rising edge triggered)
IRQ2_Status_13				Note: Cleared when a 1 is written.
	4	HP3L_ENABLE_DONE_EINT2	0	HPOUT3L/HPOUT4L Enable Interrupt (Rising edge triggered)
				Note: Cleared when a 1 is written.
	3	HP2R_ENABLE_DONE_EINT2	0	HPOUT2R Enable Interrupt (Rising edge triggered)
				Note: Cleared when a 1 is written.
	2	HP2L_ENABLE_DONE_EINT2	0	HPOUT2L Enable Interrupt (Rising edge triggered)
				Note: Cleared when a 1 is written.
	1	HP1R_ENABLE_DONE_EINT2	0	HPOUT1R Enable Interrupt (Rising edge triggered)
				Note: Cleared when a 1 is written.
	0	HP1L_ENABLE_DONE_EINT2	0	HPOUT1L Enable Interrupt (Rising edge triggered)
				Note: Cleared when a 1 is written.
R6413 (0x190D)	5	HP3R_DISABLE_DONE_EINT2	0	HPOUT3R/HPOUT4R Disable Interrupt (Rising edge triggered)
IRQ2_Status_14				Note: Cleared when a 1 is written.
	4	HP3L_DISABLE_DONE_EINT2	0	HPOUT3L/HPOUT4L Disable Interrupt (Rising edge triggered)
				Note: Cleared when a 1 is written.
	3	HP2R_DISABLE_DONE_EINT2	0	HPOUT2R Disable Interrupt (Rising edge triggered)
				Note: Cleared when a 1 is written.
	2	HP2L_DISABLE_DONE_EINT2	0	HPOUT2L Disable Interrupt (Rising edge triggered)
				Note: Cleared when a 1 is written.
	1	HP1R_DISABLE_DONE_EINT2	0	HPOUT1R Disable Interrupt (Rising edge triggered)
				Note: Cleared when a 1 is written.
	0	HP1L_DISABLE_DONE_EINT2	0	HPOUT1L Disable Interrupt (Rising edge triggered)
				Note: Cleared when a 1 is written.
R6414 (0x190E)	12	DFC_SATURATE_EINT2	0	DFC Saturate Interrupt (Rising edge triggered)
IRQ2_Status_15				Note: Cleared when a 1 is written.

IRQ2_Status_17	GPIO16 Interrupt (Rising and falling edge triggered) Note: Cleared when a 1 is written.
14 GP15_EINT2 0	
14 GP15_EINT2 0	
	GPIO15 Interrupt (Rising and falling edge triggered)
1 1 1	Note: Cleared when a 1 is written.
13 GP14 EINT2 0	GPIO14 Interrupt (Rising and falling edge triggered)
	Note: Cleared when a 1 is written.
	GPIO13 Interrupt (Rising and falling edge triggered)
	Note: Cleared when a 1 is written.
	GPIO12 Interrupt (Rising and falling edge triggered)
	Note: Cleared when a 1 is written.
10 GP11 EINT2 0	GPIO11 Interrupt (Rising and falling edge triggered)
	Note: Cleared when a 1 is written.
	GPIO10 Interrupt (Rising and falling edge triggered)
	Note: Cleared when a 1 is written.
	GPIO9 Interrupt (Rising and falling edge triggered)
	Note: Cleared when a 1 is written.
	GPIO8 Interrupt (Rising and falling edge triggered)
	Note: Cleared when a 1 is written.
	GPIO7 Interrupt (Rising and falling edge triggered)
	Note: Cleared when a 1 is written.
5 GP6_EINT2 0	GPIO6 Interrupt (Rising and falling edge triggered)
	Note: Cleared when a 1 is written.
4 GP5 EINT2 0	GPIO5 Interrupt (Rising and falling edge triggered)
1 - 1 -	Note: Cleared when a 1 is written.
	GPIO4 Interrupt (Rising and falling edge triggered)
	Note: Cleared when a 1 is written.
	GPIO3 Interrupt (Rising and falling edge triggered)
	Note: Cleared when a 1 is written.
	GPIO2 Interrupt (Rising and falling edge triggered)
	Note: Cleared when a 1 is written.
	GPIO1 Interrupt (Rising and falling edge triggered)
	Note: Cleared when a 1 is written.
	Timer 1 Interrupt (Rising edge triggered)
1	Note: Cleared when a 1 is written.
\d=\data\data	Event Log 1 FIFO Not Empty Interrupt (Rising edge triggered)
	Note: Cleared when a 1 is written.
11 (QL_0tatao_LL	Event Log 1 FIFO Full Interrupt (Rising edge triggered)
	Note: Cleared when a 1 is written.
	Event Log 1 FIFO Watermark Interrupt (Rising edge triggered)
	Note: Cleared when a 1 is written.
" (QE_Otatao_E)	DSP1 DMA Interrupt (Rising edge triggered)
	Note: Cleared when a 1 is written.
ii taz_datad_zd	
	DSP1 Start 1 Interrupt (Rising edge triggered)
ii (de_otatao_e)	Note: Cleared when a 1 is written.
	DSP1 Start 2 Interrupt (Rising edge triggered)
:: (<u>%</u> =!&!&=0	Note: Cleared when a 1 is written.
	DSP1 Busy Interrupt (Rising edge triggered)
(QL_0tatao_00	Note: Cleared when a 1 is written.
R6432 (0x1920) 0 DSP1_BUS_ERR_EINT2 0	DSP1 Bus Error Interrupt (Rising edge triggered)
IRQ2_Status_33	Note: Cleared when a 1 is written.

Register Address	Bit	Label	Default	Description
R6435 (0x1923)	3	TIMER_ALM1_CH4_EINT2	0	Alarm 1 Channel 4 Interrupt (Rising edge triggered)
IRQ2_Status_36				Note: Cleared when a 1 is written.
	2	TIMER_ALM1_CH3_EINT2	0	Alarm 1 Channel 3 Interrupt (Rising edge triggered)
				Note: Cleared when a 1 is written.
	1	TIMER_ALM1_CH2_EINT2	0	Alarm 1 Channel 2 Interrupt (Rising edge triggered)
				Note: Cleared when a 1 is written.
	0	TIMER_ALM1_CH1_EINT2	0	Alarm 1 Channel 1 Interrupt (Rising edge triggered)
				Note: Cleared when a 1 is written.
R6464 (0x1940) to		IM_*	1	For each x_EINT2 interrupt bit in R6400 to R6435, a corresponding mask bit (IM_*) is provided in R6464 to R6499.
R6499 (0x1963)				The mask bits are coded as follows:
110499 (011903)				0 = Do not mask interrupt
				1 = Mask interrupt
R6528 (0x1980)	12	CTRLIF_ERR_STS2	0	Control Interface Error Status
IRQ2_Raw_				0 = Normal
Status 1				1 = Control Interface Error
_	7	BOOT DONE STS2	0	Boot Status
	•			0 = Busy (boot sequence in progress)
				1 = Idle (boot sequence completed)
				Control register writes should not be attempted until Boot
				Sequence has completed.
R6529 (0x1981)	14	DSPCLK ERR STS2	0	DSPCLK Error Interrupt Status
IRQ2_Raw_				0 = Normal
Status_2				1 = Insufficient DSPCLK cycles for one or more of the
				requested DSP1 clock frequencies
	13	ASYNCCLK_ERR_STS2	0	ASYNCCLK Error Interrupt Status
				0 = Normal
				1 = Insufficient ASYNCCLK cycles for the requested signal path functionality
	12	SYSCLK_ERR_STS2	0	SYSCLK Error Interrupt Status
				0 = Normal
				1 = Insufficient SYSCLK cycles for the requested signal path functionality
	9	FLL2_LOCK_STS2	0	FLL2 Lock Status
				0 = Not locked
				1 = Locked
	8	FLL1_LOCK_STS2	0	FLL1 Lock Status
				0 = Not locked
				1 = Locked
	6	FLL2_REF_LOST_STS2	0	FLL2 Reference Lost Status
				0 = Normal
				1 = Reference Lost
	5	FLL1_REF_LOST_STS2	0	FLL1 Reference Lost Status
				0 = Normal
				1 = Reference Lost

Register Address	Bit	Label	Default	Description
R6534 (0x1986)	8	JD3_STS2	0	JACKDET3 input status
IRQ2_Raw_				0 = Jack not detected
Status_7				1 = Jack is detected
				(Assumes the JACKDET3 pin is pulled low on jack insertion.)
	4	MICD_CLAMP_STS2	0	MICDET Clamp status
				0 = Clamp disabled
				1 = Clamp enabled
				0 = Clamp disabled
				1 = Clamp enabled
				Separate _STS bits are not provided for each clamp—it is
				assumed that a maximum of one clamp is active at any time.
				The clamp override condition (MICD_CLAMP n_OVD = 1) is not indicated.
	2	JD2 STS2	0	JACKDET2 input status
		302_3132		0 = Jack not detected
				1 = Jack is detected
				(Assumes the JACKDET2 pin is pulled low on jack insertion.)
	0	JD1 STS2	0	JACKDET1 input status
	U	051_0102		0 = Jack not detected
				1 = Jack is detected
				(Assumes the JACKDET1 pin is pulled low on jack insertion.)
R6536 (0x1988)	9	ASRC1_IN2_LOCK_STS2	0	ASRC1 IN2 Lock Status
IRQ2 Raw				0 = Not locked
Status_9				1 = Locked
	8	ASRC1 IN1 LOCK STS2	0	ASRC1 IN1 Lock Status
				0 = Not locked
				1 = Locked
	2	INPUTS SIG DET STS2	0	Input Path Signal-Detect Status
				0 = Normal
				1 = Signal detected
	1	DRC2_SIG_DET_STS2	0	DRC2 Signal-Detect Status
				0 = Normal
				1 = Signal detected
	0	DRC1_SIG_DET_STS2	0	DRC1 Signal-Detect Status
				0 = Normal
				1 = Signal detected

Table 4-100. Interrupt 2 Control Registers (Cont.)

Register Address	Bit	Label	Default	Description
R6539 (0x198B)	9	HP4R_SC_STS2	0	HPOUT4R Short Circuit Status
IRQ2_Raw_				0 = Normal
Status_12				1 = Short Circuit detected
	8	HP4L_SC_STS2	0	HPOUT4L Short Circuit Status
				0 = Normal
				1 = Short Circuit detected
	5	HP3R_SC_STS2	0	HPOUT3R Short Circuit Status
				0 = Normal
				1 = Short Circuit detected
	4	HP3L_SC_STS2	0	HPOUT3L Short Circuit Status
				0 = Normal
				1 = Short Circuit detected
	3	HP2R_SC_STS2	0	HPOUT2R Short Circuit Status
				0 = Normal
				1 = Short Circuit detected
	2	HP2L SC STS2	0	HPOUT2L Short Circuit Status
				0 = Normal
				1 = Short Circuit detected
	1	HP1R SC STS2	0	HPOUT1R Short Circuit Status
				0 = Normal
				1 = Short Circuit detected
	0	HP1L_SC_STS2	0	HPOUT1L Short Circuit Status
				0 = Normal
				1 = Short Circuit detected
R6540 (0x198C)	5	HP3R ENABLE DONE STS2	0	HPOUT3R/HPOUT4R Enable Status
IRQ2_Raw_				0 = Busy (sequence in progress)
Status_13				1 = Idle (sequence completed)
	4	HP3L ENABLE DONE STS2	0	HPOUT3L/HPOUT4L Enable Status
				0 = Busy (sequence in progress)
				1 = Idle (sequence completed)
	3	HP2R ENABLE DONE STS2	0	HPOUT2R Enable Status
				0 = Busy (sequence in progress)
				1 = Idle (sequence completed)
	2	HP2L ENABLE DONE STS2	0	HPOUT2L Enable Status
				0 = Busy (sequence in progress)
				1 = Idle (sequence completed)
	1	HP1R ENABLE DONE STS2	0	HPOUT1R Enable Status
				0 = Busy (sequence in progress)
				1 = Idle (sequence completed)
	0	HP1L ENABLE DONE STS2	0	HPOUT1L Enable Status
				0 = Busy (sequence in progress)
				1 = Idle (sequence completed)

Table 4-100. Interrupt 2 Control Registers (Cont.)

Register Address	Bit	Label	Default	Description
R6541 (0x198D)	5	HP3R_DISABLE_DONE_STS2	0	HPOUT3R/HPOUT4R Disable Status
IRQ2 Raw				0 = Busy (sequence in progress)
Status_14				1 = Idle (sequence completed)
	4	HP3L_DISABLE_DONE_STS2	0	HPOUT3L/HPOUT4L Disable Status
				0 = Busy (sequence in progress)
				1 = Idle (sequence completed)
	3	HP2R_DISABLE_DONE_STS2	0	HPOUT2R Disable Status
				0 = Busy (sequence in progress)
				1 = Idle (sequence completed)
	2	HP2L_DISABLE_DONE_STS2	0	HPOUT2L Disable Status
				0 = Busy (sequence in progress)
				1 = Idle (sequence completed)
	1	HP1R_DISABLE_DONE_STS2	0	HPOUT1R Disable Status
				0 = Busy (sequence in progress)
				1 = Idle (sequence completed)
	0	HP1L DISABLE DONE STS2	0	HPOUT1L Disable Status
				0 = Busy (sequence in progress)
				1 = Idle (sequence completed)
R6544 (0x1990)	15	GP16 STS2	0	GPIOn Input status
IRQ2_Raw_	14	GP15_STS2	0	Reads back the logic level of GPIO <i>n</i> .
Status_17	13	GP14_STS2	0	Only valid for pins configured as GPIO input (does not include
	12	GP13_STS2	0	DSPGPIO inputs).
	11	GP12 STS2	0	1
	10	GP11 STS2	0	1
	9	GP10 STS2	0	1
	8	GP9 STS2	0	1
	7	GP8 STS2	0	
	6	GP7 STS2	0	1
	5	GP6_STS2	0	1
	4	GP5 STS2	0	
	3	GP4 STS2	0	
	2	GP3_STS2	0	
	1	GP2_STS2	0	
	0	GP1 STS2	0	
R6549 (0x1995)	0	EVENT1_NOT_EMPTY_STS2	0	Event Log 1 FIFO Not-Empty status
IRQ2 Raw				0 = FIFO Empty
Status 22				1 = FIFO Not Empty
R6550 (0x1996)	0	EVENT1_FULL_STS2	0	Event Log n FIFO Full status
IRQ2 Raw				0 = FIFO Not Full
Status 23				1 = FIFO Full
R6551 (0x1997)	0	EVENT1_WMARK_STS2	0	Event Log 1 FIFO Watermark status
IRQ2 Raw				0 = FIFO Watermark not reached
Status 24				1 = FIFO Watermark reached
R6552 (0x1998)	0	DSP1_DMA_STS2	0	DSP1 DMA status
IRQ2_Raw_	•			0 = Normal
Status_25				1 = All enabled WDMA buffers filled, and all enabled RDMA
Giaius_23				buffers emptied
R6557 (0x199D)	0	DSP1_BUSY_STS2	0	DSP1 Busy status
IRQ2_Raw_		_		0 = DSP Idle
Status_30				1 = DSP Busy
J.G.G.S_00		l		,

Table 4-100.	Interrupt 2 Control Registers	(Cont.)
Tubic T-100.	miteriapt & Control Registers	(00116.)

Register Address	Bit	Label	Default	Description
R6563 (0x19A3)	3	TIMER_ALM1_CH4_STS2	0	Alarm 1 Channel 4 status
IRQ2_Raw_				0 = Alarm idle
Status_36				1 = Alarm output asserted
	2	TIMER_ALM1_CH3_STS2	0	Alarm 1 Channel 3 status
				0 = Alarm idle
				1 = Alarm output asserted
	1	TIMER_ALM1_CH2_STS2	0	Alarm 1 Channel 2 status
				0 = Alarm idle
				1 = Alarm output asserted
	0	TIMER_ALM1_CH1_STS2	0	Alarm 1 Channel 1 status
				0 = Alarm idle
				1 = Alarm output asserted

The IRQ output and polarity control registers are described in Table 4-101.

Table 4-101. Interrupt Control Registers

Register Address	Bit	Label	Default	Description
R6784 (0x1A80)	11	IM_IRQ1	0	IRQ1 Output Interrupt mask.
IRQ1_CTRL				0 = Do not mask interrupt.
				1 = Mask interrupt.
	10	IRQ_POL	1	IRQ Output Polarity Select
				0 = Noninverted (Active High)
				1 = Inverted (Active Low)
	9	IRQ_OP_CFG	0	IRQ Output Configuration
				0 = CMOS
				1 = Open drain
R6786 (0x1A82)	11	IM_IRQ2	0	IRQ2 Output Interrupt mask.
IRQ2_CTRL				0 = Do not mask interrupt.
				1 = Mask interrupt.
R6816 (0x1AA0)	1	IRQ2_STS	0	IRQ2 Status. IRQ2_STS is the logical OR of all unmasked x_EINT2 interrupts.
Interrupt_Raw_				0 = Not asserted
Status_1				1 = Asserted
	0	IRQ1_STS	0	IRQ1 Status. IRQ1_STS is the logical OR of all unmasked x_EINT1 interrupts.
				0 = Not asserted
				1 = Asserted

4.16 Clocking and Sample Rates

The CS42L92 requires a clock reference for its internal functions and also for the input (ADC) paths, output (DAC) paths, and digital audio interfaces. Under typical clocking configurations, all commonly used audio sample rates can be derived directly from the external reference; for additional flexibility, the CS42L92 incorporates two FLL circuits to perform frequency conversion and filtering.

External clock signals may be connected via the MCLK1, MCLK2, and MCLK3 input pins. In AIF Slave Modes, the BCLK signals may be used as a reference for the system clocks. The SLIMbus interface can provide the clock reference, when used as the input to one of the FLLs. To avoid audible glitches, all clock configurations must be set up before enabling playback.

4.16.1 System Clocking Overview

The CS42L92 supports three primary clock domains—SYSCLK, ASYNCCLK, and DSPCLK.

The SYSCLK and ASYNCCLK clock domains are the reference clocks for all the audio signal paths on the CS42L92. Up to five different sample rates may be independently selected for specific audio interfaces and other input/output signal paths; each selected sample rate must be synchronized either to SYSCLK or to ASYNCCLK, as described in Section 4.16.2.

The SYSCLK and ASYNCCLK clock domains are independent (i.e., not synchronized). Stereo full-duplex sample-rate conversion is supported, allowing asynchronous audio data to be mixed and to be routed between independent interfaces. See Section 4.3 for further details.

The DSPCLK clock domain is the reference clock for the programmable DSP core on the CS42L92. A wide range of DSPCLK frequencies can be supported, and a programmable clock divider is provided for the DSP core, allowing the DSP clocking (and power consumption) to be optimized according to the applicable processing requirements. See Section 4.3 for further details.

Note that there is no requirement for DSPCLK to be synchronized to SYSCLK or ASYNCCLK. The DSPCLK controls the software execution in the DSP core; audio outputs from the DSP are synchronized either to SYSCLK or ASYNCCLK, regardless of the applicable DSPCLK rate.

Excluding the DSP core, each subsystem within the CS42L92 digital core is clocked at a dynamically controlled rate, limited by the SYSCLK (or ASYNCCLK) frequency, as applicable. For maximum signal mixing and processing capacity, it is recommended that the highest possible SYSCLK and ASYNCCLK frequencies are configured.

The DSP core is clocked at the DSPCLK rate (or supported divisions of the DSPCLK frequency). The DSPCLK configuration must ensure that sufficient clock cycles are available for the processing requirements of the DSP core. The requirements vary, according to the particular software that is in use.

4.16.2 Sample-Rate Control

The CS42L92 supports two independent clock domains for the audio signal paths, referenced to SYSCLK and ASYNCCLK respectively.

Different sample rates may be selected for each of the audio interfaces (AIF1, AIF2, AIF3, SLIMbus), and for the input (ADC) and output (DAC) paths. Each of these must be referenced either to SYSCLK or to ASYNCCLK. (Note that the SLIMbus interface supports multiple sample rates, selected independently for each input or output channel.)

Up to three different sample rates can be selected using SAMPLE_RATE_1, SAMPLE_RATE_2 and SAMPLE_RATE_3. These must each be numerically related to each other and to the SYSCLK frequency (further details of these requirements are provided in Table 4-102 and the accompanying text).

The remaining two sample rates can be selected using ASYNC_SAMPLE_RATE_1 and ASYNC_SAMPLE_RATE_2. These sample rates must be numerically related to each other and to the ASYNCCLK frequency (further details of these requirements are provided in Table 4-103 and the accompanying text),

Each of the audio interfaces, input paths, and output paths is associated with one of the sample rates selected by the SAMPLE RATE n or ASYNC SAMPLE RATE n fields.

Note that if any two interfaces are operating at the same sample rate, but are not synchronized, one of these must be referenced to the ASYNCCLK domain, and the other to the SYSCLK domain.

When any of the SAMPLE_RATE_n or ASYNC_SAMPLE_RATE_n fields is written to, the activation of the new setting is automatically synchronized by the CS42L92 to ensure continuity of all active signal paths. The SAMPLE_RATE_n_STS and ASYNC_SAMPLE_RATE_n_STS bits provide indication of the sample rate selections that have been implemented.

The following restrictions must be observed regarding the sample-rate control configuration:

- Unless otherwise noted, the sample rate selection for all functions is valid from 8–192 kHz.
- The input (ADC/DMIC) signal paths must always be associated with the SYSCLK clocking domain.
- If 384- or 768-kHz DMICCLK clock rate is selected, the supported sample rate for the respective input paths is
 restricted as described in Table 4-1. The sample rate for the input signal paths can be set globally, or can be
 configured independently for each input channel—see Section 4.2.5.
- The S/PDIF sample rate is valid from 32–192 kHz. The output (DAC), digital audio interface (AIF), DSP core, and SLIMbus input/output sample rates are valid from 8–384 kHz.
- The asynchronous sample-rate converter (ASRC) supports sample rates 8–192 kHz. The ratio of the two sample rates must not exceed 6.
- The isochronous sample-rate converters (ISRCs) support sample rates 8–384 kHz. For each ISRC, the ratio of the applicable SAMPLE_RATE_n or ASYNC_SAMPLE_RATE_n fields must not exceed 24. The sample-rate conversion ratio must be an integer (1–24) or equal to 1.5.
- All external clock references (MCLK input or Slave Mode AIF input) must be within 1% of the applicable register field settings.

4.16.3 Automatic Sample-Rate Detection

The CS42L92 supports automatic sample-rate detection on the digital audio interfaces (AIF1–AIF3). Note that this is only possible when the respective interface is operating in Slave Mode (i.e., when LRCLK and BCLK are inputs to the CS42L92).

Automatic sample-rate detection is enabled by setting RATE_EST_ENA. The LRCLK input pin selected for sample-rate detection is set using LRCLK_SRC.

As many as four audio sample rates can be configured for automatic detection; these sample rates are selected using the SAMPLE_RATE_DETECT_*n* fields. Note that the function only detects sample rates that match one of the SAMPLE_RATE_DETECT_*n* fields.

If one of the selected audio sample rates is detected on the selected LRCLK input, the control-write sequencer is triggered. A unique sequence of actions may be programmed for each detected sample rate. Note that the applicable control sequences must be programmed by the user for each detection outcome; see Section 4.18.

The TRIG_ON_STARTUP bit controls whether the sample-rate detection circuit responds to the initial detection of the applicable interface (i.e., when the AIF*n* interface starts up).

- If TRIG_ON_STARTUP = 0, the detection circuit only responds (i.e., trigger the control-write sequencer) to a change in the detected sample rate—the initial sample-rate detection is ignored. (Note that the initial sample-rate detection is the first detection of a sample rate that matches one of the SAMPLE RATE DETECT *n* fields.)
- If TRIG_ON_STARTUP = 1, the detection circuit triggers the control-write sequencer whenever a selected sample rate is detected, including when the AIF interface starts up, or when the sample-rate detection is first enabled.

As described above, setting TRIG_ON_STARTUP = 0 is designed to inhibit any response to the initial detection of a sample rate that matches one of the SAMPLE_RATE_DETECT_n fields. Note that, if the LRCLK_SRC setting is changed, or if the detection function is disabled and reenabled, a subsequent detection of a matching sample rate may trigger the control-write sequencer, regardless of the TRIG_ON_STARTUP setting.

There are some restrictions to be observed regarding the automatic sample-rate detection configuration, as noted in the following:

- The same sample rate must not be selected on more than one of the SAMPLE RATE DETECT n fields.
- Sample rates 384 kHz and 352.8 kHz must not be selected concurrently.
- Sample rates 192 kHz and 176.4 kHz must not be selected concurrently.
- Sample rates 96 kHz and 88.2 kHz must not be selected concurrently.

The control registers associated with the automatic sample-rate detection function are described in Table 4-104.

4.16.4 System Clock Configuration

The system clocks (SYSCLK, ASYNCCLK and DSPCLK) may be provided directly from external inputs (MCLK, or Slave Mode BCLK inputs). Alternatively, these clocks can be derived using the integrated FLLs, with MCLK, BCLK, LRCLK or SLIMCLK as a reference. Each clock is configured independently, as described in the following sections.

The SYSCLK (and ASYNCCLK, when applicable) clocks must be configured and enabled before any audio path is enabled. The DSPCLK clock must be configured and enabled, if running firmware applications on the DSP core.

4.16.4.1 SYSCLK Configuration

The required SYSCLK frequency is dependent on the SAMPLE_RATE_n fields. Table 4-102 illustrates the valid SYSCLK frequencies for every supported sample rate.

The SYSCLK frequency must be valid for all of the SAMPLE_RATE_n fields. It follows that all of the SAMPLE_RATE_n fields must select numerically-related values, that is, all from the same group of sample rates as represented in Table 4-102.

SYSCLK Frequency (MHz)	SYSCLK_FREQ	SYSCLK_FRAC	Sample Rate (kHz)	SAMPLE_RATE_n
6.144	000	0	12	0x01
12.288	001		24	0x02
24.576 49.152	010 011		48	0x03
98.304	100		96	0x04
33.33			192	0x05
			384	0x06
			8	0x11
			16	0x12
			32	0x13
5.6448	000	1	11.025	0x09
11.2896	001		22.05	0x0A
22.5792 45.1584	010 011		44.1	0x0B
90.3168	100		88.2	0x0C
23.3.00			176.4	0x0D
			352.8	0x0E

Table 4-102. SYSCLK Frequency Selection

Note: The SAMPLE_RATE_*n* fields must each be set to a value from the same group of sample rates, and from the same group as the SYSCLK frequency.

SYSCLK_SRC is used to select the SYSCLK source, as described in Table 4-104. The source may be MCLK*n*, AIF*n*BCLK, or FLL*n*. If an FLL circuit is selected as the source, the relevant FLL must be enabled and configured, as described in Section 4.16.8.

Notes: If FLL1 is selected as SYSCLK source, two different clock frequencies are available. Typical use cases should select a SYSCLK frequency equal to $F_{FLL1} \times 2$ (i.e., in the range 90–100 MHz). A lower frequency selection, equal to F_{FLL1} , is provided to support low-power always-on use cases.

If FLL2 is selected as SYSCLK source, the SYSCLK frequency is F_{FLL2} × 2 (i.e., 90–100 MHz).

SYSCLK_FREQ and SYSCLK_FRAC must be set according to the frequency of the selected SYSCLK source.

The SYSCLK-referenced circuits within the digital core are clocked at a dynamically controlled rate this is limited by the SYSCLK frequency. For maximum signal mixing and processing capacity, the highest possible SYSCLK frequency should be used.

The SAMPLE_RATE_*n* fields are set according to the sample rates that are required by one or more of the CS42L92 audio interfaces. The CS42L92 supports sample rates ranging from 8–384 kHz. See Section 4.16.2 for further details of the supported sample rates for each of the digital-core functions.

The SYSCLK signal is enabled by setting SYSCLK_ENA. The applicable clock source (MCLKn, AIFnBCLK, or FLLn) must be enabled before setting SYSCLK_ENA. This bit should be cleared before stopping or removing the applicable clock source.

The CS42L92 supports seamless switching between clock sources. To change the SYSCLK configuration while SYSCLK is enabled, the SYSCLK_FRAC, SYSCLK_FREQ, and SYSCLK_SRC fields must be updated together in one register write operation. Note that, if changing the frequency only (not the source), SYSCLK_ENA should be cleared before the clock frequency is updated. The current SYSCLK frequency and source can be read from the SYSCLK_FREQ_STS and SYSCLK_SRC_STS fields respectively.

The CS42L92 performs automatic checks to confirm that the SYSCLK frequency is high enough to support the commanded signal paths and processing functions. If the frequency is too low, an attempt to enable a signal path or processing function fails. Note that active signal paths are not affected under such circumstances.

The SYSCLK frequency check provides input to the interrupt-control circuit and can be used to trigger an interrupt event if the frequency is not high enough to support the commanded functionality; see Section 4.15.

4.16.4.2 ASYNCCLK Configuration

The required ASYNCCLK frequency is dependent on the ASYNC_SAMPLE_RATE_n fields. Table 4-103 illustrates the valid ASYNCCLK frequencies for every supported sample rate.

Note that, if all the sample rates in the system are synchronized to SYSCLK, the ASYNCCLK should be disabled (see Table 4-104). The associated register field values are not important in this case.

ASYNCCLK Frequency (MHz)	ASYNC_CLK_FREQ	Sample Rate (kHz)	ASYNC_SAMPLE_RATE_n
6.144	000	12	0x01
12.288	001	24	0x02
24.576 49.152	010 011	48	0x03
98.304	100	96	0x04
00.001	100	192	0x05
		384	0x06
		8	0x11
		16	0x12
		32	0x13
5.6448	000	11.025	0x09
11.2896	001	22.05	0x0A
22.5792	010	44.1	0x0B
45.1584 90.3168	011 100	88.2	0x0C
30.3100	100	176.4	0x0D
		352.8	0x0E

Table 4-103. ASYNCCLK Frequency Selection

Note: The ASYNC_SAMPLE_RATE_n fields must each be set to a value from the same group of sample rates, and from the same group as the ASYNCCLK frequency.

ASYNC_CLK_SRC is used to select the ASYNCCLK source, as described in Table 4-104. The source may be MCLK*n*, AIF*n*BCLK, or FLL*n*. If an FLL circuit is selected as the source, the relevant FLL must be enabled and configured, as described in Section 4.16.8.

Notes: If FLL1 is selected as ASYNCCLK source, two different clock frequencies are available. Typical use cases should select a SYSCLK frequency equal to $F_{FLL1} \times 2$ (i.e., in the range 90–100 MHz). A lower frequency selection, equal to F_{FLL1} , is provided to support low-power always-on use cases.

If FLL2 is selected as ASYNCCLK source, the ASYNCCLK frequency is F_{FLL2} × 2 (i.e., 90–100 MHz).

ASYNC_CLK_FREQ is set according to the frequency of the selected ASYNCCLK source.

The ASYNCCLK-referenced circuits within the digital core are clocked at a dynamically controlled rate that is limited by the ASYNCCLK frequency. For maximum signal mixing and processing capacity, the highest possible ASYNCCLK frequency should be used.

The ASYNC_SAMPLE_RATE_n fields are set according to the sample rates of any audio interface that is not synchronized to the SYSCLK clock domain.

The ASYNCCLK signal is enabled by setting ASYNC_CLK_ENA. The applicable clock source (MCLKn, AIFnBCLK, or FLLn) must be enabled before setting ASYNC_CLK_ENA. This bit should be cleared before stopping or removing the applicable clock source.

The CS42L92 supports seamless switching between clock sources. To change the ASYNCCLK configuration while ASYNCCLK is enabled, the ASYNC_CLK_FREQ and ASYNC_CLK_SRC fields must be updated together in one register write operation. Note that, if changing the frequency only (not the source), ASYNC_CLK_ENA should be cleared before the clock frequency is updated. The current ASYNCCLK frequency and source can be read from the ASYNC_CLK_FREQ_STS and ASYNC_CLK_SRC_STS fields respectively.

The CS42L92 performs automatic checks to confirm that the ASYNCCLK frequency is high enough to support the commanded signal paths and processing functions. If the frequency is too low, an attempt to enable a signal path or processing function fails. Note that active signal paths are not affected under such circumstances.

The ASYNCCLK frequency check provides input to the interrupt-control circuit and can be used to trigger an interrupt event if the frequency is not high enough to support the commanded functionality; see Section 4.15.

4.16.4.3 DSPCLK Configuration

The required DSPCLK frequency depends on the requirements of firmware loaded on the DSP core. The DSP is clocked at the DSPCLK rate or at supported divisions of the DSPCLK frequency; the DSPCLK configuration must ensure that sufficient clock cycles are available for the processing requirements. The requirements vary, according to the particular firmware that is in use.

A configurable clock divider is provided for the DSP core, allowing the DSP clocking (and power consumption) to be optimized according to the applicable processing requirements; see Section 4.4 for details.

DSP_CLK_FREQ must be configured for the applicable DSPCLK frequency. This field is coded in LSB units of 1/64 MHz. Note that, if the field coding cannot represent the DSPCLK frequency exactly, the DSPCLK frequency must be rounded down in the DSP_CLK_FREQ field.

The suggested method for calculating DSP_CLK_FREQ is to multiply the DSPCLK frequency by 64, round down to the nearest integer, and use the resulting integer as DSP_CLK_FREQ (LSB = 1).

DSP_CLK_SRC is used to select the DSPCLK source, as described in Table 4-104. The source may be MCLK*n*, AIF*n*BCLK, or FLL*n*. If an FLL circuit is selected as the source, the relevant FLL must be enabled and configured, as described in Section 4.16.8.

Notes: If FLL1 is selected as DSPCLK source, two different clock frequencies are available. Typical use cases should select a DSPCLK frequency equal to $F_{FLL1} \times 3$ (i.e., in the range 135–150 MHz). A lower frequency selection, equal to F_{FLL1} , is provided to support low-power always-on use cases.

If FLL2 is selected as DSPCLK source, the DSPCLK frequency is F_{FLL2} × 3 (i.e., 135–150 MHz).

The DSPCLK signal is enabled by setting DSP_CLK_ENA. The applicable clock source (MCLK*n*, AIF*n*BCLK, or FLL*n*) must be enabled before setting DSP_CLK_ENA. This bit should be cleared when reconfiguring the clock sources.

The CS42L92 supports seamless switching between clock sources. To change the DSPCLK configuration while DSPCLK is enabled, the DSP_CLK_FREQ field must be updated before DSP_CLK_SRC. The new configuration becomes effective when the DSP_CLK_SRC field is written. Note that, if changing the frequency only (not the source), the DSP_CLK_ENA bit should be cleared before the clock frequency is updated. The current DSPCLK frequency and source can be read from the DSP_CLK_FREQ_STS and DSP_CLK_SRC_STS fields respectively.

In a typical application, DSPCLK and SYSCLK are derived from a single FLL source. Note that there is no requirement for DSPCLK to be synchronized to SYSCLK or ASYNCCLK. The DSPCLK controls the software execution in the DSP core; audio outputs from the DSP core are synchronized either to SYSCLK or ASYNCCLK, regardless of the applicable DSPCLK rate.

4.16.5 Miscellaneous Clock Controls

The CS42L92 incorporates a 32-kHz clock circuit, which is required for input signal debounce, microphone/accessory detect, and for the Charge Pump 2 (CP2) circuits. The 32-kHz clock must be configured and enabled whenever any of these features are used.

The 32-kHz clock can be generated automatically from SYSCLK, or may be provided externally via the MCLK1 or MCLK2 input pins. The 32-kHz clock source is selected using CLK_32K_SRC. The 32-kHz clock is enabled by setting CLK_32K_ENA.

A clock output (OPCLK) derived from SYSCLK can be output on a GPIO pin. A clock output (OPCLK_ASYNC) derived from ASYNCCLK can be output on a GPIO pin. See Section 4.14 for details on configuring a GPIO pin for these functions.

The CS42L92 provides integrated pull-down resistors on the MCLK1, MCLK2, and MCLK3 pins. This provides a flexible capability for interfacing with other devices.

The clocking scheme for the CS42L92 is shown in Fig. 4-65.

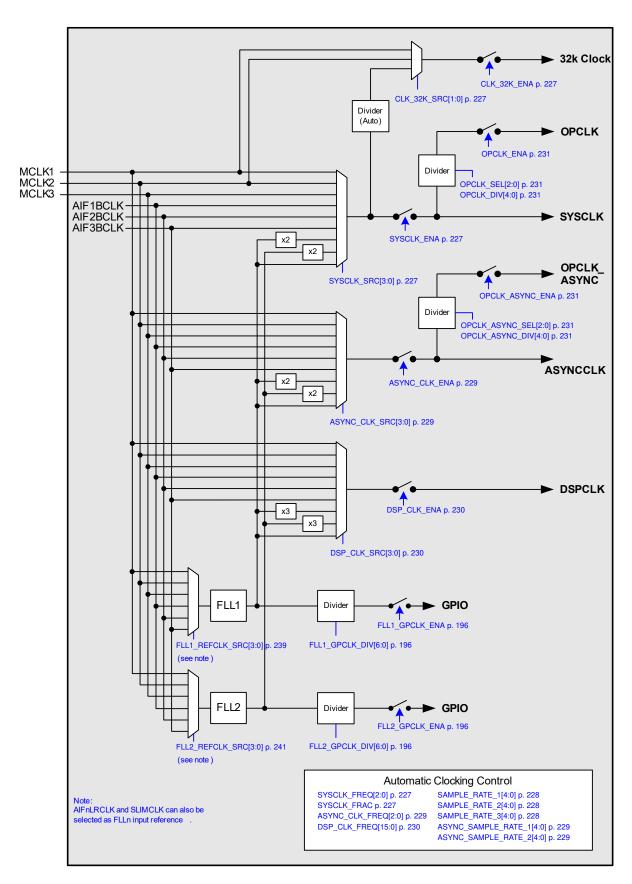


Figure 4-65. System Clocking

The CS42L92 clocking control registers are described in Table 4-104.

Table 4-104. Clocking Control

Register Address	Bit	Label	Default	Description
R256 (0x0100)	6	CLK_32K_ENA	0	32kHz Clock Enable
Clock_32k_1				0 = Disabled
				1 = Enabled
	1:0	CLK_32K_	10	32kHz Clock Source
		SRC[1:0]		00 = MCLK1 (direct)
				01 = MCLK2 (direct)
				10 = SYSCLK (automatically divided)
				11 = Reserved
R257 (0x0101)	15	SYSCLK_FRAC	0	SYSCLK Frequency
System_Clock_1				0 = SYSCLK is a multiple of 6.144MHz
				1 = SYSCLK is a multiple of 5.6448MHz
	10:8	SYSCLK_	100	SYSCLK Frequency
		FREQ[2:0]		000 = 6.144 MHz (5.6448 MHz)
				001 = 12.288 MHz (11.2896 MHz)
				010 = 24.576 MHz (22.5792 MHz)
				011 = 49.152 MHz (45.1584 MHz)
				100 = 98.304 MHz (90.3168 MHz)
				All other codes are reserved
				The frequencies in brackets apply for 44.1 kHz–related sample rates only (i.e., SAMPLE_RATE_n = 01XXX).
	6	SYSCLK_ENA	0	SYSCLK Control
				0 = Disabled
				1 = Enabled
				SYSCLK should only be enabled after the applicable clock source has been configured and enabled.
				Clear this bit before stopping the reference clock or changing the reference clock frequency. Note that the SYSCLK frequency can be changed without disabling, provided the clock source is also changed at the same time.
	3:0	SYSCLK_	0100	SYSCLK Source
		SRC[3:0]		0000 = MCLK1
				0001 = MCLK2
				0010 = MCLK3
				0100 = FLL1 × 2
				0101 = FLL2 × 2
				1000 = AIF1BCLK
				1001 = AIF2BCLK
				1010 = AIF3BCLK
				1111 = FLL1
				All other codes are reserved

Register Address	Bit	Label	Default	Description
R258 (0x0102)	4:0	SAMPLE_RATE_	0x11	Sample Rate 1 Select
Sample_rate_1		1[4:0]		0x00 = None
				0x01 = 12 kHz
				0x02 = 24 kHz
				0x03 = 48 kHz
				0x04 = 96 kHz
				0x05 = 192 kHz
				0x06 = 384 kHz
				0x09 = 11.025 kHz
				0x0A = 22.05 kHz
				0x0B = 44.1 kHz
				0x0C = 88.2 kHz
				0x0D = 176.4 kHz
				0x0E = 352.8 kHz
				0x11 = 8 kHz
				0x12 = 16 kHz
				0x13 = 32 kHz
				All other codes are reserved
R259 (0x0103)	4:0	SAMPLE_RATE_	0x11	Sample Rate 2 Select
Sample_rate_2		2[4:0]		Field coding is same as SAMPLE_RATE_1.
R260 (0x0104)	4:0	SAMPLE_RATE_	0x11	Sample Rate 3 Select
Sample_rate_3		3[4:0]		Field coding is same as SAMPLE_RATE_1.
R266 (0x010A)	4:0	SAMPLE_RATE_	0x00	Sample Rate 1 Status (Read only)
Sample_rate_1_ status		1_STS[4:0]		Field coding is same as SAMPLE_RATE_1.
R267 (0x010B)	4:0	SAMPLE_RATE_	0x00	Sample Rate 2 Status (Read only)
Sample_rate_2_ status		2_STS[4:0]		Field coding is same as SAMPLE_RATE_1.
R268 (0x010C)	4:0	SAMPLE_RATE_	0x00	Sample Rate 3 Status (Read only)
Sample_rate_3_ status		3_STS[4:0]		Field coding is same as SAMPLE_RATE_1.

Register Address	Bit	Label	Default	Description
R274 (0x0112)	10:8	ASYNC_CLK_	011	ASYNCCLK Frequency
Async_clock_1		FREQ[2:0]		000 = 6.144 MHz (5.6448 MHz)
				001 = 12.288 MHz (11.2896 MHz)
				010 = 24.576 MHz (22.5792 MHz)
				011 = 49.152 MHz (45.1584 MHz)
				100 = 98.304 MHz (90.3168 MHz)
				All other codes are reserved
				The frequencies in brackets apply for 44.1 kHz–related sample rates only (i.e., ASYNC_SAMPLE_RATE_n = 01XXX).
	6	ASYNC_CLK_	0	ASYNCCLK Control
		ENA		0 = Disabled
				1 = Enabled
				ASYNCCLK should only be enabled after the applicable clock source has been configured and enabled.
				Clear this bit before stopping the reference clock or changing the reference clock frequency. Note that the ASYNCCLK frequency can be changed without disabling,
				provided the clock source is also changed at the same time.
	3:0	ASYNC_CLK_	0101	ASYNCCLK Source
		SRC[3:0]		0000 = MCLK1
				0001 = MCLK2
				0010 = MCLK3
				0100 = FLL1 × 2
				0101 = FLL2 × 2
				1000 = AIF1BCLK
				1001 = AIF2BCLK
				1010 = AIF3BCLK
				1111 = FLL1
				All other codes are reserved
R275 (0x0113)	4:0	ASYNC_	0x11	ASYNC Sample Rate 1 Select
Async_sample_		SAMPLE_RATE_		0x00 = None
rate_1		1[4:0]		0x01 = 12 kHz
				0x02 = 24 kHz
				0x03 = 48 kHz
				0x04 = 96 kHz
				0x05 = 192 kHz
				0x06 = 384 kHz
				0x09 = 11.025 kHz
				0x0A = 22.05 kHz
				0x0B = 44.1 kHz
				0x0C = 88.2 kHz
				0x0D = 176.4 kHz
				0x0E = 352.8 kHz
				0x11 = 8 kHz
				0x12 = 16 kHz
				0x13 = 32 kHz
				All other codes are reserved
R276 (0x0114)	4:0	ASYNC_	0x11	ASYNC Sample Rate 2 Select
Async_sample_ rate_2		SAMPLE_RATE_ 2[4:0]		Field coding is same as ASYNC_SAMPLE_RATE_1.
R283 (0x011B)	4:0	ASYNC_	0x00	ASYNC Sample Rate 1 Status (Read only)
Async_sample_		SAMPLE_RATE_		Field coding is same as ASYNC_SAMPLE_RATE_1.
rate_1_status		1_STS[4:0]		
R284 (0x011C)	4:0	ASYNC_	0x00	ASYNC Sample Rate 2 Status (Read only)
Async_sample_		SAMPLE_RATE_ 2_STS[4:0]		Field coding is same as ASYNC_SAMPLE_RATE_1.
rate_2_status		2_010[4.0]		

Register Address	Bit	Label	Default	Description
R288 (0x0120)	6	DSP_CLK_ENA	0	DSPCLK Control
DSP_Clock_1				0 = Disabled
				1 = Enabled
				DSPCLK should only be enabled after the applicable clock source has been
				configured and enabled.
				Clear this bit before stopping the reference clock or changing the reference clock frequency. Note that the DSPCLK frequency can be changed without disabling, provided the clock source is also changed at the same time.
	3:0	DSP_CLK_	0101	DSPCLK Source
		SRC[3:0]		0000 = MCLK1
				0001 = MCLK2
				0010 = MCLK3
				0100 = FLL1 × 3
				0101 = FLL2 × 3
				1000 = AIF1BCLK
				1001 = AIF2BCLK
				1010 = AIF3BCLK
				1111 = FLL1
				All other codes are reserved
R290 (0x0122)	15:0	DSP_CLK_	0x0000	DSPCLK Frequency
DSP_Clock_2		FREQ[15:0]		Coded as LSB = 1/64 MHz, Valid from 5.6 MHz to 148 MHz.
				Note that, if this field is written while DSPCLK is enabled, the new frequency does not become effective until DSP_CLK_SRC is updated. To reconfigure DSPCLK while DSPCLK is enabled, the DSP_CLK_FREQ field must be updated before DSP_CLK_SRC.
R294 (0x0126)	15:0	DSP_CLK_	0x0000	DSPCLK Frequency (Read only)
DSP_Clock_4		FREQ_STS[15:0]		Coded as LSB = 1/64 MHz.
R295 (0x0127)	3:0	DSP_CLK_SRC_	0101	DSPCLK Source (Read only)
DSP_Clock_5		STS[3:0]		0000 = MCLK1
				0001 = MCLK2
				0010 = MCLK3
				0100 = FLL1 × 3
				0101 = FLL2 × 3
				1000 = AIF1BCLK
				1001 = AIF2BCLK
				1010 = AIF3BCLK
				1111 = FLL1
				All other codes are reserved

Register Address	Bit	Label	Default	Description
R329 (0x0149)	15	OPCLK_ENA	0	OPCLK Enable
Output_system_				0 = Disabled
clock				1 = Enabled
	7:3	OPCLK_DIV[4:0]	0x00	OPCLK Divider
				0x02 = Divide by 2
				0x04 = Divide by 4
				0x06 = Divide by 6
				(even numbers only)
				0x1E = Divide by 30
				Note that only even numbered divisions (2, 4, 6, etc.) are valid selections.
				All other codes are reserved when the OPCLK signal is enabled.
	2:0	OPCLK_SEL[2:0]	000	OPCLK Source Frequency
				000 = 6.144 MHz (5.6448 MHz)
				001 = 12.288 MHz (11.2896 MHz)
				010 = 24.576 MHz (22.5792 MHz)
				011 = 49.152 MHz (45.1584 MHz)
				All other codes are reserved
				The frequencies in brackets apply for 44.1 kHz–related SYSCLK rates only (i.e., SAMPLE_RATE_n = 01XXX).
				The OPCLK Source Frequency must be less than or equal to the SYSCLK frequency.
R330 (0x014A)	15	OPCLK_ASYNC_	0	OPCLK ASYNC Enable
Output_async_	10	ENA	O	0 = Disabled
clock				1 = Enabled
	7:3	OPCLK ASYNC	0x00	OPCLK ASYNC Divider
	7.0	DIV[4:0]	OXOO	0x02 = Divide by 2
				0x04 = Divide by 4
				0x06 = Divide by 6
				(even numbers only)
				0x1E = Divide by 30
				Note that only even numbered divisions (2, 4, 6, etc.) are valid selections.
				All other codes are reserved when the OPCLK_ASYNC signal is enabled.
	2:0	OPCLK ASYNC	000	OPCLK ASYNC Source Frequency
		SEL[2:0]		000 = 6.144 MHz (5.6448 MHz)
				001 = 12.288 MHz (11.2896 MHz)
				010 = 24.576 MHz (22.5792 MHz)
				011 = 49.152 MHz (45.1584 MHz)
				All other codes are reserved
				The frequencies in brackets apply for 44.1 kHz–related ASYNCCLK rates only (i.e., ASYNC_SAMPLE_RATE_n = 01XXX).
				The OPCLK_ASYNC Source Frequency must be less than or equal to the ASYNCCLK frequency.
R334 (0x014E)	9	MCLK3_PD	0	MCLK3 Pull-Down Control
Clock Gen Pad	•			0 = Disabled
Ctrl				1 = Enabled
	8	MCLK2 PD	0	MCLK2 Pull-Down Control
	•			0 = Disabled
				1 = Enabled
	7	MCLK1 PD	0	MCLK1 Pull-Down Control
	•			0 = Disabled
				1 = Enabled
		1		· CHARLEY

Register Address	Bit	Label	Default	Description
R338 (0x0152)	4	TRIG_ON_	0	Automatic Sample-Rate Detection Start-Up select
Rate_Estimator_1		STARTUP		0 = Do not trigger Write Sequencer on initial detection
				1 = Always trigger the Write Sequencer on sample-rate detection
	3:1	LRCLK_SRC[2:0]	000	Automatic Sample-Rate Detection source
				000 = AIF1LRCLK
				010 = AIF2LRCLK
				100 = AIF3LRCLK
				All other codes are reserved
	0	RATE_EST_ENA	0	Automatic Sample-Rate Detection control
				0 = Disabled
				1 = Enabled
R339 (0x0153)	4:0	SAMPLE_RATE_	0x00	Automatic Detection Sample Rate A
Rate_Estimator_2		DETECT_A[4:0]		(Up to four different sample rates can be configured for automatic detection.)
				Field coding is same as SAMPLE_RATE_n.
R340 (0x0154)	4:0	SAMPLE_RATE_	0x00	Automatic Detection Sample Rate B
Rate_Estimator_3		DETECT_B[4:0]		(Up to four different sample rates can be configured for automatic detection.)
				Field coding is same as SAMPLE_RATE_n.
R341 (0x0155)	4:0	SAMPLE_RATE_	0x00	Automatic Detection Sample Rate C
Rate_Estimator_4		DETECT_C[4:0]		(Up to four different sample rates can be configured for automatic detection.)
				Field coding is same as SAMPLE_RATE_n.
R342 (0x0156)	4:0	SAMPLE_RATE_	0x00	Automatic Detection Sample Rate D
Rate_Estimator_5		DETECT_D[4:0]		(Up to four different sample rates can be configured for automatic detection.)
				Field coding is same as SAMPLE_RATE_n.

Table 4-104. Clocking Control (Cont.)

Register Address	Bit	Label	Default	Description
R352 (0x0160)	15:13	ASYNC_CLK_	000	ASYNCCLK Frequency (Read only)
Clocking_debug_5		FREQ_STS[2:0]		000 = 6.144 MHz (5.6448 MHz)
				001 = 12.288 MHz (11.2896 MHz)
				010 = 24.576 MHz (22.5792 MHz)
				011 = 49.152 MHz (45.1584 MHz)
				100 = 98.304 MHz (90.3168 MHz)
				All other codes are reserved
				The frequencies in brackets apply for 44.1 kHz–related sample rates only (i.e., ASYNC_SAMPLE_RATE_n = 01XXX).
	12:9	ASYNC_CLK_	0000	ASYNCCLK Source (Read only)
		SRC_STS[3:0]		0000 = MCLK1
				0001 = MCLK2
				0010 = MCLK3
				0100 = FLL1 × 2
				0101 = FLL2 × 2
				1000 = AIF1BCLK
				1001 = AIF2BCLK
				1010 = AIF3BCLK
				1111 = FLL1
				All other codes are reserved
	6:4	SYSCLK_FREQ_	000	SYSCLK Frequency (Read only)
		STS[2:0]		000 = 6.144 MHz (5.6448 MHz)
				001 = 12.288 MHz (11.2896 MHz)
				010 = 24.576 MHz (22.5792 MHz)
				011 = 49.152 MHz (45.1584 MHz)
				100 = 98.304 MHz (90.3168 MHz)
				All other codes are reserved
				The frequencies in brackets apply for 44.1 kHz–related sample rates only (i.e., SAMPLE_RATE_n = 01XXX).
	3:0	SYSCLK_SRC_	0000	SYSCLK Source (Read only)
		STS[3:0]		0000 = MCLK1
				0001 = MCLK2
				0010 = MCLK3
				0100 = FLL1 × 2
				0101 = FLL2 × 2
				1000 = AIF1BCLK
				1001 = AIF2BCLK
				1010 = AIF3BCLK
				1111 = FLL1
				All other codes are reserved

In AIF Slave Modes, it is important to ensure that the applicable clock domain (SYSCLK or ASYNCCLK) is synchronized with the associated external LRCLK. This can be achieved by selecting an MCLK*n* input that is derived from the same reference as the LRCLK, or can be achieved by selecting the external BCLK or LRCLK signal as a reference input to one of the FLLs, as a source for SYSCLK or ASYNCCLK.

If the AIF clock domain is not synchronized with the LRCLK, clicks arising from dropped or repeated audio samples occur, due to the inherent tolerances of multiple, asynchronous, system clocks. See Section 5.4 for further details on valid clocking configurations.

4.16.6 BCLK and LRCLK Control

The digital audio interfaces (AIF1–AIF3) use BCLK and LRCLK signals for synchronization. In Master Mode, these are output signals, generated by the CS42L92. In Slave Mode, these are input signals to the CS42L92. It is also possible to support mixed master/slave operation.

The BCLK and LRCLK signals are controlled as shown in Fig. 4-66. See Section 4.7 for details of the associated control fields.

Note that the BCLK and LRCLK signals are synchronized to SYSCLK or ASYNCCLK, depending upon the applicable clock domain for the respective interface. See Section 4.3.14 for further details.

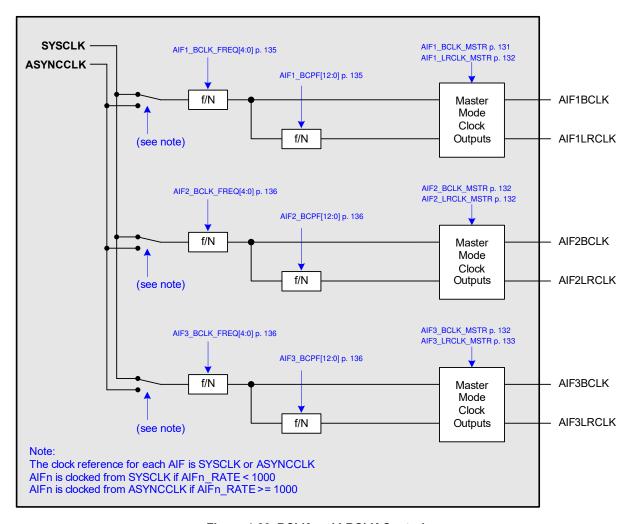


Figure 4-66. BCLK and LRCLK Control

4.16.7 Control Interface Clocking

Register map access is possible with or without a system clock—there is no requirement for SYSCLK, or any other system clock, to be enabled when accessing the register map. See Section 4.17 for details of control register access.

Timing specifications for each of the control interfaces are provided in Table 3-19—Table 3-21. In some applications, additional system-wide constraints must be observed to ensure control interface limits are not exceeded. These constraints need to be considered if any of the following conditions is true.

- SYSCLK is enabled and is < 22.5792 MHz
- Control-register access is scheduled at register address 0x8 0000 or above
- Control-register access is scheduled on more than one of the control interfaces simultaneously

The control interface limits vary depending on the system clock (SYSCLK or DSPCLK) configuration, the address of the control register access, and on which control interfaces are being used.

Table 4-105 describes valid system conditions for accessing the codec registers (below 0x8_0000). The control interfaces must operate within the limits represented by one of the permitted configurations shown, in accordance with the applicable SYSCLK frequency.

SYSCLK Condition	SPI	SLIMbus	Description
SYSCLK is disabled, or SYSCLK ≥ 22.5792 MHz	26 MHz	27 MHz	Full concurrent SPI/SLIMbus capability for codec register access.
SYSCLK = 12.288 MHz	26 MHz	_	SPI and SLIMbus operating in isolation.
	_	27 MHz	7
	13 MHz	24.576 MHz	SPI and SLIMbus operating concurrently.
	12 MHz	27 MHz	7
SYSCLK = 11.2896 MHz	26 MHz	_	SPI and SLIMbus operating in isolation.
	_	27 MHz	7
	12 MHz	22.5792 MHz	SPI and SLIMbus operating concurrently.
	9 MHz	27 MHz	7
SYSCLK < 11.2896 MHz	13 MHz	_	SPI and SLIMbus operating in isolation.
	_	27 MHz	

Table 4-105. Maximum SPI/SLIMbus Clock Speeds—Codec Register Access

Notes:

- If SYSCLK < 11.2896 MHz, simultaneous register access via SPI/SLIMbus control interfaces should not be attempted.
- If SYSCLK is disabled, full concurrent SPI/SLIMbus capability for codec register access is supported.
- The SPI interface limits noted above are only applicable if the SPI interface is accessing codec registers. Options shown with
 "—" in the SPI column represent use cases where the SPI interface is either unused, or is being used to access the DSP
 registers.
- The SLIMbus interface limits noted above are only applicable if multibyte burst transfers of more than 8 bytes are scheduled.
 Options shown with "—" in the SLIMbus column represent use cases where SLIMbus is either unused, or is configured to support any combination of audio channels, and burst transfers ≤ 8 bytes.
- Register access via the I²C interface is supported at all times, regardless of the SLIMbus loading.

Table 4-106 describes valid system conditions for accessing the DSP firmware registers (0x8_0000 and above). The control interfaces must operate within the limits represented by one of the permitted configurations shown, in accordance with the applicable DSPCLK frequency.

DSPCLK Condition	SPI	SLIMbus	Description
DSPCLK is disabled, or	26 MHz	_	One high speed interface.
DSPCLK ≥ 45 MHz	_	27 MHz	
	26 MHz	24.576 MHz	SPI and SLIMbus operating concurrently.
	21 MHz	27 MHz	
24.576 MHz ≤ DSPCLK < 45 MHz	26 MHz	_	SPI and SLIMbus operating in isolation.
	_	24.576 MHz	
12.288 MHz ≤ DSPCLK < 24.576 MHz	13 MHz	_	SPI and SLIMbus operating in isolation.
	_	12.288 MHz	

Table 4-106. Maximum SPI/SLIMbus Clock Speeds—DSP Firmware Register Access

Notes:

- If DSPCLK < 24.576MHz, simultaneous register access via SPI/SLIMbus control interfaces should not be attempted.
- If DSPCLK is disabled, the valid configurations are the same as for DSPCLK ≥ 45MHz.
- The SPI interface limits noted above are only applicable if the SPI interface is accessing DSP registers. Options shown with
 "—" in the SPI column represent use cases where the SPI interface is either unused, or is being used to access the codec
 registers.
- The SLIMbus interface limits noted above are only applicable if multibyte burst transfers of more than 8 bytes are scheduled. Options shown with "—" in the SLIMbus column represent use cases where SLIMbus is either unused, or is configured to support any combination of audio channels, and burst transfers ≤ 8 bytes.
- Register access via the I2C interface is supported at all times, regardless of the SLIMbus loading.

4.16.8 Frequency-Locked Loop (FLL1, FLL2)

Two integrated FLLs are provided to support the clocking requirements of the CS42L92. These can be configured according to the available reference clocks and the application requirements. The reference clock may use a high frequency (e.g., 12.288 MHz) or low frequency (e.g., 32.768 kHz). The FLL is tolerant of jitter and may be used to generate a stable output clock from a less stable input reference.

4.16.8.1 Overview

The FLL characteristics are summarized in Table 3-11. In normal operation, the FLL output is frequency locked to an input clock reference. The FLL can be used to generate a free-running clock in the absence of any external reference, as described in Section 4.16.8.6.

4.16.8.2 FLL Enable

The FLL is enabled by setting FLLn_ENA (where n = 1 or 2 for the corresponding FLL). Note that the other FLL fields should be configured before enabling the FLL; the FLLn_ENA bit should be set as the final step of the FLLn enable sequence.

The FLL supports configurable free-running operation in FLL Hold Mode, using the FLL*n*_HOLD bit described in Section 4.16.8.6. If the FLL is enabled and FLL Hold Mode is selected, the configured output frequency is maintained without any input reference required. Note that, once the FLL output has been established, the FLL is always free running if the input reference clock is stopped, regardless of the FLL*n*_HOLD bit.

Note that, to disable the FLL while the input reference clock has stopped, FLLn_HOLD must be set before clearing FLLn_ENA.

When changing FLL settings, it is recommended to disable the FLL by clearing FLLn_ENA before updating the other register fields. It is possible to configure the FLL while the FLL is enabled, as described in Section 4.16.8.4. As a general rule, however, it is recommended to configure the FLL before setting FLLn_ENA.

The procedure for configuring the FLL is described in the following subsections. The description is applicable to FLL1 and FLL2; the associated control fields are described in Table 4-108 and Table 4-109 respectively.

4.16.8.3 Input Frequency Control

The main input reference is selected using FLL*n*_REFCLK_SRC. The available options are MCLK*n*, SLIMCLK, AIF *n*BCLK, or AIF *n*LRCLK.

The SLIMCLK reference is controlled by an adaptive divider on the external SLIMCLK input. The divider automatically adapts to the SLIMbus clock gear, to provide a constant reference frequency for the FLL—see Section 4.10.3.

The FLL*n*_REFCLK_DIV field controls a programmable divider on the input reference. The input can be divided by 1, 2, 4 or 8. The divider should be configured to bring each reference down to 13 MHz or below. For best performance, it is recommended that the highest possible frequency—within the 13 MHz limit—should be selected.

The FLL incorporates a reference-detection circuit for the main input clock. This ensures best FLL performance in the event of the main input clock being interrupted. If there is a possibility of the main input being interrupted while the FLL is enabled, then the reference-detection circuit must be enabled by setting FLL*n*_REFDET. The reference detection also provides input to the interrupt control circuit and can be used to trigger an interrupt event when the input reference is stopped—see Section 4.15.

4.16.8.4 Output Frequency Control

The FLL output frequency, F_{FLI}, relative to the main input reference F_{RFF}, is a function of:

- The frequency ratio set by FLLn FB DIV
- The real number represented by N.K. (N = integer; K = fractional portion, i.e., < 1)

The output frequency must be in the range 45–50 MHz.

If the FLL is selected as SYSCLK or ASYNCCLK source, the respective F_{FLL} frequency must be exactly 49.152 MHz (for 48 kHz–related sample rates) or 45.1584 MHz (for 44.1 kHz–related sample rates).

- If FLL2 is selected as SYSCLK or ASYNCCLK source, the respective clock frequency is equal to F_{FLL} × 2.
- If FLL1 is selected as SYSCLK or ASYNCCLK source, two different frequencies are available. Typical use cases should select the higher frequency (F_{FLL} × 2); a lower frequency (F_{FLL}) is available to support low-power always-on use cases.

If the FLL is selected as DSPCLK source, the following frequency options are supported:

- If FLL2 is selected as DSPCLK source, the DSPCLK frequency is in the range 135–150 MHz. The frequency is
 equal to F_{FLL} × 3.
- If FLL1 is selected as DSPCLK source, two different frequencies are available. Typical use cases should select the higher frequency (F_{FLL} × 3); a lower frequency (F_{FLL}) is available to support low-power always-on use cases.
- Note that the DSPCLK can be divided to lower frequencies for clocking the DSP core.

The FLL clock can be configured as a GPIO output; a programmable divider supports division ratios in the range 2 through 127, enabling a wide range of GPIO clock output frequencies.

Note: The chosen F_{FLL} frequency can be used to support multiple outputs simultaneously (e.g., SYSCLK, DSPCLK, and GPIO).

To configure the FLL output frequency, it must be determined whether Integer Mode or Fractional Mode is required.

- If the ratio F_{FLL} / F_{REF} is an integer, then Integer Mode applies
- If the ratio F_{FLL} / F_{REF} is not an integer, then Fractional Mode applies

The input reference must be identified in one of three frequency ranges.

- If F_{REF} < 192 kHz, this is low clock frequency
- If F_{REF} ≥ 192 kHz and FREF < 1.152 MHz, this is *mid* clock frequency
- If F_{REF} ≥ 1.152 MHz, this is high clock frequency

Note: F_{REF} is the input frequency, after division by FLLn_REFCLK_DIV, where applicable.

The FLL oscillator frequency, F_{OSC}, is set according to the applicable mode and input reference frequency.

- If Fractional Mode is used and F_{REF} is high frequency, then F_{OSC} = F_{FLL} × 6
- Otherwise, F_{OSC} = F_{FLL}

The FLL oscillator frequency, F_{OSC}, is set according to the following equation:

$$F_{OSC} = (F_{REF} \times N.K \times FLL_n_FB_DIV)$$

The FLLn_FB_DIV value should be configured according to the applicable mode and input reference frequency.

- If Integer Mode is used and F_{REF} is low frequency, then FLLn_FB_DIV should be set to 4
- If Fractional Mode is used and F_{RFF} is low frequency, then FLLn FB DIV should be set to 256
- Otherwise, FLLn FB DIV should be set to 1

The value of N.K can be determined as follows:

$$N.K = F_{OSC} / (FLLn_FB_DIV \times F_{REF})$$

The calculated value of N must lie within a valid range, according to the applicable mode.

- If Integer Mode is used, N is valid in the range 1–1023
- If Fractional Mode is used, N is valid in the range 4–255

If the calculated value of N is too high, a higher FLL*n*_FB_DIV is required. If the calculated value of N is too low, a lower FLL*n*_FB_DIV is required. It is recommended to adjust the FLL*n*_FB_DIV value by multiplying or dividing by 2 until a valid N is achieved.

The value of N is held in FLLn N.

The value of K is determined by the ratio FLL*n*_THETA / FLL*n*_LAMBDA. In Fractional Mode, the FLL*n*_THETA and FLL*n*_LAMBDA fields can be derived as described in Section 4.16.8.5.

The FLLn_N, FLLn_THETA, and FLLn_LAMBDA fields are all coded as integers (LSB = 1).

When changing FLL settings, it is recommended to disable the FLL by clearing FLL*n*_ENA before updating the other register fields. If the FLL settings or input reference are changed without disabling the FLL, the FLL Hold Mode must be selected before writing to any other FLL control fields. FLL Hold Mode is selected by setting FLL*n* HOLD.

If the FLL control fields are written while the FLL is enabled (FLL*n*_ENA = 1), the new values are only effective when a 1 is written to FLL*n*_CTRL_UPD. This makes it possible to update the FLL configuration fields simultaneously, without disabling the FLL.

To change FLL settings without disabling the FLL, the recommended control sequence is:

- Select FLL Hold Mode (FLLn HOLD = 1)
- · Write to the FLL control fields
- Update the FLL control registers (write 1 to FLLn CTRL UPD)
- Disable FLL Hold Mode (FLLn HOLD = 0)

Note that, if the FLL is disabled, the FLL control fields can be updated without writing to FLLn CTRL UPD.

The FLL*n*_PD_GAIN_FINE, FLL*n*_PD_GAIN_COARSE, FLL*n*_FD_GAIN_FINE, FLL*n*_FD_GAIN_COARSE, FLL*n*_HP, and FLLn_CLK_VCO_FAST_SRC fields should be configured as described in Table 4-107.

Note: When writing to the FLL*n*_CLK_VCO_FAST_SRC or FLL*n*_HP fields, take care not to change other nonzero bits that are configured at the same register address.

Condition	FLL <i>n</i> _PD_ GAIN_FINE	FLL <i>n</i> _PD_ GAIN_ COARSE	FLL <i>n</i> _FD_ GAIN_FINE	FLL <i>n</i> _FD_ GAIN_ COARSE	FLL <i>n</i> _ LOCKDET_ THR	FLL <i>n_</i> CLK_ VCO_ FAST_SRC	FLL <i>n</i> _HP
Low clock frequency	0x2	0x3	0xF	0x0	0x2	_	_
Mid clock frequency	0x2	0x2	0xF	0x2	0x8		
High clock frequency	0x2	0x1	0xF	0x0	0x8		
Integer Mode Fractional Mode, Low clock frequency Fractional Mode, Mid clock frequency Fractional Mode, High clock frequency		_	_	_	_	0x0 0x0 0x0 0x3	_
Integer Mode Fractional Mode		_	_	_	_	_	0x0 0x3

Table 4-107. FLLn Control Field Settings

4.16.8.5 Calculation of Theta and Lambda

In Fractional Mode, FLLn THETA and FLLn LAMBDA are calculated with the following steps:

1. Calculate GCD(FLL) using the Greatest Common Denominator function:

 $GCD(FLL) = GCD(FLLn FB DIV \times F_{RFF}, F_{OSC}),$

where GCD(x, y) is the greatest common denominator of x and y.

F_{REF} is the input frequency, after division by FLL*n*_REFCLK_DIV, where applicable.

2. Calculate FLLn_THETA and FLLn_LAMBDA using the following equations:

 $FLLn_THETA = (F_{OSC} - (FLL_N \times FLLn_FB_DIV \times F_{REF})) / GCD(FLL)$

 $FLLn_LAMBDA = (FLLn_FB_DIV \times F_{REF}) / GCD(FLL)$

Notes: The values of GCD(FLL), FLL*n*_THETA, and FLL*n*_LAMBDA should be calculated using the applicable frequency values in Hz (i.e., not kHz or MHz).

In Fractional Mode, the values of FLL*n*_THETA and FLL*n*_LAMBDA must be coprime (i.e., not divisible by any common integer). The calculation above ensures that the values are coprime.

The value of K must be less than 1 (i.e., FLLn THETA must be less than FLLn LAMBDA).

4.16.8.6 FLL Hold Mode

FLL Hold Mode enables the FLL to generate a clock signal even if no external reference is available, such as when the normal input reference has been interrupted during a standby or start-up period. FLL Hold Mode is selected by setting FLLn HOLD.

If the FLL is enabled and FLL Hold Mode is selected, the normal feedback mechanism of the FLL is halted and the FLL oscillates independently of the external input references—the FLL output frequency remains unchanged if FLL Hold Mode is enabled.

If the FLL is enabled and the input reference clock is stopped, the loop always runs freely, regardless of the FLLn_HOLD setting. If FLLn HOLD = 0, the FLL relocks to the input reference whenever it is available.

If the FLL configuration or input reference are changed without disabling the FLL, the FLL Hold Mode must be selected before writing to any other FLL control fields—see Section 4.16.8.4.

The free-running FLL clock may be selected as the SYSCLK, ASYNCCLK, or DSPCLK source, as shown in Fig. 4-65.

4.16.8.7 FLL Control Registers

The FLL1 control registers are described in Table 4-108.

Example settings for a variety of reference frequencies and output frequencies are shown in Section 4.16.8.10.

Table 4-108. FLL1 Register Map

Register Address	Bit	Label	Default		Description			
R369 (0x0171)	3:0	FLL1_REFCLK_	0000	FLL1 Clock source				
FLL1_Control_1		SRC[3:0]		0000 = MCLK1	1000 = AIF1BCLK	1101 = AIF2LRCLK		
				0001 = MCLK2	1001 = AIF2BCLK	1110 = AIF3LRCLK		
				0010 = MCLK3	1010 = AIF3BCLK	All other codes are		
				0011 = SLIMCLK	1100 = AIF1LRCLK	reserved		
	2	FLL1_HOLD	1	FLL1 Hold Mode Enable				
				0 = Disabled				
				1 = Enabled				
				The FLL feedback mech setting is maintained.	anism is halted in FLL Hold	Mode, and the latest integrator		
	0	FLL1_ENA	0	FLL1 Enable				
				0 = Disabled				
				1 = Enabled				
					e final step of the FLL1 enab	le sequence.		
R370 (0x0172)	15	FLL1_CTRL_UPD	0	FLL1 Control Update				
FLL1_Control_2				Write 1 to apply the FLL1 configuration field settings. (Only valid if FLL1_ENA = 1)				
	9:0	FLL1_N[9:0]	0x004		FLL1 Integer multiply for F _{REF}			
				Coded as LSB = 1.				
R371 (0x0173)	15:0	FLL1_	0x0000	FLL1 Fractional multiply				
FLL1_Control_3		THETA[15:0]		,	tiply) part of the FLL1_THET	A/FLL1_LAMBDA ratio.		
				Coded as LSB = 1.				
R372 (0x0174)	15:0	FLL1_ LAMBDA[15:0]	0x0000	FLL1 Fractional multiply				
FLL1_Control_4		LAMBDA[15.0]			ividing) part of the FLL1_TH	ETA/FLL1_LAMBDA ratio.		
D070 (0, 0475)		ELL 4 ED DIV (10 01	0.0001	Coded as LSB = 1.				
R373 (0x0175)	9:0	FLL1_FB_DIV[9:0]	0x0001	FLL1 Clock Feedback ra	atio			
FLL1_Control_5	4.5	FLIA DEEDET		Coded as LSB = 1.				
R374 (0x0176)	15	FLL1_REFDET	1	FLL1 Reference Detect	control			
FLL1_Control_6				0 = Disabled				
	7.0	FLIA DEFOLK	00	1 = Enabled	to dial a c			
	7:6	FLL1_REFCLK_ DIV[1:0]	00	FLL1 Clock Reference d				
		5.4[1.0]		00 = 1 01 = 2	10 = 4 11 = 8			
				* . =	•	up to < 12 MUz		
				INICER (or other input ret	erence) must be divided dov	VII (O ≤ 13 IVIMZ.		

Table 4-108. FLL1 Register Map (Cont.)

Register Address	Bit	Label	Default		Description	
R376 (0x0178)	15:12	FLL1_PD_GAIN_	0x2	FLL1 Phase Detector G	Gain 2	
FLL1_Control_8		FINE[3:0]		Gain is 2-X, where X is	FLL1_PD_GAIN_FINE in 2's	complement coding.
				0000 = 1	$0110 = 2^{-6}$	1100 = 16
				0001 = 0.5	$0111 = 2^{-7}$	1101 = 8
				0010 = 0.25	1000 = 256	1110 = 4
				0011 = 0.125	1001 = 128	1111 = 2
				0100 = 2-4	1010 = 64	
				0101 = 2-5	1011 = 32	
	11:8	FLL1_PD_GAIN_	0x1	FLL1 Phase Detector G	Gain 1	
		COARSE[3:0]		Gain is 2-X, where X is	FLL1_PD_GAIN_COARSE i	n 2's complement coding.
				0000 = 1	$0110 = 2^{-6}$	1100 = 16
				0001 = 0.5	$0111 = 2^{-7}$	1101 = 8
				0010 = 0.25	1000 = 256	1110 = 4
				0011 = 0.125	1001 = 128	1111 = 2
				$0100 = 2^{-4}$	1010 = 64	
				0101 = 2-5	1011 = 32	
	7:4	FLL1_FD_GAIN_	0xF	FLL1 Frequency Detec		
		FINE[3:0]			FLL1_FD_GAIN_FINE in into	eger coding.
				0000 = 1	0011 = 0.125	1110 = 2-14
				0001 = 0.5		1111 = Reserved
				0010 = 0.25	1101 = 2 ⁻¹³	
	3:0	FLL1_FD_GAIN_	0x0	FLL1 Frequency Detec		
		COARSE[3:0]			FLL1_FD_GAIN_COARSE i	-
				0000 = 1	$0110 = 2^{-6}$	1100 = 16
				0001 = 0.5	$0111 = 2^{-7}$	1101 = 8
				0010 = 0.25	1000 = 256	1110 = 4
				0011 = 0.125	1001 = 128	1111 = 2
				$0100 = 2^{-4}$	1010 = 64	
				0101 = 2-5	1011 = 32	
R378 (0x017A)	15:14	FLL1_HP[1:0]	00	FLL1 Fractional Mode	control	
FLL1_Control_10				00 = Integer mode	10 = Reserved	
				01 = Reserved	11 = Fractional Mode	
R379 (0x017B)	4:1	FLL1_LOCKDET_	0x8	FLL1 Lock Detect thres		
FLL1_Control_11		THR[3:0]			eshold) to 0xF (high threshold)
	0	FLL1_LOCKDET	1	FLL1 Lock Detect enab	led	
				0 = Disabled		
				1 = Enabled		
R381 (0x017D)	1:0	FLL1_CLK_VCO_	0x0	FLL1 Oscillator Freque	•	
FLL1_Digital_		FAST_SRC[1:0]		00 = 45–50 MHz	10 = Reserved	
Test_1				01 = Reserved	11 = 270–300 MHz	

The FLL2 control registers are described in Table 4-109.

Table 4-109. FLL2 Register Map

Register Address	Bit	Label	Default		Description		
R401 (0x0191)	3:0	FLL2_REFCLK_	0111	FLL2 Clock source			
FLL2_Control_1		SRC[3:0]		0000 = MCLK1	1000 = AIF1BCLK	1101 = AIF2LRCLK	
				0001 = MCLK2	1001 = AIF2BCLK	1110 = AIF3LRCLK	
				0010 = MCLK3	1010 = AIF3BCLK	All other codes are	
				0011 = SLIMCLK	1100 = AIF1LRCLK	reserved	
	2	FLL2_HOLD	1	FLL2 Hold Mode Enabl	e		
				0 = Disabled			
				1 = Enabled			
					hanism is halted in FLL Hold	Mode, and the latest integrator	
				setting is maintained.			
	0	FLL2_ENA	0	FLL2 Enable			
				0 = Disabled			
				1 = Enabled			
					he final step of the FLL2 enab	le sequence.	
R402 (0x0192)	15	FLL2_CTRL_UPD	0	FLL2 Control Update			
FLL2_Control_2				Write 1 to apply the FLL2 configuration field settings. (Only valid if FLL2_ENA = 1)			
	9:0	FLL2_N[9:0]	0x004	FLL2 Integer multiply for F _{REF}			
				Coded as LSB = 1.			
R403 (0x0193)	15:0	FLL2_	0x0000	FLL2 Fractional multiple			
FLL2_Control_3		THETA[15:0]			ultiply) part of the FLL2_THET	A/FLL2_LAMBDA ratio.	
				Coded as LSB = 1.			
R404 (0x0194)	15:0	FLL2_	0x0000	FLL2 Fractional multiply	•		
FLL2_Control_4		LAMBDA[15:0]		Sets the denominator (dividing) part of the FLL2_TH	ETA/FLL2_LAMBDA ratio.	
				Coded as LSB = 1.			
R405 (0x0195)	9:0	FLL2_FB_DIV[9:0]	0x0001	FLL2 Clock Feedback i	ratio		
FLL2_Control_5				Coded as LSB = 1.			
R406 (0x0196)	15	FLL2_REFDET	1	FLL2 Reference Detect	t control		
FLL2_Control_6				0 = Disabled			
				1 = Enabled			
	7:6	FLL2_REFCLK_	00	FLL2 Clock Reference	divider		
		DIV[1:0]		00 = 1	10 = 4		
				01 = 2	11 = 8		
				MCLK (or other input re	eference) must be divided dov	vn to ≤ 13 MHz.	

Table 4-109. FLL2 Register Map (Cont.)

Register Address	Bit	Label	Default		Description	
R408 (0x0198)	15:12	FLL2_PD_GAIN_	0x2	FLL2 Phase Detector (Gain 2	
FLL2_Control_8		FINE[3:0]		Gain is 2-X, where X is	FLL2_PD_GAIN_FINE in 2'	s complement coding.
				0000 = 1	$0110 = 2^{-6}$	1100 = 16
				0001 = 0.5	0111 = 2-7	1101 = 8
				0010 = 0.25	1000 = 256	1110 = 4
				0011 = 0.125	1001 = 128	1111 = 2
				0100 = 2-4	1010 = 64	
				0101 = 2-5	1011 = 32	
	11:8	FLL2_PD_GAIN_	0x1	FLL2 Phase Detector (Gain 1	
		COARSE[3:0]		Gain is 2-X, where X is	FLL2_PD_GAIN_COARSE	in 2's complement coding.
				0000 = 1	$0110 = 2^{-6}$	1100 = 16
				0001 = 0.5	$0111 = 2^{-7}$	1101 = 8
				0010 = 0.25	1000 = 256	1110 = 4
				0011 = 0.125	1001 = 128	1111 = 2
				0100 = 2-4	1010 = 64	
				0101 = 2-5	1011 = 32	
	7:4	FLL2 FD GAIN	0xF	FLL2 Frequency Detec	ctor Gain 2	
		FINE[3:0]		Gain is 2-X, where X is	FLL2_FD_GAIN_FINE in in	teger coding.
				0000 = 1	0011 = 0.125	1110 = 2-14
				0001 = 0.5		1111 = Reserved
				0010 = 0.25	$1101 = 2^{-13}$	
	3:0	FLL2_FD_GAIN_	0x0	FLL2 Frequency Detec	ctor Gain 1	
		COARSE[3:0]		Gain is 2-X, where X is	FLL2_FD_GAIN_COARSE	in 2's complement coding.
				0000 = 1	0110 = 2 ⁻⁶	1100 = 16
				0001 = 0.5	$0111 = 2^{-7}$	1101 = 8
				0010 = 0.25	1000 = 256	1110 = 4
				0011 = 0.125	1001 = 128	1111 = 2
				0100 = 2-4	1010 = 64	
				0101 = 2-5	1011 = 32	
R410 (0x019A)	15:14	FLL2_HP[1:0]	00	FLL2 Fractional Mode	control	
FLL2 Control 10				00 = Integer mode	10 = Reserved	
				01 = Reserved	11 = Fractional Mode	
R411 (0x019B)	4:1	FLL2 LOCKDET	0x8	FLL2 Lock Detect thres	shold	
FLL2 Control 11		THR[3:0]		Valid from 0x0 (low three	eshold) to 0xF (high threshole	d)
	0	FLL2_LOCKDET	1	FLL2 Lock Detect enab	, , ,	
		_		0 = Disabled		
				1 = Enabled		
R413 (0x019D)	1:0	FLL2_CLK_VCO_	0x0	FLL2 Oscillator Freque	ency Control	
FLL2_Digital_		FAST_SRC[1:0]		00 = 45–50 MHz	10 = Reserved	
Test 1				01 = Reserved	11 = 270-300 MHz	

4.16.8.8 FLL Interrupts and GPIO Output

For each FLL, the CS42L92 provides status signals that indicate whether the input reference is present and whether FLL lock has been achieved (i.e., the FLL is locked to the input reference signal).

To enable the FLL lock indication, the FLLn_LOCKDET bit must be set. The FLL lock condition is measured with respect to a configurable threshold that is set using FLLn_LOCKDET_THR. Note that the FLLn_LOCKDET_THR field controls the lock indication only—it does not control the behavior of the FLL.

To enable the FLL input reference indication, the FLL*n*_REFDET bit must be set.

The FLL status signals are inputs to the interrupt control circuit and can be used to trigger an interrupt event when the input reference is stopped or when the FLL lock status changes. See Section 4.15. Note that these interrupt signals are debounced and require clocking to be present in order to assert the respective interrupt—either the 32-kHz clock or the SYSCLK signal must be enabled to trigger an interrupt from the FLL signals.

The FLL lock signal can be output directly on a GPIO pin as an external indication of the FLL status. See Section 4.14 to configure a GPIO pin for these functions. (These GPIO outputs are not debounced and do not require clocking to be present.)

Clock output signals derived from the FLL can be output on a GPIO pin. See Section 4.14 to configure a GPIO pin for this function.

4.16.8.9 Example FLL Calculation

The following example illustrates how to derive the FLL1 register fields to generate an FLL output frequency (F_{FLL}) of 49.152 MHz from a 12.000-MHz reference clock (F_{REF}). This is suitable for generating SYSCLK at 98.304 MHz and DSPCLK at 147.456 MHz.

1. Set FLL1_REFCLK_DIV to generate F_{REF} ≤ 13 MHz:

FLL1_REFCLK_DIV = 00 (divide by 1)

2. Determine if Integer Mode or Fractional Mode is required:

F_{FLL} / F_{REF} is 4.096. Therefore, Fractional Mode applies.

3. Identify the input clock frequency range:

 $F_{REF} \ge 1.152$ MHz. This is *high* clock frequency.

4. Calculate the FLL oscillator frequency, FOSC:

In Fractional Mode, with high clock frequency input, $F_{OSC} = F_{FLL} \times 6 = 294.912 \text{ MHz}$

5. Select the required value of FLL1_FB_DIV:

In Fractional Mode, with high clock frequency input, FLL1_FB_DIV = 1

6. Calculate N.K as given by N.K = F_{OSC} / (FLL1 FB DIV × F_{RFF}):

```
N.K = 294912000 / (1 × 12000000) = 24.576
```

- 7. Confirm that the calculated value of N is within the valid range for fractional mode (4–255).
- 8. Determine FLL1 N from the integer portion of N.K:

```
FLL1 N = 24 (0x018)
```

9. Determine GCD(FLL), as given by GCD(FLL) = GCD(FLL1_FB_DIV × F_{RFF}, F_{OSC}):

```
GCD(FLL) = GCD(1 \times 12000000, 294912000) = 96000
```

10. Determine FLL1_THETA, as given by FLL1_THETA = (F_{OSC} – (FLL1_N × FLL1_FB_DIV × F_{REF})) / GCD(FLL):

```
FLL1_THETA = (294912000 - (24 \times 1 \times 12000000)) / 96000
FLL1_THETA = 72 (0x0048)
```

11. Determine FLL1 LAMBDA, as given by FLL1 LAMBDA = (FLL1 FB DIV x F_{RFF}) / GCD(FLL):

```
FLL1_LAMBDA = (1 × 12000000) / 96000
FLL1_LAMBDA = 125 (0x007D)
```

12. Determine other FLL settings as specified in Table 4-107 for Fractional Mode and high clock frequency input:

```
FLL1_PD_GAIN_FINE = 0x2
FLL1_PD_GAIN_COARSE = 0x1
FLL1_FD_GAIN_FINE = 0xF
FLL1_FD_GAIN_COARSE = 0x0
FLL1_CLK_VCO_FAST_SRC = 0x3
FLL1_HP = 0x3
```


4.16.8.10 Example FLL Settings

Table 4-110 shows FLL settings for generating an output frequency (F_{FLL}) of 49.152 MHz from a variety of low- and high-frequency reference inputs. This is suitable for generating SYSCLK at 98.304 MHz and DSPCLK at 147.456 MHz.

F _{SOURCE}	F _{FLL} (MHz)	F _{REF} Divider ¹	FB_DIV ¹	N.K ²	FLL <i>n</i> _N	FLL <i>n_</i> THETA	FLL <i>n</i> _ LAMBDA
32.000 kHz	49.152	1	4	384	0x180	0x0000	0x0001
32.768 kHz	49.152	1	4	375	0x177	0x0000	0x0001
44.100 kHz	49.152	1	256	4.3537415	0x004	0x0034	0x0093
48 kHz	49.152	1	4	256	0x100	0x0000	0x0001
128 kHz	49.152	1	4	96	0x060	0x0000	0x0001
9.6 MHz	49.152	1	1	30.72	0x01E	0x0012	0x0019
10 MHz	49.152	1	1	29.4912	0x01D	0x0133	0x0271
11.2896 MHz	49.152	1	1	26.12245	0x01A	0x0006	0x0031
12.000 MHz	49.152	1	1	24.576	0x018	0x0048	0x007D
12.288 MHz	49.152	1	1	4	0x004	0x0000	0x0001
13.000 MHz	49.152	1	1	22.68554	0x016	0x045A	0x0659
19.200 MHz	49.152	2	1	30.72	0x01E	0x0012	0x0019
22.5792 MHz	49.152	2	1	26.12245	0x01A	0x0006	0x0031
24 MHz	49.152	2	1	24.576	0x018	0x0048	0x007D
24.576 MHz	49.152	2	1	4	0x004	0x0000	0x0001
26 MHz	49.152	2	1	22.68554	0x016	0x045A	0x0659

Table 4-110. Example FLL Settings

4.17 Control Interface

The CS42L92 is controlled by read/write access to its control registers. The control interface supports 2-wire (I²C) and 4-wire (SPI) modes. Note that the SLIMbus interface also supports read/write access to the CS42L92 control registers; see Section 4.10.

The CS42L92 executes a boot sequence following power-on reset, hardware reset, software reset, or wake-up from Sleep Mode. Note that control register writes should not be attempted until the boot sequence has completed. See Section 4.22 for further details.

The control interface function can be supported with or without system clocking—there is no requirement for SYSCLK, or any other system clock, to be enabled when accessing the register map.

Timing specifications for each of the control interfaces are provided in Table 3-19–Table 3-21. In some applications, additional system-wide constraints must be observed to ensure control interface limits are not exceeded. Full details of these requirements are provided in Section 4.16.7. These constraints need to be considered if any of the following conditions is true.

- SYSCLK is enabled and is < 22.5792 MHz
- Control-register access is scheduled at register address 0x80000 or above
- · Control-register access is scheduled on more than one of the control interfaces simultaneously

The control interface can be configured as a 2-wire (I²C) or 4-wire (SPI) interface. The mode is determined by the logic level on the CIFMODE pin, as described in Table 4-111.

^{1.}See Table 4-108 and Table 4-109 for the coding of the FLLn REFCLK DIV and FLLn FB DIV fields.

^{2.}N.K values are represented in the FLLn_N, FLLn_THETA, and FLLn_LAMBDA fields.

Table 4-111.	CS42L92	Control	Interface	Summary
--------------	---------	---------	-----------	---------

CIFMODE	Interface Mode	Pin Functions
Logic 1	Four-wire (SPI) interface	CIFMISO—Data output
		CIFMOSI—Data input
		CIFSCLK—Interface clock input
		CIFSS—Slave select input
Logic 0	Two-wire (I2C) interface	CIFSCLK—Interface clock input
		CIFSDA—Data input/output

Note: The CIFMOSI and CIFSDA functions are multiplexed on a dual-function pin.

An integrated pull-down resistor is provided on the CIF1MISO pin. This provides a flexible capability for interfacing with other devices. The pull-down is configured using the CIF1MISO_PD bit, as described in Table 4-112.

Table 4-112. Control Interface Pull-Down

Register Address	Bit	Label	Default	Description
R8 (0x0008)	7	CIF1MISO_PD	0	CIFMISO Pull-Down Control
Ctrl_IF_CFG_1				0 = Disabled
				1 = Enabled

A detailed description of the I²C and SPI interface modes is provided in the following sections.

4.17.1 Four-Wire (SPI) Control Mode

The SPI control interface mode is supported using the CIFSS, CIFSCLK, CIFMOSI, and CIFMISO pins.

In write operations ($R/\overline{W} = 0$), the MOSI pin input is driven by the controlling device.

In read operations (R/W = 1), the MOSI pin is ignored following receipt of the valid register address.

If <u>SS</u> is asserted (Logic 0), the MISO output is actively driven when outputting data and is high impedance at other times. If <u>SS</u> is not asserted, the MISO output is high impedance.

The high-impedance state of the MISO output allows the pin to be shared with other slaves. An internal pull-down resistor can be enabled on the MISO pin, as described in Table 4-112.

Data transfers on the SPI interface must use the applicable message format, according to the register address space that is being accessed:

- When accessing register addresses below R12288 (0x3000), the applicable SPI protocol comprises a 31-bit register address and 16-bit data words.
- When accessing register addresses from R12888 (0x3000) upwards, the applicable SPI protocol comprises a 31-bit register address and 32-bit data words.
- Note that, in all cases, the complete SPI message protocol also includes a read/write bit and a 16-bit padding phase (see Fig. 4-67 and Fig. 4-68 below).

Continuous read and write modes enable multiple register operations to be scheduled faster than is possible with single register operations. In these modes, the CS42L92 automatically increments the register address at the end of each data word, for as long as SS is held low and SCLK is toggled. Successive data words can be input/output every 16 (or 32) clock cycles (depending on the applicable register address space).

The SPI protocol is shown in Fig. 4-67 and Fig. 4-68. Note that 16-bit data words are shown, but the equivalent protocol also applies to 32-bit data words.

Fig. 4-67 shows a single register write to a specified address.

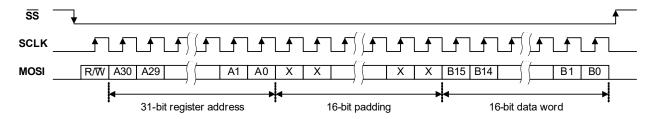


Figure 4-67. Control Interface SPI Register Write (16-Bit Data Words)

Fig. 4-68 shows a single register read from a specified address.

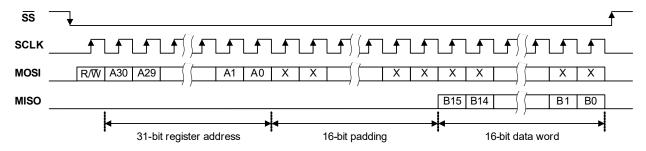


Figure 4-68. Control Interface SPI Register Read (16-Bit Data Words)

4.17.2 Two-Wire (I2C) Control Mode

The I²C control interface mode is supported using the CIFSCLK and CIFSDA pins.

In I²C Mode, the CS42L92 is a slave device on the control interface; SCLK is a clock input, while SDA is a bidirectional data pin. To allow arbitration of multiple slaves (and/or multiple masters) on the same interface, the CS42L92 transmits Logic 1 by tristating the SDA pin, rather than pulling it high. An external pull-up resistor is required to pull the SDA line high so that the Logic 1 can be recognized by the master.

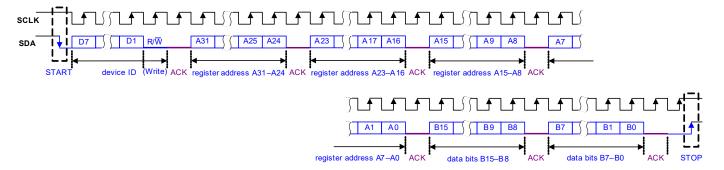
In order to allow many devices to share a single two-wire control bus, every device on the bus has a unique 8-bit device ID (this is not the same as the address of each register in the CS42L92).

The CS42L92 device ID is 0011_0100 (0x34). Note that the LSB of the device ID is the read/write bit; this bit is set to Logic 1 for read and Logic 0 for write.

The CS42L92 operates as a slave device only. The controller indicates the start of data transfer with a high-to-low transition on SDA while SCLK remains high. This indicates that a device ID and subsequent address/data bytes follow. The CS42L92 responds to the start condition and shifts in the next 8 bits on SDA (8-bit device ID, including read/write bit, MSB first). If the device ID received matches the device ID of the CS42L92, the CS42L92 responds by pulling SDA low on the next clock pulse (ACK). If the device ID is not recognized or the R/W bit is set incorrectly, the CS42L92 returns to the idle condition and waits for a new start condition.

If the device ID matches the device ID of the CS42L92, the data transfer continues. The controller indicates the end of data transfer with a low-to-high transition on SDA while SCLK remains high. After receiving a complete address and data sequence the CS42L92 returns to the idle state and waits for another start condition. If a start or stop condition is detected out of sequence at any point during data transfer (i.e., SDA changes while SCLK is high), the device returns to the idle condition.

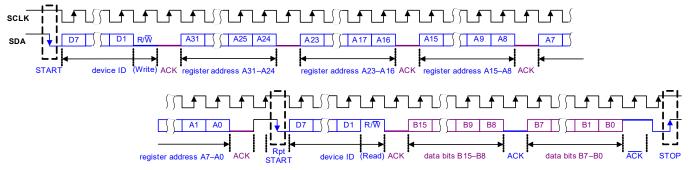
Data transfers on the I²C interface must use the applicable message format, according to the register address space that is being accessed:


- When accessing register addresses below R12288 (0x3000), the applicable I²C protocol comprises a 32-bit register address and 16-bit data words.
- When accessing register addresses from R12888 (0x3000) upwards, the applicable I²C protocol comprises a 32-bit register address and 32-bit data words.
- Note that, in all cases, the complete I²C message protocol also includes a device ID, a read/write bit, and other signaling bits (see Fig. 4-69 and Fig. 4-70).

The CS42L92 supports the following read and write operations:

- · Single write
- · Single read
- Multiple write
- · Multiple read

Continuous (multiple) read and write modes allow register operations to be scheduled faster than is possible with single register operations. In these modes, the CS42L92 automatically increments the register address after each data word. Successive data words can be input/output every 2 (or 4) data bytes, depending on the applicable register address space.


The I²C protocol for a single, 16-bit register write operation is shown in Fig. 4-69.

Note: The SDA pin is used as input for the control register address and data SDA is pulled low by the receiving device to provide the acknowledge(ACK) response

Figure 4-69. Control Interface I²C Register Write (16-Bit Data Words)

The I²C protocol for a single, 16-bit register read operation is shown in Fig. 4-70.

Note: The SDA pin is driven by both the master and slave devices in turn to transfer device address, register address, data and ACK responses

Figure 4-70. Control Interface I²C Register Read (16-Bit Data Words)

The control interface also supports other register operations; the interface protocol for these operations is shown in Fig. 4-71 through Fig. 4-74. The terminology used in the following figures is detailed in Table 4-113.

Note that 16-bit data words are shown in these illustrations. The equivalent protocol is also applicable to 32-bit words, with 4 data bytes transmitted (or received) instead of 2.

Terminology	Description		
S	Start condition		
Sr	Repeated start		
A	Acknowledge (SDA low)		
Ā	Not acknowledge (SDA high)		
Р	Stop condition		
R/W	Read/not write		
	0 = Write; 1 = Read		
[White field]	Data flow from bus master to CS42L92		

Data flow from CS42L92 to bus master

Table 4-113. Control Interface (I2C) Terminology

Fig. 4-71 shows a single register write to a specified address.

[Gray field]

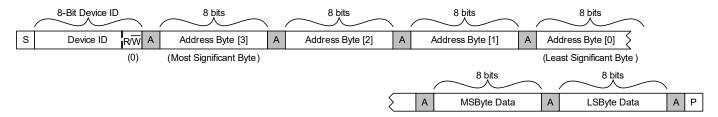


Figure 4-71. Single-Register Write to Specified Address

Fig. 4-72 shows a single register read from a specified address.

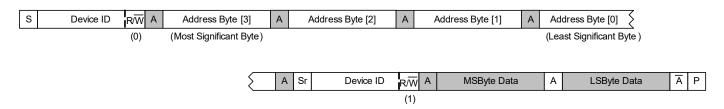


Figure 4-72. Single-Register Read from Specified Address

Fig. 4-73 shows a multiple register write to a specified address.

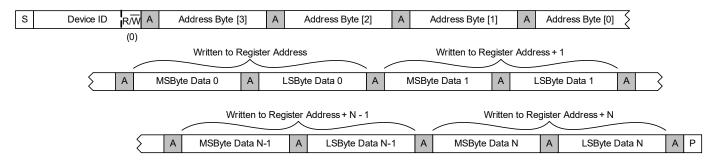


Figure 4-73. Multiple-Register Write to Specified Address

Fig. 4-74 shows a multiple register read from a specified address.

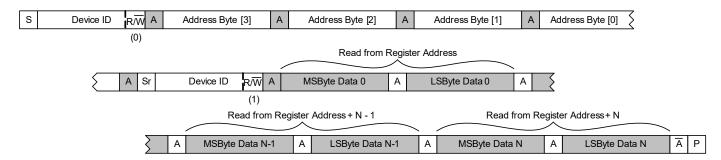


Figure 4-74. Multiple-Register Read from Specified Address

4.18 Control-Write Sequencer

The control-write seguencer is a programmable unit that forms part of the CS42L92 control interface logic. It provides the ability to perform a sequence of register-write operations with the minimum of demands on the host processor—the sequence may be initiated by a single operation from the host processor and then left to execute independently.

Default sequences for pop-suppressed start-up and shutdown of each headphone/earpiece output driver are provided (these are scheduled automatically when the respective output paths are enabled or disabled). Other control sequences can be programmed, and may be associated with sample-rate detection, DRC, MICDET clamp, or event logger status; these sequences are automatically scheduled whenever a corresponding event is detected.

When a sequence is initiated, the sequencer performs a series of predefined register writes. The start index of a control sequence within the sequencer's memory may be commanded directly by the host processor. The applicable start index for each of the seguences associated with sample-rate detection, DRC, MICDET clamp, or event logger status is held in a user-programmed control register.

The control-write sequencer may be triggered by a number of different events. Multiple sequences are queued if necessary, and each is scheduled in turn.

The control-write sequencer can be supported with or without system clocking—there is no requirement for SYSCLK or for any other system clock to be enabled when using the control-write sequencer. The timing accuracy of the sequencer operation is improved when SYSCLK is present, but the general functionality is supported with or without SYSCLK.

Initiating a Sequence 4.18.1

The fields associated with running the control-write sequencer are described in Table 4-114.

The CS42L92 provides 16 general-purpose trigger bits for the write sequencer to allow easy triggering of the associated control sequences. Writing 1 to the trigger bit initiates a control sequence, starting at the respective index position within the control-write sequencer memory.

The WSEQ TRG1 INDEX field defines the sequencer start index corresponding to the WSEQ TRG1 trigger control bit. Equivalent start index fields are provided for each trigger control bit, as described in Table 4-114. Note that a sequencer start index of 0x1FF causes the respective sequence to be aborted.

The general-purpose control sequences are undefined following power-on reset, a hardware reset, or a Sleep Mode transition. The general-purpose control sequences must be reconfigured by the host processor following any of these events. Note that all control sequences are maintained in the sequencer memory through software reset.

The write sequencer can also be commanded using control bits in register R22 (0x16). In this case, the write sequencer is enabled using the WSEQ ENA bit and the index location of the first command in the sequence is held in the WSEQ START INDEX field. Writing 1 to the WSEQ START bit commands the sequencer to execute a control sequence, starting at the specified index position. Note that, if the sequencer is already running, the WSEQ START command is queued and executed when the sequencer becomes available.

Note: The mechanism for queuing multiple sequence requests has limitations when the WSEQ_START bit is used to trigger the write sequencer. If a sequence is initiated using the WSEQ START bit, no other control sequences should be triggered until the sequence completes. The WSEQ_BUSY bit (described in Table 4-120) provides an indication of the sequencer status and can be used to confirm the sequence has completed.

Multiple control sequences triggered by any other method are queued if necessary, and scheduled in turn.

The write sequencer can be interrupted by writing 1 to the WSEQ ABORT bit. Note that this command only aborts a sequence that is currently running; if other sequence commands are pending and not yet started, these sequences are not aborted by writing to the WSEQ ABORT bit.

The write sequencer stores up to 508 register-write commands. These are defined in registers R12288 (0x3000) through R13302 (0x33F6). See Table 4-121 for a description of these registers.

Table 4-114. Write Sequencer Control—Initiating a Sequence

Register Address	Bit	Label	Default	Description	
R22 (0x0016)	11	WSEQ_ABORT	0	Writing 1 to this bit aborts the current sequence.	
Write_Sequencer_ 10 Ctrl_0		WSEQ_START	0	Writing 1 to this bit starts the write sequencer at the index location selected by WSE START_INDEX. At the end of the sequence, this bit is reset by the write sequencer.	
	9	WSEQ_ENA	0	Write Sequencer Enable	
				0 = Disabled	
				1 = Enabled	
				Only applies to sequences triggered using the WSEQ_START bit.	
	8:0	WSEQ_	0x000	Sequence Start Index. Contains the index location in the sequencer memory of the first	
		START_		command in the selected sequence.	
		INDEX[8:0]		Only applies to sequences triggered using the WSEQ_START bit.	
				Valid from 0 to 507 (0x1FB).	
R66 (0x0042)	15	WSEQ_TRG16	0	Write Sequence Trigger 16	
Spare_Triggers				Write 1 to trigger	
	14	WSEQ_TRG15	0	Write Sequence Trigger 15	
				Write 1 to trigger	
	13	WSEQ_TRG14	0	Write Sequence Trigger 14	
				Write 1 to trigger	
	12	WSEQ_TRG13	0	Write Sequence Trigger 13	
				Write 1 to trigger	
	11	WSEQ_TRG12	0	Write Sequence Trigger 12	
				Write 1 to trigger	
	10	WSEQ_TRG11	0	Write Sequence Trigger 11	
				Write 1 to trigger	
	9	WSEQ_TRG10	0	Write Sequence Trigger 10	
				Write 1 to trigger	
	8	WSEQ_TRG9	0	Write Sequence Trigger 9	
				Write 1 to trigger	
	7	WSEQ_TRG8	0	Write Sequence Trigger 8	
				Write 1 to trigger	
	6	WSEQ_TRG7	0	Write Sequence Trigger 7	
				Write 1 to trigger	
	5	WSEQ_TRG6	0	Write Sequence Trigger 6	
				Write 1 to trigger	
	4	WSEQ_TRG5	0	Write Sequence Trigger 5	
				Write 1 to trigger	
	3	WSEQ_TRG4	0	Write Sequence Trigger 4	
				Write 1 to trigger	
	2	WSEQ_TRG3	0	Write Sequence Trigger 3	
				Write 1 to trigger	
	1	WSEQ_TRG2	0	Write Sequence Trigger 2	
				Write 1 to trigger	
	0	WSEQ_TRG1	0	Write Sequence Trigger 1	
				Write 1 to trigger	

Table 4-114. Write Sequencer Control—Initiating a Sequence (Cont.)

Register Address	Bit	Label	Default	•
R75 (0x004B)	8:0	WSEQ_TRG1_	0x1FF	Write Sequence trigger 1 start index. Contains the index location in the sequencer
Spare_Sequence_ Select_1		INDEX[8:0]		memory of the first command in the sequence associated with the WSEQ_TRG1 trigger. Valid from 0 to 507 (0x1FB).
R76 (0x004C) Spare_Sequence_	8:0	WSEQ_TRG2_ INDEX[8:0]	0x1FF	Write Sequence trigger 1 start index. Contains the index location in the sequencer memory of the first command in the sequence associated with the WSEQ_TRG2 trigger.
Select_2				Valid from 0 to 507 (0x1FB).
R77 (0x004D) Spare Sequence	8:0	WSEQ_TRG3_ INDEX[8:0]	0x1FF	Write Sequence trigger 1 start index. Contains the index location in the sequencer memory of the first command in the sequence associated with the WSEQ_TRG3 trigger.
Select_3	0.0	MOEO TOO	0.455	Valid from 0 to 507 (0x1FB).
R78 (0x004E) Spare_Sequence_ Select_4	8:0	WSEQ_TRG4_ INDEX[8:0]	0x1FF	Write Sequence trigger 1 start index. Contains the index location in the sequencer memory of the first command in the sequence associated with the WSEQ_TRG4 trigger. Valid from 0 to 507 (0x1FB).
R79 (0x004F) Spare_Sequence_	8:0	WSEQ_TRG5_ INDEX[8:0]	0x1FF	Write Sequence trigger 1 start index. Contains the index location in the sequencer memory of the first command in the sequence associated with the WSEQ_TRG5 trigger.
Select_5	8:0	WSEO TROS	0x1FF	Valid from 0 to 507 (0x1FB). Write Sequence trigger 1 start index. Contains the index location in the sequencer
R80 (0x0050) Spare_Sequence_ Select 6	6.0	WSEQ_TRG6_ INDEX[8:0]	UXIFF	memory of the first command in the sequence associated with the WSEQ_TRG6 trigger. Valid from 0 to 507 (0x1FB).
R89 (0x0059) Spare_Sequence_ Select 7	8:0	WSEQ_TRG7_ INDEX[8:0]	0x1FF	Write Sequence trigger 1 start index. Contains the index location in the sequencer memory of the first command in the sequence associated with the WSEQ_TRG7 trigger. Valid from 0 to 507 (0x1FB).
R90 (0x005A) Spare_Sequence_ Select 8	8:0	WSEQ_TRG8_ INDEX[8:0]	0x1FF	Write Sequence trigger 1 start index. Contains the index location in the sequencer memory of the first command in the sequence associated with the WSEQ_TRG8 trigger. Valid from 0 to 507 (0x1FB).
R91 (0x005B)	8:0	WSEQ TRG9	0x1FF	Write Sequence trigger 1 start index. Contains the index location in the sequencer
Spare_Sequence_ Select_9		INDEX[8:0]		memory of the first command in the sequence associated with the WSEQ_TRG9 trigger. Valid from 0 to 507 (0x1FB).
R92 (0x005C) Spare_Sequence_ Select_10	8:0	WSEQ_ TRG10_ INDEX[8:0]	0x1FF	Write Sequence trigger 1 start index. Contains the index location in the sequencer memory of the first command in the sequence associated with the WSEQ_TRG10 trigger. Valid from 0 to 507 (0x1FB).
R93 (0x005D) Spare_Sequence_ Select_11	8:0	WSEQ_ TRG11_ INDEX[8:0]	0x1FF	Write Sequence trigger 1 start index. Contains the index location in the sequencer memory of the first command in the sequence associated with the WSEQ_TRG11 trigger. Valid from 0 to 507 (0x1FB).
R94 (0x005E) Spare_Sequence_ Select_12	8:0	WSEQ_ TRG12_ INDEX[8:0]	0x1FF	Write Sequence trigger 1 start index. Contains the index location in the sequencer memory of the first command in the sequence associated with the WSEQ_TRG12 trigger. Valid from 0 to 507 (0x1FB).
R104 (0x0068) Spare_Sequence_ Select_13	8:0	WSEQ_ TRG13_ INDEX[8:0]	0x1FF	Write Sequence trigger 1 start index. Contains the index location in the sequencer memory of the first command in the sequence associated with the WSEQ_TRG13 trigger. Valid from 0 to 507 (0x1FB).
R105 (0x0069) Spare_Sequence_ Select_14	8:0	WSEQ_ TRG14_ INDEX[8:0]	0x1FF	Write Sequence trigger 1 start index. Contains the index location in the sequencer memory of the first command in the sequence associated with the WSEQ_TRG14 trigger. Valid from 0 to 507 (0x1FB).
R106 (0x006A) Spare_Sequence_ Select_15	8:0	WSEQ_ TRG15_ INDEX[8:0]	0x1FF	Write Sequence trigger 1 start index. Contains the index location in the sequencer memory of the first command in the sequence associated with the WSEQ_TRG15 trigger. Valid from 0 to 507 (0x1FB).
R107 (0x006B) Spare_Sequence_ Select_16	8:0	WSEQ_ TRG16_ INDEX[8:0]	0x1FF	Write Sequence trigger 1 start index. Contains the index location in the sequencer memory of the first command in the sequence associated with the WSEQ_TRG16 trigger. Valid from 0 to 507 (0x1FB).

4.18.2 Automatic Sample-Rate Detection Sequences

The CS42L92 supports automatic sample-rate detection on the digital audio interfaces (AIF1–AIF3) when operating in AIF Slave Mode. Automatic sample-rate detection is enabled by setting RATE_EST_ENA—see Table 4-104.

As many as four audio sample rates can be configured for automatic detection; these sample rates are selected using the SAMPLE_RATE_DETECT_n fields. If a selected audio sample rate is detected, the control-write sequencer is triggered. The applicable start index location within the sequencer memory is separately configurable for each detected sample rate.

The WSEQ_SAMPLE_RATE_DETECT_A_INDEX field defines the sequencer start index corresponding to the SAMPLE_RATE_DETECT_A sample rate. Equivalent start index fields are defined for the other sample rates, as described in Table 4-115.

Note that a sequencer start index of 0x1FF causes the respective sequence to be aborted.

The automatic sample-rate detection control sequences are undefined following power-on reset, a hardware reset, or a Sleep Mode transition. The automatic sample-rate detection control sequences must be reconfigured by the host processor following any of these events. Note that all control sequences are maintained in the sequencer memory through software reset.

See Section 4.16 for further details of the automatic sample-rate detection function.

Register Address	Bit	Label	Default	Description
R97 (0x0061)	8:0	WSEQ_SAMPLE_	0x1FF	Sample Rate A Write Sequence start index. Contains the index location in the
Sample_Rate_		RATE_DETECT_ A INDEX[8:0]		sequencer memory of the first command in the sequence associated with Sample Rate A detection.
Sequence_Select_1		/ \D.E./ \[\(\) [0.0]		Valid from 0 to 507 (0x1FB).
R98 (0x0062)	8:0	WSEQ_SAMPLE_	0x1FF	Sample Rate B Write Sequence start index. Contains the index location in the
Sample_Rate_ Sequence Select 2		RATE_DETECT_ B_INDEX[8:0]		sequencer memory of the first command in the sequence associated with Sample Rate B detection.
'				Valid from 0 to 507 (0x1FB).
R99 (0x0063)	8:0	WSEQ_SAMPLE_	0x1FF	Sample Rate C Write Sequence start index. Contains the index location in the
Sample_Rate_ Sequence Select 3		RATE_DETECT_ C_INDEX[8:0]		sequencer memory of the first command in the sequence associated with Sample Rate C detection.
'				Valid from 0 to 507 (0x1FB).
R100 (0x0064)	8:0	WSEQ_SAMPLE_	0x1FF	Sample Rate D Write Sequence start index. Contains the index location in the
Sample_Rate_ Sequence Select 4		RATE_DETECT_ D_INDEX[8:0]		sequencer memory of the first command in the sequence associated with Sample Rate D detection.
				Valid from 0 to 507 (0x1FB).

Table 4-115. Write Sequence Control—Automatic Sample-Rate Detection

4.18.3 DRC Signal-Detect Sequences

The DRC function within the CS42L92 digital core provides a configurable signal-detect function. This allows the signal level at the DRC input to be monitored and used to trigger other events.

The DRC signal-detect functions are enabled and configured using the fields described in Table 4-17 and Table 4-18 for DRC1 and DRC2 respectively.

A control-write sequence can be associated with a rising edge and/or a falling edge of the DRC1 signal-detect output. This is enabled by setting DRC1_WSEQ_SIG_DET_ENA, as described in Table 4-17.

Note that signal detection is supported on DRC1 and DRC2, but the triggering of the control-write sequencer is available on DRC1 only.

When the DRC signal-detect sequence is enabled, the control-write sequencer is triggered whenever the DRC1 signal-detect output transitions (high or low). The applicable start index location within the sequencer memory is separately configurable for each logic condition.

The WSEQ_DRC1_SIG_DET_RISE_SEQ_INDEX field defines the sequencer start index corresponding to a DRC1 signal-detect rising edge event, as described in Table 4-116. The WSEQ_DRC1_SIG_DET_FALL_SEQ_INDEX field defines the sequencer start index corresponding to a DRC1 signal-detect falling edge event.

Note that a sequencer start index of 0x1FF causes the respective sequence to be aborted.

The DRC signal-detect sequences cannot be independently enabled for rising and falling edges. Instead, a start index of 0x1FF can be used to disable the sequence for either edge, if required.

The DRC signal-detect control sequences are undefined following power-on reset, a hardware reset, or a Sleep Mode transition. The DRC signal-detect control sequences must be reconfigured by the host processor following any of these events. Note that all control sequences are maintained in the sequencer memory through software reset.

See Section 4.3.5 for further details of the DRC function.

Table 4-116. Write Sequencer Control—DRC Signal-Detect

Register Address	Bit	Label	Default	Description
R110 (0x006E) Trigger_ Sequence_ Select_32		WSEQ_DRC1_ SIG_DET_RISE_ INDEX[8:0]		DRC1 Signal-Detect (Rising) Write Sequence start index. Contains the index location in the sequencer memory of the first command in the sequence associated with DRC1 Signal-Detect (Rising) detection. Valid from 0 to 507 (0x1FB).
R111 (0x006F) Trigger_ Sequence_ Select_33		WSEQ_DRC1_ SIG_DET_FALL_ INDEX[8:0]		DRC1 Signal-Detect (Falling) Write Sequence start index. Contains the index location in the sequencer memory of the first command in the sequence associated with DRC1 Signal-Detect (Falling) detection. Valid from 0 to 507 (0x1FB).

4.18.4 MICDET Clamp Sequences

The CS42L92 supports external accessory detection functions, including the MICDET clamp circuits. The MICDET clamp status can be used to trigger the control-write sequencer. The MICDET clamps can be controlled using selectable logic conditions in respect of the JD*n* signals, as described in Table 4-85.

A control-write sequence can be associated with a rising edge and/or a falling edge of the MICDET clamp status. This is configured using the WSEQ_ENA_MICD_CLAMP_RISE and WSEQ_ENA_MICD_CLAMP_FALL bits, as described in Table 4-85.

If one of the selected JD*n* logic conditions is detected, the control-write sequencer is triggered. Note that these control-sequencer events are only valid if the clamp status changed in response to the JD*n* signals. The applicable start index location within the sequencer memory is separately configurable for the rising and falling edge conditions.

Note that, due to control logic that is shared between the two MICDET clamps, the option to control both clamps in response to the JD*n* signals cannot be supported at the same time. It is assumed that a maximum of one clamp is active at any time. Accordingly, only the active clamp is capable of triggering the control-write sequencer.

The WSEQ_MICD_CLAMP_RISE_INDEX field defines the sequencer start index corresponding to a MICDET clamp rising edge (clamp active) event, as described in Table 4-117. The WSEQ_MICD_CLAMP_FALL_INDEX field defines the sequencer start index corresponding to a MICDET clamp falling edge event.

Note that a sequencer start index of 0x1FF causes the respective sequence to be aborted.

The MICDET clamp control sequences are undefined following power-on reset, a hardware reset, or a Sleep Mode transition. The MICDET clamp control sequences must be reconfigured by the host processor following any of these events. Note that all control sequences are maintained in the sequencer memory through software reset.

See Section 4.12 for further details of the MICDET clamp status signals.

Table 4-117. Write Sequencer Control—MICDET Clamp

Register Address	Bit	Label	Default	Description
R102 (0x0066)		WSEQ_MICD_		MICDET Clamp (Rising) Write Sequence start index. Contains the index location in
Always On Triggers		CLAMP_RISE_		the sequencer memory of the first command in the sequence associated with
Sequence Select 1		INDEX[8:0]		MICDET clamp (Rising) detection.
'				Valid from 0 to 507 (0x1FB).
R103 (0x0067)	8:0	WSEQ_MICD_		MICDET Clamp (Falling) Write Sequence start index. Contains the index location in
Always_On_Triggers_		CLAMP_FALL_		the sequencer memory of the first command in the sequence associated with
Sequence Select 2		INDEX[8:0]		MICDET clamp (Falling) detection.
. – –				Valid from 0 to 507 (0x1FB).

4.18.5 Event Logger Sequences

The CS42L92 provides an event log function, for monitoring and recording internal or external signals. The logged events are held in a FIFO buffer, from which the application software can read details of the detected logic transitions.

The control-write sequencer is automatically triggered whenever the NOT_EMPTY status of the event log buffer is asserted.

The WSEQ_EVENTLOG1_INDEX field defines the sequencer start index corresponding to the event logger, as described in Table 4-118.

Note that a sequencer start index of 0x1FF causes the respective sequence to be aborted.

The event logger control sequence is undefined following power-on reset, a hardware reset, or a Sleep Mode transition. The event logger control sequence must be reconfigured by the host processor following any of these events. Note that all control sequences are maintained in the sequencer memory through software reset.

See Section 4.5.1 for further details of the event logger.

Table 4-118. Write Sequencer Control—Event Logger

Register Address	Bit	Label	Default	Description
- (/		WSEQ_ EVENTLOG1		Event Log 1 Write Sequence start index. Contains the index location in the sequencer memory of the first command in the sequence associated with Event Log 1 FIFO
Eventlog_ Sequence_		INDEX[8:0]		Not-Empty detection.
Select_1				Valid from 0 to 507 (0x1FB).

4.18.6 Boot Sequence

The CS42L92 executes a boot sequence following power-on reset, hardware reset, software reset, or wake-up from Sleep Mode. The boot sequence configures the CS42L92 with factory-set trim (calibration) data. See Section 4.22 and Section 4.23 for further details.

The start index location of the boot sequence is 384 (0x180). See Table 4-123 for details of the write sequencer memory allocation.

The boot sequence can be commanded at any time by writing 1 to the WSEQ_BOOT_START bit.

Table 4-119. Write Sequencer Control—Boot Sequence

Register Address	Bit	Label	Default	Description
R24 (0x0018)	1	WSEQ_BOOT_	-	Writing 1 to this bit starts the write sequencer at the index location configured for
Write_Sequencer_		START		the Boot Sequence.
Ctrl_2				The Boot Sequence start index is 384 (0x180).

4.18.7 Sequencer Status Indication

The status of the write sequencer can be read using WSEQ_BUSY and WSEQ_CURRENT_INDEX, as described in Table 4-120. When the WSEQ_BUSY bit is asserted, this indicates that the write sequencer is busy.

The index address of the most recent write sequencer command can be read from the WSEQ_CURRENT_INDEX field. This can be used to provide a precise indication of the write sequencer progress.

Table 4-120. Write Sequencer Control—Status Indication

Register Address	Bit	Label	Default	Description
R23 (0x0017)	9	WSEQ_BUSY	0	Sequencer Busy flag (Read Only).
Write_Sequencer_		(read only)		0 = Sequencer idle
Ctrl_1				1 = Sequencer busy
	8:0	WSEQ_CURRENT_		Sequence Current Index. This indicates the memory location of the most recently
		INDEX[8:0]		accessed command in the write sequencer memory.
		(read only)		Coding is the same as WSEQ_START_INDEX.

4.18.8 Programming a Sequence

A control-write sequence comprises a series of write operations to data bits within the control register map. Standard write operations are defined by five fields, contained within a single 32-bit register. An extended instruction set is also defined; the associated actions make use of alternate definitions of the 32-bit registers.

The sequencer instruction fields are replicated 508 times, defining each of the sequencer's 508 possible index addresses. Many sequences can be stored in the sequencer memory at the same time, with each assigned a unique range of index addresses. The WSEQ_DELAY*n* field is used to identify the end-of-sequence position, as described below.

The general definition of the sequencer instruction fields is described as follows, where *n* denotes the sequencer index address (valid from 0 to 507):

- WSEQ_DATA_WIDTH*n* is a 3-bit field that identifies the width of the data block to be written. Note that the maximum value of this field selects a width of 8 bits; writes to fields that are larger than 8 bits wide must be performed using two separate operations of the write sequencer.
- WSEQ_ADDRn is a 12-bit field containing the register address in which the data should be written. The applicable
 register address is referenced to the base address currently configured for the sequencer—it is calculated as: (base
 address * 512) + WSEQ_ADDRn. Note that the base address is configured using the sequencer's extended
 instruction set.
- WSEQ_DELAY *n* is a 4-bit field that controls the waiting time between the current step and the next step in the sequence (i.e., the delay occurs after the write in which it was called). The total delay time per step (including execution) is defined below, giving a useful range of execution/delay times from 3.3 μs up to 1 s per step.

If WSEQ_DELAYn = 0x0 or 0xF, the step execution time is 3.3 μ s

For all other values, the step execution time is 61.44 µs x ((2 WSEQ_DELAY) - 1)

Setting this field to 0xF identifies the step as the last in the sequence

- WSEQ_DATA_START*n* is a 4-bit field that identifies the LSB position within the selected control register to which the data should be written. For example, setting WSEQ_DATA_START*n* = 0100 selects bit [4] as the LSB position of the data to be written.
- WSEQ_DATAn is an 8-bit field that contains the data to be written to the selected control register. The WSEQ_DATA_WIDTHn field determines how many of these bits are written to the selected control register; the most significant bits (above the number indicated by WSEQ_DATA_WIDTHn) are ignored.

The extended instruction set for the write sequencer is accessed by setting WSEQ_MODE*n* (bit [28]) in the respective sequencer definition register. The extended instruction set comprises the following functions:

- If bits [31:24] = 0x11, the register base address is set equal to the value contained in bits [23:0].
- If bits [31:16] = 0x12FF, the sequencer performs an unconditional jump to the index location defined in bits [15:0]. The index location is valid in the range 0 to 507 (0x1FB).
- · All other settings within the extended instruction set are reserved.

The control field definitions for Step 0 are described in Table 4-121. The equivalent definitions also apply to Step 1 through Step 507, in the subsequent register address locations.

Table 4-121. Write S	Sequencer Control—Programming a	Sequence
----------------------	---------------------------------	----------

Register Address	Bit	Label	Default	Description
R12288 (0x3000)	31:29	WSEQ_DATA_	000	Width of the data block written in this sequence step.
WSEQ_		WIDTH0[2:0]		000 = 1 bit 011 = 4 bits 110 = 7 bits
Sequence_1				001 = 2 bits 100 = 5 bits 111 = 8 bits
				010 = 3 bits 101 = 6 bits
	28	WSEQ_MODE0	0	Extended Sequencer Instruction select
				0 = Basic instruction set
				1 = Extended instruction set
	27:16	WSEQ_ADDR0[11:0]	0x000	Control Register Address to be written to in this sequence step.
				The register address is calculated as: (Base Address * 512) + WSEQ_ADDRn.
				Base Address is 0x00_0000 by default, and is configured using the sequencer's
				extended instruction set.
	15:12	WSEQ_DELAY0[3:0]	0000	Time delay after executing this step.
				$0x0 = 3.3 \mu s$
				$0x1 \text{ to } 0xE = 61.44 \ \mu s \ x \ ((2^{WSEQ}DELAY)-1)$
				0xF = End of sequence marker
	11:8	WSEQ_DATA_	0000	Bit position of the LSB of the data block written in this sequence step.
		START0[3:0]		0000 = Bit 0
				1111 = Bit 15
	7:0	WSEQ_DATA0[7:0]		Data to be written in this sequence step. When the data width is less than 8 bits,
				one or more of the MSBs of WSEQ_DATA <i>n</i> are ignored. It is recommended that
				unused bits be cleared.

4.18.9 Sequencer Memory Definition

The write sequencer memory defines up to 508 write operations; these are indexed as 0 to 507 in the sequencer memory map.

The write sequencer memory reverts to its default contents following power-on reset, a hardware reset, or a Sleep Mode transition. In these cases, the sequence memory contains the boot sequence and the OUT1-OUT3 signal path enable/ disable sequences; the remainder of the sequence memory is undefined.

User-defined sequences can be programmed after power-up. The user-defined control sequences must be reconfigured by the host processor following power-on reset, a hardware reset, or a Sleep Mode transition. Note that all control sequences are maintained in the sequencer memory through software reset. See Section 5.2 for a summary of the CS42L92 memory reset conditions.

The default control sequences can be overwritten in the sequencer memory, if required. Note that the headphone/earpiece output path enable bits (HPnx_ENA) always trigger the write sequencer (at the predetermined start index addresses).

Writing 1 to the WSEQ_LOAD_MEM bit clears the sequencer memory to the power-on reset state.

Table 4-122. Write Sequencer Control—Load Memory Control

Register Address	Bit	Label	Default	Description
R24 (0x0018)	0	WSEQ_LOAD_	0	Writing 1 to this bit resets the sequencer memory to the power-on reset
Write_Sequencer_Ctrl_2		MEM		state.

The sequencer memory is summarized in Table 4-123. User-defined sequences should be assigned space within the allocated portion (user space) of the write sequencer memory.

The start index for the user-defined sequences is configured using the fields described in Table 4-114 through Table 4-118.

Table 4-123. Write Sequer	ncer Memory Allocation
---------------------------	------------------------

Description	Sequence Index Range
Default Sequences	0 to 302
User Space	303 to 383
Boot Sequence	384 to 507

4.19 Charge Pumps, Regulators, and Voltage Reference

The CS42L92 incorporates two charge-pump circuits and an LDO-regulator circuit to generate supply rails for internal functions and to support external microphone requirements. The CS42L92 also provides two MICBIAS generators (with six switchable outputs), which provide low noise reference voltages suitable for biasing ECM-type microphones or powering digital microphones.

In Sleep Mode, the CS42L92 can provide an unregulated voltage output that can be used to power an external microphone. See Section 4.13 for details of Sleep Mode.

The CPVDD domain (1.8 V) powers the Charge Pump 1 and Charge Pump 2 circuits. The CPVDD2 power domain (1.2 V) is an additional supply used by Charge Pump 1 only. Refer to Section 5.1 for recommended external components.

4.19.1 Charge Pump 1

Charge Pump 1 (CP1) is used to generate the positive and negative supply rails for the analog output drivers. CP1 is enabled automatically by the CS42L92 when required by the output drivers.

The Charge Pump 1 circuit is shown in Fig. 4-75.

4.19.2 Charge Pump 2 and LDO2 Regulator

Charge Pump 2 (CP2) powers LDO2, which provides the supply rail for analog input circuits and for the MICBIAS generators. CP2 and LDO2 are enabled by setting CP2_ENA.

If CP2 and LDO2 are enabled, the MICVDD voltage is selected using the LDO2_VSEL field. Note that, when one or more of the MICBIAS generators is operating in normal (regulator) mode, the MICVDD voltage must be at least 200 mV greater than the highest selected MICBIASn output voltages.

If CP2 and LDO2 are enabled, an internal bypass path may be selected, connecting the MICVDD pin directly to the CPVDD supply. This path is controlled using the CP2_BYPASS bit. Note that the bypass path is only supported when CP2 is enabled.

Note: The 32-kHz clock must be configured and enabled if CP2 is enabled in its normal operating mode. The 32-kHz clock is not required in bypass mode (CP2 BYPASS = 1). See Section 4.16 for details of the system clocks.

If CP2 is disabled, the CP2VOUT pin can be either floating or actively discharged. The behavior is configured using the CP2 DISCH bit.

If LDO2 is disabled, the MICVDD pin can be either floating or actively discharged. The behavior is configured using the LDO2 DISCH bit.

The MICVDD pin is connected to the output of LDO2. Note that the MICVDD does not support direct connection to an external supply; MICVDD is always powered internally to the CS42L92.

The Charge Pump 2 and LDO2 Regulator circuits are shown in Fig. 4-75. The associated control bits are described in Table 4-124.

Note that decoupling capacitors and flyback capacitors are required for these circuits. Refer to Section 5.1 for recommended external components.

4.19.3 Microphone Bias (MICBIAS) Control

There are two MICBIAS generators, which provide low-noise reference voltages suitable for biasing ECM-type microphones or powering digital microphones. Refer to Section 5.1.3 for recommended external components.

The MICBIAS generators are powered from MICVDD, which is generated by an internal charge pump and LDO, as shown in Fig. 4-75.

Switchable outputs from the MICBIAS generators allow six separate reference/supply outputs to be independently controlled. The MICBIAS regulators are enabled using the MICB1_ENA and MICB2_ENA bits. The MICBIAS output switches are enabled using the MICB1x ENA and MICB2x ENA (where x is A, B, C, or D).

The MICBIAS1 generator supports four switchable outputs (MICBIAS1A–MICBIAS1D). The MICBIAS2 generator supports two switchable outputs (MICBIAS2A–MICBIAS2B).

Note that, to enable any of the MICBIAS nx outputs, both the output switch and the respective regulator must be enabled.

When a MICBIAS output is disabled, it can be configured to be floating or to be actively discharged. This is configured using the MICB*n*_DISCH bits (for the MICBIAS regulators), and the MICB*nx*_DISCH bits (for the switched outputs). Each discharge path is only effective when the respective regulator, or switched output, is disabled.

The MICBIAS generators can each operate in Regulator Mode or in Bypass Mode. The applicable mode is selected using the MICBn BYPASS bits.

In Regulator Mode (MICBn_BYPASS = 0), the output voltage is selected using the MICBn_LVL fields. In this mode, MICVDD must be at least 200 mV greater than the required MICBIAS output voltages. The MICBIAS outputs are powered from the MICVDD pin and use the internal band-gap circuit as a reference.

In Regulator Mode, the MICBIAS regulators are designed to operate without external decoupling capacitors. The regulators can be configured to support a capacitive load if required, using the MICB*n*_EXT_CAP bits. (This may be appropriate for a DMIC supply.) It is important that the external capacitance is compatible with the applicable MICB*n*_EXT_CAP setting. The compatible load conditions are detailed in Table 3-11.

In Bypass Mode (MICB*n*_BYPASS = 1), the respective outputs (MICBIAS*nx*), when enabled, are connected directly to MICVDD. This enables a low power operating state. Note that the MICB*n*_EXT_CAP settings are not applicable in Bypass Mode—there are no restrictions on the external MICBIAS capacitance in Bypass Mode.

The MICBIAS generators incorporate a pop-free control circuit to ensure smooth transitions when the MICBIAS outputs are enabled or disabled in Bypass Mode; this feature is enabled using the MICB*n*_RATE bits.

The MICBIAS generators are shown in Fig. 4-75. The MICBIAS control fields are described in Table 4-124.

The maximum output current for each MICBIAS regulator is noted in Table 3-11. This limit must be observed for each set of MICBIAS nx outputs, especially if more than one microphone is connected to a single regulator. Note that the maximum output current differs between Regulator Mode and Bypass Mode.

4.19.3.1 MICBIAS output in Sleep Mode

The CS42L92 supports a low-power Sleep Mode, in which most functions are disabled and power consumption is minimized. The CS42L92 can maintain an unregulated voltage output in Sleep Mode, suitable for powering an external microphone in always-on applications. The INnx/DMICx connections are isolated from the CS42L92 circuits in Sleep Mode, to allow any connected microphone to be used by another circuit while Sleep Mode is selected.

If the MICB1A_AOD_ENA bit is set, the normal register-field configuration of CP2, LDO2, and MICBIAS1 are overridden. Under these conditions, the CP2, LDO2 and MICBIAS1 circuits are bypassed and the MICBIAS1A output is connected directly to the CPVDD supply.

The unregulated MICBIAS1A output can be maintained in Sleep Mode by setting MICB1A_AOD_ENA before the DCVDD supply is removed.

To minimize any transient effects during the Sleep Mode transition, the MICBIAS1A should be configured in bypass mode before Sleep Mode is enabled. The following control sequence is recommended:

- CP BYPASS = 1
- MICB1 BYPASS = 1
- MICB1A AOD ENA = 1
- Remove DCVDD

To minimize any transient effects following a wake-up transition, the MICBIAS1A should be configured in bypass mode before clearing MICB1A AOD ENA. The following control sequence is recommended:

- Apply DCVDD
- LDO2 VSEL = (set as required)
- CP2 BYPASS = 0
- MICB1_LVL = (set as required)
- MICB1 BYPASS = 0
- MICB1 ENA = 1
- MICB1A_ENA = 1
- MICB1A AOD ENA = 0

4.19.4 Voltage-Reference Circuit

The CS42L92 incorporates a voltage-reference circuit, powered by AVDD. This circuit ensures the accuracy of the LDO-regulator and MICBIAS voltage settings.

4.19.5 Block Diagram and Control Registers

The charge-pump and regulator circuits are shown in Fig. 4-75. Note that decoupling capacitors and flyback capacitors are required for these circuits. Refer to Section 5.1 for recommended external components.

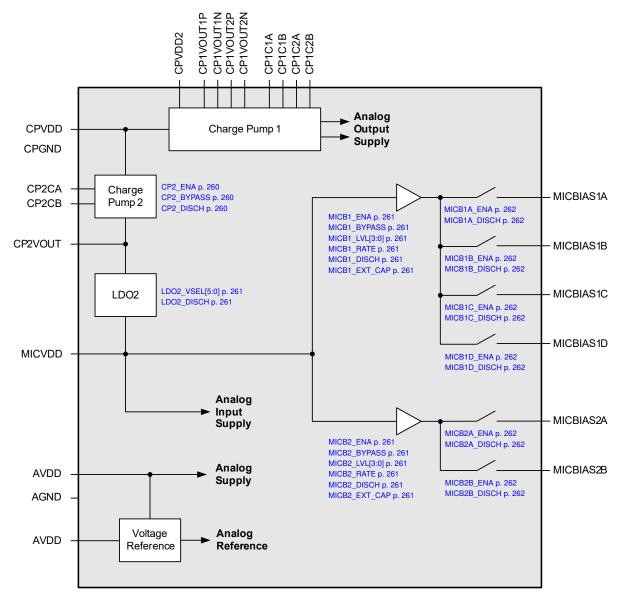


Figure 4-75. Charge Pumps and Regulators

The charge-pump and regulator control registers are described in Table 4-124.

Table 4-124. Charge-Pump and LDO Control Registers

Register Address	Bit	Label	Default	Description	
R512 (0x0200)	2	CP2_DISCH	1	Charge Pump 2 Discharge	
Mic_Charge_				0 = CP2VOUT floating when disabled	
Pump_1				1 = CP2VOUT discharged when disabled	
	1	CP2_BYPASS	1	Charge Pump 2 and LDO2 Bypass Mode	
				0 = Normal	
				1 = Bypass Mode	
				In Bypass Mode, CPVDD is connected directly to MICVDD.	
				Note that CP2_ENA must also be set.	
	0	CP2_ENA	1	Charge Pump 2 and LDO2 Control	
				(Provides analog input and MICVDD supplies)	
				0 = Disabled	
				1 = Enabled	

Table 4-124. Charge-Pump and LDO Control Registers (Cont.)

Register Address	Bit	Label	Default	Description
R531 (0x0213)	10:5	LDO2_VSEL[5:0]	0x1F	LDO2 Output Voltage Select 1
LDO2 Control 1				0x00 = 0.900 V
				0x01 = 0.925 V $0x14 = 1.400 V$ $0x26 = 3.200 V$
				0x02 = 0.950 V $0x15 = 1.500 V$ $0x27 to 0x3F = 3.300 V$
				(25-mV steps) 0x16 = 1.600 V
	2	LDO2_DISCH	1	LDO2 Discharge
		_		0 = MICVDD floating when disabled
				1 = MICVDD discharged when disabled
R536 (0x0218)	15	MICB1 EXT CAP	0	Microphone Bias 1 External Capacitor (when MICB1_BYPASS = 0).
Mic_Bias_Ctrl_1				Configures the MICBIAS1 regulator according to the specified capacitance connected
				to the MICBIAS1x outputs.
				0 = No external capacitor
				1 = External capacitor connected
	8:5	MICB1_LVL[3:0]	0x7	Microphone Bias 1 Voltage Control (when MICB1_BYPASS = 0)
				0x0 = 1.5 V (0.1-V steps) 0xD to 0xF = 2.8 V
				0x1 = 1.6 V
	3	MICB1_RATE	0	Microphone Bias 1 Rate (Bypass Mode)
		_		0 = Fast start-up/shutdown
				1 = Pop-free start-up/shutdown
	2	MICB1_DISCH	1	Microphone Bias 1 Discharge
		_		0 = MICBIAS1 floating when disabled
				1 = MICBIAS1 discharged when disabled
	1	MICB1_BYPASS	1	Microphone Bias 1 Mode
		_		0 = Regulator Mode
				1 = Bypass Mode
	0	MICB1_ENA	0	Microphone Bias 1 Enable
		_		0 = Disabled
				1 = Enabled
R537 (0x0219)	15	MICB2_EXT_CAP	0	Microphone Bias 2 External Capacitor (when MICB2_BYPASS = 0). Configures the
Mic_Bias_Ctrl_2				MICBIAS2 regulator according to the specified capacitance connected to the
				MICBIAS2x outputs.
				0 = No external capacitor
				1 = External capacitor connected
	8:5	MICB2_LVL[3:0]	0x7	Microphone Bias 2 Voltage Control (when MICB2_BYPASS = 0)
				0x0 = 1.5 V (0.1-V steps) 0xD to 0xF = 2.8 V
				0x1 = 1.6 V
	3	MICB2_RATE	0	Microphone Bias 2 Rate (Bypass Mode)
				0 = Fast start-up/shutdown
				1 = Pop-free start-up/shutdown
	2	MICB2_DISCH	1	Microphone Bias 2 Discharge
				0 = MICBIAS2 floating when disabled
		MIODO DVDAGO		1 = MICBIAS2 discharged when disabled
	1	MICB2_BYPASS	1	Microphone Bias 2 Mode
			1	0 = Regulator Mode
		1410D0 E:::		1 = Bypass Mode
	0	MICB2_ENA	0	Microphone Bias 2 Enable
			1	0 = Disabled
				1 = Enabled

Table 4-124. Charge-Pump and LDO Control Registers (Cont.)

Register Address	Bit	Label	Default	·
R540 (0x021C)	13	MICB1D_DISCH	1	Microphone Bias 1D Discharge
Mic_Bias_Ctrl_5				0 = MICBIAS1D floating when disabled
				1 = MICBIAS1D discharged when disabled
	12	MICB1D_ENA	0	Microphone Bias 1D Enable
				0 = Disabled
				1 = Enabled
	9	MICB1C_DISCH	1	Microphone Bias 1C Discharge
				0 = MICBIAS1C floating when disabled
				1 = MICBIAS1C discharged when disabled
	8	MICB1C_ENA	0	Microphone Bias 1C Enable
				0 = Disabled
				1 = Enabled
	5	MICB1B_DISCH	1	Microphone Bias 1B Discharge
				0 = MICBIAS1B floating when disabled
				1 = MICBIAS1B discharged when disabled
	4	MICB1B_ENA	0	Microphone Bias 1B Enable
				0 = Disabled
				1 = Enabled
	1	MICB1A_DISCH	1	Microphone Bias 1A Discharge
				0 = MICBIAS1A floating when disabled
				1 = MICBIAS1A discharged when disabled
	0	MICB1A_ENA	0	Microphone Bias 1A Enable
				0 = Disabled
				1 = Enabled
R542 (0x021E)	5	MICB2B_DISCH	1	Microphone Bias 2B Discharge
Mic_Bias_Ctrl_6				0 = MICBIAS2B floating when disabled
				1 = MICBIAS2B discharged when disabled
	4	MICB2B_ENA	0	Microphone Bias 2B Enable
				0 = Disabled
				1 = Enabled
	1	MICB2A_DISCH	1	Microphone Bias 2A Discharge
				0 = MICBIAS2A floating when disabled
				1 = MICBIAS2A discharged when disabled
	0	MICB2A_ENA	0	Microphone Bias 2A Enable
				0 = Disabled
				1 = Enabled
R723 (0x02D3)	14	MICB1A_AOD_	0	Microphone Bias 1A Always-On Enable
Jack_detect_		ENA		0 = Disabled
analogue		1	1	1 = Enabled

^{1.} See Table 4-125 for LDO2 output voltage definition.

Table 4-125 lists the LDO2 voltage control settings.

Table 4-125. LDO2 Voltage Control

LDO2_VSEL[5:0]	LDO Output	
0x00	0.900 V	
0x01	0.925 V	
0x02	0.950 V	
0x03	0.975 V	
0x04	1.000 V	
0x05	1.025 V	
0x06	1.050 V	
0x07	1.075 V	
0x08	1.100 V	
0x09	1.125 V	
0x0A	1.150 V	

LDO2_VSEL[5:0]	LDO Output
0x15	1.500 V
0x16	1.600 V
0x17	1.700 V
0x18	1.800 V
0x19	1.900 V
0x1A	2.000 V
0x1B	2.100 V
0x1C	2.200 V
0x1D	2.300 V
0x1E	2.400V
0x1F	2.500 V

LDO2_VSEL[5:0]	LDO Output
0x0B	1.175 V
0x0C	1.200 V
0x0D	1.225 V
0x0E	1.250 V
0x0F	1.275 V
0x10	1.300 V
0x11	1.325 V
0x12	1.350 V
0x13	1.375 V
0x14	1.400 V

LDO2_VSEL[5:0]	LDO Output
0x20	2.600 V
0x21	2.700 V
0x22	2.800 V
0x23	2.900 V
0x24	3.000 V
0x25	3.100 V
0x26	3.200 V
0x27	3.300 V
0x28 to 0x3F	3.300 V

4.20 JTAG Interface

The JTAG interface provides test and debug access to the CS42L92. The interface comprises five connections, some of which are multiplexed with the GPIO13–GPIO15 pins, as noted in Table 4-126.

Table 4-126. JTAG Interface Connections

Pin No	Pin Name	JTAG Function	JTAG Description
N8	AIF3BCLK/GPIO14	TCK	Clock input
R8	AIF3RXDAT/GPIO15	TDI	Data input
F7	TDO	TDO	Data output
J8	AIF3TXDAT/GPIO13	TMS	Mode select input
D7	TRST	TRST	Test access port reset input (active low)

The JTAG interface is supported whenever the GPIO13–GPIO15 are configured as GPIO inputs. To allow JTAG operation, the following conditions must be met:

- GPn FN = 0x001 (n = 13-15)
- GPn DIR = 0x1 (n = 13-15)

The GPn_FN and GPn_DIR fields are defined in Table 4-93. Note that the above conditions are also the default values of these control fields.

For normal operation (test and debug access disabled), the JTAG interface should be held in reset. An internal pull-down resistor holds the TRST pin low (i.e., JTAG interface is held in reset) when not actively driven. It is recommended to connect the TRST pin to DGND, if the JTAG interface function is not required.

Integrated pull-up and pull-down resistors can be enabled on the TCK, TDI, and TMS pins. This is provided as part of the GPIO functionality, and provides a flexible capability for interfacing with other devices. The pull-up and pull-down resistors can be configured independently using the fields described in Table 4-93.

If the JTAG interface is enabled (TRST deasserted and TCK active) at the time of any reset, a software reset must be scheduled, with the TCK input stopped or TRST asserted (Logic 0), before using the JTAG interface.

It is recommended to always schedule a software reset before starting the JTAG clock or deasserting the JTAG reset. In this event, the JTAG interface should be held in its reset state until the software reset has completed, and the BOOT_DONE_STSx bits have been set. See Section 4.23 for further details of the CS42L92 software reset.

4.21 Short-Circuit Protection

The CS42L92 provides short-circuit protection on the headphone output drivers.

The short-circuit protection function for the headphone output paths operates continuously if the respective output driver is enabled. If a short circuit is detected on the headphone output, current limiting is applied to protect the respective output driver. Note that the driver continues to operate, but the output is current-limited.

The headphone short-circuit protection function provides input to the interrupt control circuit and can be used to trigger an interrupt event when a short-circuit condition is detected; see Section 4.15.

4.22 Power-On Reset (POR)

The CS42L92 remains in the reset state until AVDD, DBVDD, and DCVDD are above their respective reset thresholds. Note that specified device performance is not assured outside the voltage ranges defined in Table 3-3.

After the initial power-up, the POR is rescheduled following an interruption to the DBVDD or AVDD supplies.

If the CS42L92 SLIMbus component is in its operational state, it must be reset before scheduling a POR. See Section 4.10 for details of the SLIMbus reset control messages.

4.22.1 Boot Sequence

Following power-on reset, a boot sequence is executed. The BOOT_DONE_STSx bits are asserted on completion of the boot sequence, as described in Table 4-127. Control-register writes should not be attempted until BOOT_DONE_STSx has been asserted. Note that the BOOT_DONE_STS1 and BOOT_DONE_STS2 bits provide the same information.

The BOOT_DONE_STSx signal is an input to the interrupt control circuit and can be used to trigger an interrupt event on completion of the boot sequence; see Section 4.15. Under default register conditions, a falling edge on the IRQ pin indicates completion of the boot sequence.

For details of the boot sequence, see Section 4.18.

Register Address	Bit	Label	Default	Description
R6272 (0x1880)	7	BOOT_DONE_	0	Boot Status
IRQ1_Raw_		STS1		0 = Busy (boot sequence in progress)
Status_1				1 = Idle (boot sequence completed)
				Control register writes should not be attempted until Boot Sequence has completed.
R6528 (0x1980)	7	BOOT_DONE_	0	Boot Status
IRQ2_Raw_		STS2		0 = Busy (boot sequence in progress)
Status_1				1 = Idle (boot sequence completed)
				Control register writes should not be attempted until Boot Sequence has completed.

Table 4-127. Device Boot-Up Status

4.22.2 Digital I/O Status in Reset

Table 1-1 describes the default status of the CS42L92 digital I/O pins on completion of power-on reset, prior to any register writes. The same default conditions are also applicable on completion of a hardware reset or software reset (see Section 4.23).

The same default conditions are applicable following a wake-up transition, except for the IRQ and RESET pins. These are always-on pins whose configuration is unchanged in Sleep Mode and during a wake-up transition.

Note that the default conditions described in Table 1-1 are not valid if modified by the boot sequence or by a wake-up control sequence. See Section 4.18 for details of these functions.

4.23 Hardware Reset, Software Reset, Wake-Up, and Device ID

The CS42L92 supports hardware- and software-controlled reset functions. The reset functions, and the Sleep/Wake-Up state transitions, provide similar (but not identical) functionality. Each of these is described in the following subsections.

The CS42L92 device ID can be read from the Software Reset (R0) control register, as described in Section 4.23.7.

4.23.1 Hardware Reset

The CS42L92 provides a hardware reset function, which is executed whenever the RESET input is asserted (Logic 0). The RESET input is active low and is referenced to the DBVDD power domain. A hardware reset causes all of the CS42L92 control registers to be reset to their default states.

An internal pull-up resistor is enabled by default on the RESET pin; this can be configured using the RESET_PU bit. A pull-down resistor is also available, as described in Table 4-128. When the pull-up and pull-down resistors are both enabled, the CS42L92 provides a bus keeper function on the RESET pin. The bus keeper function holds the input logic level unchanged whenever the external circuit removes the drive (e.g., if the signal is tristated).

If the CS42L92 SLIMbus component is in its operational state, it must be reset prior to scheduling a hardware reset. See Section 4.10 for details of the SLIMbus reset control messages.

Register Address	Bit	Label	Default	Description
R6864 (0x1AD0)	1	RESET_PU	1	RESET Pull-up enable
AOD_Pad_Ctrl				0 = Disabled
				1 = Enabled
				Note: If RESET_PD and RESET_PU are both set, a bus keeper function is enabled on the RESET pin.
	0	RESET_PD	0	RESET Pull-down enable
				0 = Disabled
				1 = Enabled
				Note: If RESET_PD and RESET_PU are both set, a bus keeper function is enabled on the RESET pin.

Table 4-128. Reset Pull-Up/Pull-Down Configuration

4.23.2 Software Reset

A software reset is executed by writing any value to register R0. A software reset causes most of the CS42L92 control registers to be reset to their default states. Note that the control-write sequencer memory is retained during software reset.

Note that the first register read/write operation following a software reset may be unsuccessful, if the register access is attempted via a different control interface to the one that commanded the software reset. Note that only the first register read/write is affected, and only when using more than one control interface.

4.23.3 Wake-Up

The CS42L92 is in Sleep Mode when AVDD and DBVDD are present, and DCVDD is below its reset threshold. (Note that specific control requirements are also applicable for entering Sleep Mode, as described in Section 4.13.)

In Sleep Mode, most of the digital core (and control registers) are held in reset; selected functions and control registers are maintained via an always-on internal supply domain. See Section 4.13 for details of the always-on functions.

A wake-up transition (from Sleep Mode) is similar to a software reset, but selected functions and control registers are maintained via an always-on internal supply domain—the always-on registers are not reset during wake-up. See Section 4.13 for details of the always-on functions.

4.23.4 Write Sequencer and DSP Firmware Memory Control in Reset and Wake-Up

The control-write sequencer memory contents reverts to its default contents following power-on reset, a hardware reset, or a Sleep Mode transition. The control sequences (including any user-defined sequences) are maintained in the sequencer memory through software reset.

The DSP firmware memory contents are cleared following power-on reset, a hardware reset, or a Sleep Mode transition. The firmware memory contents are not affected by software reset, provided DCVDD is held above its reset threshold.

See Section 5.2 for a summary of the CS42L92 memory reset conditions.

4.23.5 Boot Sequence

Following hardware reset, software reset, or wake-up from Sleep Mode, a boot sequence is executed. The BOOT_DONE_STSx bits (see Table 4-127) are deasserted during hardware reset and software reset, and also in Sleep Mode. The BOOT_DONE_STSx bits are asserted on completion of the boot sequence. Control register writes should not be attempted until BOOT_DONE_STSx has been asserted.

The BOOT_DONE_STSx status is an input to the interrupt control circuit and can be used to trigger an interrupt event; see Section 4.15. Note that the BOOT_DONE_STS1 and BOOT_DONE_STS2 bits provide the same information.

For details of the boot sequence, see Section 4.18.

4.23.6 Digital I/O Status in Reset

The status of the CS42L92 digital I/O pins following hardware reset, software reset, or wake-up is described in Section 4.22.2.

4.23.7 Device ID

The device ID can be read from Register R0. The hardware revision can be read from Register R1.

The software revision can be read from Register R2. The software revision code is incremented if software driver compatibility or software feature support is changed.

Register Address	Bit	Label	Default	Description
R0 (0x0000)	15:0	SW_RST_DEV_	0x6371	Writing to this register resets all registers to their default state.
Software_Reset		ID[15:0]		Reading from this register indicates Device ID 0x6371.
R1 (0x0001)	7:0	HW_	_	Hardware Device revision.
Hardware_ Revision		REVISION[7:0]		This field is incremented for every new revision of the device.
R2 (0x0002)	7:0	SW_	_	Software Device revision.
Software_Revision		REVISION[7:0]		This field is incremented if software driver compatibility or software feature support is changed.

Table 4-129. Device Reset and ID

5 Applications

5.1 Recommended External Components

This section provides information on the recommended external components for use with the CS42L92.

5.1.1 Analog Input Paths

The CS42L92 supports up to eight analog audio input connections. Each input is biased to the internal DC reference, VREF. (Note that this reference voltage is present on the VREFC pin.) A DC-blocking capacitor is required for each analog input pin used in the target application. The choice of capacitor is determined by the filter that is formed between that capacitor and the impedance of the input pin. The circuit is shown in Fig. 5-1.

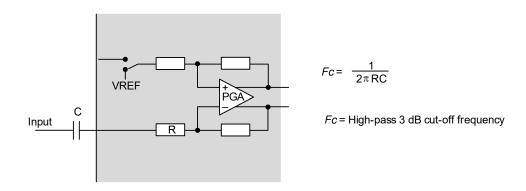


Figure 5-1. Audio Input Path DC-Blocking Capacitor

In accordance with the CS42L92 input pin resistance (see Table 3-5), a $1-\mu F$ capacitance for all input connections gives good results in most cases, with a 3-dB cut-off frequency around 13 Hz.

Ceramic capacitors are suitable, but take care to ensure the desired capacitance is maintained at the AVDD operating voltage. Also, ceramic capacitors may show microphonic effects, where vibrations and mechanical conditions give rise to electrical signals. This is particularly problematic for microphone input paths where a large signal gain is required.

A single capacitor is required for a single-ended line or microphone input connection. For a differential input connection, a DC-blocking capacitor is required on both input pins.

The external connections for single-ended and differential microphones, incorporating the CS42L92 microphone bias circuit, are shown in Fig. 5-2.

5.1.2 DMIC Input Paths

The CS42L92 supports up to eight channels of DMIC input; two channels of audio data can be multiplexed on each DMICDAT*n* pin. Each stereo pair is clocked using the respective DMICCLK*n* pin.

The external connections for digital microphones, incorporating the CS42L92 microphone bias circuit, are shown in Fig. 5-4. Ceramic decoupling capacitors for the digital microphones may be required—refer to the specific recommendations for the application microphones.

If two microphones are connected to a single DMICDAT pin, the microphones must be configured to ensure that the Left mic transmits a data bit when DMICCLK is high, and the Right mic transmits a data bit when DMICCLK is low. The CS42L92 samples the DMIC data at the end of each DMICCLK phase. Each microphone must tristate its data output when the other microphone is transmitting. Integrated pull-down resistors can be enabled on the DMICDAT pins if required.

The voltage reference for each DMIC interface is selectable. It is important that the selected reference for the CS42L92 interface is compatible with the applicable configuration of the external microphone.

5.1.3 Microphone Bias Circuit

The CS42L92 is designed to interface easily with analog or digital microphones.

Each microphone requires a bias current (electret condenser microphones) or voltage supply (silicon microphones); these can be provided by the MICBIAS regulators on the CS42L92. Two MICBIAS generators are available; switchable outputs allow six separate reference/supply outputs to be independently controlled.

Note that the MICVDD pin can also be used (instead of MICBIAS*nx*) as a reference or power supply for external microphones. The MICBIAS outputs are recommended, as these offer better noise performance and independent enable/ disable control.

Analog microphones may be connected in single-ended or differential configurations, as shown in Fig. 5-2. The differential configuration provides better performance due to its rejection of common-mode noise; the single-ended method provides a reduction in external component count.

A bias resistor is required when using an ECM. The bias resistor should be chosen according to the minimum operating impedance of the microphone and MICBIAS voltage so that the maximum bias current of the CS42L92 is not exceeded.

A 2.2-k Ω bias resistor is recommended; this provides compatibility with a wide range of microphone components.

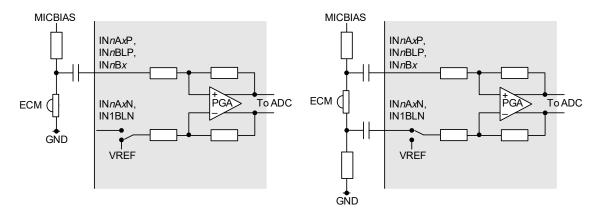


Figure 5-2. Single-Ended and Differential Analog Microphone Connections

Analog MEMS microphones can be connected to the CS42L92 as shown in Fig. 5-3. In this configuration, the MICBIAS generators provide a low-noise supply for the microphones; a bias resistor is not required.

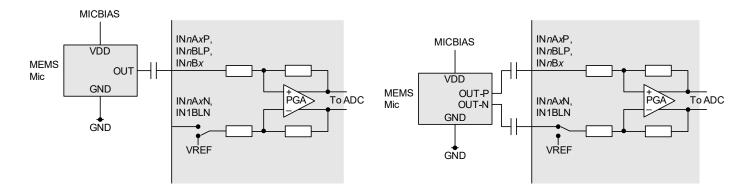


Figure 5-3. Single-Ended and Differential Analog Microphone Connections

DMIC connection to the CS42L92 is shown in Fig. 5-4. Note that ceramic decoupling capacitors at the DMIC power supply pins may be required—refer to the specific recommendations for the application microphones.

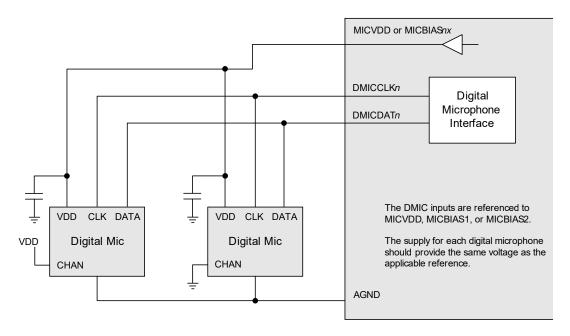


Figure 5-4. DMIC Connection

Each MICBIAS generator can operate in Regulator Mode or in Bypass Mode. See Section 4.19 for details of the MICBIAS generators.

In Regulator Mode, the MICBIAS regulators are designed to operate without external decoupling capacitors. The regulators can be configured to support a capacitive load if required (e.g., for DMIC supply decoupling). The compatible load conditions are detailed in Table 3-11.

If the capacitive load on MICBIAS1 or MICBIAS2 exceeds the specified conditions for Regulator Mode (e.g., due to a decoupling capacitor or long PCB trace), the respective generator must be configured in Bypass Mode.

The maximum output current for each MICBIAS regulator is noted in Table 3-11. This limit must be observed for each set of MICBIAS nx outputs, especially if more than one microphone is connected to a single regulator. Note that the maximum output current differs between Regulator Mode and Bypass Mode. The MICBIAS output voltage can be adjusted using register control in Regulator Mode.

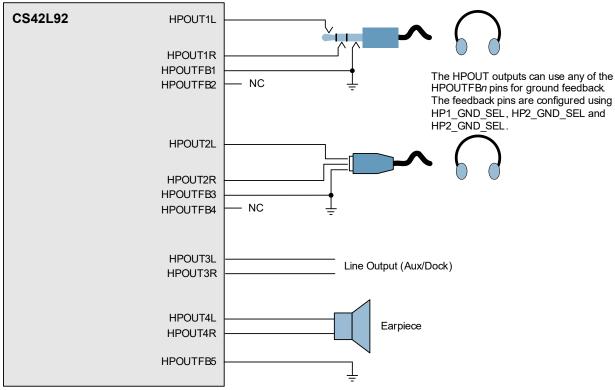
5.1.4 Headphone Driver Output Path

The CS42L92 provides four stereo headphone output drivers. These outputs are all ground referenced, allowing direct connection to the external loads. There is no requirement for DC-blocking capacitors.

In single-ended (default) configuration, the headphone outputs comprise eight independently controlled output channels, for up to four stereo headphone or line outputs. In mono (BTL) mode, the headphone drivers support up to four differential outputs, suitable for a mono earpiece or hearing coil load.

Note that the OUT3 signal path is common to the HPOUT3 and HPOUT4 drivers—only one of these stereo drivers may be enabled at any time.

The headphone outputs incorporate a common mode, or ground loop, feedback path that provides rejection of system-related ground noise. The feedback pins must be connected to ground for normal operation of the headphone outputs. Five feedback pins are provided (HPOUTFB1–HPOUTFB5). The ground feedback path for each HPOUT path is selected using the HPn GND SEL bits as follows:


- The ground feedback path for HPOUT1 and HPOUT2 headphone outputs is selected using the HP1_GND_SEL and HP2_GND_SEL register fields respectively—see Table 4-81.
- The ground feedback path for HPOUT3 and HPOUT4 headphone outputs is selected using the HP3_GND_SEL field.

The selected feedback pin should be connected to GND as close as possible to the respective headphone jack ground pin, as shown in Fig. 5-5. In mono (differential) mode, the feedback pins should be connected to the ground plane that is closest to the earpiece output PCB tracks.

It is recommended to ensure that the electrical characteristics of the PCB traces for each output pair are closely matched. This is particularly important to matching the two traces of a differential (BTL) output.

Typical headphone and earpiece connections are shown in Fig. 5-5.

Each headphone output can support stereo (single-ended) or mono (differential) output. The illustration shows the configuration for a typical application .

Figure 5-5. Headphone and Earpiece Connection

It is common for ESD diodes to be wired to pins that link to external connectors. This provides protection from potentially harmful ESD effects. In a typical application, ESD diodes would be recommended if the headphone paths (HPOUT1–HPOUT4) are used for external headphone or line output.

The HPOUT *n* outputs are ground-referenced, and the respective voltages may swing between +1.8V and –1.8V. The ESD diode configuration must be carefully chosen.

The recommended ESD diode configuration for these ground-referenced outputs is shown in Fig. 5-6. The back-to-back arrangement prevents clipping and distortion of the output signal.

Note that similar care is required when connecting the CS42L92 outputs to external circuits that provide input path ESD protection; the configuration on those input circuits must be correctly designed to accommodate ground-referenced signals.

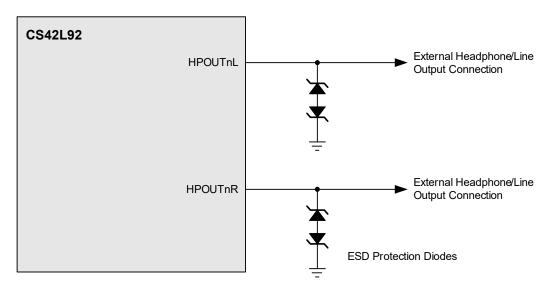


Figure 5-6. ESD Diode Configuration for External Output Connections

5.1.5 Power Supply/Reference Decoupling

Electrical coupling exists particularly in digital logic systems where switching in one subsystem causes fluctuations on the power supply. This effect occurs because the inductance of the power supply acts in opposition to the changes in current flow that are caused by the logic switching. The resultant variations (spikes) in the power-supply voltage can cause malfunctions and unintentional behavior in other components. A decoupling (bypass) capacitor can be used as an energy storage component that provides power to the decoupled circuit for the duration of these power-supply variations, protecting it from malfunctions that could otherwise arise.

Coupling also occurs in a lower frequency form when ripple is present on the power supply rail caused by changes in the load current or by limitations of the power-supply regulation method. In audio components such as the CS42L92, these variations can alter the performance of the signal path, leading to degradation in signal quality. A decoupling capacitor can be used to filter these effects by presenting the ripple voltage with a low-impedance path that does not affect the circuit to be decoupled.

These coupling effects are addressed by placing a capacitor between the supply rail and the corresponding ground reference. In the case of systems comprising multiple power supply rails, decoupling should be provided on each rail.

PCB layout is also a contributory factor for coupling effects. If multiple power supply rails are connected to a single supply source, it is recommended to provide separate PCB tracks connecting each rail to the supply. See Section 5.5 for PCB-layout recommendations.

The recommended power-supply decoupling capacitors for CS42L92 are detailed in Table 5-1.

Power Supply	Decoupling Capacitor
AVDD1, AVDD2	2 x 1.0 μF ceramic—one capacitor on each AVDD <i>n</i> pin
CPVDD1	4.7 μF ceramic
CPVDD2	4.7 μF ceramic
DBVDD	1 x 0.1 μF ceramic ¹
DCVDD	2 x 1.0 μF ceramic—one capacitor on each DCVDD pin
FLLVDD	4.7 μF ceramic
MICVDD	4.7 μF ceramic
VREFC	2.2 μF ceramic

Table 5-1. Power Supply Decoupling Capacitors

^{1.} Total capacitance of 4.7 μ F is required for the DBVDD domain. This can be provided by dedicated DBVDD decoupling or by other capacitors on the same power rail.

All decoupling capacitors should be placed as close as possible to the CS42L92 device. The connection between AGND, the AVDD decoupling capacitor, and the main system ground should be made at a single point as close as possible to the AGND balls of the CS42L92.

Due to the wide tolerance of many types of ceramic capacitors, care must be taken to ensure that the selected components provide the required capacitance across the required temperature and voltage ranges in the intended application. For most application the use of ceramic capacitors with capacitor dielectric X7R is recommended.

5.1.6 Charge-Pump Components

The CS42L92 incorporates two charge-pump circuits (CP1 and CP2).

CP1 generates the CP1VOUT*nx* supply rails for the ground-referenced headphone drivers; CP2 generates the CP2VOUT supply rail for the microphone bias (MICBIAS) regulators.

Decoupling capacitors are required on each of the charge-pump outputs. Two fly-back capacitors are required for CP1; a single fly-back capacitor is required for CP2.

The recommended charge-pump capacitors for CS42L92 are detailed in Table 5-2.

Description	Capacitor
CP1VOUT1P decoupling	Required capacitance is 2.0 µF at 2 V. Suitable component typically 4.7 µF.
CP1VOUT1N decoupling	Required capacitance is 2.0 µF at 2 V. Suitable component typically 4.7 µF.
CP1 fly-back 1 (connect between CP1C1A and CP1C1B)	Required capacitance is 1.0 µF at 2 V. Suitable component typically 2.2 µF.
CP1VOUT2P decoupling	Required capacitance is 2.0 µF at 2 V. Suitable component typically 4.7 µF.
CP1VOUT2N decoupling	Required capacitance is 2.0 µF at 2 V. Suitable component typically 4.7 µF.
CP1 fly-back 2 (connect between CP1C2A and CP1C2B)	Required capacitance is 1.0 µF at 2 V. Suitable component typically 2.2 µF.
CP2VOUT decoupling	Required capacitance is 1.0 μF at 3.6 V. Suitable component typically 4.7 μF.
CP2 fly-back (connect between CP2CA and CP2CB)	Required capacitance is 220 nF at 2 V. Suitable component typically 470 nF.

Table 5-2. Charge-Pump External Capacitors

Ceramic capacitors are recommended for these charge-pump requirements. Note that, due to the wide tolerance of many types of ceramic capacitors, care must be taken to ensure that the selected components provide the required capacitance across the required temperature and voltage ranges in the intended application. Ceramic capacitors with X7R dielectric are recommended.

The positioning of the charge-pump capacitors is important. These capacitors (particularly the fly-back capacitors) must be placed as close as possible to the CS42L92. The component choice and positioning of the CP1 components are more critical than those of CP2, due to the higher output power requirements of CP1.

5.1.7 External Accessory Detection Components

The external accessory detection circuit measures jack insertion using the JACKDET*n* pins. The insertion switch status is detected using an internal pull-up resistor circuit on the respective pin. Note that the logic thresholds associated with the JACKDET*n* pins differ from each other, as described in Table 3-11—this provides support for different jack switch configurations.

Microphone detection and key-button press detection is supported using the MICDETn pins. The applicable pin should be connected to one of the MICBIASnx outputs, via a 2.2-k Ω bias resistor, as described in Section 5.1.3. Note that, when using the external accessory detection function, the MICBIASnx resistor must be 2.2 k Ω ±2%.

A recommended circuit configuration, including headphone output on HPOUT1 and microphone connections, is shown in Fig. 5-7. See Section 5.1.1 for details of the DC-blocking microphone input capacitor selection.

The recommended external components and connections for microphone/push-button detection are shown in Fig. 5-7.

Note that, when using the microphone detect circuit, it is recommended to use the IN1ALx, IN1BLx, or IN1BR analog microphone input paths to ensure best immunity to electrical transients arising from the external accessory.

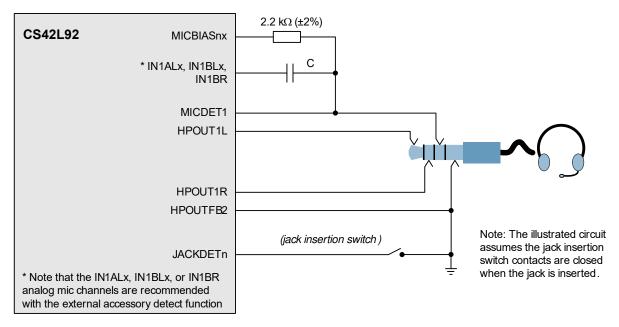


Figure 5-7. External Accessory Detection

The accessory detection circuit measures the impedance of an external load connected to one of the MICDET pins.

The microphone-detection circuit uses MICVDD, or any one of the MICBIAS *nx* sources, as a reference. The applicable source is configured using MICD*n* BIAS SRC.

With default register configuration, the CS42L92 can detect the presence of a typical microphone and up to four push buttons, using the components shown in Fig. 5-8. When the microphone detection circuit is enabled, each of the push buttons shown causes a different bit in the MICD*n* LVL field to be set.

The choice of external resistor values must take into account the impedance of the microphone—the detected impedance corresponds to the combined parallel resistance of the microphone and any asserted push button. The components shown in Fig. 5-8 are examples only, assuming default impedance measurement ranges and a microphone impedance of 1 k Ω or higher.

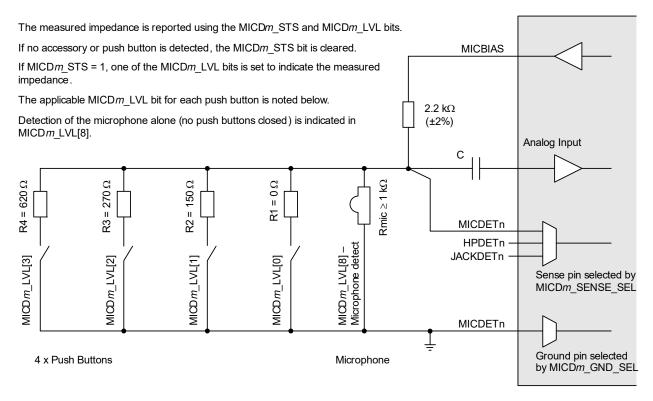


Figure 5-8. External Accessory Detect Components

5.2 Resets Summary

Table 5-3 summarizes the CS42L92 registers and other programmable memory under different reset conditions. The associated events and conditions are listed as follows:

- A power-on reset occurs when AVDD or DBVDD is below its respective reset threshold. Note that DCVDD is also
 required for initial start-up; subsequent interruption to DCVDD should only be permitted as part of a control
 sequence for entering Sleep Mode.
- A hardware reset occurs when the RESET input is asserted (Logic 0).
- A software reset occurs when register R0 is written to.
- Sleep Mode is selected when DCVDD is removed. Note that the AVDD and DBVDD supplies must be present throughout the Sleep Mode duration.

Reset Type	Always-On Registers ¹	Other Registers	Control-Write Sequencer Memory	DSP Firmware Memory
Power-on reset	Reset	Reset	Reset	Reset
Hardware reset	Reset	Reset	Reset	Reset
Software reset	Reset	Reset	Retained	Retained ²
Sleep Mode	Retained	Reset	Reset	Reset

Table 5-3. Memory Reset Summary

5.3 Output-Signal Drive-Strength Control

The CS42L92 supports configurable drive-strength control for the digital output pins. This can be used to assist system-level integration and design considerations.

The drive-strength control bits are described in Table 5-4. Note that, in the case of bidirectional pins (e.g., GPIO*n*), the drive-strength control bits are only applicable if the pin is configured as an output.

^{1.} See Section 4.13 for details of Sleep Mode and the always-on registers.

^{2.} To retain the DSP firmware memory contents during software reset, it must be ensured that DCVDD is held above its reset threshold.

Table 5-4. Output Drive-Strength and Slew-Rate Control

Register Address	Bit	Label	Default	Description
R8 (0x0008)	8	CIF1MISO_DRV_	1	CIF1MISO output drive strength
Ctrl_IF_CFG_1		STR		0 = 4 mA
				1 = 8 mA
R1520 (0x05F0)	1	SLIMDAT2_DRV_	1	SLIMDAT2 output drive strength
Slimbus_Pad_Ctrl		STR		0 = 8 mA
				1 = 12 mA
	1	SLIMDAT1_DRV_	1	SLIMDAT1 output drive strength
		STR		0 = 8 mA
				1 = 12 mA
	0	SLIMCLK_DRV_	1	SLIMCLK output drive strength
		STR		0 = 2 mA
				1 = 4 mA
R5889 (0x1701)	12	GP1_DRV_STR	1	GPIO1 output drive strength
GPIO1_CTRL2				0 = 4 mA
_				1 = 8 mA
R5891 (0x1703)	12	GP2 DRV STR	1	GPIO2 output drive strength
GPIO2_CTRL2				0 = 4 mA
_				1 = 8 mA
R5893 (0x1705)	12	GP3 DRV STR	1	SPKCLK/GPIO3 output drive strength
GPIO3_CTRL2				0 = 4 mA
				1 = 8 mA
R5895 (0x1707)	12	GP4 DRV STR	1	SPKDAT/GPIO4 output drive strength
GPIO4_CTRL2			•	0 = 4 mA
				1 = 8 mA
R5897 (0x1709)	12	GP5 DRV STR	1	AIF1TXDAT/GPIO5 output drive strength
GPIO5_CTRL2		0.0_20	•	0 = 4 mA
				1 = 8 mA
R5899 (0x170B)	12	GP6_DRV_STR	1	AIF1BCLK/GPIO6 output drive strength
GPIO6_CTRL2		0.0_20	•	0 = 4 mA
				1 = 8 mA
R5901 (0x170D)	12	GP7 DRV STR	1	AIF1RXDAT/GPIO7 output drive strength
GPIO7_CTRL2			•	0 = 4 mA
00				1 = 8 mA
R5903 (0x170F)	12	GP8_DRV_STR	1	AIF1LRCLK/GPIO8 output drive strength
GPIO8 CTRL2		0.0_50		0 = 4 mA
01100_011122				1 = 8 mA
R5905 (0x1711)	12	GP9 DRV STR	1	AIF2TXDAT/GPIO9 output drive strength
GPIO9_CTRL2	12	OI O_BITTO_OIIT		0 = 4 mA
01100_011122				1 = 8 mA
R5907 (0x1713)	12	GP10_DRV_STR	1	AIF2BCLK/GPIO10 output drive strength
GPIO10 CTRL2	12	OI IO_BIXV_OIIX		0 = 4 mA
011010_01112				1 = 8 mA
R5909 (0x1715)	12	GP11_DRV_STR	1	AIF2RXDAT/GPIO11 output drive strength
GPIO11 CTRL2	14	Si 11_DIXV_SIIX	'	0 = 4 mA
O. 1011_011\LZ				1 = 8 mA
R5911 (0x1717)	12	GP12_DRV_STR	1	AIF2LRCLK/GPIO12 output drive strength
GPIO12_CTRL2	12	OF IZ_DRV_STR	'	0 = 4 mA
GFIUIZ_UIRLZ				1 = 8 mA
R5913 (0x1719)	10	GP13_DRV_STR	4	AIF3TXDAT/GPIO13 output drive strength
,	12	GE 19 DKV SIK	1	0 = 4 mA
GPIO13_CTRL2				
				1 = 8 mA

Table E 4	Output Drive	Ctropoth or	d Class Data	Control (Con	٠,
Table 5-4.	Output Drive	·Strength at	iu Siew-Rate	Control (Cont	l.)

Register Address	Bit	Label	Default	Description
R5915 (0x171B)	12	GP14_DRV_STR	1	AIF3BCLK/GPIO14 output drive strength
GPIO14_CTRL2				0 = 4 mA
				1 = 8 mA
R5917 (0x171D)	12	GP15_DRV_STR	1	AIF3RXDAT/GPIO15 output drive strength
GPIO15_CTRL2				0 = 4 mA
				1 = 8 mA
R5919 (0x171F)	12	GP16_DRV_STR	1	AIF3LRCLK/GPIO16 output drive strength
GPIO16_CTRL2				0 = 4 mA
				1 = 8 mA

5.4 Digital Audio Interface Clocking Configurations

The digital audio interfaces (AIF1–AIF3) can be configured in master or slave modes. In all applications, it is important that the system clocking configuration is correctly designed. Incorrect clock configurations lead to audible clicks arising from dropped or repeated audio samples; this is caused by the inherent tolerances of multiple asynchronous system clocks.

To ensure reliable clocking of the audio interface functions, the external interface clocks (e.g., BCLK, LRCLK) must be derived from the same clock source as SYSCLK (or ASYNCCLK, where applicable).

In AIF Master Mode, the external BCLK and LRCLK signals are generated by the CS42L92 and synchronization of these signals with SYSCLK (or ASYNCCLK) is ensured. In this case, clocking of the AIF is typically derived from the MCLK*n* inputs, either directly or via one of the FLL circuits. Alternatively, an AIF*n* or SLIMbus interface can be used to provide the reference clock to which the AIF master can be synchronized.

In AIF Slave Mode, the external BCLK and LRCLK signals are generated by another device, as inputs to the CS42L92. In this case, the system clock (SYSCLK or ASYNCCLK) must be generated from a source that is synchronized to the external BCLK and LRCLK inputs.

In a typical Slave Mode application, the BCLK input is selected as the clock reference, using the FLL to perform frequency shifting. The MCLK1, MCLK2, or MCLK3 inputs can also be used, but only if the selected clock is synchronized externally to the BCLK and LRCLK inputs. The SLIMbus interface can also provide the clock reference, via one of the FLLs, provided that the BCLK and LRCLK signals are externally synchronized with the SLIMCLK input.

The valid AIF clocking configurations are listed in Table 5-5 for AIF Master and AIF Slave Modes.

The applicable system clock (SYSCLK or ASYNCCLK) depends on the AlFn_RATE setting for the relevant digital audio interface; if AlFn_RATE < 1000, SYSCLK is applicable; if AlFn_RATE ≥ 1000, ASYNCCLK is applicable.

Table 5-5. AIF Clocking Configurations

AIF Mode	Clocking Configuration
AIF Master Mode	SYSCLK_SRC (ASYNCCLK_SRC) selects MCLK1, MCLK2, or MCLK3 as SYSCLK (ASYNCCLK) source.
	SYSCLK_SRC (ASYNCCLK_SRC) selects FLLn as SYSCLK (ASYNCCLK) source; FLLn_REFCLK_SRC selects MCLK1, MCLK2, or MCLK3 as FLLn source.
	SYSCLK_SRC (ASYNCCLK_SRC) selects FLLn as SYSCLK (ASYNCCLK) source; FLLn_REFCLK_SRC selects a different interface (BCLK, LRCLK, SLIMCLK) as FLLn source.
AIF Slave Mode	SYSCLK_SRC (ASYNCCLK_SRC) selects FLLn as SYSCLK (ASYNCCLK) source; FLLn_REFCLK_SRC selects BCLK as FLLn source.
	SYSCLK_SRC (ASYNCCLK_SRC) selects MCLK1, MCLK2, or MCLK3 as SYSCLK (ASYNCCLK) source, provided MCLK is externally synchronized to the BCLK input.
	SYSCLK_SRC (ASYNCCLK_SRC) selects FLLn as SYSCLK (ASYNCCLK) source; FLLn_REFCLK_SRC selects MCLK1, MCLK2, or MCLK3 as FLLn source, provided MCLK is externally synchronized to the BCLK input.
	SYSCLK_SRC (ASYNCCLK_SRC) selects FLLn as SYSCLK (ASYNCCLK) source; FLLn_REFCLK_SRC selects a different interface (e.g., SLIMCLK) as FLLn source, provided the other interface is externally synchronized to the BCLK input.

In each case, the SYSCLK (ASYNCCLK) frequency must be a valid ratio to the LRCLK frequency; the supported clocking rates are defined by the SYSCLK_FREQ (ASYNC_CLK_FREQ) and SAMPLE_RATE_n (ASYNC_SAMPLE_RATE_n) fields.

The valid AIF clocking configurations are shown in Fig. 5-9 to Fig. 5-15. Note that, where MCLK1 is shown as the clock source, it is equally possible to select MCLK2 or MCLK3 as the clock source. Similarly, in cases where FLL1 is shown, it is equally possible to select FLL2.

Fig. 5-9 shows AIF Master Mode operation, using MCLK as the clock reference.

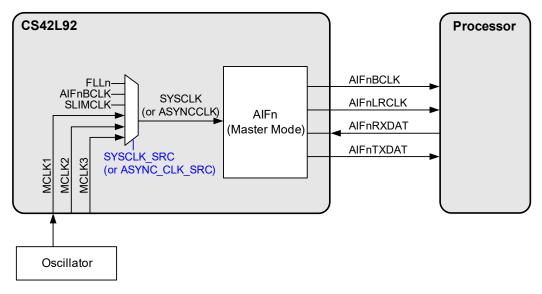


Figure 5-9. AIF Master Mode, Using MCLK as Reference

Fig. 5-10 shows AIF Master Mode operation, using MCLK as the clock reference. In this example, the FLL is used to generate the system clock, with MCLK as the reference.



Figure 5-10. AIF Master Mode, Using MCLK and FLL as Reference

Fig. 5-11 shows AIF Master Mode operation, using a separate interface as the clock reference. In this example, the FLL is used to generate the system clock, with SLIMCLK as the reference.

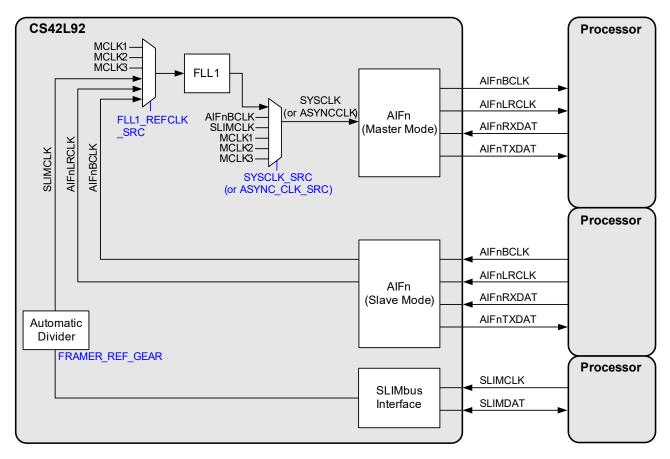


Figure 5-11. AIF Master Mode, Using Another Interface as Reference

Fig. 5-12 shows AIF Slave Mode operation, using BCLK as the clock reference. In this example, the FLL is used to generate the system clock, with BCLK as the reference.

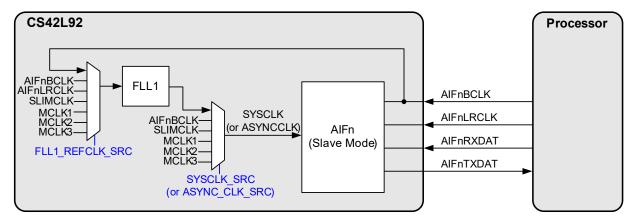


Figure 5-12. AIF Slave Mode, Using BCLK and FLL as Reference

Fig. 5-13 shows AIF Slave Mode operation, using MCLK as the clock reference. For correct operation, the MCLK input must be fully synchronized to the audio interface.

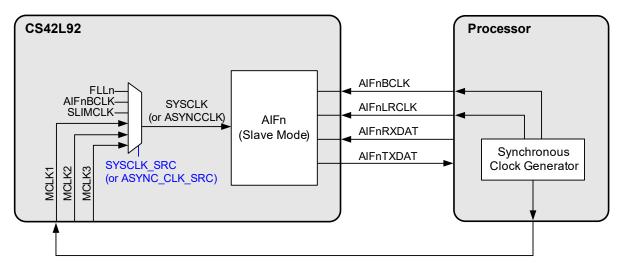


Figure 5-13. AIF Slave Mode, Using MCLK as Reference

Fig. 5-14 shows AIF Slave Mode operation, using MCLK as the clock reference. For correct operation, the MCLK input must be fully synchronized to the audio interface. In this example, the FLL is used to generate the system clock, with MCLK as the reference.

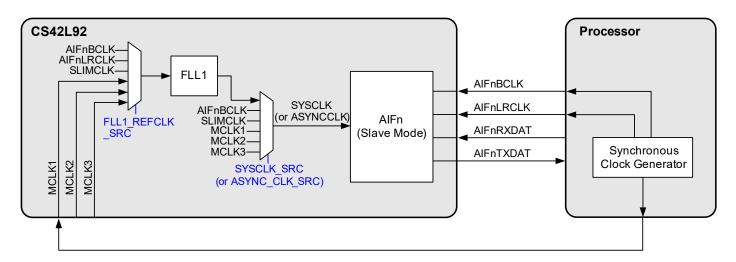


Figure 5-14. AIF Slave Mode, Using MCLK and FLL as Reference

Fig. 5-15 shows AIF Slave Mode operation, using a separate interface as the clock reference. In this example, the FLL is used to generate the system clock, with SLIMCLK as the reference. For correct operation, the SLIMCLK input must be fully synchronized to the other audio interfaces.

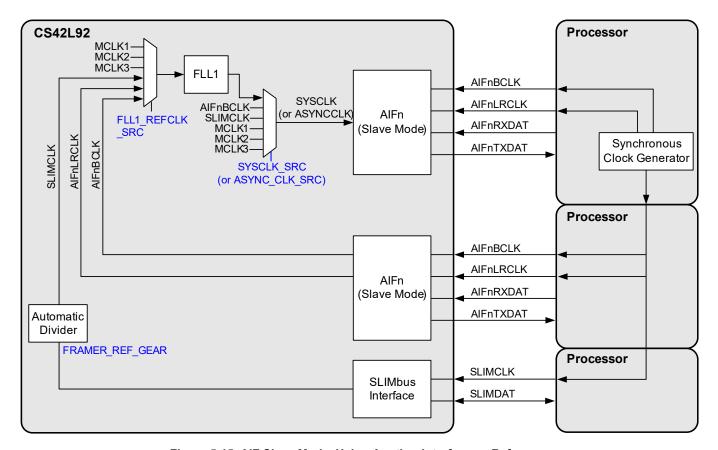


Figure 5-15. AIF Slave Mode, Using Another Interface as Reference

5.5 PCB Layout Considerations

PCB layout should be carefully considered, to ensure optimum performance of the CS42L92. Poor PCB layout degrades the performance and is a contributory factor in EMI, ground bounce, and resistive voltage losses. All external components should be placed close to the CS42L92, with current loop areas kept as small as possible. The following specific considerations should be noted:

- Placement of the charge pump capacitors is a high priority requirement—these capacitors (particularly the fly-back capacitors) must be placed as close as possible to the CS42L92. The component choice and positioning of the CP1 components are more critical than those of CP2, due to the higher output power requirements of CP1.
- Decoupling capacitors should be placed as close as possible to the CS42L92. The connection between AGND, the AVDD decoupling capacitor, and the main system ground should be made at a single point as close as possible to the AGND balls of the CS42L92.
- The VREFC capacitor should be placed as close as possible to the CS42L92. The ground connection to the VREFC capacitor should be as close as possible to the AGND1 ball of the CS42L92.
- If multiple power supply rails are connected to a single supply source, it is recommended to provide separate PCB tracks connecting each rail to the supply. This configuration is also known as *star connection*.
- If power supply rails are routed between different layers of the PCB, it is recommended to use several track vias, in order to minimize resistive voltage losses.
- Differential input signal tracks should be routed as a pair, ensuring similar length/width dimensions on each track. Input signal paths should be kept away from high frequency digital signals.

- Differential output signal tracks should be routed as a pair, ensuring similar length/width dimensions on each track.
 The tracks should provide a low resistance path from the device output pin to the load (< 1% of the minimum load).
- The headphone output ground-feedback pins should be connected to GND as close as possible to the respective headphone jack ground pin. The ground-feedback PCB track should follow the same route as the respective output signal paths.

6 Register Map

The CS42L92 control registers are listed in the following tables. Note that only the register addresses described here should be accessed; writing to other addresses may result in undefined behavior. Register bits that are not documented should not be changed from the default values.

The CS42L92 register map is defined in two regions:

- The register space below 0x3000 is defined in 16-bit word format
- The register space from 0x3000 upwards is defined in 32-bit word format

It is important to ensure that all control interface register operations use the applicable data word format, in accordance with the applicable register addresses.

The 16-bit codec register space is described in Table 6-1.

Table 6-1. Register Map Definition—16-bit region

Register	Name	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Default			
R0 (0h)	Software_Reset							5	SW_RST_D	EV_ID [15:0)]							6371h			
R1 (1h)	Hardware_Revision	0	0	0	0	0	0	0	0				_	ISION [7:0]				0001h			
R2 (2h)	Software_Revision	0	0	0	0	0	0	0	0				SW_REV	ISION [7:0]				0000h			
R8 (8h)	Ctrl_IF_CFG_1	0	0	0	0	0	0	1	CIF1MISO _DRV_ STR	CIF1MISO _PD	0	0	0	1	0	0	0	0308h			
R22 (16h)	Write_Sequencer_Ctrl_0	0	0	0	0	WSEQ_ ABORT	WSEQ_ START	WSEQ_ ENA				WSEQ_	START_INI	DEX [8:0]				0000h			
R23 (17h)	Write_Sequencer_Ctrl_1	0	0	0	0	0	0	WSEQ_ BUSY				WSEQ_C	URRENT_I	NDEX [8:0]				0000h			
(18h)	Write_Sequencer_Ctrl_2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	WSEQ_ BOOT_ START	WSEQ_ LOAD_ MEM	0000h			
R32 (20h)	Tone_Generator_1		TO	NE_RATE [4:0]		0	TONE_OF	FSET [1:0]	0	0	TONE2_ OVD	TONE1_ OVD	0	0	TONE2_ ENA	TONE1_ ENA	0000h			
R33 (21h)	Tone_Generator_2								TONE1_I	VL [23:8]		•				•		1000h			
R34 (22h)	Tone_Generator_3	0	0	0	0	0	0	0	,												
R35 (23h)	Tone_Generator_4								TONE2_LVL [23:8]												
R36 (24h)	Tone_Generator_5	0	0	0	0	0	0	0	0				TONE2_	LVL [7:0]				0000h			
R48 (30h)	PWM_Drive_1		PW	/M_RATE [4	4:0]		PWN	/_CLK_SEL	[2:0]	0	0	PWM2_ OVD	PWM1_ OVD	0	0	PWM2_ ENA	PWM1_ ENA	0000h			
R49 (31h)	PWM_Drive_2	0	0	0	0	0	0					PWM1_	LVL [9:0]	•	•	•		0100h			
R50 (32h)	PWM_Drive_3	0	0	0	0	0	0					PWM2_	LVL [9:0]					0100h			
R66 (42h)R65 (41h)	Spare_Triggers	WSEQ_ TRG16	WSEQ_ TRG15	WSEQ_ TRG14	WSEQ_ TRG13	WSEQ_ TRG12	WSEQ_ TRG11	WSEQ_ TRG10	WSEQ_ TRG9	WSEQ_ TRG8	WSEQ_ TRG7	WSEQ_ TRG6	WSEQ_ TRG5	WSEQ_ TRG4	WSEQ_ TRG3	WSEQ_ TRG2	WSEQ_ TRG1	0000h			
R75 (4Bh)	Spare_Sequence_ Select_1	0	0	0	0	0	0	0				WSEQ	TRG1_IND	EX [8:0]		•		01FFh			
R76 (4Ch)	Spare_Sequence_ Select_2	0	0	0	0	0	0	0				WSEQ_	TRG2_IND	EX [8:0]				01FFh			
R77 (4Dh)	Spare_Sequence_ Select_3	0	0	0	0	0	0	0				WSEQ	TRG3_IND	EX [8:0]				01FFh			
R78 (4Eh)	Spare_Sequence_ Select_4	0	0	0	0	0	0	0				WSEQ	TRG4_IND	EX [8:0]				01FFh			
R79	Spare_Sequence_ Select_5	0	0	0	0	0	0	0				WSEQ_	TRG5_IND	EX [8:0]				01FFh			
R80 (50h)	 Spare_Sequence_ Select_6	0	0	0	0	0	0	0				WSEQ	TRG6_IND	DEX [8:0]				01FFh			

Register	Name	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Default
R89 (59h)	Spare_Sequence_ Select_7	0	0	0	0	0	0	0				WSEQ_	TRG7_IND	EX [8:0]				01FFh
R90 (5Ah)	Spare_Sequence_ Select_8	0	0	0	0	0	0	0				WSEQ_	TRG8_IND	EX [8:0]				01FFh
R91 (5Bh)	Spare_Sequence_ Select 9	0	0	0	0	0	0	0				WSEQ_	TRG9_IND	EX [8:0]				01FFh
R92 (5Ch)	Spare_Sequence_ Select 10	0	0	0	0	0	0	0				WSEQ_	TRG10_INI	DEX [8:0]				01FFh
R93 (5Dh)	Spare_Sequence_ Select 11	0	0	0	0	0	0	0				WSEQ_	TRG11_INI	DEX [8:0]				01FFh
R94 (5Eh)	Spare_Sequence_ Select 12	0	0	0	0	0	0	0				WSEQ_	TRG12_INI	DEX [8:0]				01FFh
R97 (61h)	Sample_Rate_ Sequence Select 1	0	0	0	0	0	0	0			WSEQ_	SAMPLE_F	RATE_DET	ECT_A_IN	DEX [8:0]			01FFh
R98 (62h)	Sample_Rate_ Sequence Select 2	0	0	0	0	0	0	0			WSEQ_	SAMPLE_F	RATE_DET	ECT_B_IN	DEX [8:0]			01FFh
R99 (63h)	Sample_Rate_ Sequence Select 3	0	0	0	0	0	0	0			WSEQ_	SAMPLE_F	RATE_DET	ECT_C_IN	DEX [8:0]			01FFh
R100 (64h)	Sample_Rate_ Sequence Select 4	0	0	0	0	0	0	0			WSEQ_	SAMPLE_F	RATE_DET	ECT_D_IN	DEX [8:0]			01FFh
R102 (66h)	Always_On_Triggers_ Sequence Select 1	0	0	0	0	0	0	0			WS	EQ_MICD_	CLAMP_RI	SE_INDEX	[8:0]			01FFh
R103 (67h)	Always_On_Triggers_ Sequence Select 2	0	0	0	0	0	0	0			WS	EQ_MICD_	CLAMP_FA	ALL_INDEX	[8:0]			01FFh
R104 (68h)	Spare_Sequence_ Select 13	0	0	0	0	0	0	0				WSEQ_	TRG13_INI	DEX [8:0]				01FFh
R105 (69h)	Spare_Sequence_ Select 14	0	0	0	0	0	0	0				WSEQ_	TRG14_INI	DEX [8:0]				01FFh
R106 (6Ah)	Spare_Sequence_ Select 15	0	0	0	0	0	0	0				WSEQ_	TRG15_INI	DEX [8:0]				01FFh
R107 (6Bh)	Spare_Sequence_ Select 16	0	0	0	0	0	0	0				WSEQ_	TRG16_INI	DEX [8:0]				01FFh
R110 (6Eh)	Trigger_Sequence_ Select 32	0	0	0	0	0	0	0		WSEQ_DRC1_SIG_DET_RISE_INDEX [8:0]							01FFh	
R111 (6Fh)	Trigger_Sequence_ Select 33	0	0	0	0	0	0	0			WSE	WSEQ_DRC1_SIG_DET_FALL_INDEX [8:0]						
R120 (78h)	Eventlog_Sequence_ Select 1	0	0	0	0	0	0	0				WSEQ_EVI	ENTLOG1_	INDEX [8:	0]			01FFh
R144 (90h)	Haptics_Control_1		H/	AP_RATE [4	l:0]		0	0	0	0	0	0	ONESHOT	HAP_C	TRL [1:0]	HAP_A	CT 0	0000h
R145 (91h)	Haptics_Control_2	0					l	l	LR	A_FREQ [1	4:0]							7FFFh
R146 (92h)	Haptics_phase_1_ intensity	0	0	0	0	0	0	0	0			PI	HASE1_IN	TENSITY [7:0]			0000h
R147 (93h)	Haptics_phase_1_ duration	0	0	0	0	0	0	0		<u> </u>		PHASE	1_DURATI	ON [8:0]				0000h
R148	Haptics_phase_2_	0	0	0	0	0	0	0	0			PI	HASE2_IN	TENSITY [7:0]			0000h
(94h) R149	Intensity Haptics_phase_2_	0	0	0	0	0					PHASE	2_DURATIC	N [10:0]					0000h
(95h) R150	duration Haptics_phase_3_	0	0	0	0	0	0	0	0			PI	HASE3_IN	TENSITY [7:0]			0000h
(96h) R151	Haptics_phase_3_	0	0	0	0	0	0	0				PHASE	3_DURATI	ON [8:0]				0000h
(97h) R152	duration Haptics_Status	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ONESHOT	0000h
(98h) R160	Comfort_Noise_		NOISE	GEN_RA	TE [4:0]		0	0	0	0	0	NOISE GEN EÑA		NOIS	E_GEN_G	AIN [4:0]	_STS	0000h
(A0h) R256	Generator Clock_32k_1	0	0	0	0	0	0	0	0	0	CLK_32K_ ENA	OEN_ENA	0	0	0	CLK_32	2K_SRC [1:0]	0002h
(100h) R257	System_Clock_1	SYSCLK_ FRAC	0	0	0	0	SYS	CLK_FREC	Q [2:0]	0	SYSCLK_ ENA	0	0		SYSCL	K_SRC [3:0	0]	0404h
(101h) R258	Sample_rate_1	0	0	0	0	0	0	0							0011h			
(102h) R259	Sample_rate_2	0	0	0	0	0	0	0	0	0	0	0		SAM	PLE_RATE	E_2 [4:0]		0011h
(103h) R260	Sample_rate_3	0	0	0	0	0	0	0	0	0	0	0		SAM	PLE_RATE	E_3 [4:0]		0011h
(104h) R266	Sample_rate_1_status	0	0	0	0	0	0	0	0	0	0	0		SAMPL	E_RATE_1	I_STS [4:0]]	0000h
(10Ah) R267	Sample_rate_2_status	0	0	0	0	0	0	0	0	0	0	0		SAMPL	E_RATE_2	2_STS [4:0]]	0000h
(10Bh) R268	Sample_rate_3_status	0	0	0	0	0	0	0	0	0	0	0		SAMPL	E_RATE_3	3_STS [4:0]]	0000h
(10Ch) R274	Async_clock_1	0	0	0	0	0	ASYNO	C_CLK_FRI	EQ [2:0]	0	ASYNC_ CLK_ENA	0	0		ASYNC_C	CLK_SRC [3:0]	0305h
(112h)	· = -										CLK_ENĀ							

Property Property	Register	Name	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Default
Part	R275													_					
March Marc	R276	Async_sample_rate_2	0	0	0	0	0	0	0	0	0	0	0		ASYNC_S	SAMPLE_RA	ATE_2 [4:0]		0011h
Miles	R283	Async_sample_rate_1_	0	0	0	0	0	0	0	0	0	0	0	A	SYNC_SAM	MPLE_RATE	_1_STS [4	1:0]	0000h
RESPONDED	R284	Async_sample_rate_2_	0	0	0	0	0	0	0	0	0	0	0	A	SYNC_SAM	MPLE_RATE	_2_STS [4	1:0]	0000h
STATE Control STATE STATE Control STATE STATE Control STATE STATE STATE Control STATE ST	R329			0	0	0	0	0	0	0		OF	PCLK_DIV [4:0]		OP	CLK_SEL	[2:0]	0000h
RSSS	R330	Output_async_clock	ASYNC_	0	0	0	0	0	0	0		OPCLK	(_ASYNC_I	OIV [4:0]		OPCLK	_ASYNC_S	SEL [2:0]	0000h
Rate Estimator		Clock_Gen_Pad_Ctrl		0	0	0	0	0		MCLK2_ PD		0	0	0	0	0	0	0	0000h
Rate_Estimator_2	R338	Rate_Estimator_1	0	0	0	0	0	0	0	0	0	0	0	TRIG_ON STARTUP	LR	CLK_SRC [2:0]	RATE_ EST_EÑA	0000h
(154h) R34T Rate_Estimator_4		Rate_Estimator_2	0	0	0	0	0	0	0	0	0	0	0		SAMPLE_I	RATE_DETE	ECT_A [4:0	0]	0000h
STATE STAT		Rate_Estimator_3	0	0	0	0	0	0	0	0	0	0	0		SAMPLE_I	RATE_DETE	ECT_B [4:0)]	0000h
		Rate_Estimator_4	0	0	0	0	0	0	0	0	0	0	0		SAMPLE_I	RATE_DETE	ECT_C [4:0)]	0000h
		Rate_Estimator_5	0	0	0	0	0	0	0	0	0	0	0		SAMPLE_I	RATE_DETE	ECT_D [4:0	0]	0000h
		Clocking_debug_5	ASYNC_0	CLK_FREQ	STS [2:0]	AS	YNC_CLK_	SRC_STS [3:0]	0	0	SYSCL	K_FREQ_S	STS [2:0]		SYSCLK_SF	RC_STS [3:	:0]	0000h
R371 FLL1_Control_3		FLL1_Control_1	F	LL1_REFC	LK_SRC [3:	0]	0	0	0	0	0	0	0	0	0		0	FLL1_ENA	7004h
Control Cont		FLL1_Control_2	CTRL	0	0	0	0	0					FLL1_	N [9:0]					0004h
R373		FLL1_Control_3								FLL1_TH	ETA [15:0]								0000h
R374 L1_Control_6		FLL1_Control_4								FLL1_LAN	/IBDA [15:0]								0000h
R276 R1L1_Control_8		FLL1_Control_5	0	0	0	0	0	0					FLL1_FB	_DIV [9:0]					0001h
R378 FLL1_Control_10		FLL1_Control_6		0	0	0	0	0	0	0	FLL1_REI	FCLK_DIV :0]	0	0	0	0	0	0	8000h
(17Ah)		FLL1_Control_8	Fl	L1_PD_G/	AIN_FINE [3:	:0]	FLL	1_PD_GAIN	_COARSE	[3:0]	Fl	.L1_FD_GA	NIN_FINE [3	3:0]	FLL	.1_FD_GAIN	_COARSE	[3:0]	21F0h
R381 FLL1_Digital_Test_1 0 0 1 1 0 0 1 1 0 0		FLL1_Control_10	FLL1_I	HP [1:0]	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1000h
(17Dh		FLL1_Control_11	0	0	0	0	0	0	0	0	0	0	0	Fl	L1_LOCKI	DET_THR [3	:0]	FLL1_ LOCKDET	0011h
R401	(17Dh)							-			0	1		·	·	0	FLL1_CI FAST_S	SRC[1:0]	
R402		FLL1_GPIO_Clock	0	0	0	0			0	0			FLL1	_GPCLK_DI	V [6:0]			GPCLK	0C04h
R403 (193h) FLL2_Control_3 FLL2_Control_3 FLL2_Control_4 FLL2_Control_4 FLL2_Control_5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		FLL2_Control_1		LL2_REFC	LK_SRC [3:	0]	0	0	0	0	0	0	0	0	0	FLL2 HOLD	0	FLL2_ENA	7000h
R403 (193h) FLL2_Control_3 FLL2_Control_3 FLL2_Control_4 FLL2_Control_4 FLL2_Control_5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		FLL2_Control_2	FLL2_ CTRL_ UPD	0	0	0	0	0					FLL2_	N [9:0]					0004h
R404 (194h) FLL2_Control_4 FLL2_Control_5 0 0 0 0 0 0 0 0 0		FLL2_Control_3		1	1	<u> </u>	1	1	<u> </u>	FLL2_TH	ETA [15:0]								0000h
R405 (195h) FLL2_Control_5 0 0 0 0 0 0 0 0 0	R404	FLL2_Control_4								FLL2_LAN	MBDA [15:0]								0000h
R406 (196h) FLL2_Control_6 REFDET 0 0 0 0 0 0 0 0 0	R405	FLL2_Control_5	0	0	0	0	0	0					FLL2_FB	_DIV [9:0]					0001h
R408 (198h) FLL2_Control_8 FLL2_PD_GAIN_FINE [3:0] FLL2_PD_GAIN_COARSE [3:0] FLL2_FD_GAIN_FINE [3:0] FLL2_FD_GAIN_COARSE [3:0] 21F0h	R406	FLL2_Control_6	FLL2 REFDET	0	0	0	0	0	0	0	FLL2_REI	CLK_DIV :0]	0	0	0	0	0	0	8000h
R410	R408	FLL2_Control_8	Fl	L2_PD_G/	AIN_FINE [3:	:0]	FLL	2_PD_GAIN	_COARSE	[3:0]	Fl	.L2_FD_GA	NIN_FINE [3	3:0]	FLL	2_FD_GAIN	_COARSE	[3:0]	21F0h
COXDET C	R410	FLL2_Control_10	FLL2_I	HP [1:0]	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1000h
R430 (1AEh) FLL2_GPIO_Clock 0 0 0 0 0 0 0 0 0		FLL2_Control_11	0	0	0	0	0	0	0	0	0	0	0	Fl	L2_LOCKI	DET_THR [3	:0]	FLL2_ LOCKDET	0011h
R512 Mic_Charge_Pump_1 0 0 0 0 0 0 0 0 0	(19Dh)				1						0	1				0	FLL2_CI FAST_S	SRC[1:0]	
R512 Mic_Charge_Pump_1		FLL2_GPIO_Clock	0	0	0	0	FLL2_GP [1	PDIV_SRC :0]	0	0		_	FLL2	_GPCLK_DI	V [6:0]	_		FLL2 GPCLK_ ENA	0C04h
R531 LDO2_Control_1 0 0 0 0 0 LD02_VSEL [5:0] 0 0 LD02_ 0 0 03E4h		Mic_Charge_Pump_1	0	0	0	0	0	0	0	0	0	0	0	0	0	CP2_ DISCH	CP2 BYPASS		0006h
	` '	LDO2_Control_1	0	0	0	0	0			LDO2_V	/SEL [5:0]			0	0	LDO2 DISCH	0	0	03E4h

Section March Sear Cut 1	Register	Name	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Default
CFR March		Mic_Bias_Ctrl_1	MICB1_ EXT_CAP	0	0	0	0	0	0		MICB1_	LVL [3:0]		0					00E6h
Carbon C		Mic_Bias_Ctrl_2		0	0	0	0	0	0		MICB2_	LVL [3:0]		0	MICB2_ RATE	MICB2_ DISCH	MICB2 BYPASS		00E6h
Dispress		Mic_Bias_Ctrl_5	0	0			0	0			0	0			0	0	MICB1A_ DISCH	MICB1A_ ENA	2222h
Description		Mic_Bias_Ctrl_6	0	0	0	0	0	0	0	0	0	0			0	0			0022h
		Headphone_Detect_0		HPD	_OUT_SEL	[2:0]		HPD_FRO	SEL [3:0]	ı		HPD_SENS	E_SEL [3:0)]	0	HPD	_GND_SEI	L [2:0]	0000h
DOSE PROPORTING DOSE		Headphone_Detect_1	0	0	0	0	0	HPD_IMP RANG	EDANCE_ SE [1:0]	0	0	0	0	HPD_CLK	_DIV [1:0]	HPD_R	ATE [1:0]		0000h
CRAPS MICE Centrol MICE MICE Centrol MICE MICE Centrol MICE MICE Centrol MICE MICE Centrol MICE Centrol MICE Centrol MICE Centrol MICE		Headphone_Detect_2	HPD_ DONE		I	I	I	I		Н	PD_LVL [14	:0]	I	l					0000h
(GAZA) (GAZA)		Headphone_Detect_3	0	0	0	0	0	0					HPD_DA	CVAL [9:0]					0000h
		Mic_Detect_1_Control_0	ADC -	0	0	0	0	0	0	0	N	IICD1_SEN	SE_SEL [3:	[0]	0	MICD	1_GND_SE	EL [2:0]	0010h
GAME		Mic_Detect_1_Control_1		D1_BIAS_S	TARTTIME	[3:0]		MICD1_F	RATE [3:0]	l		MICD1_BIA	S_SRC [3:0)]	0	0			1102h
CASH McDedet_1_Control_4 MCD1_ADCVAL_DIFF(73) 0 MCD1_ADCVAL_ERS 0000h		Mic_Detect_1_Control_2	0	0	0	0	0	0	0	0				MICD1_LVI	L_SEL [7:0]			•	009Fh
(2ABh)		Mic_Detect_1_Control_3	0	0	0	0	0				MI	CD1_LVL [8	3:0]						0000h
CBBH		Mic_Detect_1_Control_4			MI	CD1_ADC\	AL_DIFF [7	7:0]			0			MICE	1_ADCVAL	_ [6:0]		•	0000h
		Mic_Detect_2_Control_0	ADC -	0	0	0	0	0	0	0	N	IICD2_SEN	SE_SEL [3:	[0]	0	MICD	2_GND_SE	EL [2:0]	0010h
C2840		Mic_Detect_2_Control_1	MIC	D2_BIAS_S	TARTTIME	[3:0]		MICD2_F	RATE [3:0]	I		MICD2_BIA	S_SRC [3:0)]	0	0			1102h
Cabin Camp Cabin Camp Cabin Camp Cabin Camp Cabin Camp Cabin C		Mic_Detect_2_Control_2	0	0	0	0	0	0	0	0				MICD2_LVI	L_SEL [7:0]				009Fh
R710		Mic_Detect_2_Control_3	0	0	0	0	0				MI	CD2_LVL [8	3:0]					MICD2_ STS	0000h
CAMP2		Mic_Detect_2_Control_4			MI	CD2_ADC\	AL_DIFF [7	7:0]			0			MICE	2_ADCVAL	_ [6:0]		•	0000h
		Micd_Clamp_control	0	0	0	0	0	0	CLAMP2_	MICD_C	CLAMP2_MO	ODE [2:0]	0	CLAMP1_	MI	CD_CLAMF	P1_MODE [[3:0]	0210h
AOC_ENA Puput_Enables		GP_Switch_1	0	0	0	0	0	0	0	0	0	0	0	0	SW2_M0	ODE [1:0]	SW1_M	ODE [1:0]	0000h
		Jack_detect_analogue	0		0	0	0	0	0	0	0	0	0	0	0	JD3_ENA	JD2_ENA	JD1_ENA	0000h
R776 R777 R777 R777 R777 R778		Input_Enables	0	0	0	0	0	0	0	0	IN4L_ENA	IN4R_ENA	IN3L_ENA	IN3R_ENA	IN2L_ENA	IN2R_ENA	IN1L_ENA	IN1R_ENA	0000h
R777 Input_Volume_Ramp		Input_Enables_Status	0	0	0	0	0	0	0	0	IN4L_ ENA_STS	IN4R_ ENA_STS	IN3L_ ENA_STS	IN3R_ ENA_STS			IN1L_ ENA_STS	IN1R_ ENA_STS	0000h
R780 R780 R781 R784 R784 R784 R785 R785 R786 R785 R786 R787 R787 R787 R787 R788		Input_Rate		11	N_RATE [4:	0]	•		. 0	0	0	0	0	0	0	0	0	0	0400h
Control Cont		Input_Volume_Ramp	0	0	0	0	0	0	0	0	0	IN_	VD_RAMP	[2:0]	0	IN_	VI_RAMP	[2:0]	0022h
Care		HPF_Control	0	0	0	0	0	0	0	0	0	0	0	0	0	IN_	HPF_CUT	[2:0]	0002h
STATE STAT		IN1L_Control	IN1L_HPF	0	0	IN1_DMIC	_SUP [1:0]	IN1_ MODE	0	0			IN1L	_PGA_VOL	[6:0]			0	0080h
R786 (312h) DMIC1L_Control DET_ENA DMIC1L_Control DET_ENA DMIC1L_CONTROL DET_ENA DMIC1L_CONTROL DET_ENA DMIC1L_RATE [4:0] D D D D D D D D D		ADC_Digital_Volume_1L	0	IN1L_S	RC [1:0]	0	IN1L_LP_ MODE	0	IN_VU	IN1L MUTE				IN1L_V	OL [7:0]				0180h
R787	R786	DMIC1L_Control	IN1L_SIG_ DET_ENA	. 0	0	0	0	II	N1_OSR [2:	0]	0	0	0	0	0	0	0	0	0500h
R789 (315h) ADC_Digital_Volume_1R 0 IN1R_SRC [1:0] 0 IN1R_LP 0 IN_VU IN1R IN1R_VOL [7:0] 0 0000h		IN1L_Rate_Control		IN	1L_RATE [4	1:0]		0	0	0	0	0	0	0	0	0	0	0	0000h
R790 (316h) DMIC1R_Control IN1R SIG_DET ENA		IN1R_Control	IN1R_HPF	0	0	0	0	0	0	0			IN1R	PGA_VOL	[6:0]		•	0	0080h
R791 IN1R_Rate_Control IN1R_RATE [4:0] 0 0 0 0 0 0 0 0 0	R789	ADC_Digital_Volume_1R		IN1R_S	RC [1:0]	0	IN1R_LP_ MODE	0	IN_VU	IN1R MUTE				IN1R_V	OL [7:0]				0180h
R791		DMIC1R_Control	IN1R_ SIG_DET_ ENA	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0000h
R792		IN1R_Rate_Control		IN ⁻	1R_RATE [4	4:0]	<u>I</u>	0	0	0	0	0	0	0	0	0	0	0	0000h
R793 ADC_Digital_Volume_2L 0 IN2L_SRC [1:0] 0 IN2L_LP 0 IN_VU IN2L MUTE IN2L_VOL [7:0] 0180h R794 DMIC2L_Control IN2L_SIG_ 0 0 0 0 0 IN2_OSR [2:0] 0 0 0 0 0 0 0 0 0	R792	IN2L_Control	IN2L_HPF	0	0	IN2_DMIC	_SUP [1:0]	IN2_ MODE	0	0		l	IN2L	_PGA_VOL	[6:0]	1	1	0	0080h
R794 DMIC2L_Control N2L_SIG 0 0 0 0 IN2_OSR [2:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	R793	ADC_Digital_Volume_2L	0	IN2L_S	RC [1:0]	0		0	IN_VU					IN2L_V	OL [7:0]			1	0180h
	R794	DMIC2L_Control	IN2L_SIG_ DET_ENA	. 0	0	0	0	II	N2_OSR [2:	0]	0	0	0	0	0	0	0	0	0500h

Register	Name	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Default
R795 (31Bh)	IN2L_Rate_Control		IN2	2L_RATE [4	:0]		0	0	0	0	0	0	0	0	0	0	0	0000h
R796 (31Ch)	IN2R_Control	IN2R_HPF	0	0	0	0	0	0	0		•	IN2R	_PGA_VOI	L [6:0]	•	•	0	0080h
R797 (31Dh)	ADC_Digital_Volume_2R	0	IN2R_S	RC [1:0]	0	IN2R_LP_ MODE	0	IN_VU	IN2R MUTE				IN2R_V	/OL [7:0]				0180h
R798 (31Eh)	DMIC2R_Control	IN2R_ SIG_DET_ ENA	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0000h
R799 (31Fh)	IN2R_Rate_Control		IN2	R_RATE [4	i:0]		0	0	0	0	0	0	0	0	0	0	0	0000h
R800 (320h)	IN3L_Control	IN3L_HPF	0	0	IN3_DMIC	_SUP [1:0]	0	0	0	0	0	0	0	0	0	0	0	0000h
R801 (321h)	ADC_Digital_Volume_3L	0	0	0	0	0	0	IN_VU	IN3L MUTE			ı	IN3L_V	OL [7:0]				0180h
R802 (322h)	DMIC3L_Control	IN3L_SIG_ DET_ENA	0	0	0	0	II	N3_OSR [2:	0]	0	0	0	0	0	0	0	0	0500h
R803 (323h)	IN3L_Rate_Control		IN	BL_RATE [4	:0]		0	0	0	0	0	0	0	0	0	0	0	0000h
R804 (324h)	IN3R_Control	IN3R_HPF	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0000h
R805 (325h)	ADC_Digital_Volume_3R	0	0	0	0	0	0	IN_VU	IN3R MUTE				IN3R_V	OL [7:0]		_		0180h
R806 (326h)	DMIC3R_Control	IN3R_ SIG_DET_ ENA	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0000h
R807 (327h)	IN3R_Rate_Control		INS	BR_RATE [4	i:0]		0	0	0	0	0	0	0	0	0	0	0	0000h
R808 (328h)	IN4L_Control	IN4L_HPF	0	0	IN4_DMIC	_SUP [1:0]	0	0	0	0	0	0	0	0	0	0	0	0000h
R809 (329h)	ADC_Digital_Volume_4L	0	0	0	0	0	0	IN_VU	IN4L MUTE			ı	IN4L_V	OL [7:0]			ı	0180h
R810 (32Ah)	DMIC4L_Control	IN4L_SIG_ DET_ENA	0	0	0	0	II	N4_OSR [2:	0]	0	0	0	0	0	0	0	0	0500h
R811 (32Bh)	IN4L_Rate_Control		IN	IL_RATE [4	:0]		0	0	0	0	0	0	0	0	0	0	0	0000h
R812 (32Ch)	IN4R_Control	IN4R_HPF	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0000h
R813 (32Dh)	ADC_Digital_Volume_4R	0	0	0	0	0	0	IN_VU	IN4R MUTE				IN4R_V	/OL [7:0]				0180h
R814 (32Eh)	DMIC4R_Control	IN4R_ SIG_DET_ ENA	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0000h
R815 (32Fh)	IN4R_Rate_Control		IN4	IR_RATE [4	l:0]		0	0	0	0	0	0	0	0	0	0	0	0000h
R832 (340h)	Signal_Detect_Globals	0	0	0	0	0	0	0		IN_SI	G_DET_TH	R [4:0]		ı	N_SIG_DE	T_HOLD [3:	0]	0001h
R840 (348h)	Dig_Mic_Pad_Ctrl	0	0	0	0	0	0	0	0	0	0	0	0	DMICDAT4 _PD	DMICDAT: _PD	DMICDAT2 _PD	DMICDAT1 _PD	0000h
R1024 (400h)	Output_Enables_1	EP_SEL	0	0	0	0	0	OUT5L_ ENA	OUT5R_ ENA	0	0	HP3L_ ENA	HP3R_ ENA	HP2L_ ENA	HP2R_ ENA	HP1L_ ENA	HP1R_ ENA	0000h
R1025 (401h)	Output_Status_1	0	0	0	0	0	0	OUT5L_ ENA_STS	OUT5R_ ENA_STS	0	0	0	0	0	0	0	0	0000h
R1030 (406h)	Raw_Output_Status_1	0	0	0	0	0	0	0	0	0	0	OUT3L_ ENA_STS	OUT3R_ ENA_STS	OUT2L_ ENA_STS	OUT2R_ ENA_STS	OUT1L_ ENA_STS	OUT1R_ ENA_STS	0000h
R1032 (408h)	Output_Rate_1		OL	JT_RATE [4	:0]		0	0	0	0	CP_DAC_ MODE	OUT_EXT [1	CLK_DIV	0	OUT	_CLK_SRC	[2:0]	0040h
R1033 (409h)	Output_Volume_Ramp	0	0	0	0	0	0	0	0	0	OUT	VD_RAMF	[2:0]	0	OU	Γ_VI_RAMP	[2:0]	0022h
R1040 (410h)	Output_Path_Config_1L	0	OUT1L_ HIFI	0	OUT1_ MONO	0	0	0	0	1	0	0	0	0	0	0	0	0080h
R1041 (411h)	DAC_Digital_Volume_1L	0	0	0	0	0	0	OUT_VU	OUT1L_ MUTE			•	OUT1L_	VOL [7:0]		•		0180h
R1042 (412h)	Output_Path_Config_1	0	0	0	0	0	0	0	0	0	0	0	0	0	HP1	_GND_SEL	[2:0]	0000h
R1043 (413h)	Noise_Gate_Select_1L	0	0	0	0					0	UT1L_NGA	TE_SRC [11	:0]					0001h
R1044 (414h)	Output_Path_Config_1R	0	OUT1R_ HIFI	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0080h
R1045 (415h)	DAC_Digital_Volume_1R	0	0	0	0	0	0	OUT_VU	OUT1R_ MUTE					VOL [7:0]				0180h
R1047 (417h)	Noise_Gate_Select_1R	0	0	0	0					0	JT1R_NGA	TE_SRC [1 ^e	[0]					0002h
R1048 (418h)	Output_Path_Config_2L	0	OUT2L_ HIFI	0	OUT2_ MONO	0	0	0	0	1	0	0	0	0	0	0	0	0080h
R1049 (419h)	DAC_Digital_Volume_2L	0	0	0	0	0	0	OUT_VU	OUT2L_ MUTE				OUT2L_	VOL [7:0]				0180h
R1050 (41Ah)	Output_Path_Config_2	0	0	0	0	0	0	0	0	0	0	0	0	0	HP2	GND_SEL	[2:0]	0002h

Register	Name	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Default
R1051 (41Bh)	Noise_Gate_Select_2L	0	0	0	0					Ol	JT2L_NGAT	TE_SRC [11	:0]					0004h
R1052 (41Ch)	Output_Path_Config_2R	0	OUT2R_ HIFI	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0080h
R1053 (41Dh)	DAC_Digital_Volume_2R	0	0	0	0	0	0	OUT_VU	OUT2R_ MUTE		1		OUT2R_	VOL [7:0]	1			0180h
R1055 (41Fh)	Noise_Gate_Select_2R	0	0	0	0		I	1	ı	Ol	JT2R_NGA	TE_SRC [11	1:0]					0008h
R1056 (420h)	Output_Path_Config_3L	0	OUT3L_ HIFI	0	OUT3_ MONO	0	0	0	0	1	0	0	0	0	0	0	0	0080h
R1057 (421h)	DAC_Digital_Volume_3L	0	0	0	0	0	0	OUT_VU	OUT3L_ MUTE			l .	OUT3L_	VOL [7:0]	1			0180h
R1058 (422h)	Output_Path_Config_3	0	0	0	0	0	0	0	0	0	0	0	0	0	HP3	B_GND_SEL	_ [2:0]	0002h
R1059 (423h)	Noise_Gate_Select_3L	0	0	0	0			•		Ol	JT3L_NGAT	TE_SRC [11	:0]					0010h
R1060 (424h)	Output_Path_Config_3R	0	OUT3R_ HIFI	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0080h
R1061 (425h)	DAC_Digital_Volume_3R	0	0	0	0	0	0	OUT_VU	OUT3R_ MUTE			l.	OUT3R_	VOL [7:0]				0180h
R1063 (427h)	Noise_Gate_Select_3R	0	0	0	0			•		Ol	JT3R_NGA	TE_SRC [11	1:0]					0020h
R1072 (430h)	Output_Path_Config_5L	0	OUT5L_ HIFI	OUT5_ OSR	0	0	0	0	0	0	0	0	0	0	0	0	0	0000h
R1073 (431h)	DAC_Digital_Volume_5L	0	0	0	0	0	0	OUT_VU	OUT5L_ MUTE			l .	OUT5L_	VOL [7:0]				0180h
R1075 (433h)	Noise_Gate_Select_5L	0	0	0	0			•		Ol	JT5L_NGAT	TE_SRC [11	:0]					0100h
R1076 (434h)	Output_Path_Config_5R	0	OUT5R_ HIFI	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0000h
R1077 (435h)	DAC_Digital_Volume_5R	0	0	0	0	0	0	OUT_VU	OUT5R_ MUTE		•		OUT5R_	VOL [7:0]	•	•	•	0180h
R1079 (437h)	Noise_Gate_Select_5R	0	0	0	0		•	•	,	Ol	JT5R_NGA	TE_SRC [11	1:0]					0200h
R1102 (44Eh)	Filter_Control	0	0	0	0	0	0	0	0	0	0	0	0		HIFI_FIR_	_TYPE [3:0]		0000h
R1104 (450h)	DAC_AEC_Control_1	0	0	0	0	0	0	0	0	0	0	AEC	C1_LOOPB	ACK_SRC	[3:0]	AEC1_ ENA_STS	AEC1_ LOOPBĀC K ENA	0000h
R1105 (451h)	DAC_AEC_Control_2	0	0	0	0	0	0	0	0	0	0	AEC	C2_LOOPB	ACK_SRC	[3:0]	AEC2 ENA_STS	AEC2	0000h
R1112 (458h)	Noise_Gate_Control	0	0	0	0	0	0	0	0	0	0	NGATE_H	HOLD [1:0]	NG	SATE_THR	[2:0]	NGATE_ ENA	0000h
R1168 (490h)	PDM_SPK1_CTRL_1	0	0	SPK1R_ MUTE	SPK1L_ MUTE	0	0	0	SPK1_ MUTE_ ENDIAN			(SPK1_MUT	E_SEQ [7:	0]			0069h
R1169 (491h)	PDM_SPK1_CTRL_2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	SPK1_ FMT	0000h
R1280 (500h)	AIF1_BCLK_Ctrl	0	0	0	0	0	0	0	0	AIF1_ BCLK_INV	AIF1_ BCLK_ FRC	AIF1_ BCLK_ MSTR		AIF1_	BCLK_FRE	EQ [4:0]		000Ch
R1281 (501h)	AIF1_Tx_Pin_Ctrl	0	0	0	0	0	0	0	0	0	0	AIF1TX_ DAT_TRI	0	0	0	0	0	0000h
R1282 (502h)	AIF1_Rx_Pin_Ctrl	0	0	0	0	0	0	0	0	0	0	0	AIF1_ LRCLK_ MODE	0	AIF1_ LRCLK_ INV	AIF1_ LRCLK_ FRC	AIF1_ LRCLK_ MSTR	0000h
R1283 (503h)	AIF1_Rate_Ctrl		Al	F1_RATE [4	1:0]		0	0	0	0	AIF1_TRI	0	0	0	0	0	0	0000h
R1284 (504h)	AIF1_Format	0	0	0	0	0	0	0	0	0	0	0	0	0	А	NF1_FMT [2	2:0]	0000h
R1286 (506h)	AIF1_Rx_BCLK_Rate	0	0	0						AIF	1_BCPF [1:	2:0]						0040h
R1287 (507h)	AIF1_Frame_Ctrl_1	0	0		•	AIF1TX_	_WL [5:0]					Α	NF1TX_SLO	OT_LEN [7:	:0]			1818h
R1288 (508h)	AIF1_Frame_Ctrl_2	0	0			AIF1RX	_WL [5:0]					A	IF1RX_SL0	OT_LEN [7:	:0]			1818h
R1289 (509h)	AIF1_Frame_Ctrl_3	0	0	0	0	0	0	0	0	0	0			AIF1TX1_	SLOT [5:0]			0000h
R1290 (50Ah)	AIF1_Frame_Ctrl_4	0	0	0	0	0	0	0	0	0	0			AIF1TX2_	SLOT [5:0]			0001h
R1291 (50Bh)	AIF1_Frame_Ctrl_5	0	0	0	0	0	0	0	0	0	0			AIF1TX3_	SLOT [5:0]			0002h
R1292 (50Ch)	AIF1_Frame_Ctrl_6	0	0	0	0	0	0	0	0	0	0			AIF1TX4_	SLOT [5:0]			0003h
R1293 (50Dh)	AIF1_Frame_Ctrl_7	0	0	0	0	0	0	0	0	0	0			AIF1TX5_	SLOT [5:0]			0004h
R1294 (50Eh)	AIF1_Frame_Ctrl_8	0	0	0	0	0	0	0	0	0	0			AIF1TX6_	SLOT [5:0]			0005h

Table 6-1. Register Map Definition—16-bit region (Cont.)

Register	Name	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Default	
R1295 (50Fh)	AIF1_Frame_Ctrl_9	0	0	0	0	0	0	0	0	0	0		ı	AIF1TX7_	SLOT [5:0]	ı		0006h	
R1296 (510h)	AIF1_Frame_Ctrl_10	0	0	0	0	0	0	0	0	0	0			AIF1TX8_	SLOT [5:0]			0007h	
R1297 (511h)	AIF1_Frame_Ctrl_11	0	0	0	0	0	0	0	0	0	0			AIF1RX1_	SLOT [5:0]			0000h	
R1298 (512h)	AIF1_Frame_Ctrl_12	0	0	0	0	0	0	0	0	0	0			AIF1RX2_	SLOT [5:0]			0001h	
R1299	AIF1_Frame_Ctrl_13	0	0	0	0	0	0	0	0	0	0			AIF1RX3_	SLOT [5:0]			0002h	
(513h) R1300	AIF1_Frame_Ctrl_14	0	0	0	0	0	0	0	0	0	0			AIF1RX4_	SLOT [5:0]			0003h	
(514h) R1301 (515h)	AIF1_Frame_Ctrl_15	0	0	0	0	0	0	0	0	0	0			AIF1RX5_	SLOT [5:0]			0004h	
R1302 (516h)	AIF1_Frame_Ctrl_16	0	0	0	0	0	0	0	0	0	0			AIF1RX6_	SLOT [5:0]			0005h	
R1303 (517h)	AIF1_Frame_Ctrl_17	0	0	0	0	0	0	0	0	0	0			AIF1RX7_	SLOT [5:0]			0006h	
R1304 (518h)	AIF1_Frame_Ctrl_18	0	0	0	0	0	0	0	0	0	0			AIF1RX8_	SLOT [5:0]			0007h	
R1305 (519h)	AIF1_Tx_Enables	0	0	0	0	0	0	0	0	AIF1TX8_ ENA	AIF1TX7_ ENA	AIF1TX6_ ENA	AIF1TX5_ ENA	AIF1TX4_ ENA	AIF1TX3_ ENA	AIF1TX2_ ENA	AIF1TX1_ ENA	0000h	
R1306 (51Ah)	AIF1_Rx_Enables	0	0	0	0	0	0	0	0	AIF1RX8_ ENA	AIF1RX7_ ENA	AIF1RX6_ ENA	AIF1RX5_ ENA	AIF1RX4_ ENA	AIF1RX3_ ENA	AIF1RX2_ ENA	AIF1RX1_ ENA	0000h	
R1344 (540h)	AIF2_BCLK_Ctrl	0	0	0	0	0	0	0	0	AIF2 BCLK_INV	AIF2_ BCLK_ FRC	AIF2_ BCLK_ MSTR			L BCLK_FRE			000Ch	
R1345 (541h)	AIF2_Tx_Pin_Ctrl	0	0	0	0	0	0	0	0	0	0	AIF2TX DAT_TRI	0	0	0	0	0	0000h	
R1346 (542h)	AIF2_Rx_Pin_Ctrl	0	0	0	0	0	0	0	0	0	0	0	AIF2 LRCLK_ MODE	0	AIF2 LRCLK_ INV	AIF2 LRCLK_ FRC	AIF2 LRCLK_ MSTR	0000h	
R1347 (543h)	AIF2_Rate_Ctrl		Al	F2_RATE [4	1:0]	I	0	0	0	0	AIF2_TRI	0	0	0	0	0	0	0000h	
R1348 (544h)	AIF2_Format	0	0	0	0	0	0	0	0	0	0	0	0	0	A	IF2_FMT [2	:0]	0000h	
R1350 (546h)	AIF2_Rx_BCLK_Rate	0	0	0		I	ı	1		AIF	2_BCPF [1	[12:0]							
R1351 (547h)	AIF2_Frame_Ctrl_1	0	0		I	AIF2TX_	_WL [5:0]					AIF2TX_SLOT_LEN [7:0]							
R1352 (548h)	AIF2_Frame_Ctrl_2	0	0			AIF2RX	_WL [5:0]					A	NF2RX_SL	OT_LEN [7:	0]			1818h	
R1353 (549h)	AIF2_Frame_Ctrl_3	0	0	0	0	0	0	0	0	0	0			AIF2TX1_	SLOT [5:0]			0000h	
R1354 (54Ah)	AIF2_Frame_Ctrl_4	0	0	0	0	0	0	0	0	0	0			AIF2TX2_	SLOT [5:0]			0001h	
R1355 (54Bh)	AIF2_Frame_Ctrl_5	0	0	0	0	0	0	0	0	0	0			AIF2TX3_	SLOT [5:0]			0002h	
R1356 (54Ch)	AIF2_Frame_Ctrl_6	0	0	0	0	0	0	0	0	0	0			AIF2TX4_	SLOT [5:0]			0003h	
R1357 (54Dh)	AIF2_Frame_Ctrl_7	0	0	0	0	0	0	0	0	0	0			AIF2TX5_	SLOT [5:0]			0004h	
R1358 (54Eh)	AIF2_Frame_Ctrl_8	0	0	0	0	0	0	0	0	0	0			AIF2TX6_	SLOT [5:0]			0005h	
R1359 (54Fh)	AIF2_Frame_Ctrl_9	0	0	0	0	0	0	0	0	0	0			AIF2TX7_	SLOT [5:0]			0006h	
R1360 (550h)	AIF2_Frame_Ctrl_10	0	0	0	0	0	0	0	0	0	0			AIF2TX8_	SLOT [5:0]			0007h	
R1361 (551h)	AIF2_Frame_Ctrl_11	0	0	0	0	0	0	0	0	0	0			AIF2RX1_	SLOT [5:0]			0000h	
R1362 (552h)	AIF2_Frame_Ctrl_12	0	0	0	0	0	0	0	0	0	0			AIF2RX2_	SLOT [5:0]			0001h	
R1363 (553h)	AIF2_Frame_Ctrl_13	0	0	0	0	0	0	0	0	0	0	AIF2RX3_SLOT [5:0]							
R1364 (554h)	AIF2_Frame_Ctrl_14	0	0	0	0	0	0	0	0	0	0	AIF2RX4_SLOT [5:0]							
R1365 (555h)	AIF2_Frame_Ctrl_15	0	0	0	0	0	0	0	0	0	0			AIF2RX5_	SLOT [5:0]			0004h	
R1366 (556h)	AIF2_Frame_Ctrl_16	0	0	0	0	0	0	0	0	0	0			AIF2RX6_	SLOT [5:0]			0005h	
R1367 (557h)	AIF2_Frame_Ctrl_17	0	0	0	0	0	0	0	0	0	0			AIF2RX7_	SLOT [5:0]			0006h	
R1368 (558h)	AIF2_Frame_Ctrl_18	0	0	0	0	0	0	0	0	0	0			AIF2RX8_	SLOT [5:0]			0007h	
R1369 (559h)	AIF2_Tx_Enables	0	0	0	0	0	0	0	0	AIF2TX8_ ENA	AIF2TX7_ ENA	AIF2TX6_ ENA	AIF2TX5_ ENA	AIF2TX4_ ENA	AIF2TX3_ ENA	AIF2TX2_ ENA	AIF2TX1_ ENA	0000h	
R1370 (55Ah)	AIF2_Rx_Enables	0	0	0	0	0	0	0	0	AIF2RX8_ ENA	AIF2RX7_ ENA	AIF2RX6_ ENA	AIF2RX5_ ENA	AIF2RX4_ ENA	AIF2RX3_ ENA	AIF2RX2_ ENA	AIF2RX1_ ENA	0000h	
. ,	1	1	1					1		<u> </u>		1	1	1					

Register	Name	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Default
R1408 (580h)	AIF3_BCLK_Ctrl	0	0	0	0	0	0	0	0	AIF3 BCLK ĪNV	AIF3_ BCLK	AIF3_ BCLK		AIF3_	BCLK_FR	EQ [4:0]		000Ch
R1409	AIF3_Tx_Pin_Ctrl	0	0	0	0	0	0	0	0	0	FRC 0	MSTR AIF3TX_ DAT_TRI	0	0	0	0	0	0000h
(581h) R1410 (582h)	AIF3_Rx_Pin_Ctrl	0	0	0	0	0	0	0	0	0	0	0	AIF3_ LRCLK_	0	AIF3_ LRCLK_ INV	AIF3 LRCLK_ FRC	AIF3 LRCLK_ MSTR	0000h
R1411	AIF3_Rate_Ctrl		A	F3_RATE [4:0] 0 0 0						0	AIF3_TRI	0	MODE 0	0	0000h			
(583h) R1412 (584h)	AIF3_Format	0	0	0	0	0	0	0	0	0	0	0	0	0		AIF3_FMT [2	2:0]	0000h
R1414 (586h)	AIF3_Rx_BCLK_Rate	0	0	0 0 AIF3_BCPF [12:0]												0040h		
R1415 (587h)	AIF3_Frame_Ctrl_1	0	0	AIF3TX_WL [5:0]							AIF3TX_SLOT_LEN [7:0]							
R1416 (588h)	AIF3_Frame_Ctrl_2	0	0	AIF3RX_WL [5:0]						AIF3RX_SLOT_LEN [7:0]								1818h
R1417 (589h)	AIF3_Frame_Ctrl_3	0	0	0	0	0	0	0	0	0	0	AIF3TX1_SLOT [5:0]						0000h
R1418 (58Ah)	AIF3_Frame_Ctrl_4	0	0	0	0	0	0	0	0	0	0	AIF3TX2_SLOT [5:0]						0001h
R1419 (58Bh)	AIF3_Frame_Ctrl_5	0	0	0	0	0	0	0	0	0	0	AIF3TX3_SLOT [5:0]						0002h
R1420 (58Ch)	AIF3_Frame_Ctrl_6	0	0	0	0	0	0	0	0	0	0	AIF3TX4_SLOT [5:0]						0003h
R1421 (58Dh)	AIF3_Frame_Ctrl_7	0	0	0	0	0	0	0	0	0	0	AIF3TX5_SLOT [5:0]						0004h
R1422 (58Eh)	AIF3_Frame_Ctrl_8	0	0	0	0	0	0	0	0	0	0	AIF3TX6_SLOT [5:0]						0005h 0006h
R1423 (58Fh)	AIF3_Frame_Ctrl_9	0	0	0	0	0	0	0	0	0	0		AIF3TX7_SLOT [5:0]					
R1424 (590h)	AIF3_Frame_Ctrl_10	0	0	0	0	0	0	0	0	0	0	AIF3TX8_SLOT [5:0]						0007h
R1425 (591h)	AIF3_Frame_Ctrl_11	0	0	0	0	0	0	0	0	0	0		AIF3RX1_SLOT [5:0]					0000h
R1426 (592h)	AIF3_Frame_Ctrl_12	0	0	0	0	0	0	0	0	0	0	AIF3RX2_SLOT [5:0]						0001h
R1427 (593h)	AIF3_Frame_Ctrl_13	0	0	0	0	0	0	0	0	0	0	AIF3RX3_SLOT [5:0]						0002h
R1428 (594h)	AIF3_Frame_Ctrl_14	0	0	0	0	0	0	0	0	0	0	AIF3RX4_SLOT [5:0]						0003h
R1429 (595h)	AIF3_Frame_Ctrl_15	0	0	0	0	0	0	0	0	0	0	AIF3RX5_SLOT [5:0]						0004h
R1430 (596h)	AIF3_Frame_Ctrl_16	0	0	0	0	0	0	0	0	0	0	AIF3RX6_SLOT [5:0]						0005h
R1431 (597h)	AIF3_Frame_Ctrl_17	0	0	0	0	0	0	0	0	0	0	AIF3RX7_SLOT [5:0]						0006h
R1432 (598h)	AIF3_Frame_Ctrl_18	0	0	0	0	0	0	0	0	0	0	AIF3RX8_SLOT [5:0]					0007h	
R1433 (599h)	AIF3_Tx_Enables	0	0	0	0	0	0	0	0	AIF3TX8_ ENA	AIF3TX7_ ENA	AIF3TX6_ ENA	AIF3TX5_ ENA	AIF3TX4_ ENA	AIF3TX3 ENA	ENA	AIF3TX1_ ENA	0000h
R1434 (59Ah)	AIF3_Rx_Enables	0	0	0	0	0	0	0	0	ENA -	ENA -	ENA	AIF3RX5_ ENA	ENA	ENA	ENA	ENA _	0000h
R1474 (5C2h)	SPD1_TX_Control	0	0	SPD1_ VAL2	SPD1_ VAL1	0	0	0		SPD1_RATE [4:0] SPD1_CHSTMODE SPD1_PRE			0	0	0	SPD1_ ENA	0000h	
R1475 (5C3h)	SPD1_TX_Channel_ Status_1				SPD1_CAT	CODE [7:0	CODE [7:0]				:0]		I_PREEMPI	H [2:0]		SPD1_ NOAUDĪC		0000h
R1476 (5C4h)	SPD1_TX_Channel_ Status_2	SPD1_FREQ [3:0]				SPD1_CHNUM2 [3:0]				SPD1_CHNUM1 [3:0]					SPD1_SRCNUM [3:0]			0001h
R1477 (5C5h)	SPD1_TX_Channel_ Status_3	0	0	0 0 SPD1_ORGSAMP [3:0]					SPD1_TXWL [2:0]							KACU [1:0]	0000h	
R1490 (5D2h)	SLIMbus_RX_Ports0	SLIMRX2_PORT_ADDR [7:0]								SLIMRX1_PORT_ADDR [7:0]								0100h
R1491 (5D3h)	SLIMbus_RX_Ports1	SLIMRX4_PORT_ADDR [7:0]								SLIMRX3_PORT_ADDR [7:0]								0302h 0504h
R1492 (5D4h)	SLIMbus_RX_Ports2	SLIMRX6_PORT_ADDR [7:0]									SLIMRX5_PORT_ADDR [7:0]							
R1493 (5D5h)	SLIMbus_RX_Ports3	SLIMTX8_PORT_ADDR [7:0]									SLIMTX1_PORT_ADDR [7:0]							
R1494 (5D6h)	SLIMbus_TX_Ports0	SLIMTX2_PORT_ADDR [7:0] SLIMTX4_PORT_ADDR [7:0]									SLIMTX1_PORT_ADDR [7:0]							
R1495 (5D7h)	SLIMbus_TX_Ports1	SLIMTX4_PORT_ADDR [7:0] SLIMTX6_PORT_ADDR [7:0]									SLIMTX3_PORT_ADDR [7:0]							
R1496 (5D8h)	SLIMbus_TX_Ports2		SLIMTX6_PORT_ADDR [7:0] SLIMTX8_PORT_ADDR [7:0]								SLIMTX5_PORT_ADDR [7:0] SLIMTX7_PORT_ADDR [7:0]							
R1497 (5D9h)	SLIMbus_TX_Ports3			SL	IMTX8_POF	KI_ADDR [/ :U]					SL	IMTX/_POF	KI_ADDR	[/:U]			0F0Eh

Table 6-1. Register Map Definition—16-bit region (Cont.)

Register	Name	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Default
R1507 (5E3h)	SLIMbus_Framer_Ref_ Gear	0	0	0	0	0	0	0	0	0	0	0	SLIMCLK_ SRC	SL	.IMCLK_RE	F_GEAR [3:0]	0000h
R1509 (5E5h)	SLIMbus_Rates_1		SLIM	IRX2_RATE	[4:0]	•	0	0	0		SLIN	IRX1_RATE	[4:0]	•	0	0	0	0000h
R1510 (5E6h)	SLIMbus_Rates_2		SLIM	IRX4_RATE	[4:0]		0	0	0		SLIN	MRX3_RATE	[4:0]		0	0	0	0000h
R1511 (5E7h)	SLIMbus_Rates_3		SLIM	IRX6_RATE	[4:0]		0	0	0		SLIN	MRX5_RATE	[4:0]		0	0	0	0000h
R1512 (5E8h)	SLIMbus_Rates_4		SLIM	IRX8_RATE	[4:0]		0	0	0		SLIN	MRX7_RATE	[4:0]		0	0	0	0000h
R1513 (5E9h)	SLIMbus_Rates_5		SLIM	ITX2_RATE	[4:0]		0	0	0		SLIM	ITX1_RATE	[4:0]		0	0	0	0000h
R1514 (5EAh)	SLIMbus_Rates_6		SLIM	ITX4_RATE	[4:0]		0	0	0		SLIM	MTX3_RATE	[4:0]		0	0	0	0000h
R1515 (5EBh)	SLIMbus_Rates_7		SLIM	ITX6_RATE	[4:0]		0	0	0		SLIM	/ITX5_RATE	[4:0]		0	0	0	0000h
R1516 (5ECh)	SLIMbus_Rates_8		SLIN	ITX8_RATE	[4:0]		0	0	0		SLIM	ITX7_RATE	[4:0]		0	0	0	0000h
R1520 (5F0h)	Slimbus_Pad_Ctrl	0	0	0	0	0	0	0	0	0	0	0	0	0	SLIMDAT2 _DRV_ STR	SLIMDAT1 _DRV_ STR	DRV_STR	0007h
R1525 (5F5h)	SLIMbus_RX_Channel_ Enable	0	0	0	0	0	0	0	0	SLIMRX8_ ENA	SLIMRX7_ ENA	SLIMRX6_ ENA	SLIMRX5_ ENA	SLIMRX4_ ENA	SLIMRX3_ ENA	SLIMRX2_ ENA	SLIMRX1_ ENA	0000h
R1526 (5F6h)	SLIMbus_TX_Channel_ Enable	0	0	0	0	0	0	0	0	SLIMTX8_ ENA	SLIMTX7_ ENA	SLIMTX6_ ENA	SLIMTX5_ ENA	SLIMTX4_ ENA	SLIMTX3_ ENA	SLIMTX2_ ENA	SLIMTX1_ ENA	0000h
R1527 (5F7h)	SLIMbus_RX_Port_ Status	0	0	0	0	0	0	0	0	SLIMRX8_ PORT_ STS	SLIMRX7_ PORT_ STS	SLIMRX6_ PORT_ STS	SLIMRX5_ PORT_ STS	SLIMRX4_ PORT_ STS	SLIMRX3_ PORT_ STS	SLIMRX2_ PORT_ STS	SLIMRX1_ PORT_ STS	0000h
R1528 (5F8h)	SLIMbus_TX_Port_ Status	0	0	0	0	0	0	0	0	SLIMTX8_ PORT_ STS	SLIMTX7_ PORT_ STS	SLIMTX6_ PORT_ STS	SLIMTX5_ PORT_ STS	SLIMTX4_ PORT_ STS	SLIMTX3_ PORT_ STS	SLIMTX2_ PORT_ STS	SLIMTX1_ PORT_ STS	0000h
R1600 (640h)	PWM1MIX_Input_1_ Source	PWM1MIX _STS	0	0	0	0	0	0	0					_SRC1 [7:0				0000h
R1601 (641h)	PWM1MIX_Input_1_ Volume	0	0	0	0	0	0	0	0			PWM	11MIX_VOL	.1 [6:0]			0	0080h
R1602 (642h)	PWM1MIX_Input_2_ Source	PWM1MIX _STS	0	0	0	0	0	0	0				PWM1MIX	_SRC2 [7:0]		•	0000h
R1603 (643h)	PWM1MIX_Input_2_ Volume	0	0	0	0	0	0	0	0			PWM	11MIX_VOL	2 [6:0]			0	0080h
R1604 (644h)	PWM1MIX_Input_3_ Source	PWM1MIX _STS	0	0	0	0	0	0	0				PWM1MIX	_SRC3 [7:0]		•	0000h
R1605 (645h)	PWM1MIX_Input_3_ Volume	0	0	0	0	0	0	0	0			PWM	11MIX_VOL	3 [6:0]			0	0080h
R1606 (646h)	PWM1MIX_Input_4_ Source	PWM1MIX _STS	0	0	0	0	0	0	0				PWM1MIX	_SRC4 [7:0				0000h
R1607 (647h)	PWM1MIX_Input_4_ Volume	0	0	0	0	0	0	0	0			PWM	I1MIX_VOL	4 [6:0]			0	0080h
R1608 (648h)	PWM2MIX_Input_1_ Source	PWM2MIX _STS	0	0	0	0	0	0	0				PWM2MIX	_SRC1 [7:0]			0000h
R1609 (649h)	PWM2MIX_Input_1_ Volume	0	0	0	0	0	0	0	0			PWM	2MIX_VOL	.1 [6:0]			0	0080h
R1610 (64Ah)	PWM2MIX_Input_2_ Source	PWM2MIX _STS	0	0	0	0	0	0	0				PWM2MIX	_SRC2 [7:0]				0000h
R1611 (64Bh)	PWM2MIX_Input_2_ Volume	0	0	0	0	0	0	0	0			PWM	2MIX_VOL	2 [6:0]			0	0080h
	PWM2MIX_Input_3_ Source	PWM2MIX _STS	0	0	0	0	0	0	0				PWM2MIX	_SRC3 [7:0]				0000h
R1613 (64Dh)	PWM2MIX_Input_3_ Volume	0	0	0	0	0	0	0	0			PWM	2MIX_VOL	3 [6:0]			0	0080h
R1614 (64Eh)	PWM2MIX_Input_4_ Source	PWM2MIX _STS	0	0	0	0	0	0	0				PWM2MIX	_SRC4 [7:0				0000h
	PWM2MIX_Input_4_ Volume	0	0	0	0	0	0	0	0			PWM	2MIX_VOL	4 [6:0]			0	0080h
R1664 (680h)	OUT1LMIX_Input_1_ Source	OUT1LMIX _STS	0	0	0	0	0	0	0				OUT1LMIX	_SRC1 [7:0]			0000h
R1665 (681h)	OUT1LMIX_Input_1_ Volume	0	0	0	0	0	0	0	0			OUT1	ILMIX_VOL	.1 [6:0]			0	0080h
R1666 (682h)	OUT1LMIX_Input_2_ Source	OUT1LMIX _STS	0	0	0	0	0	0	0				OUT1LMIX	_SRC2 [7:0]			0000h
R1667 (683h)	OUT1LMIX_Input_2_ Volume	0	0	0	0	0	0	0	0				ILMIX_VOL				0	0080h
	OUT1LMIX_Input_3_ Source	OUT1LMIX _STS	0	0	0	0	0	0	0				OUT1LMIX	_SRC3 [7:0]			0000h
R1669 (685h)	OUT1LMIX_Input_3_ Volume	0	0	0	0	0	0	0	0			OUT1	ILMIX_VOL	.3 [6:0]			0	0080h
R1670 (686h)	OUT1LMIX_Input_4_ Source	OUT1LMIX _STS	0	0	0	0	0	0	0				OUT1LMIX	_SRC4 [7:0]			0000h
	OUT1LMIX_Input_4_ Volume	0	0	0	0	0	0	0	0			OUT1	ILMIX_VOL	4 [6:0]			0	0080h

Register	Name	15	14	13	12	11	10	9	8	7 6 5 4 3 2 1 0	Default
R1672 (688h)	OUT1RMIX_Input_1_ Source	OUT1RMI X_STS	0	0	0	0	0	0	0	OUT1RMIX_SRC1 [7:0]	0000h
R1673 (689h)	OUT1RMIX_Input_1_ Volume	0	0	0	0	0	0	0	0	OUT1RMIX_VOL1 [6:0] 0	0080h
R1674 (68Ah)	OUT1RMIX_Input_2_ Source	OUT1RMI X_STS	0	0	0	0	0	0	0	OUT1RMIX_SRC2 [7:0]	0000h
R1675 (68Bh)	OUT1RMIX_Input_2_ Volume	0	0	0	0	0	0	0	0	OUT1RMIX_VOL2 [6:0] 0	0080h
R1676 (68Ch)	OUT1RMIX_Input_3_ Source	OUT1RMI X_STS	0	0	0	0	0	0	0	OUT1RMIX_SRC3 [7:0]	0000h
R1677 (68Dh)	OUT1RMIX_Input_3_ Volume	0	0	0	0	0	0	0	0	OUT1RMIX_VOL3 [6:0] 0	0080h
R1678 (68Eh)	OUT1RMIX_Input_4_ Source	OUT1RMI X_STS	0	0	0	0	0	0	0	OUT1RMIX_SRC4 [7:0]	0000h
R1679 (68Fh)	OUT1RMIX_Input_4_ Volume	0	0	0	0	0	0	0	0	OUT1RMIX_VOL4 [6:0] 0	0080h
R1680 (690h)	OUT2LMIX_Input_1_ Source	OUT2LMIX _STS	0	0	0	0	0	0	0	OUT2LMIX_SRC1 [7:0]	0000h
R1681 (691h)	OUT2LMIX_Input_1_ Volume	0	0	0	0	0	0	0	0	OUT2LMIX_VOL1 [6:0] 0	0080h
R1682 (692h)	OUT2LMIX_Input_2_ Source	OUT2LMIX _STS	0	0	0	0	0	0	0	OUT2LMIX_SRC2 [7:0]	0000h
R1683 (693h)	OUT2LMIX_Input_2_ Volume	0	0	0	0	0	0	0	0	OUT2LMIX_VOL2 [6:0] 0	0080h
R1684 (694h)	OUT2LMIX_Input_3_ Source	OUT2LMIX _STS	0	0	0	0	0	0	0	OUT2LMIX_SRC3 [7:0]	0000h
R1685 (695h)	OUT2LMIX_Input_3_ Volume	0	0	0	0	0	0	0	0	OUT2LMIX_VOL3 [6:0] 0	0080h
R1686 (696h)	OUT2LMIX_Input_4_ Source	OUT2LMIX _STS	0	0	0	0	0	0	0	OUT2LMIX_SRC4 [7:0]	0000h
R1687 (697h)	OUT2LMIX_Input_4_ Volume	0	0	0	0	0	0	0	0	OUT2LMIX_VOL4 [6:0] 0	0080h
R1688 (698h)	OUT2RMIX_Input_1_ Source	OUT2RMI X_STS	0	0	0	0	0	0	0	OUT2RMIX_SRC1 [7:0]	0000h
R1689 (699h)	OUT2RMIX_Input_1_ Volume	0	0	0	0	0	0	0	0	OUT2RMIX_VOL1 [6:0] 0	0080h
R1690 (69Ah)	OUT2RMIX_Input_2_ Source	OUT2RMI X_STS	0	0	0	0	0	0	0	OUT2RMIX_SRC2 [7:0]	0000h
R1691 (69Bh)	OUT2RMIX_Input_2_ Volume	0	0	0	0	0	0	0	0	OUT2RMIX_VOL2 [6:0] 0	0080h
R1692 (69Ch)	OUT2RMIX_Input_3_ Source	OUT2RMI X_STS	0	0	0	0	0	0	0	OUT2RMIX_SRC3 [7:0]	0000h
R1693 (69Dh)	OUT2RMIX_Input_3_ Volume	0	0	0	0	0	0	0	0	OUT2RMIX_VOL3 [6:0] 0	0080h
R1694 (69Eh)	OUT2RMIX_Input_4_ Source	OUT2RMI X_STS	0	0	0	0	0	0	0	OUT2RMIX_SRC4 [7:0]	0000h
R1695 (69Fh)	OUT2RMIX_Input_4_ Volume	0	0	0	0	0	0	0	0	OUT2RMIX_VOL4 [6:0] 0	0080h
R1696 (6A0h)	OUT3LMIX_Input_1_ Source	OUT3LMIX _STS	0	0	0	0	0	0	0	OUT3LMIX_SRC1 [7:0]	0000h
R1697 (6A1h)	OUT3LMIX_Input_1_ Volume	0	0	0	0	0	0	0	0	OUT3LMIX_VOL1 [6:0] 0	0080h
R1698 (6A2h)	OUT3LMIX_Input_2_ Source	OUT3LMIX _STS	0	0	0	0	0	0	0	OUT3LMIX_SRC2 [7:0]	0000h
R1699 (6A3h)	OUT3LMIX_Input_2_ Volume	0	0	0	0	0	0	0	0	OUT3LMIX_VOL2 [6:0] 0	0080h
R1700 (6A4h)	OUT3LMIX_Input_3_ Source	OUT3LMIX _STS	0	0	0	0	0	0	0	OUT3LMIX_SRC3 [7:0]	0000h
R1701 (6A5h)	OUT3LMIX_Input_3_ Volume	0	0	0	0	0	0	0	0	OUT3LMIX_VOL3 [6:0] 0	0080h
R1702	OUT3LMIX_Input_4_ Source	OUT3LMIX _STS	0	0	0	0	0	0	0	OUT3LMIX_SRC4 [7:0]	0000h
R1703 (6A7h)	OUT3LMIX_Input_4_ Volume	0	0	0	0	0	0	0	0	OUT3LMIX_VOL4 [6:0] 0	0080h
R1704 (6A8h)	OUT3RMIX_Input_1_ Source	OUT3RMI X_STS	0	0	0	0	0	0	0	OUT3RMIX_SRC1 [7:0]	0000h
R1705 (6A9h)	OUT3RMIX_Input_1_ Volume	0	0	0	0	0	0	0	0	OUT3RMIX_VOL1 [6:0] 0	0080h
R1706 (6AAh)	OUT3RMIX_Input_2_ Source	OUT3RMI X_STS	0	0	0	0	0	0	0	OUT3RMIX_SRC2 [7:0]	0000h
R1707 (6ABh)	OUT3RMIX_Input_2_ Volume	0	0	0	0	0	0	0	0	OUT3RMIX_VOL2 [6:0] 0	0080h
R1708 (6ACh)	OUT3RMIX_Input_3_ Source	OUT3RMI X_STS	0	0	0	0	0	0	0	OUT3RMIX_SRC3 [7:0]	0000h
R1709 (6ADh)	OUT3RMIX_Input_3_ Volume	0	0	0	0	0	0	0	0	OUT3RMIX_VOL3 [6:0] 0	0080h

Register	Name	15	14	13	12	11	10	9	8	7 6 5 4 3 2 1 0	Default
R1710 (6AEh)	OUT3RMIX_Input_4_ Source	OUT3RMI X_STS	0	0	0	0	0	0	0	OUT3RMIX_SRC4 [7:0]	0000h
R1711 (6AFh)	OUT3RMIX_Input_4_ Volume	0	0	0	0	0	0	0	0	OUT3RMIX_VOL4 [6:0] 0	0080h
R1728 (6C0h)	OUT5LMIX_Input_1_ Source	OUT5LMIX _STS	0	0	0	0	0	0	0	OUT5LMIX_SRC1 [7:0]	0000h
R1729 (6C1h)	OUT5LMIX_Input_1_ Volume	0	0	0	0	0	0	0	0	OUT5LMIX_VOL1 [6:0] 0	0080h
R1730 (6C2h)	OUT5LMIX_Input_2_ Source	OUT5LMIX _STS	0	0	0	0	0	0	0	OUT5LMIX_SRC2 [7:0]	0000h
R1731 (6C3h)	OUT5LMIX_Input_2_ Volume	0	0	0	0	0	0	0	0	OUT5LMIX_VOL2 [6:0] 0	0080h
R1732 (6C4h)	OUT5LMIX_Input_3_ Source	OUT5LMIX _STS	0	0	0	0	0	0	0	OUT5LMIX_SRC3 [7:0]	0000h
R1733 (6C5h)	OUT5LMIX_Input_3_ Volume	0	0	0	0	0	0	0	0	OUT5LMIX_VOL3 [6:0] 0	0080h
R1734 (6C6h)	OUT5LMIX_Input_4_ Source	OUT5LMIX STS	0	0	0	0	0	0	0	OUT5LMIX_SRC4 [7:0]	0000h
R1735 (6C7h)	OUT5LMIX_Input_4_ Volume	0	0	0	0	0	0	0	0	OUT5LMIX_VOL4 [6:0] 0	0080h
R1736 (6C8h)	OUT5RMIX_Input_1_ Source	OUT5RMI X STS	0	0	0	0	0	0	0	OUT5RMIX_SRC1 [7:0]	0000h
R1737 (6C9h)	OUT5RMIX_Input_1_ Volume	0	0	0	0	0	0	0	0	OUT5RMIX_VOL1 [6:0] 0	0080h
R1738 (6CAh)	OUT5RMIX_Input_2_ Source	OUT5RMI X STS	0	0	0	0	0	0	0	OUT5RMIX_SRC2 [7:0]	0000h
R1739 (6CBh)	OUT5RMIX_Input_2_ Volume	0	0	0	0	0	0	0	0	OUT5RMIX_VOL2 [6:0] 0	0080h
R1740 (6CCh)	OUT5RMIX_Input_3_ Source	OUT5RMI X STS	0	0	0	0	0	0	0	OUT5RMIX_SRC3 [7:0]	0000h
R1741 (6CDh)	OUT5RMIX_Input_3_ Volume	0	0	0	0	0	0	0	0	OUT5RMIX_VOL3 [6:0] 0	0080h
R1742 (6CEh)	OUT5RMIX_Input_4_ Source	OUT5RMI X STS	0	0	0	0	0	0	0	OUT5RMIX_SRC4 [7:0]	0000h
R1743 (6CFh)	OUT5RMIX_Input_4_ Volume	0	0	0	0	0	0	0	0	OUT5RMIX_VOL4 [6:0] 0	0080h
R1792 (700h)	AIF1TX1MIX_Input_1_ Source	AIF1TX1MI X_STS	0	0	0	0	0	0	0	AIF1TX1MIX_SRC1 [7:0]	0000h
R1793	AIF1TX1MIX_Input_1_	0	0	0	0	0	0	0	0	AIF1TX1MIX_VOL1 [6:0] 0	0080h
(701h) R1794 (702h)	Volume AIF1TX1MIX_Input_2_	AIF1TX1MI X STS	0	0	0	0	0	0	0	AIF1TX1MIX_SRC2 [7:0]	0000h
R1795	Source AIF1TX1MIX_Input_2_	0	0	0	0	0	0	0	0	AIF1TX1MIX_VOL2 [6:0] 0	0080h
(703h) R1796	Volume AIF1TX1MIX_Input_3_	AIF1TX1MI X STS	0	0	0	0	0	0	0	AIF1TX1MIX_SRC3 [7:0]	0000h
(704h) R1797	Source AIF1TX1MIX_Input_3_	0	0	0	0	0	0	0	0	AIF1TX1MIX_VOL3 [6:0] 0	0080h
(705h) R1798	Volume AIF1TX1MIX_Input_4_	AIF1TX1MI X STS	0	0	0	0	0	0	0	AIF1TX1MIX_SRC4 [7:0]	0000h
(706h) R1799	Source AIF1TX1MIX_Input_4_	0	0	0	0	0	0	0	0	AIF1TX1MIX_VOL4 [6:0] 0	0080h
	Volume AIF1TX2MIX_Input_1_	AIF1TX2MI X_STS	0	0	0	0	0	0	0	AIF1TX2MIX_SRC1 [7:0]	0000h
	Source AIF1TX2MIX_Input_1_	0	0	0	0	0	0	0	0	AIF1TX2MIX_VOL1 [6:0] 0	0080h
(709h) R1802	Volume AIF1TX2MIX_Input_2_	AIF1TX2MI	0	0	0	0	0	0	0	AIF1TX2MIX_SRC2 [7:0]	0000h
	Source AIF1TX2MIX_Input_2_	X_STS 0	0	0	0	0	0	0	0	AIF1TX2MIX_VOL2 [6:0] 0	0080h
(70Bh) R1804	Volume AIF1TX2MIX_Input_3_	AIF1TX2MI	0	0	0	0	0	0	0	AIF1TX2MIX_SRC3 [7:0]	0000h
(70Ch) R1805	Source AIF1TX2MIX_Input_3_	X_STS 0	0	0	0	0	0	0	0	AIF1TX2MIX_VOL3 [6:0] 0	0080h
(70Dh) R1806	Volume AIF1TX2MIX_Input_4_	AIF1TX2MI	0	0	0	0	0	0	0	AIF1TX2MIX_SRC4 [7:0]	0000h
R1807	Source AIF1TX2MIX_Input_4_	X_STS 0	0	0	0	0	0	0	0	AIF1TX2MIX_VOL4 [6:0] 0	0080h
	Volume AIF1TX3MIX_Input_1_	AIF1TX3MI	0	0	0	0	0	0	0	AIF1TX3MIX_SRC1 [7:0]	0000h
R1809	Source AIF1TX3MIX_Input_1_	X_STS 0	0	0	0	0	0	0	0	AIF1TX3MIX_VOL1 [6:0] 0	0080h
(711h) R1810	Volume AIF1TX3MIX_Input_2_	AIF1TX3MI	0	0	0	0	0	0	0	AIF1TX3MIX_SRC2 [7:0]	0000h
	Source AIF1TX3MIX_Input_2_	X_STS 0	0	0	0	0	0	0	0	AIF1TX3MIX_VOL2 [6:0] 0	0080h
(713h)	Volume										

Register	Name	15	14	13	12	11	10	9	8	7 6 5 4 3 2 1 0	Default
R1812 (714h)	AIF1TX3MIX_Input_3_ Source	AIF1TX3MI X_STS	0	0	0	0	0	0	0	AIF1TX3MIX_SRC3 [7:0]	0000h
R1813 (715h)	AIF1TX3MIX_Input_3_ Volume	0	0	0	0	0	0	0	0	AIF1TX3MIX_VOL3 [6:0] 0	0080h
R1814 (716h)	AIF1TX3MIX_Input_4_ Source	AIF1TX3MI X_STS	0	0	0	0	0	0	0	AIF1TX3MIX_SRC4 [7:0]	0000h
R1815 (717h)	AIF1TX3MIX_Input_4_ Volume	0	0	0	0	0	0	0	0	AIF1TX3MIX_VOL4 [6:0] 0	0080h
R1816 (718h)	AIF1TX4MIX_Input_1_ Source	AIF1TX4MI X STS	0	0	0	0	0	0	0	AIF1TX4MIX_SRC1 [7:0]	0000h
R1817 (719h)	AIF1TX4MIX_Input_1_ Volume	0	0	0	0	0	0	0	0	AIF1TX4MIX_VOL1 [6:0] 0	0080h
. ,	AIF1TX4MIX_Input_2_ Source	AIF1TX4MI X STS	0	0	0	0	0	0	0	AIF1TX4MIX_SRC2 [7:0]	0000h
	AIF1TX4MIX_Input_2_ Volume	0	0	0	0	0	0	0	0	AIF1TX4MIX_VOL2 [6:0] 0	0080h
R1820	AIF1TX4MIX_Input_3_ Source	AIF1TX4MI X STS	0	0	0	0	0	0	0	AIF1TX4MIX_SRC3 [7:0]	0000h
R1821 (71Dh)	AIF1TX4MIX_Input_3_ Volume	0	0	0	0	0	0	0	0	AIF1TX4MIX_VOL3 [6:0] 0	0080h
R1822 (71Eh)	AIF1TX4MIX_Input_4_ Source	AIF1TX4MI X STS	0	0	0	0	0	0	0	AIF1TX4MIX_SRC4 [7:0]	0000h
,	AIF1TX4MIX_Input_4_ Volume	0	0	0	0	0	0	0	0	AIF1TX4MIX_VOL4 [6:0] 0	0080h
, ,	AIF1TX5MIX_Input_1_ Source	AIF1TX5MI X STS	0	0	0	0	0	0	0	AIF1TX5MIX_SRC1 [7:0]	0000h
R1825	AIF1TX5MIX_Input_1_ Volume	0	0	0	0	0	0	0	0	AIF1TX5MIX_VOL1 [6:0] 0	0080h
R1826 (722h)	AIF1TX5MIX_Input_2_ Source	AIF1TX5MI X STS	0	0	0	0	0	0	0	AIF1TX5MIX_SRC2 [7:0]	0000h
R1827 (723h)	AIF1TX5MIX_Input_2_ Volume	0	0	0	0	0	0	0	0	AIF1TX5MIX_VOL2 [6:0] 0	0080h
R1828 (724h)	AIF1TX5MIX_Input_3_ Source	AIF1TX5MI X STS	0	0	0	0	0	0	0	AIF1TX5MIX_SRC3 [7:0]	0000h
R1829 (725h)	AIF1TX5MIX_Input_3_ Volume	0	0	0	0	0	0	0	0	AIF1TX5MIX_VOL3 [6:0] 0	0080h
R1830	AIF1TX5MIX_Input_4_ Source	AIF1TX5MI X_STS	0	0	0	0	0	0	0	AIF1TX5MIX_SRC4 [7:0]	0000h
R1831 (727h)	AIF1TX5MIX_Input_4_ Volume	0	0	0	0	0	0	0	0	AIF1TX5MIX_VOL4 [6:0] 0	0080h
R1832 (728h)	AIF1TX6MIX_Input_1_ Source	AIF1TX6MI X_STS	0	0	0	0	0	0	0	AIF1TX6MIX_SRC1 [7:0]	0000h
R1833 (729h)	AIF1TX6MIX_Input_1_ Volume	0	0	0	0	0	0	0	0	AIF1TX6MIX_VOL1 [6:0] 0	0080h
R1834 (72Ah)	AIF1TX6MIX_Input_2_ Source	AIF1TX6MI X_STS	0	0	0	0	0	0	0	AIF1TX6MIX_SRC2 [7:0]	0000h
R1835 (72Bh)	AIF1TX6MIX_Input_2_ Volume	0	0	0	0	0	0	0	0	AIF1TX6MIX_VOL2 [6:0] 0	0080h
R1836 (72Ch)	AIF1TX6MIX_Input_3_ Source	AIF1TX6MI X_STS	0	0	0	0	0	0	0	AIF1TX6MIX_SRC3 [7:0]	0000h
R1837 (72Dh)	AIF1TX6MIX_Input_3_ Volume	0	0	0	0	0	0	0	0	AIF1TX6MIX_VOL3 [6:0] 0	0080h
	AIF1TX6MIX_Input_4_ Source	AIF1TX6MI X_STS	0	0	0	0	0	0	0	AIF1TX6MIX_SRC4 [7:0]	0000h
R1839 (72Fh)	AIF1TX6MIX_Input_4_ Volume	0	0	0	0	0	0	0	0	AIF1TX6MIX_VOL4 [6:0] 0	0080h
R1840 (730h)	AIF1TX7MIX_Input_1_ Source	AIF1TX7MI X_STS	0	0	0	0	0	0	0	AIF1TX7MIX_SRC1 [7:0]	0000h
R1841 (731h)	AIF1TX7MIX_Input_1_ Volume	0	0	0	0	0	0	0	0	AIF1TX7MIX_VOL1 [6:0] 0	0080h
R1842 (732h)	AIF1TX7MIX_Input_2_ Source	AIF1TX7MI X_STS	0	0	0	0	0	0	0	AIF1TX7MIX_SRC2 [7:0]	0000h
R1843 (733h)	AIF1TX7MIX_Input_2_ Volume	0	0	0	0	0	0	0	0	AIF1TX7MIX_VOL2 [6:0] 0	0080h
R1844 (734h)	AIF1TX7MIX_Input_3_ Source	AIF1TX7MI X_STS	0	0	0	0	0	0	0	AIF1TX7MIX_SRC3 [7:0]	0000h
	AIF1TX7MIX_Input_3_ Volume	0	0	0	0	0	0	0	0	AIF1TX7MIX_VOL3 [6:0] 0	0080h
	AIF1TX7MIX_Input_4_ Source	AIF1TX7MI X_STS	0	0	0	0	0	0	0	AIF1TX7MIX_SRC4 [7:0]	0000h
R1847 (737h)	AIF1TX7MIX_Input_4_ Volume	0	0	0	0	0	0	0	0	AIF1TX7MIX_VOL4 [6:0] 0	0080h
R1848 (738h)	AIF1TX8MIX_Input_1_ Source	AIF1TX8MI X_STS	0	0	0	0	0	0	0	AIF1TX8MIX_SRC1 [7:0]	0000h
R1849 (739h)	AIF1TX8MIX_Input_1_ Volume	0	0	0	0	0	0	0	0	AIF1TX8MIX_VOL1 [6:0] 0	0080h

Register	Name	15	14	13	12	11	10	9	8	7 6 5 4 3 2 1 0	Default
R1850 (73Ah)	AIF1TX8MIX_Input_2_ Source	AIF1TX8MI X_STS	0	0	0	0	0	0	0	AIF1TX8MIX_SRC2 [7:0]	0000h
. ,	AIF1TX8MIX_Input_2_ Volume	0	0	0	0	0	0	0	0	AIF1TX8MIX_VOL2 [6:0] 0	0080h
R1852 (73Ch)	AIF1TX8MIX_Input_3_ Source	AIF1TX8MI X_STS	0	0	0	0	0	0	0	AIF1TX8MIX_SRC3 [7:0]	0000h
R1853 (73Dh)	AIF1TX8MIX_Input_3_ Volume	0	0	0	0	0	0	0	0	AIF1TX8MIX_VOL3 [6:0] 0	0080h
R1854 (73Eh)	AIF1TX8MIX_Input_4_ Source	AIF1TX8MI X_STS	0	0	0	0	0	0	0	AIF1TX8MIX_SRC4 [7:0]	0000h
R1855 (73Fh)	AIF1TX8MIX_Input_4_ Volume	0	0	0	0	0	0	0	0	AIF1TX8MIX_VOL4 [6:0] 0	0080h
R1856 (740h)	AIF2TX1MIX_Input_1_ Source	AIF2TX1MI X_STS	0	0	0	0	0	0	0	AIF2TX1MIX_SRC1 [7:0]	0000h
R1857 (741h)	AIF2TX1MIX_Input_1_ Volume	0	0	0	0	0	0	0	0	AIF2TX1MIX_VOL1 [6:0] 0	0080h
R1858 (742h)	AIF2TX1MIX_Input_2_ Source	AIF2TX1MI X_STS	0	0	0	0	0	0	0	AIF2TX1MIX_SRC2 [7:0]	0000h
R1859 (743h)	AIF2TX1MIX_Input_2_ Volume	0	0	0	0	0	0	0	0	AIF2TX1MIX_VOL2 [6:0] 0	0080h
R1860 (744h)	AIF2TX1MIX_Input_3_ Source	AIF2TX1MI X_STS	0	0	0	0	0	0	0	AIF2TX1MIX_SRC3 [7:0]	0000h
R1861 (745h)	AIF2TX1MIX_Input_3_ Volume	0	0	0	0	0	0	0	0	AIF2TX1MIX_VOL3 [6:0] 0	0080h
R1862 (746h)	AIF2TX1MIX_Input_4_ Source	AIF2TX1MI X_STS	0	0	0	0	0	0	0	AIF2TX1MIX_SRC4 [7:0]	0000h
R1863 (747h)	AIF2TX1MIX_Input_4_ Volume	0	0	0	0	0	0	0	0	AIF2TX1MIX_VOL4 [6:0] 0	0080h
R1864 (748h)	AIF2TX2MIX_Input_1_ Source	AIF2TX2MI X_STS	0	0	0	0	0	0	0	AIF2TX2MIX_SRC1 [7:0]	0000h
R1865 (749h)	AIF2TX2MIX_Input_1_ Volume	0	0	0	0	0	0	0	0	AIF2TX2MIX_VOL1 [6:0] 0	0080h
R1866 (74Ah)	AIF2TX2MIX_Input_2_ Source	AIF2TX2MI X_STS	0	0	0	0	0	0	0	AIF2TX2MIX_SRC2 [7:0]	0000h
R1867 (74Bh)	AIF2TX2MIX_Input_2_ Volume	0	0	0	0	0	0	0	0	AIF2TX2MIX_VOL2 [6:0] 0	0080h
R1868 (74Ch)	AIF2TX2MIX_Input_3_ Source	AIF2TX2MI X_STS	0	0	0	0	0	0	0	AIF2TX2MIX_SRC3 [7:0]	0000h
R1869 (74Dh)	AIF2TX2MIX_Input_3_ Volume	0	0	0	0	0	0	0	0	AIF2TX2MIX_VOL3 [6:0] 0	0080h
R1870 (74Eh)	AIF2TX2MIX_Input_4_ Source	AIF2TX2MI X_STS	0	0	0	0	0	0	0	AIF2TX2MIX_SRC4 [7:0]	0000h
R1871 (74Fh)	AIF2TX2MIX_Input_4_ Volume	0	0	0	0	0	0	0	0	AIF2TX2MIX_VOL4 [6:0] 0	0080h
R1872 (750h)	AIF2TX3MIX_Input_1_ Source	AIF2TX3MI X_STS	0	0	0	0	0	0	0	AIF2TX3MIX_SRC1 [7:0]	0000h
R1873 (751h)	AIF2TX3MIX_Input_1_ Volume	0	0	0	0	0	0	0	0	AIF2TX3MIX_VOL1 [6:0] 0	0080h
R1874 (752h)	AIF2TX3MIX_Input_2_ Source	AIF2TX3MI X_STS	0	0	0	0	0	0	0	AIF2TX3MIX_SRC2 [7:0]	0000h
R1875 (753h)	AIF2TX3MIX_Input_2_ Volume	0	0	0	0	0	0	0	0	AIF2TX3MIX_VOL2 [6:0] 0	0080h
R1876 (754h)	AIF2TX3MIX_Input_3_ Source	AIF2TX3MI X_STS	0	0	0	0	0	0	0	AIF2TX3MIX_SRC3 [7:0]	0000h
R1877 (755h)	AIF2TX3MIX_Input_3_ Volume	0	0	0	0	0	0	0	0	AIF2TX3MIX_VOL3 [6:0] 0	0080h
R1878 (756h)	AIF2TX3MIX_Input_4_ Source	AIF2TX3MI X_STS	0	0	0	0	0	0	0	AIF2TX3MIX_SRC4 [7:0]	0000h
R1879 (757h)	AIF2TX3MIX_Input_4_ Volume	0	0	0	0	0	0	0	0	AIF2TX3MIX_VOL4 [6:0] 0	0080h
R1880 (758h)	AIF2TX4MIX_Input_1_ Source	AIF2TX4MI X_STS	0	0	0	0	0	0	0	AIF2TX4MIX_SRC1 [7:0]	0000h
R1881 (759h)	AIF2TX4MIX_Input_1_ Volume	0	0	0	0	0	0	0	0	AIF2TX4MIX_VOL1 [6:0] 0	0080h
R1882 (75Ah)	AIF2TX4MIX_Input_2_ Source	AIF2TX4MI X_STS	0	0	0	0	0	0	0	AIF2TX4MIX_SRC2 [7:0]	0000h
(75Bh)	AIF2TX4MIX_Input_2_ Volume	0	0	0	0	0	0	0	0	AIF2TX4MIX_VOL2 [6:0] 0	0080h
	AIF2TX4MIX_Input_3_ Source	AIF2TX4MI X_STS	0	0	0	0	0	0	0	AIF2TX4MIX_SRC3 [7:0]	0000h
R1885 (75Dh)	AIF2TX4MIX_Input_3_ Volume	0	0	0	0	0	0	0	0	AIF2TX4MIX_VOL3 [6:0] 0	0080h
R1886 (75Eh)	AIF2TX4MIX_Input_4_ Source	AIF2TX4MI X_STS	0	0	0	0	0	0	0	AIF2TX4MIX_SRC4 [7:0]	0000h
R1887 (75Fh)	AIF2TX4MIX_Input_4_ Volume	0	0	0	0	0	0	0	0	AIF2TX4MIX_VOL4 [6:0] 0	0080h

Register	Name	15	14	13	12	11	10	9	8	7 6 5 4 3 2 1 0	Default
R1888 (760h)	AIF2TX5MIX_Input_1_ Source	AIF2TX5MI X STS	0	0	0	0	0	0	0	AIF2TX5MIX_SRC1 [7:0]	0000h
R1889	AIF2TX5MIX_Input_1_ Volume	0	0	0	0	0	0	0	0	AIF2TX5MIX_VOL1 [6:0] 0	0080h
R1890 (762h)	AIF2TX5MIX_Input_2_ Source	AIF2TX5MI X_STS	0	0	0	0	0	0	0	AIF2TX5MIX_SRC2 [7:0]	0000h
R1891	AIF2TX5MIX_Input_2_ Volume	0	0	0	0	0	0	0	0	AIF2TX5MIX_VOL2 [6:0] 0	0080h
R1892 (764h)	AIF2TX5MIX_Input_3_ Source	AIF2TX5MI X_STS	0	0	0	0	0	0	0	AIF2TX5MIX_SRC3 [7:0]	0000h
R1893	AIF2TX5MIX_Input_3_ Volume	0	0	0	0	0	0	0	0	AIF2TX5MIX_VOL3 [6:0] 0	0080h
	AIF2TX5MIX_Input_4_ Source	AIF2TX5MI X_STS	0	0	0	0	0	0	0	AIF2TX5MIX_SRC4 [7:0]	0000h
(767h)	AIF2TX5MIX_Input_4_ Volume	0	0	0	0	0	0	0	0	AIF2TX5MIX_VOL4 [6:0] 0	0080h
	AIF2TX6MIX_Input_1_ Source	AIF2TX6MI X_STS	0	0	0	0	0	0	0	AIF2TX6MIX_SRC1 [7:0]	0000h
R1897 (769h)	AIF2TX6MIX_Input_1_ Volume	0	0	0	0	0	0	0	0	AIF2TX6MIX_VOL1 [6:0] 0	0080h
R1898 (76Ah)	AIF2TX6MIX_Input_2_ Source	AIF2TX6MI X_STS	0	0	0	0	0	0	0	AIF2TX6MIX_SRC2 [7:0]	0000h
	AIF2TX6MIX_Input_2_ Volume	0	0	0	0	0	0	0	0	AIF2TX6MIX_VOL2 [6:0] 0	0080h
	AIF2TX6MIX_Input_3_ Source	AIF2TX6MI X_STS	0	0	0	0	0	0	0	AIF2TX6MIX_SRC3 [7:0]	0000h
R1901 (76Dh)	AIF2TX6MIX_Input_3_ Volume	0	0	0	0	0	0	0	0	AIF2TX6MIX_VOL3 [6:0] 0	0080h
	AIF2TX6MIX_Input_4_ Source	AIF2TX6MI X_STS	0	0	0	0	0	0	0	AIF2TX6MIX_SRC4 [7:0]	0000h
R1903 (76Fh)	AIF2TX6MIX_Input_4_ Volume	0	0	0	0	0	0	0	0	AIF2TX6MIX_VOL4 [6:0] 0	0080h
	AIF2TX7MIX_Input_1_ Source	AIF2TX7MI X_STS	0	0	0	0	0	0	0	AIF2TX7MIX_SRC1 [7:0]	0000h
R1905 (771h)	AIF2TX7MIX_Input_1_ Volume	0	0	0	0	0	0	0	0	AIF2TX7MIX_VOL1 [6:0] 0	0080h
	AIF2TX7MIX_Input_2_ Source	AIF2TX7MI X_STS	0	0	0	0	0	0	0	AIF2TX7MIX_SRC2 [7:0]	0000h
	AIF2TX7MIX_Input_2_ Volume	0	0	0	0	0	0	0	0	AIF2TX7MIX_VOL2 [6:0] 0	0080h
R1908 (774h)	AIF2TX7MIX_Input_3_ Source	AIF2TX7MI X_STS	0	0	0	0	0	0	0	AIF2TX7MIX_SRC3 [7:0]	0000h
, ,	AIF2TX7MIX_Input_3_ Volume	0	0	0	0	0	0	0	0	AIF2TX7MIX_VOL3 [6:0] 0	0080h
	AIF2TX7MIX_Input_4_ Source	AIF2TX7MI X_STS	0	0	0	0	0	0	0	AIF2TX7MIX_SRC4 [7:0]	0000h
	AIF2TX7MIX_Input_4_ Volume	0	0	0	0	0	0	0	0	AIF2TX7MIX_VOL4 [6:0] 0	0080h
R1912 (778h)	AIF2TX8MIX_Input_1_ Source	AIF2TX8MI X_STS	0	0	0	0	0	0	0	AIF2TX8MIX_SRC1 [7:0]	0000h
	AIF2TX8MIX_Input_1_ Volume	0	0	0	0	0	0	0	0	AIF2TX8MIX_VOL1 [6:0] 0	0080h
	AIF2TX8MIX_Input_2_ Source	AIF2TX8MI X_STS	0	0	0	0	0	0	0	AIF2TX8MIX_SRC2 [7:0]	0000h
	AIF2TX8MIX_Input_2_ Volume	0	0	0	0	0	0	0	0	AIF2TX8MIX_VOL2 [6:0] 0	0080h
	AIF2TX8MIX_Input_3_ Source	AIF2TX8MI X_STS	0	0	0	0	0	0	0	AIF2TX8MIX_SRC3 [7:0]	0000h
	AIF2TX8MIX_Input_3_ Volume	0	0	0	0	0	0	0	0	AIF2TX8MIX_VOL3 [6:0] 0	0080h
R1918	AIF2TX8MIX_Input_4_ Source	AIF2TX8MI X_STS	0	0	0	0	0	0	0	AIF2TX8MIX_SRC4 [7:0]	0000h
R1919	AIF2TX8MIX_Input_4_ Volume	0	0	0	0	0	0	0	0	AIF2TX8MIX_VOL4 [6:0] 0	0080h
R1920	AIF3TX1MIX_Input_1_ Source	AIF3TX1MI X_STS	0	0	0	0	0	0	0	AIF3TX1MIX_SRC1 [7:0]	0000h
	AIF3TX1MIX_Input_1_ Volume	0	0	0	0	0	0	0	0	AIF3TX1MIX_VOL1 [6:0] 0	0080h
	AIF3TX1MIX_Input_2_ Source	AIF3TX1MI X_STS	0	0	0	0	0	0	0	AIF3TX1MIX_SRC2 [7:0]	0000h
	AIF3TX1MIX_Input_2_ Volume	0	0	0	0	0	0	0	0	AIF3TX1MIX_VOL2 [6:0] 0	0080h
R1924 (784h)	AIF3TX1MIX_Input_3_ Source	AIF3TX1MI X_STS	0	0	0	0	0	0	0	AIF3TX1MIX_SRC3 [7:0]	0000h
R1925 (785h)	AIF3TX1MIX_Input_3_ Volume	0	0	0	0	0	0	0	0	AIF3TX1MIX_VOL3 [6:0] 0	0080h

R1926 AIF3TX1MI (786h) Source	X_Input_4_	AIF3TX1MI									
D4007 A IEOTY (****		X_STS	0	0	0	0	0	0	0	AIF3TX1MIX_SRC4 [7:0]	0000h
R1927 AIF3TX1MI (787h) Volume	X_Input_4_	0	0	0	0	0	0	0	0	AIF3TX1MIX_VOL4 [6:0] 0	0080h
R1928 AIF3TX2MI (788h) Source	X_Input_1_	AIF3TX2MI X_STS	0	0	0	0	0	0	0	AIF3TX2MIX_SRC1 [7:0]	0000h
R1929 AIF3TX2MI (789h) Volume	X_Input_1_	0	0	0	0	0	0	0	0	AIF3TX2MIX_VOL1 [6:0] 0	0080h
R1930 AIF3TX2MI (78Ah) Source	X_Input_2_	AIF3TX2MI X STS	0	0	0	0	0	0	0	AIF3TX2MIX_SRC2 [7:0]	0000h
R1931 AIF3TX2MI. (78Bh) Volume	X_Input_2_	0	0	0	0	0	0	0	0	AIF3TX2MIX_VOL2 [6:0] 0	0080h
R1932 AIF3TX2MI. (78Ch) Source	X_Input_3_	AIF3TX2MI X STS	0	0	0	0	0	0	0	AIF3TX2MIX_SRC3 [7:0]	0000h
R1933 AIF3TX2MI	X_Input_3_	0	0	0	0	0	0	0	0	AIF3TX2MIX_VOL3 [6:0] 0	0080h
R1934 AIF3TX2MI. (78Eh) Source	X_Input_4_	AIF3TX2MI X STS	0	0	0	0	0	0	0	AIF3TX2MIX_SRC4 [7:0]	0000h
R1935 AIF3TX2MI	X_Input_4_	0	0	0	0	0	0	0	0	AIF3TX2MIX_VOL4 [6:0] 0	0080h
(78Fh) Volume R1936 AIF3TX3MI	X_Input_1_	AIF3TX3MI X STS	0	0	0	0	0	0	0	AIF3TX3MIX_SRC1 [7:0]	0000h
(790h) Source R1937 AIF3TX3MI	X_Input_1_	0	0	0	0	0	0	0	0	AIF3TX3MIX_VOL1 [6:0] 0	0080h
(791h) Volume R1938 AIF3TX3MI	X_Input_2_	AIF3TX3MI	0	0	0	0	0	0	0	AIF3TX3MIX_SRC2 [7:0]	0000h
(792h) Source R1939 AIF3TX3MI	X_Input_2_	X_STS 0	0	0	0	0	0	0	0	AIF3TX3MIX_VOL2 [6:0] 0	0080h
(793h) Volume R1940 AIF3TX3MI	X_Input_3_	AIF3TX3MI	0	0	0	0	0	0	0	AIF3TX3MIX_SRC3 [7:0]	0000h
(794h) Source R1941 AIF3TX3MI	X_Input_3_	X_STS 0	0	0	0	0	0	0	0	AIF3TX3MIX_VOL3 [6:0] 0	0080h
(795h) Volume R1942 AIF3TX3MI	X Input 4	AIF3TX3MI	0	0	0	0	0	0	0	AIF3TX3MIX_SRC4 [7:0]	0000h
(796h) Source R1943 AIF3TX3MI	X Input 4	X_STS 0	0	0	0	0	0	0	0	AIF3TX3MIX_VOL4 [6:0] 0	0080h
(797h) Volume R1944 AIF3TX4MI		AIF3TX4MI	0	0	0	0	0	0	0	AIF3TX4MIX_SRC1 [7:0]	0000h
(798h) Source R1945 AIF3TX4MI		X_STS 0	0	0	0	0	0	0	0	AIF3TX4MIX VOL1 [6:0] 0	0080h
(799h) Volume R1946 AIF3TX4MI		AIF3TX4MI	0	0	0	0	0	0	0	AIF3TX4MIX_SRC2 [7:0]	0000h
(79Ah) Source		X_STS 0	0	0	0	0	0	0	0	AIF3TX4MIX VOL2 [6:0] 0	0080h
(79Bh) Volume R1948 AIF3TX4MI		AIF3TX4MI	0	0	0	0	0	0	0	AIF3TX4MIX SRC3 [7:0]	0000h
(79Ch) Source R1949 AIF3TX4MI		X_STS	0	0	0	0	0	0	0	AIF3TX4MIX VOL3 [6:0] 0	0080h
(79Dh) Volume		AIF3TX4MI	0	0	0	0	0	0	0	AIF3TX4MIX_VOL3 [6.0] AIF3TX4MIX_SRC4 [7:0]	
R1950 AIF3TX4MI (79Eh) Source		X_STS			-						0000h
R1951 AIF3TX4MI (79Fh) Volume		0	0	0	0	0	0	0	0	AIF3TX4MIX_VOL4 [6:0] 0	0080h
R1952 AIF3TX5MI. (7A0h) Source		AIF3TX5MI X_STS	0	0	0	0	0	0	0	AIF3TX5MIX_SRC1 [7:0]	0000h
R1953 AIF3TX5MI (7A1h) Volume		0	0	0	0	0	0	0	0	AIF3TX5MIX_VOL1 [6:0] 0	0080h
R1954 AIF3TX5MII (7A2h) Source		AIF3TX5MI X_STS	0	0	0	0	0	0	0	AIF3TX5MIX_SRC2 [7:0]	0000h
R1955 AIF3TX5MI (7A3h) Volume	X_Input_2_	0	0	0	0	0	0	0	0	AIF3TX5MIX_VOL2 [6:0] 0	0080h
R1956 AIF3TX5MI (7A4h) Source	X_Input_3_	AIF3TX5MI X_STS	0	0	0	0	0	0	0	AIF3TX5MIX_SRC3 [7:0]	0000h
R1957 AIF3TX5MI (7A5h) Volume	X_Input_3_	0	0	0	0	0	0	0	0	AIF3TX5MIX_VOL3 [6:0] 0	0080h
R1958 AIF3TX5MI. (7A6h) Source		AIF3TX5MI X_STS	0	0	0	0	0	0	0	AIF3TX5MIX_SRC4 [7:0]	0000h
R1959 AIF3TX5MII (7A7h) Volume	X_Input_4_	0	0	0	0	0	0	0	0	AIF3TX5MIX_VOL4 [6:0] 0	0080h
R1960 AIF3TX6MII (7A8h) Source	X_Input_1_	AIF3TX6MI X_STS	0	0	0	0	0	0	0	AIF3TX6MIX_SRC1 [7:0]	0000h
R1961 AIF3TX6MI (7A9h) Volume	X_Input_1_	0	0	0	0	0	0	0	0	AIF3TX6MIX_VOL1 [6:0] 0	0080h
R1962 AIF3TX6MII (7AAh) Source	X_Input_2_	AIF3TX6MI X_STS	0	0	0	0	0	0	0	AIF3TX6MIX_SRC2 [7:0]	0000h
R1963 AIF3TX6MI	X_Input_2_	0	0	0	0	0	0	0	0	AIF3TX6MIX_VOL2 [6:0] 0	0080h

Register	Name	15	14	13	12	11	10	9	8	7 6 5 4 3 2 1 0	Default
R1964 (7ACh)	AIF3TX6MIX_Input_3_ Source	AIF3TX6MI X_STS	0	0	0	0	0	0	0	AIF3TX6MIX_SRC3 [7:0]	0000h
R1965 (7ADh)	AIF3TX6MIX_Input_3_ Volume	0	0	0	0	0	0	0	0	AIF3TX6MIX_VOL3 [6:0] 0	0080h
R1966 (7AEh)	AIF3TX6MIX_Input_4_ Source	AIF3TX6MI X_STS	0	0	0	0	0	0	0	AIF3TX6MIX_SRC4 [7:0]	0000h
R1967 (7AFh)	AIF3TX6MIX_Input_4_ Volume	0	0	0	0	0	0	0	0	AIF3TX6MIX_VOL4 [6:0] 0	0080h
R1968 (7B0h)	AIF3TX7MIX_Input_1_ Source	AIF3TX7MI X STS	0	0	0	0	0	0	0	AIF3TX7MIX_SRC1 [7:0]	0000h
R1969 (7B1h)	AIF3TX7MIX_Input_1_ Volume	0	0	0	0	0	0	0	0	AIF3TX7MIX_VOL1 [6:0] 0	0080h
R1970	AIF3TX7MIX_Input_2_ Source	AIF3TX7MI X STS	0	0	0	0	0	0	0	AIF3TX7MIX_SRC2 [7:0]	0000h
	AIF3TX7MIX_Input_2_ Volume	0	0	0	0	0	0	0	0	AIF3TX7MIX_VOL2 [6:0] 0	0080h
R1972	AIF3TX7MIX_Input_3_ Source	AIF3TX7MI X STS	0	0	0	0	0	0	0	AIF3TX7MIX_SRC3 [7:0]	0000h
R1973 (7B5h)	AIF3TX7MIX_Input_3_ Volume	0	0	0	0	0	0	0	0	AIF3TX7MIX_VOL3 [6:0] 0	0080h
R1974	AIF3TX7MIX_Input_4_	AIF3TX7MI X STS	0	0	0	0	0	0	0	AIF3TX7MIX_SRC4 [7:0]	0000h
	Source AIF3TX7MIX_Input_4_	0	0	0	0	0	0	0	0	AIF3TX7MIX_VOL4 [6:0] 0	0080h
(7B7h) R1976	Volume AIF3TX8MIX_Input_1_	AIF3TX8MI X STS	0	0	0	0	0	0	0	AIF3TX8MIX_SRC1 [7:0]	0000h
(7B8h) R1977	Source AIF3TX8MIX_Input_1_	0	0	0	0	0	0	0	0	AIF3TX8MIX_VOL1 [6:0] 0	0080h
(7B9h) R1978	Volume AIF3TX8MIX_Input_2_	AIF3TX8MI X STS	0	0	0	0	0	0	0	AIF3TX8MIX_SRC2 [7:0]	0000h
(7BAh) R1979	Source AIF3TX8MIX_Input_2_	0	0	0	0	0	0	0	0	AIF3TX8MIX_VOL2 [6:0] 0	0080h
(7BBh) R1980	Volume AIF3TX8MIX_Input_3_	AIF3TX8MI	0	0	0	0	0	0	0	AIF3TX8MIX_SRC3 [7:0]	0000h
(7BCh) R1981	Source AIF3TX8MIX_Input_3_	X_STS 0	0	0	0	0	0	0	0	AIF3TX8MIX_VOL3 [6:0] 0	0080h
(7BDh) R1982	Volume AIF3TX8MIX_Input_4_	AIF3TX8MI	0	0	0	0	0	0	0	AIF3TX8MIX_SRC4 [7:0]	0000h
R1983	Source AIF3TX8MIX_Input_4_	X_STS 0	0	0	0	0	0	0	0	AIF3TX8MIX_VOL4 [6:0] 0	0080h
(7BFh) R1984	Volume SLIMTX1MIX_Input_1_	SLIMTX1M	0	0	0	0	0	0	0	SLIMTX1MIX_SRC1 [7:0]	0000h
(7C0h) R1985	Source SLIMTX1MIX_Input_1_	IX_STS 0	0	0	0	0	0	0	0	SLIMTX1MIX_VOL1 [6:0] 0	0080h
(7C1h) R1986	Volume SLIMTX1MIX_Input_2_	SLIMTX1M	0	0	0	0	0	0	0	SLIMTX1MIX_SRC2 [7:0]	0000h
(7C2h) R1987	Source SLIMTX1MIX_Input_2_	IX_STS 0	0	0	0	0	0	0	0	SLIMTX1MIX_VOL2 [6:0] 0	0080h
(7C3h) R1988	Volume SLIMTX1MIX_Input_3_	SLIMTX1M	0	0	0	0	0	0	0	SLIMTX1MIX_SRC3 [7:0]	0000h
(7C4h) R1989	Source SLIMTX1MIX_Input_3	IX_STS 0	0	0	0	0	0	0	0	SLIMTX1MIX_VOL3 [6:0] 0	0080h
(7C5h)	Volume SLIMTX1MIX Input 4	SLIMTX1M	0	0	0	0	0	0	0	SLIMTX1MIX SRC4 [7:0]	0000h
(7C6h) R1991	Source SLIMTX1MIX Input 4	IX_STS 0	0	0	0	0	0	0	0	SLIMTX1MIX VOL4 [6:0] 0	0080h
(7C7h) R1992	Volume _ ' SLIMTX2MIX_Input_1_	SLIMTX2M	0	0	0	0	0	0	0	SLIMTX2MIX SRC1 [7:0]	0000h
(7C8h) R1993	Source SLIMTX2MIX Input 1	IX_STS 0	0	0	0	0	0	0	0	SLIMTX2MIX VOL1 [6:0] 0	0080h
(7C9h) R1994	Volume SLIMTX2MIX Input 2		0	0	0	0	0	0	0	SLIMTX2MIX SRC2 [7:0]	0000h
(7CAh) R1995	Source SLIMTX2MIX_Input_2	SLIMTX2M IX_STS 0	0	0	0	0	0	0	0	SLIMTX2MIX VOL2 [6:0] 0	0080h
(7CBh) R1996	Volume SLIMTX2MIX_Input_2_ Volume SLIMTX2MIX_Input_3	SLIMTX2M	0	0	0	0	0	0	0	SLIMTX2MIX SRC3 [7:0]	0000h
	Source SLIMTX2MIX_IIIput_3_ Source SLIMTX2MIX_Input_3	IX_STS	0	0	0	0	0	0	0	SLIMTX2MIX VOL3 [6:0] 0	000011 0080h
(7CDh)	Volume SLIMTX2MIX_Input_3_ Volume SLIMTX2MIX_Input_4	SLIMTX2M	0	0	0	0	0	0	0	SLIMTX2MIX_SRC4 [7:0]	0000h
(7CEh)	Source	IX_STS									
R1999 (7CFh)	SLIMTX2MIX_Input_4_ Volume	0 CLIMITYOM	0	0	0	0	0	0	0	SLIMTX2MIX_VOL4 [6:0] 0	0080h
R2000 (7D0h)	SLIMTX3MIX_Input_1_ Source	SLIMTX3M IX_STS	0	0	0	0	0	0	0	SLIMTX3MIX_SRC1 [7:0]	0000h
R2001 (7D1h)	SLIMTX3MIX_Input_1_ Volume	0	0	0	0	0	0	0	0	SLIMTX3MIX_VOL1 [6:0] 0	0080h

Register	Name	15	14	13	12	11	10	9	8	7 6 5 4 3 2 1 0	Default
R2002 (7D2h)	SLIMTX3MIX_Input_2_ Source	SLIMTX3M IX_STS	0	0	0	0	0	0	0	SLIMTX3MIX_SRC2 [7:0]	0000h
	SLIMTX3MIX_Input_2_ Volume	0	0	0	0	0	0	0	0	SLIMTX3MIX_VOL2 [6:0] 0	0080h
R2004 (7D4h)	SLIMTX3MIX_Input_3_ Source	SLIMTX3M IX_STS	0	0	0	0	0	0	0	SLIMTX3MIX_SRC3 [7:0]	0000h
	SLIMTX3MIX_Input_3_ Volume	0	0	0	0	0	0	0	0	SLIMTX3MIX_VOL3 [6:0] 0	0080h
	SLIMTX3MIX_Input_4_ Source	SLIMTX3M IX_STS	0	0	0	0	0	0	0	SLIMTX3MIX_SRC4 [7:0]	0000h
	SLIMTX3MIX_Input_4_ Volume	0	0	0	0	0	0	0	0	SLIMTX3MIX_VOL4 [6:0] 0	0080h
	SLIMTX4MIX_Input_1_ Source	SLIMTX4M IX_STS	0	0	0	0	0	0	0	SLIMTX4MIX_SRC1 [7:0]	0000h
	SLIMTX4MIX_Input_1_ Volume	0	0	0	0	0	0	0	0	SLIMTX4MIX_VOL1 [6:0] 0	0080h
R2010 (7DAh)	SLIMTX4MIX_Input_2_ Source	SLIMTX4M IX_STS	0	0	0	0	0	0	0	SLIMTX4MIX_SRC2 [7:0]	0000h
	SLIMTX4MIX_Input_2_ Volume	0	0	0	0	0	0	0	0	SLIMTX4MIX_VOL2 [6:0] 0	0080h
	SLIMTX4MIX_Input_3_ Source	SLIMTX4M IX_STS	0	0	0	0	0	0	0	SLIMTX4MIX_SRC3 [7:0]	0000h
	SLIMTX4MIX_Input_3_ Volume	0	0	0	0	0	0	0	0	SLIMTX4MIX_VOL3 [6:0] 0	0080h
R2014 (7DEh)	SLIMTX4MIX_Input_4_ Source	SLIMTX4M IX_STS	0	0	0	0	0	0	0	SLIMTX4MIX_SRC4 [7:0]	0000h
	SLIMTX4MIX_Input_4_ Volume	0	0	0	0	0	0	0	0	SLIMTX4MIX_VOL4 [6:0] 0	0080h
R2016 (7E0h)	SLIMTX5MIX_Input_1_ Source	SLIMTX5M IX_STS	0	0	0	0	0	0	0	SLIMTX5MIX_SRC1 [7:0]	0000h
R2017 (7E1h)	SLIMTX5MIX_Input_1_ Volume	0	0	0	0	0	0	0	0	SLIMTX5MIX_VOL1 [6:0] 0	0080h
R2018 (7E2h)	SLIMTX5MIX_Input_2_ Source	SLIMTX5M IX_STS	0	0	0	0	0	0	0	SLIMTX5MIX_SRC2 [7:0]	0000h
	SLIMTX5MIX_Input_2_ Volume	0	0	0	0	0	0	0	0	SLIMTX5MIX_VOL2 [6:0] 0	0080h
R2020 (7E4h)	SLIMTX5MIX_Input_3_ Source	SLIMTX5M IX_STS	0	0	0	0	0	0	0	SLIMTX5MIX_SRC3 [7:0]	0000h
R2021 (7E5h)	SLIMTX5MIX_Input_3_ Volume	0	0	0	0	0	0	0	0	SLIMTX5MIX_VOL3 [6:0] 0	0080h
R2022 (7E6h)	SLIMTX5MIX_Input_4_ Source	SLIMTX5M IX_STS	0	0	0	0	0	0	0	SLIMTX5MIX_SRC4 [7:0]	0000h
	SLIMTX5MIX_Input_4_ Volume	0	0	0	0	0	0	0	0	SLIMTX5MIX_VOL4 [6:0] 0	0080h
	SLIMTX6MIX_Input_1_ Source	SLIMTX6M IX_STS	0	0	0	0	0	0	0	SLIMTX6MIX_SRC1 [7:0]	0000h
	SLIMTX6MIX_Input_1_ Volume	0	0	0	0	0	0	0	0	SLIMTX6MIX_VOL1 [6:0] 0	0080h
R2026 (7EAh)	SLIMTX6MIX_Input_2_ Source	SLIMTX6M IX_STS	0	0	0	0	0	0	0	SLIMTX6MIX_SRC2 [7:0]	0000h
(SLIMTX6MIX_Input_2_ Volume	0	0	0	0	0	0	0	0	SLIMTX6MIX_VOL2 [6:0] 0	0080h
	SLIMTX6MIX_Input_3_ Source	SLIMTX6M IX_STS	0	0	0	0	0	0	0	SLIMTX6MIX_SRC3 [7:0]	0000h
	SLIMTX6MIX_Input_3_ Volume	0	0	0	0	0	0	0	0	SLIMTX6MIX_VOL3 [6:0] 0	0080h
R2030 (7EEh)	SLIMTX6MIX_Input_4_ Source	SLIMTX6M IX_STS	0	0	0	0	0	0	0	SLIMTX6MIX_SRC4 [7:0]	0000h
	SLIMTX6MIX_Input_4_ Volume	0	0	0	0	0	0	0	0	SLIMTX6MIX_VOL4 [6:0] 0	0080h
R2032 (7F0h)	SLIMTX7MIX_Input_1_ Source	SLIMTX7M IX_STS	0	0	0	0	0	0	0	SLIMTX7MIX_SRC1 [7:0]	0000h
	SLIMTX7MIX_Input_1_ Volume	0	0	0	0	0	0	0	0	SLIMTX7MIX_VOL1 [6:0] 0	0080h
	SLIMTX7MIX_Input_2_ Source	SLIMTX7M IX_STS	0	0	0	0	0	0	0	SLIMTX7MIX_SRC2 [7:0]	0000h
	SLIMTX7MIX_Input_2_ Volume	0	0	0	0	0	0	0	0	SLIMTX7MIX_VOL2 [6:0] 0	0080h
	SLIMTX7MIX_Input_3_ Source	SLIMTX7M IX_STS	0	0	0	0	0	0	0	SLIMTX7MIX_SRC3 [7:0]	0000h
R2037	SLIMTX7MIX_Input_3_ Volume	0	0	0	0	0	0	0	0	SLIMTX7MIX_VOL3 [6:0] 0	0080h
R2038 (7F6h)	SLIMTX7MIX_Input_4_ Source	SLIMTX7M IX_STS	0	0	0	0	0	0	0	SLIMTX7MIX_SRC4 [7:0]	0000h
R2039 (7F7h)	SLIMTX7MIX_Input_4_ Volume	0	0	0	0	0	0	0	0	SLIMTX7MIX_VOL4 [6:0] 0	0080h

Register	Name	15	14	13	12	11	10	9	8	7 6 5 4 3 2 1 0	Default
R2040	SLIMTX8MIX_Input_1_ Source	SLIMTX8M IX STS	0	0	0	0	0	0	0	SLIMTX8MIX_SRC1 [7:0]	0000h
R2041	SLIMTX8MIX_Input_1_ Volume	0	0	0	0	0	0	0	0	SLIMTX8MIX_VOL1 [6:0] 0	0080h
R2042 (7FAh)	SLIMTX8MIX_Input_2_ Source	SLIMTX8M IX_STS	0	0	0	0	0	0	0	SLIMTX8MIX_SRC2 [7:0]	0000h
R2043 (7FBh)	SLIMTX8MIX_Input_2_ Volume	0	0	0	0	0	0	0	0	SLIMTX8MIX_VOL2 [6:0] 0	0080h
R2044 (7FCh)	SLIMTX8MIX_Input_3_ Source	SLIMTX8M IX_STS	0	0	0	0	0	0	0	SLIMTX8MIX_SRC3 [7:0]	0000h
R2045	SLIMTX8MIX_Input_3_ Volume	0	0	0	0	0	0	0	0	SLIMTX8MIX_VOL3 [6:0] 0	0080h
R2046	SLIMTX8MIX_Input_4_ Source	SLIMTX8M IX_STS	0	0	0	0	0	0	0	SLIMTX8MIX_SRC4 [7:0]	0000h
R2047 (7FFh)	SLIMTX8MIX_Input_4_ Volume	0	0	0	0	0	0	0	0	SLIMTX8MIX_VOL4 [6:0] 0	0080h
R2048 (800h)	SPDIF1TX1MIX_Input_ 1_Source	SPDIF1TX 1_STS	0	0	0	0	0	0	0	SPDIF1TX1_SRC [7:0]	0000h
R2049 (801h)	SPDIF1TX1MIX_Input_ 1_Volume	0	0	0	0	0	0	0	0	SPDIF1TX1_VOL [6:0] 0	0080h
R2056 (808h)	SPDIF1TX2MIX_Input_ 1_Source	SPDIF1TX 2_STS	0	0	0	0	0	0	0	SPDIF1TX2_SRC [7:0]	0000h
R2057 (809h)	SPDIF1TX2MIX_Input_ 1 Volume	0	0	0	0	0	0	0	0	SPDIF1TX2_VOL [6:0] 0	0080h
R2176 (880h)	EQ1MIX_Input_1_ Source	EQ1MIX_ STS	0	0	0	0	0	0	0	EQ1MIX_SRC1 [7:0]	0000h
R2177 (881h)	EQ1MIX_Input_1_ Volume	0	0	0	0	0	0	0	0	EQ1MIX_VOL1 [6:0] 0	0080h
R2178 (882h)	EQ1MIX_Input_2_ Source	EQ1MIX_ STS	0	0	0	0	0	0	0	EQ1MIX_SRC2 [7:0]	0000h
R2179 (883h)	EQ1MIX_Input_2_ Volume	0	0	0	0	0	0	0	0	EQ1MIX_VOL2 [6:0] 0	0080h
R2180 (884h)	EQ1MIX_Input_3_ Source	EQ1MIX_ STS	0	0	0	0	0	0	0	EQ1MIX_SRC3 [7:0]	0000h
R2181 (885h)	EQ1MIX_Input_3_ Volume	0	0	0	0	0	0	0	0	EQ1MIX_VOL3 [6:0] 0	0080h
R2182 (886h)	EQ1MIX_Input_4_ Source	EQ1MIX_ STS	0	0	0	0	0	0	0	EQ1MIX_SRC4 [7:0]	0000h
R2183 (887h)	EQ1MIX_Input_4_ Volume	0	0	0	0	0	0	0	0	EQ1MIX_VOL4 [6:0] 0	0080h
R2184 (888h)	EQ2MIX_Input_1_ Source	EQ2MIX_ STS	0	0	0	0	0	0	0	EQ2MIX_SRC1 [7:0]	0000h
R2185 (889h)	EQ2MIX_Input_1_ Volume	0	0	0	0	0	0	0	0	EQ2MIX_VOL1 [6:0] 0	0080h
R2186 (88Ah)	EQ2MIX_Input_2_ Source	EQ2MIX_ STS	0	0	0	0	0	0	0	EQ2MIX_SRC2 [7:0]	0000h
R2187 (88Bh)	EQ2MIX_Input_2_ Volume	0	0	0	0	0	0	0	0	EQ2MIX_VOL2 [6:0] 0	0080h
R2188 (88Ch)	EQ2MIX_Input_3_ Source	EQ2MIX_ STS	0	0	0	0	0	0	0	EQ2MIX_SRC3 [7:0]	0000h
	EQ2MIX_Input_3_ Volume	0	0	0	0	0	0	0	0	EQ2MIX_VOL3 [6:0] 0	0080h
R2190 (88Eh)	EQ2MIX_Input_4_ Source	EQ2MIX_ STS	0	0	0	0	0	0	0	EQ2MIX_SRC4 [7:0]	0000h
R2191 (88Fh)	EQ2MIX_Input_4_ Volume	0	0	0	0	0	0	0	0	EQ2MIX_VOL4 [6:0] 0	0080h
R2192 (890h)	EQ3MIX_Input_1_ Source	EQ3MIX_ STS	0	0	0	0	0	0	0	EQ3MIX_SRC1 [7:0]	0000h
R2193	EQ3MIX_Input_1_ Volume	0	0	0	0	0	0	0	0	EQ3MIX_VOL1 [6:0] 0	0080h
R2194 (892h)	EQ3MIX_Input_2_ Source	EQ3MIX_ STS	0	0	0	0	0	0	0	EQ3MIX_SRC2 [7:0]	0000h
R2195 (893h)	EQ3MIX_Input_2_ Volume	0	0	0	0	0	0	0	0	EQ3MIX_VOL2 [6:0] 0	0080h
R2196 (894h)	EQ3MIX_Input_3_ Source	EQ3MIX_ STS	0	0	0	0	0	0	0	EQ3MIX_SRC3 [7:0]	0000h
R2197 (895h)	EQ3MIX_Input_3_ Volume	0	0	0	0	0	0	0	0	EQ3MIX_VOL3 [6:0] 0	0080h
R2198 (896h)	EQ3MIX_Input_4_ Source	EQ3MIX_ STS	0	0	0	0	0	0	0	EQ3MIX_SRC4 [7:0]	0000h
R2199 (897h)	EQ3MIX_Input_4_ Volume	0	0	0	0	0	0	0	0	EQ3MIX_VOL4 [6:0] 0	0080h
, ,	EQ4MIX_Input_1_ Source	EQ4MIX_ STS	0	0	0	0	0	0	0	EQ4MIX_SRC1 [7:0]	0000h
R2201 (899h)	EQ4MIX_Input_1_ Volume	0	0	0	0	0	0	0	0	EQ4MIX_VOL1 [6:0] 0	0080h

Register	Name	15	14	13	12	11	10	9	8	7 6 5 4 3 2 1 0	Default
R2202 (89Ah)	EQ4MIX_Input_2_ Source	EQ4MIX_ STS	0	0	0	0	0	0	0	EQ4MIX_SRC2 [7:0]	0000h
R2203 (89Bh)	EQ4MIX_Input_2_ Volume	0	0	0	0	0	0	0	0	EQ4MIX_VOL2 [6:0] 0	0080h
R2204 (89Ch)	EQ4MIX_Input_3_ Source	EQ4MIX_ STS	0	0	0	0	0	0	0	EQ4MIX_SRC3 [7:0]	0000h
R2205 (89Dh)	EQ4MIX_Input_3_ Volume	0	0	0	0	0	0	0	0	EQ4MIX_VOL3 [6:0] 0	0080h
R2206 (89Eh)	EQ4MIX_Input_4_ Source	EQ4MIX_ STS	0	0	0	0	0	0	0	EQ4MIX_SRC4 [7:0]	0000h
R2207 (89Fh)	EQ4MIX_Input_4_ Volume	0	0	0	0	0	0	0	0	EQ4MIX_VOL4 [6:0] 0	0080h
R2240 (8C0h)	DRC1LMIX_Input_1_ Source	DRC1LMIX _STS	0	0	0	0	0	0	0	DRC1LMIX_SRC1 [7:0]	0000h
R2241 (8C1h)	DRC1LMIX_Input_1_ Volume	0	0	0	0	0	0	0	0	DRC1LMIX_VOL1 [6:0] 0	0080h
R2242 (8C2h)	DRC1LMIX_Input_2_ Source	DRC1LMIX _STS	0	0	0	0	0	0	0	DRC1LMIX_SRC2 [7:0]	0000h
R2243 (8C3h)	DRC1LMIX_Input_2_ Volume	0	0	0	0	0	0	0	0	DRC1LMIX_VOL2 [6:0] 0	0080h
R2244 (8C4h)	DRC1LMIX_Input_3_ Source	DRC1LMIX _STS	0	0	0	0	0	0	0	DRC1LMIX_SRC3 [7:0]	0000h
R2245 (8C5h)	DRC1LMIX_Input_3_ Volume	0	0	0	0	0	0	0	0	DRC1LMIX_VOL3 [6:0] 0	0080h
R2246	DRC1LMIX_Input_4_ Source	DRC1LMIX _STS	0	0	0	0	0	0	0	DRC1LMIX_SRC4 [7:0]	0000h
R2247 (8C7h)	DRC1LMIX_Input_4_ Volume	0	0	0	0	0	0	0	0	DRC1LMIX_VOL4 [6:0] 0	0080h
R2248 (8C8h)	DRC1RMIX_Input_1_ Source	DRC1RMI X_STS	0	0	0	0	0	0	0	DRC1RMIX_SRC1 [7:0]	0000h
R2249 (8C9h)	DRC1RMIX_Input_1_ Volume	0	0	0	0	0	0	0	0	DRC1RMIX_VOL1 [6:0] 0	0080h
R2250 (8CAh)	DRC1RMIX_Input_2_ Source	DRC1RMI X_STS	0	0	0	0	0	0	0	DRC1RMIX_SRC2 [7:0]	0000h
R2251	DRC1RMIX_Input_2_ Volume	0	0	0	0	0	0	0	0	DRC1RMIX_VOL2 [6:0] 0	0080h
R2252 (8CCh)	DRC1RMIX_Input_3_ Source	DRC1RMI X_STS	0	0	0	0	0	0	0	DRC1RMIX_SRC3 [7:0]	0000h
R2253 (8CDh)	DRC1RMIX_Input_3_ Volume	0	0	0	0	0	0	0	0	DRC1RMIX_VOL3 [6:0] 0	0080h
R2254 (8CEh)	DRC1RMIX_Input_4_ Source	DRC1RMI X_STS	0	0	0	0	0	0	0	DRC1RMIX_SRC4 [7:0]	0000h
R2255 (8CFh)	DRC1RMIX_Input_4_ Volume	0	0	0	0	0	0	0	0	DRC1RMIX_VOL4 [6:0] 0	0080h
R2256 (8D0h)	DRC2LMIX_Input_1_ Source	DRC2LMIX _STS	0	0	0	0	0	0	0	DRC2LMIX_SRC1 [7:0]	0000h
	DRC2LMIX_Input_1_ Volume	0	0	0	0	0	0	0	0	DRC2LMIX_VOL1 [6:0] 0	0080h
R2258 (8D2h)	DRC2LMIX_Input_2_ Source	DRC2LMIX _STS	0	0	0	0	0	0	0	DRC2LMIX_SRC2 [7:0]	0000h
	DRC2LMIX_Input_2_ Volume	0	0	0	0	0	0	0	0	DRC2LMIX_VOL2 [6:0] 0	0080h
R2260	DRC2LMIX_Input_3_ Source	DRC2LMIX _STS	0	0	0	0	0	0	0	DRC2LMIX_SRC3 [7:0]	0000h
R2261 (8D5h)	DRC2LMIX_Input_3_ Volume	0	0	0	0	0	0	0	0	DRC2LMIX_VOL3 [6:0] 0	0080h
R2262 (8D6h)	DRC2LMIX_Input_4_ Source	DRC2LMIX _STS	0	0	0	0	0	0	0	DRC2LMIX_SRC4 [7:0]	0000h
R2263	DRC2LMIX_Input_4_ Volume	0	0	0	0	0	0	0	0	DRC2LMIX_VOL4 [6:0] 0	0080h
R2264	DRC2RMIX_Input_1_ Source	DRC2RMI X_STS	0	0	0	0	0	0	0	DRC2RMIX_SRC1 [7:0]	0000h
R2265	DRC2RMIX_Input_1_ Volume	0	0	0	0	0	0	0	0	DRC2RMIX_VOL1 [6:0] 0	0080h
R2266	DRC2RMIX_Input_2_ Source	DRC2RMI X_STS	0	0	0	0	0	0	0	DRC2RMIX_SRC2 [7:0]	0000h
	DRC2RMIX_Input_2_ Volume	0	0	0	0	0	0	0	0	DRC2RMIX_VOL2 [6:0] 0	0080h
	DRC2RMIX_Input_3_ Source	DRC2RMI X_STS	0	0	0	0	0	0	0	DRC2RMIX_SRC3 [7:0]	0000h
R2269 (8DDh)	DRC2RMIX_Input_3_ Volume	0	0	0	0	0	0	0	0	DRC2RMIX_VOL3 [6:0] 0	0080h
R2270 (8DEh)	DRC2RMIX_Input_4_ Source	DRC2RMI X_STS	0	0	0	0	0	0	0	DRC2RMIX_SRC4 [7:0]	0000h
R2271 (8DFh)	DRC2RMIX_Input_4_ Volume	0	0	0	0	0	0	0	0	DRC2RMIX_VOL4 [6:0] 0	0080h

Register	Name	15	14	13	12	11	10	9	8	7 6 5 4 3 2 1 0	Default
R2304 (900h)	HPLP1MIX_Input_1_ Source	LHPF1MIX _STS	0	0	0	0	0	0	0	LHPF1MIX_SRC1 [7:0]	0000h
R2305 (901h)	HPLP1MIX_Input_1_ Volume	0	0	0	0	0	0	0	0	LHPF1MIX_VOL1 [6:0] 0	0080h
R2306 (902h)	HPLP1MIX_Input_2_ Source	LHPF1MIX _STS	0	0	0	0	0	0	0	LHPF1MIX_SRC2 [7:0]	0000h
R2307 (903h)	HPLP1MIX_Input_2_ Volume	0	0	0	0	0	0	0	0	LHPF1MIX_VOL2 [6:0] 0	0080h
R2308 (904h)	HPLP1MIX_Input_3_ Source	LHPF1MIX _STS	0	0	0	0	0	0	0	LHPF1MIX_SRC3 [7:0]	0000h
R2309 (905h)	HPLP1MIX_Input_3_ Volume	0	0	0	0	0	0	0	0	LHPF1MIX_VOL3 [6:0] 0	0080h
R2310 (906h)	HPLP1MIX_Input_4_ Source	LHPF1MIX _STS	0	0	0	0	0	0	0	LHPF1MIX_SRC4 [7:0]	0000h
R2311 (907h)	HPLP1MIX_Input_4_ Volume	0	0	0	0	0	0	0	0	LHPF1MIX_VOL4 [6:0] 0	0080h
R2312 (908h)	HPLP2MIX_Input_1_ Source	LHPF2MIX _STS	0	0	0	0	0	0	0	LHPF2MIX_SRC1 [7:0]	0000h
R2313 (909h)	HPLP2MIX_Input_1_ Volume	0	0	0	0	0	0	0	0	LHPF2MIX_VOL1 [6:0] 0	0080h
R2314 (90Ah)	HPLP2MIX_Input_2_ Source	LHPF2MIX _STS	0	0	0	0	0	0	0	LHPF2MIX_SRC2 [7:0]	0000h
R2315 (90Bh)	HPLP2MIX_Input_2_ Volume	0	0	0	0	0	0	0	0	LHPF2MIX_VOL2 [6:0] 0	0080h
R2316 (90Ch)	HPLP2MIX_Input_3_ Source	LHPF2MIX _STS	0	0	0	0	0	0	0	LHPF2MIX_SRC3 [7:0]	0000h
R2317 (90Dh)	HPLP2MIX_Input_3_ Volume	0	0	0	0	0	0	0	0	LHPF2MIX_VOL3 [6:0] 0	0080h
R2318 (90Eh)	HPLP2MIX_Input_4_ Source	LHPF2MIX _STS	0	0	0	0	0	0	0	LHPF2MIX_SRC4 [7:0]	0000h
R2319 (90Fh)	HPLP2MIX_Input_4_ Volume	0	0	0	0	0	0	0	0	LHPF2MIX_VOL4 [6:0] 0	0080h
R2320 (910h)	HPLP3MIX_Input_1_ Source	LHPF3MIX _STS	0	0	0	0	0	0	0	LHPF3MIX_SRC1 [7:0]	0000h
R2321 (911h)	HPLP3MIX_Input_1_ Volume	0	0	0	0	0	0	0	0	LHPF3MIX_VOL1 [6:0] 0	0080h
R2322 (912h)	HPLP3MIX_Input_2_ Source	LHPF3MIX _STS	0	0	0	0	0	0	0	LHPF3MIX_SRC2 [7:0]	0000h
R2323 (913h)	HPLP3MIX_Input_2_ Volume	0	0	0	0	0	0	0	0	LHPF3MIX_VOL2 [6:0] 0	0080h
R2324 (914h)	HPLP3MIX_Input_3_ Source	LHPF3MIX _STS	0	0	0	0	0	0	0	LHPF3MIX_SRC3 [7:0]	0000h
R2325 (915h)	HPLP3MIX_Input_3_ Volume	0	0	0	0	0	0	0	0	LHPF3MIX_VOL3 [6:0] 0	0080h
R2326 (916h)	HPLP3MIX_Input_4_ Source	LHPF3MIX _STS	0	0	0	0	0	0	0	LHPF3MIX_SRC4 [7:0]	0000h
R2327 (917h)	HPLP3MIX_Input_4_ Volume	0	0	0	0	0	0	0	0	LHPF3MIX_VOL4 [6:0] 0	0080h
R2328 (918h)	HPLP4MIX_Input_1_ Source	LHPF4MIX _STS	0	0	0	0	0	0	0	LHPF4MIX_SRC1 [7:0]	0000h
R2329 (919h)	HPLP4MIX_Input_1_ Volume	0	0	0	0	0	0	0	0	LHPF4MIX_VOL1 [6:0] 0	0080h
R2330 (91Ah)	HPLP4MIX_Input_2_ Source	LHPF4MIX _STS	0	0	0	0	0	0	0	LHPF4MIX_SRC2 [7:0]	0000h
R2331 (91Bh)	HPLP4MIX_Input_2_ Volume	0	0	0	0	0	0	0	0	LHPF4MIX_VOL2 [6:0] 0	0080h
R2332 (91Ch)	HPLP4MIX_Input_3_ Source	LHPF4MIX _STS	0	0	0	0	0	0	0	LHPF4MIX_SRC3 [7:0]	0000h
R2333 (91Dh)	HPLP4MIX_Input_3_ Volume	0	0	0	0	0	0	0	0	LHPF4MIX_VOL3 [6:0] 0	0080h
R2334 (91Eh)	HPLP4MIX_Input_4_ Source	LHPF4MIX _STS	0	0	0	0	0	0	0	LHPF4MIX_SRC4 [7:0]	0000h
R2335 (91Fh)	HPLP4MIX_Input_4_ Volume	0	0	0	0	0	0	0	0	LHPF4MIX_VOL4 [6:0] 0	0080h
R2368 (940h)	DSP1LMIX_Input_1_ Source	DSP1LMIX _STS	0	0	0	0	0	0	0	DSP1LMIX_SRC1 [7:0]	0000h
R2369 (941h)	DSP1LMIX_Input_1_ Volume	0	0	0	0	0	0	0	0	DSP1LMIX_VOL1 [6:0] 0	0080h
R2370 (942h)	DSP1LMIX_Input_2_ Source	DSP1LMIX _STS	0	0	0	0	0	0	0	DSP1LMIX_SRC2 [7:0]	0000h
R2371 (943h)	DSP1LMIX_Input_2_ Volume	0	0	0	0	0	0	0	0	DSP1LMIX_VOL2 [6:0] 0	0080h
R2372 (944h)	DSP1LMIX_Input_3_ Source	DSP1LMIX _STS	0	0	0	0	0	0	0	DSP1LMIX_SRC3 [7:0]	0000h
R2373 (945h)	DSP1LMIX_Input_3_ Volume	0	0	0	0	0	0	0	0	DSP1LMIX_VOL3 [6:0] 0	0080h

Register	Name	15	14	13	12	11	10	9	8	7 6 5 4 3 2 1 0	Default
R2374 (946h)	DSP1LMIX_Input_4_ Source	DSP1LMIX _STS	0	0	0	0	0	0	0	DSP1LMIX_SRC4 [7:0]	0000h
R2375 (947h)	DSP1LMIX_Input_4_ Volume	0	0	0	0	0	0	0	0	DSP1LMIX_VOL4 [6:0] 0	0080h
R2376 (948h)	DSP1RMIX_Input_1_ Source	DSP1RMI X_STS	0	0	0	0	0	0	0	DSP1RMIX_SRC1 [7:0]	0000h
R2377 (949h)	DSP1RMIX_Input_1_ Volume	0	0	0	0	0	0	0	0	DSP1RMIX_VOL1 [6:0] 0	0080h
R2378 (94Ah)	DSP1RMIX_Input_2_ Source	DSP1RMI X_STS	0	0	0	0	0	0	0	DSP1RMIX_SRC2 [7:0]	0000h
R2379 (94Bh)	DSP1RMIX_Input_2_ Volume	0	0	0	0	0	0	0	0	DSP1RMIX_VOL2 [6:0] 0	0080h
R2380 (94Ch)	DSP1RMIX_Input_3_ Source	DSP1RMI X_STS	0	0	0	0	0	0	0	DSP1RMIX_SRC3 [7:0]	0000h
R2381 (94Dh)	DSP1RMIX_Input_3_ Volume	0	0	0	0	0	0	0	0	DSP1RMIX_VOL3 [6:0] 0	0080h
R2382 (94Eh)	DSP1RMIX_Input_4_ Source	DSP1RMI X_STS	0	0	0	0	0	0	0	DSP1RMIX_SRC4 [7:0]	0000h
R2383 (94Fh)	DSP1RMIX_Input_4_ Volume	0	0	0	0	0	0	0	0	DSP1RMIX_VOL4 [6:0] 0	0080h
R2384 (950h)	DSP1AUX1MIX_Input_ 1 Source	DSP1AUX 1_STS	0	0	0	0	0	0	0	DSP1AUX1_SRC [7:0]	0000h
R2392 (958h)	DSP1AUX2MIX_Input_ 1 Source	DSP1AUX 2_STS	0	0	0	0	0	0	0	DSP1AUX2_SRC [7:0]	0000h
R2400 (960h)	DSP1AUX3MIX_Input_ 1 Source	DSP1AUX 3_STS	0	0	0	0	0	0	0	DSP1AUX3_SRC [7:0]	0000h
R2408 (968h)	DSP1AUX4MIX_Input_ 1 Source	DSP1AUX 4_STS	0	0	0	0	0	0	0	DSP1AUX4_SRC [7:0]	0000h
R2416 (970h)	DSP1AUX5MIX_Input_ 1 Source	DSP1AUX 5_STS	0	0	0	0	0	0	0	DSP1AUX5_SRC [7:0]	0000h
R2424 (978h)	DSP1AUX6MIX_Input_ 1 Source	DSP1AUX 6_STS	0	0	0	0	0	0	0	DSP1AUX6_SRC [7:0]	0000h
R2688 (A80h)	ASRC1_1LMIX_Input_ 1 Source	ASRC1_ IN1L_STS	0	0	0	0	0	0	0	ASRC1_IN1L_SRC [7:0]	0000h
R2696 (A88h)	ASRC1_1RMIX_Input_ 1 Source	ASRC1_ IN1R_STS	0	0	0	0	0	0	0	ASRC1_IN1R_SRC [7:0]	0000h
R2704 (A90h)	ASRC1_2LMIX_Input_ 1 Source	ASRC1_ IN2L_STS	0	0	0	0	0	0	0	ASRC1_IN2L_SRC [7:0]	0000h
R2712 (A98h)	ASRC1_2RMIX_Input_ 1 Source	ASRC1_ IN2R_STS	0	0	0	0	0	0	0	ASRC1_IN2R_SRC [7:0]	0000h
R2816 (B00h)	ISRC1DEC1MIX_Input_ 1_Source	ISRC1DEC 1_STS	0	0	0	0	0	0	0	ISRC1DEC1_SRC [7:0]	0000h
R2824 (B08h)	ISRC1DEC2MIX_Input_ 1_Source	ISRC1DEC 2_STS	0	0	0	0	0	0	0	ISRC1DEC2_SRC [7:0]	0000h
R2848 (B20h)	ISRC1INT1MIX_Input_ 1_Source	ISRC1INT 1_STS	0	0	0	0	0	0	0	ISRC1INT1_SRC [7:0]	0000h
R2856 (B28h)	ISRC1INT2MIX_Input_ 1_Source	ISRC1INT 2_STS	0	0	0	0	0	0	0	ISRC1INT2_SRC [7:0]	0000h
R2880 (B40h)	ISRC2DEC1MIX_Input_ 1_Source	ISRC2DEC 1_STS	0	0	0	0	0	0	0	ISRC2DEC1_SRC [7:0]	0000h
R2888 (B48h)	ISRC2DEC2MIX_Input_ 1_Source	ISRC2DEC 2_STS	0	0	0	0	0	0	0	ISRC2DEC2_SRC [7:0]	0000h
R2912 (B60h)	ISRC2INT1MIX_Input_ 1_Source	ISRC2INT 1_STS	0	0	0	0	0	0	0	ISRC2INT1_SRC [7:0]	0000h
R2920 (B68h)	ISRC2INT2MIX_Input_ 1_Source	ISRC2INT 2_STS	0	0	0	0	0	0	0	ISRC2INT2_SRC [7:0]	0000h
R3520 (DC0h)	DFC1MIX_Input_1_ Source	DFC1_ STS	0	0	0	0	0	0	0	DFC1_SRC [7:0]	0000h
R3528 (DC8h)	DFC2MIX_Input_1_ Source	DFC2_ STS	0	0	0	0	0	0	0	DFC2_SRC [7:0]	0000h
R3536 (DD0h)	DFC3MIX_Input_1_ Source	DFC3_ STS	0	0	0	0	0	0	0	DFC3_SRC [7:0]	0000h
R3544 (DD8h)	DFC4MIX_Input_1_ Source	DFC4_ STS	0	0	0	0	0	0	0	DFC4_SRC [7:0]	0000h
R3552 (DE0h)	DFC5MIX_Input_1_ Source	DFC5_ STS	0	0	0	0	0	0	0	DFC5_SRC [7:0]	0000h
R3560 (DE8h)	DFC6MIX_Input_1_ Source	DFC6_ STS	0	0	0	0	0	0	0	DFC6_SRC [7:0]	0000h
R3568 (DF0h)	DFC7MIX_Input_1_ Source	DFC7_ STS	0	0	0	0	0	0	0	DFC7_SRC [7:0]	0000h
R3576 (DF8h)	DFC8MIX_Input_1_ Source	DFC8_ STS	0	0	0	0	0	0	0	DFC8_SRC [7:0]	0000h
R3584 (E00h)	FX_Ctrl1		F	X_RATE [4:	0]		0	0	0	0 0 0 0 0 0 0	0000h
R3585 (E01h)	FX_Ctrl2						FX_ST	S [11:0]		0 0 1 0	0002h

CEONS CO 2	Register	Name	15 14 13 12 11	10 9 8 7 6	5	4	3	2		1	0	Default
FORT	R3600 (E10h)	EQ1_1	EQ1_B1_GAIN [4:0]	EQ1_B2_GAIN [4:0]		EQ	1_B3_GAI	N [4:0]	ı	EQ	1_ENA	6318h
CF000 CD 4	R3601	_	EQ1_B4_GAIN [4:0]	EQ1_B5_GAIN [4:0]	0	0	0	0	1	0 EC	Q1_B1_ MODE	6300h
GESSIA	R3602 (E12h)	EQ1_3		EQ1_B1_A [15:0]								0FC8h
CEMP	R3603 (E13h)	EQ1_4		EQ1_B1_B [15:0]								03FEh
Fish	R3604	EQ1_5		EQ1_B1_PG [15:0]								00E0h
Fish	R3605	EQ1_6		EQ1_B2_A [15:0]								1EC4h
GETTS	R3606	EQ1_7		EQ1_B2_B [15:0]								F136h
	R3607 (E17h)	EQ1_8		EQ1_B2_C [15:0]								0409h
1988 1911 1912 1913 1914 1918	R3608	EQ1_9		EQ1_B2_PG [15:0]								04CCh
R3816 COL	R3609	EQ1_10		EQ1_B3_A [15:0]								1C9Bh
R3811 C1 12 C1 13 C1 14 C1 C1 C1 C1 C1 C1	R3610	EQ1_11		EQ1_B3_B [15:0]								F337h
R0812 C1 13 E0 13 E0 18 P0 18 F1 F1 F1 F1 F2 F1 F1 F1	R3611	EQ1_12		EQ1_B3_C [15:0]								040Bh
189616 Col. 14	R3612	EQ1_13		EQ1_B3_PG [15:0]								0CBBh
(E1Eh) (E1Fh) (E2Fh) (E1Fh) (E	R3613	EQ1_14		EQ1_B4_A [15:0]								16F8h
R3616 E01_16 E01_16 E01_B4_PG[150] E01_B4_PG[150]		EQ1_15		EQ1_B4_B [15:0]								F7D9h
R3616 E01_17 E01_84_PO[150] E01_84_PO[150]	R3615	EQ1_16		EQ1_B4_C [15:0]								040Ah
R3617 E01_18	R3616	EQ1_17		EQ1_B4_PG [15:0]								1F14h
R3618 EQ1_19 EQ1_85_R[160] EQ1_85_R[160] 4000h 400	R3617	EQ1_18		EQ1_B5_A [15:0]								058Ch
R3610 EQ1_20 EQ1_85_PG[150] EQ1_85_PG[150] 4000h R3620 EQ1_21 EQ2_B1_GAN[40] EQ2_B2_GAN[40] EQ2_B3_GAN[40] EQ2_B3_GAN[R3618	EQ1_19		EQ1_B5_B [15:0]								0563h
R3622 EQ2_1	R3619	EQ1_20		EQ1_B5_PG [15:0]								4000h
R3622 CQ2 CQ2 EQ2 EQ2 EQ2 EQ2 EQ2 EQ2 EQ2 EQ2 EQ3 EQ4 EQ	R3620	EQ1_21		EQ1_B1_C [15:0]								0B75h
R9623 EQ2 EQ2 B4 GAN [4:0] EQ2 B5 GAN [4:0] 0 0 0 0 0 0 0 0 0	R3622	EQ2_1	EQ2_B1_GAIN [4:0]	EQ2_B2_GAIN [4:0]		EQ	2_B3_GAI	N [4:0]		EQ	2_ENA	6318h
R3624 EQ2 3 EQ2 B1 A [150] OFC8h R3625 EQ2 4 EQ2 B1 B [150] O3FEh R3626 EQ2 5 EQ2 B1 PG [150] O0E0h R3627 EQ2 6 EQ2 B1 PG [150] EQ2 B2 A [150] EQ2 B1 PG [150] R3628 EQ2 7 EQ2 B2 B [150] EQ2 B2 B [150] EQ2 B2 B1 PG [150] R3628 EQ2 7 EQ2 B2 B [150] EQ2 B2 B1 PG [150] EQ2 B2 PG [150] R3620 EQ2 B1 EQ2 B2 PG [150] EQ2 B2 PG [150] EQ2 B2 PG [150] R3630 EQ2 P1 EQ2 B2 PG [150] EQ2 B2 PG [150] EQ2 B2 PG [150] R3631 EQ2 P1 EQ2 B2 PG [150] EQ2 B2 PG [150] EQ2 B2 PG [150] R3632 EQ2 P1 EQ2 B2 PG [150] EQ2 B2 PG [150] EQ2 B2 PG [150] R3633 EQ2 P1 EQ2 B2 PG [150] EQ2 B2 PG [150] EQ2 B2 PG [150] EQ2 B2 PG [150] R3634 EQ2 P1 EQ2 B2 PG [150] EQ2 PG [150]	R3623	EQ2_2	EQ2_B4_GAIN [4:0]	EQ2_B5_GAIN [4:0]	0	0	0	0	1	0 EC	Q2_B1_ MODE	6300h
R3625 EQ2 4 EQ2 B1 B15:0] O3FEh R3626 EQ2 5 EQ2 B1 B15:0] O60h R3627 EQ2 6 EQ2 B2 B15:0] EQ2 B2 B15:0] EQ2 B2 B15:0] EQ2 B2 B2 B2:0] EQ2 B2:0] EQ2:0] EQ2:0] EQ2:0[EQ2:0[EQ2:0] EQ2:0[EQ2:0[EQ2:0[EQ2:0] EQ2:0[EQ	R3624	EQ2_3		EQ2_B1_A [15:0]	1					<u> </u>		0FC8h
R3626 EQ2 EQ	R3625	EQ2_4		EQ2_B1_B [15:0]								03FEh
R3627 (E2Bh F02_6 (E2Bh F02_82_A[150]	R3626	EQ2_5		EQ2_B1_PG [15:0]								00E0h
R3628 EQ2 T	R3627	EQ2_6		EQ2_B2_A [15:0]								1EC4h
R3629 (E2Dh) E02_8	R3628	EQ2_7		EQ2_B2_B [15:0]								F136h
R3630 EQ2 9 EQ2 B2 PG [15:0] O4CCh R3631 EQ2 10 EQ2 B3 A [15:0] 1C9Bh R3632 EQ2 11 EQ2 B3 B [15:0] F337h R3633 EQ2 12 EQ2 B3 C [15:0] O40Bh R3634 EQ2 13 EQ2 B3 C [15:0] OCBBh R3635 EQ2 14 EQ2 B3 C [15:0] OCBBh R3636 EQ2 15 EQ2 B4 B [15:0] F7D9h R3637 EQ2 16 EQ2 B4 C [15:0] O40Ah R3638 EQ2 17 EQ2 B4 PG [15:0] IF14h R3638 EQ3 17 EQ2 B4 PG [15:0] IF14h R3639 EQ3 17 EQ3 B4 PG [15:0] IF14h R3630 EQ3 17 EQ3 B4 PG [15:0] EQ3 B4 PG [15:0	R3629	EQ2_8		EQ2_B2_C [15:0]								0409h
R3631 EQ2_10 EQ2_B3_A[15:0] EQ2_	R3630	EQ2_9		EQ2_B2_PG [15:0]								04CCh
R3632 (E30h) EQ2_11 (E30h) EQ2_B3_B [15:0] F337h R3633 (E31h) EQ2_12 (E31h) EQ2_B3_C [15:0] 040Bh R3634 (E32h) EQ2_13 (E32h) EQ2_B3_PG [15:0] 0CBBh R3635 (E33h) EQ2_14 (E33h) EQ2_B4_A [15:0] 16F8h R3636 (E34h) EQ2_15 (E34h) EQ2_B4_B [15:0] F7D9h R3637 (E35h) EQ2_16 (E34h) EQ2_B4_C [15:0] 040Ah R3638 EQ2_17 EQ2_B4_PG [15:0] 1F14h	R3631	EQ2_10		EQ2_B3_A [15:0]								1C9Bh
R3633 (E31h) EQ2_12 (E32h) EQ2_B3_C [15:0] 040Bh R3634 (E32h) EQ2_13 (E32h) EQ2_B3_PG [15:0] 0CBBh R3635 (E33h) EQ2_14 (E32h) EQ2_B4_A [15:0] 16F8h R3636 (E33h) EQ2_15 (E34h) EQ2_B4_B [15:0] F7D9h R3637 (E34h) EQ2_16 (E34h) EQ2_B4_C [15:0] 040Ah R3638 EQ2_17 EQ2_B4_PG [15:0] 1F14h	R3632	EQ2_11		EQ2_B3_B [15:0]								F337h
R3634 (E32h) EQ2_13 (E32h) EQ2_B3_PG [15:0] 0CBBh R3635 (E33h) EQ2_14 (E33h) EQ2_B4_A [15:0] 16F8h R3636 (E34h) EQ2_15 (E34h) EQ2_B4_B [15:0] F7D9h R3637 (E35h) EQ2_16 (E35h) EQ2_B4_C [15:0] 040Ah R3638 EQ2_17 EQ2_B4_PG [15:0] 1F14h	R3633	EQ2_12		EQ2_B3_C [15:0]								040Bh
R3635 (E33h) EQ2_14 (E33h) EQ2_B4_A[15:0] 16F8h R3636 (E34h) EQ2_15 (E34h) EQ2_B4_B[15:0] F7D9h R3637 (E35h) EQ2_16 (E35h) EQ2_B4_C[15:0] 040Ah R3638 EQ2_17 EQ2_B4_PG[15:0] 1F14h	R3634	EQ2_13		EQ2_B3_PG [15:0]								0CBBh
R3636 (E34h) EQ2_15 (E34h) EQ2_B4_B [15:0] F7D9h R3637 (E35h) EQ2_16 (E35h) EQ2_B4_C [15:0] 040Ah R3638 EQ2_17 EQ2_B4_PG [15:0] 1F14h	R3635	EQ2_14		EQ2_B4_A [15:0]								16F8h
R3637 (E35h) EQ2_16 (E35h) EQ2_B4_C [15:0] 040Ah R3638 EQ2_17 EQ2_B4_PG [15:0] 1F14h	R3636	EQ2_15		EQ2_B4_B [15:0]								F7D9h
R3638 EQ2 17 EQ2_B4_PG [15:0] 1F14h	R3637	EQ2_16		EQ2_B4_C [15:0]								040Ah
(ESOR)		EQ2_17		EQ2_B4_PG [15:0]								1F14h

Register	Name	15 14 13 12 11	10 9 8 7 6	5	4	3	2	1	0	Default
R3639 (E37h)	EQ2_18		EQ2_B5_A [15:0]							058Ch
R3640 (E38h)	EQ2_19		EQ2_B5_B [15:0]							0563h
R3641 (E39h)	EQ2_20		EQ2_B5_PG [15:0]							4000h
R3642 (E3Ah)	EQ2_21		EQ2_B1_C [15:0]							0B75h
	EQ3_1	EQ3_B1_GAIN [4:0]	EQ3_B2_GAIN [4:0]		EQ3	B_B3_GAIN	N [4:0]		EQ3_ENA	6318h
	EQ3_2	EQ3_B4_GAIN [4:0]	EQ3_B5_GAIN [4:0]	0	0	0	0	0	EQ3_B1_ MODE	6300h
	EQ3_3		EQ3_B1_A [15:0]	1 1		ı	1			0FC8h
	EQ3_4		EQ3_B1_B [15:0]							03FEh
	EQ3_5		EQ3_B1_PG [15:0]							00E0h
	EQ3_6		EQ3_B2_A [15:0]							1EC4h
	EQ3_7		EQ3_B2_B [15:0]							F136h
	EQ3_8		EQ3_B2_C [15:0]							0409h
	EQ3_9		EQ3_B2_PG [15:0]							04CCh
	EQ3_10		EQ3_B3_A [15:0]							1C9Bh
	EQ3_11		EQ3_B3_B [15:0]							F337h
	EQ3_12		EQ3_B3_C [15:0]							040Bh
	EQ3_13		EQ3_B3_PG [15:0]							0CBBh
	EQ3_14		EQ3_B4_A [15:0]							16F8h
	EQ3_15		EQ3_B4_B [15:0]							F7D9h
	EQ3_16		EQ3_B4_C [15:0]							040Ah
	EQ3_17		EQ3_B4_PG [15:0]							1F14h
	EQ3_18		EQ3_B5_A [15:0]							058Ch
	EQ3_19		EQ3_B5_B [15:0]							0563h
	EQ3_20		EQ3_B5_PG [15:0]							4000h
	EQ3_21		EQ3_B1_C [15:0]							0B75h
,	EQ4_1	EQ4_B1_GAIN [4:0]	EQ4_B2_GAIN [4:0]		EQ4	1_B3_GAIN	N [4:0]		EQ4_ENA	6318h
	EQ4_2	EQ4_B4_GAIN [4:0]	EQ4_B5_GAIN [4:0]	0	0	0	0	0	EQ4_B1_ MODE	6300h
	EQ4_3		EQ4_B1_A [15:0]	1 1		<u>i</u>	1	1	1	0FC8h
	EQ4_4		EQ4_B1_B [15:0]							03FEh
	EQ4_5		EQ4_B1_PG [15:0]							00E0h
	EQ4_6		EQ4_B2_A [15:0]							1EC4h
	EQ4_7		EQ4_B2_B [15:0]							F136h
	EQ4_8		EQ4_B2_C [15:0]							0409h
	EQ4_9		EQ4_B2_PG [15:0]							04CCh
	EQ4_10		EQ4_B3_A [15:0]							1C9Bh
	EQ4_11		EQ4_B3_B [15:0]							F337h
R3677	EQ4_12		EQ4_B3_C [15:0]							040Bh
(E5Dh)										

Register	Name	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Default
R3679	EQ4_14	15	14	13	12		10	3		_A [15:0]			-		2	'		16F8h
(E5Fh) R3680 (E60h)	EQ4_15								EQ4_B4	_B [15:0]								F7D9h
R3681	EQ4_16								EQ4_B4	_C [15:0]								040Ah
(E61h) R3682 (E62h)	EQ4_17								EQ4_B4_	PG [15:0]								1F14h
R3683	EQ4_18								EQ4_B5	_A [15:0]								058Ch
(E63h) R3684	EQ4_19								EQ4_B5	_B [15:0]								0563h
(E64h) R3685 (E65h)	EQ4_20								EQ4_B5_	PG [15:0]								4000h
R3686	EQ4_21								EQ4_B1	_C [15:0]								0B75h
(E66h) R3712	DRC1_ctrl1		DRC1_S	SIG_DET_R	MS [4:0]		DRC1_SI	G_DET_PK	DRC1_	DRC1_	DRC1_	DRC1_	DRC1_QR	DRC1_	DRC1_	DRC1L_	DRC1R_	0018h
(E80h)							[1	:0]	NG_ENA	SIG_DET_ MODE	SIG_DĒT	KNEE2 OP_ENA		ANTICLĪP	WSEQ_ SIG_DET_ ENA	ENA	ENA	
R3713 (E81h)	DRC1_ctrl2	0	0	0		DRC1_/	ATK [3:0]			DRC1_E	OCY [3:0]	I	DRC	1_MINGAIN	N [2:0]	DRC1_MAX	XGAIN [1:0]	0933h
R3714 (E82h)	DRC1_ctrl3	D	DRC1_NG_N	MINGAIN [3:	0]	DRC1_NG	6_EXP [1:0]	DRC1_QR	THR [1:0]	DRC1_QR	R_DCY [1:0]	DRC	1_HI_COM	P [2:0]	DRC1	_LO_COM	P [2:0]	0018h
R3715 (E83h)	DRC1_ctrl4	0	0	0	0	0			DRC1_KN	EE_IP [5:0]				DRC1	1_KNEE_OF	P [4:0]		0000h
R3716 (E84h)	DRC1_ctrl5	0	0	0	0	0	0		DRC1	I_KNEE2_I	P [4:0]			DRC1	_KNEE2_O	P [4:0]		0000h
R3720 (E88h)	DRC2_ctrl1		DRC2_S	SIG_DET_R	MS [4:0]	•	DRC2_SI	G_DET_PK :0]	DRC2_ NG_ENA	DRC2_ SIG_DET_ MODE	DRC2_ SIG_DET	DRC2_ KNEE2_ OP_ENĀ	DRC2_QR	DRC2 ANTICLIP	0	DRC2L_ ENA	DRC2R_ ENA	0018h
R3721 (E89h)	DRC2_ctrl2	0	0	0		DRC2_/	ATK [3:0]				DCY [3:0]		DRC	2_MINGAIN	N [2:0]	DRC2_MAX	XGAIN [1:0]	0933h
R3722 (E8Ah)	DRC2_ctrl3	D	DRC2_NG_N	MINGAIN [3:	0]	DRC2_NG	6_EXP [1:0]	DRC2_QR	R_THR [1:0]	DRC2_QR	R_DCY [1:0]	DRC	2_HI_COM	P [2:0]	DRC2	LO_COM	P [2:0]	0018h
R3723	DRC2_ctrl4	0	0	0	0	0		1	DRC2_KN	L EE_IP [5:0]				DRC2	L 2_KNEE_OF	P [4:0]		0000h
(E8Bh) R3724 (E8Ch)	DRC2_ctrl5	0	0	0	0	0	0		DRC2	2_KNEE2_I	P [4:0]			DRC2	_KNEE2_O	P [4:0]		0000h
R3776 (EC0h)	HPLPF1_1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	LHPF1_ MODE	LHPF1_ ENA	0000h
R3777 (EC1h)	HPLPF1_2		1	1		1	1	1	LHPF1_C0	DEFF [15:0]		I	ı	1	I		I	0000h
R3780 (EC4h)	HPLPF2_1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	LHPF2_ MODE	LHPF2_ ENA	0000h
R3781 (EC5h)	HPLPF2_2		1	1		1	1	1	LHPF2_CC	DEFF [15:0]		l	ı	1				0000h
R3784 (EC8h)	HPLPF3_1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	LHPF3_ MODE	LHPF3_ ENA	0000h
R3785 (EC9h)	HPLPF3_2		ı						LHPF3_C0	DEFF [15:0]		I	I					0000h
R3788 (ECCh)	HPLPF4_1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	LHPF4_ MODE	LHPF4_ ENA	0000h
R3789 (ECDh)	HPLPF4_2		I.	1		1	1	1	LHPF4_CC	DEFF [15:0]		<u>I</u>	1	1			l	0000h
R3808 (EE0h)	ASRC1_ENABLE	0	0	0	0	0	0	0	0	0	0	0	0	ASRC1_ IN2L_ENA	ASRC1_ IN2R_ENA	ASRC1_ IN1L_ENA	ASRC1_ IN1R_ENA	0000h
R3809 (EE1h)	ASRC1_STATUS	0	0	0	0	0	0	0	0	0	0	0	0	ASRC1	ASRC1_ IN2R_ ENA_STS	ASRC1	ASRC1	0000h
R3810 (EE2h)	ASRC1_RATE1		ASF	RC1_RATE1	[4:0]	1	0	0	0	0	0	0	0	ENA_STS 0	ENA_STS 0	ENA_STS 0	ENA_STS 0	0000h
R3811 (EE3h)	ASRC1_RATE2		ASF	RC1_RATE2	[4:0]		0	0	0	0	0	0	0	0	0	0	0	4000h
R3824 (EF0h)	ISRC1_CTRL_1		IS	RC1_FSH [4	1:0]		0	0	0	0	0	0	0	0	0	0	0	0000h
R3825 (EF1h)	ISRC1_CTRL_2		IS	RC1_FSL [4	1:0]		0	0	0	0	0	0	0	0	0	0	1	0001h
R3826 (EF2h)	ISRC1_CTRL_3	ISRC1_ INT1_ENA	ISRC1_ INT2_EÑA	0	0	0	0	ISRC1_ DEC1_ ENA	ISRC1_ DEC2_ ENA	0	0	0	0	0	0	0	0	0000h
R3827 (EF3h)	ISRC2_CTRL_1		IS	RC2_FSH [4	1:0]	1	0	0	0	0	0	0	0	0	0	0	0	0000h
R3828 (EF4h)	ISRC2_CTRL_2		IS	RC2_FSL [4	1:0]		0	0	0	0	0	0	0	0	0	0	1	0001h
R3829 (EF5h)	ISRC2_CTRL_3	ISRC2_ INT1_ENA	ISRC2_ INT2_ENA	0	0	0	0	ISRC2_ DEC1_ ENA	ISRC2_ DEC2_ ENA	0	0	0	0	0	0	0	0	0000h
R4224 (1080h)	US1_Ctrl_0	0	0	US1_G/	AIN [1:0]		US1_S	RC [3:0]	LIVA	0	US	[61_FREQ [2	<u>[</u> 2:0]	0	0	0	US1_ENA	2030h

Register	Name	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Default
R4225 (1081h)	US1_Ctrl_1		US	S1_RATE [4	:0]		0	0	0	0	0	0	0	0	0	0	0	0000h
R4226 (1082h)	US2_Ctrl_0	0	0	US2_G/	AIN [1:0]		US2_SI	RC [3:0]		0	US	S2_FREQ [2	2:0]	0	0	0	US2_ENA	2030h
R4227 (1083h)	US2_Ctrl_1		US	62_RATE [4	:0]	•	0	0	0	0	0	0	0	0	0	0	0	0000h
R4288 (10C0h)	AUXPDM1_Ctrl_0	0	0	0	0		AUXPDM1	_SRC[3:0]		0	0	0	AUXPDM1 _TXEDGE	AUXPDM1 _MSTR	AUXPDM1 _MUTE	0	AUXPDM1 _ENA	0008h
R4289 (10C1h)	AUXPDM1_Ctrl_1	AUXPDI FRE	M1_CLK_ Q[1:0]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4000h
R5248 (1480h)	DFC1_CTRL_W0	0	0	0	0	0	0	0	0	0		DF	C1_RATE [4:0]		DFC1_ DITH_ENA	DFC1_ ENA	0000h
R5250 (1482h)	DFC1_RX_W0	0	0	0		DFC1_R	X_DATA_WI	DTH [4:0]		0	0	0	0	0	DFC1_R	X_DATA_T	YPE [2:0]	1F00h
R5252 (1484h)	DFC1_TX_W0	0	0	0		DFC1_TX	K_DATA_WI	DTH [4:0]		0	0	0	0	0	DFC1_T.	X_DATA_T	YPE [2:0]	1F00h
R5254 (1486h)	DFC2_CTRL_W0	0	0	0	0	0	0	0	0	0		DF	C2_RATE [4:0]		DFC2_ DITH_ENA	DFC2_ ENA	0000h
R5256 (1488h)	DFC2_RX_W0	0	0	0		DFC2_R	X_DATA_WI	DTH [4:0]		0	0	0	0	0	DFC2_R	X_DATA_T	YPE [2:0]	1F00h
R5258 (148Ah)	DFC2_TX_W0	0	0	0		DFC2_TX	K_DATA_WI	DTH [4:0]		0	0	0	0	0	DFC2_T.	X_DATA_T	YPE [2:0]	1F00h
R5260 (148Ch)	DFC3_CTRL_W0	0	0	0	0	0	0	0	0	0		DF	C3_RATE [4:0]		DFC3_ DITH_ENA	DFC3_ ENA	0000h
R5262 (148Eh)	DFC3_RX_W0	0	0	0		DFC3_R	X_DATA_WI	DTH [4:0]		0	0	0	0	0	DFC3_R	X_DATA_T	YPE [2:0]	1F00h
R5264 (1490h)	DFC3_TX_W0	0	0	0		DFC3_TX	K_DATA_WI	DTH [4:0]		0	0	0	0	0	DFC3_T.	X_DATA_T	YPE [2:0]	1F00h
R5266 (1492h)	DFC4_CTRL_W0	0	0	0	0	0	0	0	0	0		DF	C4_RATE [4:0]		DFC4_ DITH_ENA	DFC4_ ENA	0000h
R5268 (1494h)	DFC4_RX_W0	0	0	0		DFC4_R	X_DATA_WI	DTH [4:0]		0	0	0	0	0	DFC4_R	X_DATA_T	YPE [2:0]	1F00h
R5270 (1496h)	DFC4_TX_W0	0	0	0		DFC4_TX	K_DATA_WI	DTH [4:0]		0	0	0	0	0	DFC4_T.	X_DATA_T	YPE [2:0]	1F00h
R5272 (1498h)	DFC5_CTRL_W0	0	0	0	0	0	0	0	0	0		DF	C5_RATE [4:0]		DFC5_ DITH_ENA	DFC5_ ENA	0000h
R5274 (149Ah)	DFC5_RX_W0	0	0	0		DFC5_R	X_DATA_WI	DTH [4:0]		0	0	0	0	0	DFC5_R	X_DATA_T	YPE [2:0]	1F00h
R5276 (149Ch)	DFC5_TX_W0	0	0	0		DFC5_TX	K_DATA_WI	DTH [4:0]		0	0	0	0	0	DFC5_T.	X_DATA_T	YPE [2:0]	1F00h
R5278 (149Eh)	DFC6_CTRL_W0	0	0	0	0	0	0	0	0	0		DF	C6_RATE [4:0]		DFC6_ DITH_ENA	DFC6_ ENA	0000h
R5280 (14A0h)	DFC6_RX_W0	0	0	0		DFC6_R	X_DATA_WI	DTH [4:0]		0	0	0	0	0	DFC6_R	X_DATA_T	YPE [2:0]	1F00h
R5282 (14A2h)	DFC6_TX_W0	0	0	0		DFC6_TX	K_DATA_WI	DTH [4:0]		0	0	0	0	0	DFC6_T.	X_DATA_T	YPE [2:0]	1F00h
R5284 (14A4h)	DFC7_CTRL_W0	0	0	0	0	0	0	0	0	0		DF	C7_RATE [4:0]		DFC7_ DITH_ENA	DFC7_ ENA	0000h
R5286 (14A6h)	DFC7_RX_W0	0	0	0		DFC7_R	X_DATA_WI	DTH [4:0]		0	0	0	0	0	DFC7_R	X_DATA_T	YPE [2:0]	1F00h
R5288 (14A8h)	DFC7_TX_W0	0	0	0		DFC7_TX	K_DATA_WI	DTH [4:0]		0	0	0	0	0	DFC7_T.	X_DATA_T	YPE [2:0]	1F00h
R5290 (14AAh)	DFC8_CTRL_W0	0	0	0	0	0	0	0	0	0		DF	C8_RATE [4:0]		DFC8_ DITH_ENA	DFC8_ ENA	0000h
R5292 (14ACh)	DFC8_RX_W0	0	0	0		DFC8_R	X_DATA_WI	DTH [4:0]		0	0	0	0	0	DFC8_R	X_DATA_T	YPE [2:0]	1F00h
R5294 (14AEh)	DFC8_TX_W0	0	0	0		DFC8_TX	K_DATA_WI	DTH [4:0]		0	0	0	0	0	DFC8_T.	X_DATA_T	YPE [2:0]	1F00h
R5302 (14B6h)	DFC_STATUS_W0	0	0	0	0	0	0	0	0				DFC_ERR_	_CHAN [7:0]			0000h
R5303 (14B7h)	DFC_STATUS_W1	0	0	0	0	0	0	0	0	0	0	0	0	0	0		TH_TYPE :0]	0000h
R5632 (1600h)	ADSP2_IRQ0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	DSP_IRQ2	DSP_IRQ1	0000h
R5633 (1601h)	ADSP2_IRQ1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	DSP_IRQ4	DSP_IRQ3	0000h
R5634 (1602h)	ADSP2_IRQ2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	DSP_IRQ6	DSP_IRQ5	0000h
R5635 (1603h)	ADSP2_IRQ3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	DSP_IRQ8	DSP_IRQ7	0000h
R5636 (1604h)	ADSP2_IRQ4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	DSP IRQ10	DSP_IRQ9	0000h
R5637 (1605h)	ADSP2_IRQ5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	DSP_ IRQ12	DSP IRQ11	0000h
R5638 (1606h)	ADSP2_IRQ6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	DSP_ IRQ14	DSP_ IRQ13	0000h

March Marc	Register	Name	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Default
Charles Char		ADSP2_IRQ7	0	0	0	0	0	0	0	0	0	0	0	0	0	0		DSP_ IRQ15	0000h
Second S	R5888	GPIO1_CTRL_1	GP1_LVL	GP1_OP_ CFG	GP1_DB	GP1_POL	0	0			I		GP1_F	N [9:0]		ı		ı	2001h
STATE STAT	R5889	GPIO1_CTRL_2	GP1_DIR	GP1_PU	GP1_PD	GP1_ DRV_STR	0	0	0	0	0	0	0	0	0	0	0	0	F000h
SPOC.CTRL_1	R5890	GPIO2_CTRL_1	GP2_LVL		GP2_DB	GP2_POL	0	0					GP2_F	N [9:0]		I			2001h
Second Color Col	R5891	GPIO2_CTRL_2	GP2_DIR	GP2_PU	GP2_PD	GP2_ DRV_STR	0	0	0	0	0	0	0	0	0	0	0	0	F000h
Seption Sept	R5892	GPIO3_CTRL_1	GP3_LVL	GP3_OP_ CFG	GP3_DB	GP3_POL	0	0					GP3_F	N [9:0]		I			2001h
Second Circle Graph	R5893	GPIO3_CTRL_2	GP3_DIR	GP3_PU	GP3_PD	GP3_ DRV_STR	0	0	0	0	0	0	0	0	0	0	0	0	F000h
	R5894	GPIO4_CTRL_1	GP4_LVL	GP4_OP_ CFG	GP4_DB	GP4_POL	0	0			I		GP4_F	N [9:0]		ı		ı	2001h
ROSED PROS. CTRL_1	R5895	GPIO4_CTRL_2	GP4_DIR	GP4_PU	GP4_PD		0	0	0	0	0	0	0	0	0	0	0	0	F000h
RSSSID PIOS CTRL 2 GPL PR GPS PU GPS PO	R5896	GPIO5_CTRL_1	GP5_LVL	GP5_OP_ CFG	GP5_DB	GP5_POL	0	0					GP5_F	N [9:0]		I			2001h
Separate Prof. CTRL	R5897	GPIO5_CTRL_2	GP5_DIR	GP5_PU	GP5_PD		0	0	0	0	0	0	0	0	0	0	0	0	F000h
R5590 PROS_CTRL_2	R5898	GPIO6_CTRL_1	GP6_LVL	GP6_OP_ CFG	GP6_DB	GP6_POL	0	0			I		GP6_F	N [9:0]		ı		ı	2001h
PROPOSE PROF CTRL	R5899	GPIO6_CTRL_2	GP6_DIR	GP6_PU	GP6_PD	GP6_ DRV_STR	0	0	0	0	0	0	0	0	0	0	0	0	F000h
RESPOND SPIO'S CTRL 2	R5900	GPIO7_CTRL_1	GP7_LVL	GP7_OP_ CFG	GP7_DB	GP7_POL	0	0					GP7_F	N [9:0]		I			2001h
R8500 GPIOB_CTRL_1 GPI_DK_GPI_DF_GPI_D	R5901	GPIO7_CTRL_2	GP7_DIR	GP7_PU	GP7_PD		0	0	0	0	0	0	0	0	0	0	0	0	F000h
RESON GPICAL GP	R5902	GPIO8_CTRL_1	GP8_LVL	GP8_OP_ CFG	GP8_DB	GP8_POL	0	0					GP8_F	N [9:0]		I			2001h
RS904 GPIO_CTRL_1	R5903	GPIO8_CTRL_2	GP8_DIR	GP8_PU	GP8_PD	GP8_ DRV_STR	0	0	0	0	0	0	0	0	0	0	0	0	F000h
RSSIGN GPIO2_CTRL_2 GP2_DR GP2_PU GP3_DR GP3_PU GP3_	R5904	GPIO9_CTRL_1	GP9_LVL	GP9_OP_ CFG	GP9_DB	GP9_POL	0	0					GP9_F	N [9:0]		I			2001h
R8906 GPI010_CTRL_1 GPI0_R GPI0	R5905	GPIO9_CTRL_2	GP9_DIR	GP9_PU	GP9_PD	GP9_ DRV_STR	0	0	0	0	0	0	0	0	0	0	0	0	F000h
RS908 GPI01_CTRL_2	R5906	GPIO10_CTRL_1	GP10_LVL		GP10_DB		0	0			<u>I</u>		GP10_	FN [9:0]		1			2001h
RS908 SPIO11_CTRL_1 GPI1_VA SPI_OP GPI1_POL O O O O O O O O O	R5907	GPIO10_CTRL_2	GP10_DIR	GP10_PU	GP10_PD		0	0	0	0	0	0	0	0	0	0	0	0	F000h
RS900 GPIO11_CTRL_2 GPI1_DR GPI1_PU	R5908	GPIO11_CTRL_1	GP11_LVL	GP11_OP_ CFG	GP11_DB	GP11_POL	0	0			l		GP11_	FN [9:0]		l			2001h
R8910 GPIO12_CTRL_1 GP12_IM GP12_PD GP12_PD GP12_PD O O O O O O O O O	R5909	GPIO11_CTRL_2	GP11_DIR	GP11_PU	GP11_PD		0	0	0	0	0	0	0	0	0	0	0	0	F000h
R5913 GPI013_CTRL_1 GP13_IVI GP13_PU	R5910	GPIO12_CTRL_1	GP12_LVL	GP12_ OP_CFG	GP12_DB	GP12_ POL	0	0			I		GP12_	FN [9:0]		1			2001h
R5912 GPI013_CTRL_1 GPI3_LVL GPI3_DR	R5911	GPIO12_CTRL_2	GP12_DIR	GP12_PU	GP12_PD		0	0	0	0	0	0	0	0	0	0	0	0	F000h
R5913 GPIO13_CTRL_2 GP13_DIR GP13_PU GP13_PD GP13_PD GP13_PD GP13_PD GP13_PD GP14_PD G	R5912	GPIO13_CTRL_1	GP13_LVL		GP13_DB		0	0			I		GP13_	FN [9:0]		1			2001h
R5914	R5913	GPIO13_CTRL_2	GP13_DIR	GP13_PU	GP13_PD	GP13_ DRV_STR	0	0	0	0	0	0	0	0	0	0	0	0	F000h
R5915 (1718h) GP1014_CTRL_2	R5914	GPIO14_CTRL_1	GP14_LVL	GP14_ OP_CFG	GP14_DB	GP14_ POL	0	0			I		GP14_	FN [9:0]		ı			2001h
Company Comp	R5915	GPIO14_CTRL_2	GP14_DIR	GP14_PU	GP14_PD		0	0	0	0	0	0	0	0	0	0	0	0	F000h
R5917	R5916	GPIO15_CTRL_1	GP15_LVL	GP15_ OP_CFG	GP15_DB	GP15_ POL	0	0		<u> </u>	1	<u> </u>	GP15_	FN [9:0]	<u> </u>	<u> </u>	<u> </u>	1	2001h
R5918	R5917	GPIO15_CTRL_2	GP15_DIR	GP15_PU	GP15_PD	GP15_ DRV_STR	0	0	0	0	0	0	0	0	0	0	0	0	F000h
R5919 GPI016_CTRL_2 GP16_DIR GP16_PU	R5918	GPIO16_CTRL_1	GP16_LVL	GP16_ OP_CFG	GP16_DB	GP16_ POL	0	0		<u> </u>	1	<u> </u>	GP16_	FN [9:0]	<u> </u>	<u> </u>	<u> </u>	1	2001h
R6144 (1800h) RQ1_Status_1	R5919	GPIO16_CTRL_2	GP16_DIR	GP16_PU	GP16_PD	GP16_ DRV_STR	0	0	0	0	0	0	0	0	0	0	0	0	F000h
R6145 (1801h) RQ1_Status_2	R6144	IRQ1_Status_1	0	0	0	CTRLIF_ ERR	0	0	FAIL -	0	DONE_	0	0	0	0	0	0	0	0000h
R6149 IRQ1_Status_6		IRQ1_Status_2	0	0	ASYNC_ ERR	CLK_SYS_ ERR	0	0	FLL2_ LOCK	LOCK_		REF_ LOST	REF_ LOST_	0	0	0	0	0	0000h
R6150 RQ1_Status_7 0 0 0 0 MICD MICD JD3 JD3 0 0 MICD JD2 JD2 JD1 JD1 0000h (1806h) RQ1_Status_7 0 0 0 MICD Status_7 0 0 0 MICD MICD JD2 JD2 JD1 JD1 0000h CLAMP1 FALL RISE FALL		IRQ1_Status_6	0	0		0	0	0		MICDET1_ EINT1	0			0	0	0	0	HPDET_ EINT1	0000h
	R6150	IRQ1_Status_7	0	0	0	0	CLAMP2_	CLAMP2_	JD3_ FALL_ EINT1	JD3_ RISE_ EINT1	0	0	CLAMP1_	CLAMP1_	FALL_	JD2_ RISE_ EINT1	JD1_ FALL_ EINT1	JD1_ RISE_ EINT1	0000h

Register	Name	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Default
R6152 (1808h)	IRQ1_Status_9	0	0	0	0	0	0	ASRC1_ IN2_ LOCK_ EINT1	ASRC1_ IN1_ LOCK_ EINT1	0	0	0	0	0	INPUTS_ SIG_DET_ EINT1	DRC2_ SIG_DET_ EINT1	DRC1_ SIG_DET_ EINT1	0000h
R6154 (180Ah)	IRQ1_Status_11	DSP_ IRQ16_ EINT1	DSP_ IRQ15_ EINT1	DSP_ IRQ14_ EINT1	DSP_ IRQ13_ EINT1	DSP_ IRQ12_ EINT1	DSP_ IRQ11_ EINT1	DSP_ IRQ10_ EINT1	DSP_ IRQ9_ EINT1	DSP_ IRQ8_ EINT1	DSP_ IRQ7_ EINT1	DSP_ IRQ6_ EINT1	DSP_ IRQ5_ EINT1	DSP_ IRQ4_ EINT1	DSP_ IRQ3_ EINT1	DSP_ IRQ2_ EINT1	DSP_ IRQ1_ EINT1	0000h
R6155 (180Bh)	IRQ1_Status_12	0	0	0	0	0	0	HP4R_ SC_EINT1	HP4L_SC_ EINT1	0	0	HP3R_ SC_EINT1	HP3L_SC_ EINT1	HP2R_ SC_EINT1	HP2L_SC_ EINT1	HP1R_ SC_EINT1	HP1L_SC_ EINT1	0000h
R6156 (180Ch)	IRQ1_Status_13	0	0	0	0	0	0	0	0	0	0	HP3R ENABLE_ DONE_ EINT1	HP3L ENABLE_ DONE_ EINT1	HP2R ENABLE_ DONE_ EINT1	HP2L ENABLE_ DONE_ EINT1	HP1R ENABLE_ DONE_ EINT1	HP1L ENABLE_ DONE_ EINT1	0000h
R6157 (180Dh)	IRQ1_Status_14	0	0	0	0	0	0	0	0	0	0	HP3R_ DISABLE_ DONE_ EINT1	HP3L_ DISABLE_ DONE_ EINT1	HP2R_ DISABLE_ DONE_ EINT1	HP2L_ DISABLE_ DONE_ EINT1	HP1R_ DISABLE_ DONE_ EINT1	HP1L_ DISABLE_ DONE_ EINT1	0000h
R6158 (180Eh)	IRQ1_Status_15	0	0	0	DFC_ SATURAT E_EINT1	0	0	0	0	0	0	0	0	0	0	0	0	0000h
R6160 (1810h)	IRQ1_Status_17	GP16_ EINT1	GP15_ EINT1	GP14_ EINT1	GP13_ EINT1	GP12_ EINT1	GP11_ EINT1	GP10_ EINT1	GP9_ EINT1	GP8_ EINT1	GP7_ EINT1	GP6_ EINT1	GP5_ EINT1	GP4_ EINT1	GP3_ EINT1	GP2_ EINT1	GP1_ EINT1	0000h
R6164 (1814h)	IRQ1_Status_21	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	TIMER1_ EINT1	0000h
R6165 (1815h)	IRQ1_Status_22	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	EVENT1_ NOT_ EMPTY_ EINT1	0000h
R6166 (1816h)	IRQ1_Status_23	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	EVENT1_ FULL_ EINT1	0000h
R6167 (1817h)	IRQ1_Status_24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	EVENT1_ WMARK_ EINT1	0000h
R6168 (1818h)	IRQ1_Status_25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	DSP1_ DMA_ EINT1	0000h
R6170 (181Ah)	IRQ1_Status_27	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	DSP1_ START1_ EINT1	0000h
R6171 (181Bh)	IRQ1_Status_28	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	DSP1_ START2_ EINT1	0000h
R6173 (181Dh)	IRQ1_Status_30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	DSP1_ BUSY_ EINT1	0000h
R6176 (1820h)	IRQ1_Status_33	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	DSP1_ BUS_ ERR_ EINT1	0000h
R6179 (1823h)	IRQ1_Status_36	0	0	0	0	0	0	0	0	0	0	0	0	TIMER_ ALM1_ CH4_ EINT1	TIMER_ ALM1_ CH3_ EINT1	TIMER_ ALM1_ CH2_ EINT1	TIMER_ ALM1_ CH1_ EINT1	0000h
R6183 (1827h)	IRQ1_Status_40	0	0	0	0	0	0	FLL2_ SYNC_ ACTIVE_ EINT1	FLL1_ SYNC_ ACTIVE_ EINT1	0	0	0	0	0	0	0	0	0000h
R6208 (1840h)	IRQ1_Mask_1	0	0	0	IM_ CTRLIF_ ERR_ EINT1	0	0	IM_ SYSCLK_ FAIL_ EINT1	0	IM_BOOT_ DONE_ EINT1	0	0	0	0	0	0	0	1200h
R6209 (1841h)	IRQ1_Mask_2	0	1	IM_CLK_ ASYNC_ ERR_ EINT1	IM_CLK_ SYS_ ERR_ EINT1	0	0	IM_FLL2_ LOCK_ EINT1	IM_FLL1_ LOCK_ EINT1	0	IM_FLL2_ REF_ LOST_ EINT1	IM_FLL1_ REF_ LOST_ EINT1	0	0	0	0	0	77E0h
R6213 (1845h)	IRQ1_Mask_6	0	0	0	0	0	0	IM_ MICDET2_ EINT1	IM_ MICDET1_ EINT1	0	0	0	0	0	0	0	IM_ HPDET_ EINT1	0301h
R6214 (1846h)	IRQ1_Mask_7	0	0	0	0	IM_MICD_ CLAMP2_ FALL_ EINT1	IM_MICD_ CLAMP2_ RISE_ EINT1	IM_JD3_ FALL_ EINT1	IM_JD3_ RISE_ EINT1	0	0	IM_MICD_ CLAMP1_ FALL_ EINT1	IM_MICD_ CLAMP1_ RISE_ EINT1	IM_JD2_ FALL_ EINT1	IM_JD2_ RISE_ EINT1	IM_JD1_ FALL_ EINT1	IM_JD1_ RISE_ EINT1	0F3Fh
R6216 (1848h)	IRQ1_Mask_9	0	0	0	0	0	0	IM_ ASRC1_ IN2_ LOCK_ EINT1	IM_ ASRC1_ IN1_ LOCK_ EINT1	0	0	0	1	1	IM_ INPUTS_ SIG_DET_ EINT1	IM_DRC2_ SIG_DET_ EINT1	IM_DRC1_ SIG_DET_ EINT1	031Fh
R6218 (184Ah)	IRQ1_Mask_11	IM_DSP_ IRQ16_ EINT1	IM_DSP_ IRQ15_ EINT1	IM_DSP_ IRQ14_ EINT1	IM_DSP_ IRQ13_ EINT1	IM_DSP_ IRQ12_ EINT1	IM_DSP_ IRQ11_ EINT1	IM_DSP_ IRQ10_ EINT1	IM_DSP_ IRQ9_ EINT1	IM_DSP_ IRQ8_ EINT1	IM_DSP_ IRQ7_ EINT1	IM_DSP_ IRQ6_ EINT1	IM_DSP_ IRQ5_ EINT1	IM_DSP_ IRQ4_ EINT1	IM_DSP_ IRQ3_ EINT1	IM_DSP_ IRQ2_ EINT1	IM_DSP_ IRQ1_ EINT1	FFFFh
R6219 (184Bh)	IRQ1_Mask_12	0	0	0	0	0	0	IM_HP4R_ SC_EINT1	IM_HP4L_ SC_EINT1	0	0	IM_HP3R_ SC_EINT1	IM_HP3L_ SC_EINT1	IM_HP2R_ SC_EINT1	IM_HP2L_ SC_EINT1	IM_HP1R_ SC_EINT1	IM_HP1L_ SC_EINT1	033Fh
R6220 (184Ch)	IRQ1_Mask_13	0	0	0	0	0	0	0	0	0	0	IM_HP3R_ ENABLE_ DONE_ EINT1	IM_HP3L_ ENABLE_ DONE_ EINT1	IM_HP2R_ ENABLE_ DONE_ EINT1	IM_HP2L_ ENABLE_ DONE_ EINT1	IM_HP1R_ ENABLE_ DONE_ EINT1	IM_HP1L_ ENABLE_ DONE_ EINT1	003Fh
R6221 (184Dh)	IRQ1_Mask_14	0	0	0	0	0	0	0	0	0	0	IM_HP3R_ DISABLE_ DONE_ EINT1	IM_HP3L_ DISABLE_ DONE_ EINT1	IM_HP2R_ DISABLE_ DONE_ EINT1	IM_HP2L_ DISABLE_ DONE_ EINT1	IM_HP1R_ DISABLE_ DONE_ EINT1	IM_HP1L_ DISABLE_ DONE_ EINT1	003Fh
R6222 (184Eh)	IRQ1_Mask_15	0	0	0	IM_DFC_ SATURAT E_EINT1	0	0	0	0	0	0	0	0	0	0	0	0	1000h

Register	Name	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Default
R6224 (1850h)	IRQ1_Mask_17	IM_GP16_ EINT1	IM_GP15_ EINT1	IM_GP14_ EINT1	IM_GP13_ EINT1	IM_GP12_ EINT1	IM_GP11_ EINT1	IM_GP10_ EINT1	IM_GP9_ EINT1	IM_GP8_ EINT1	IM_GP7_ EINT1	IM_GP6_ EINT1	IM_GP5_ EINT1	IM_GP4_ EINT1	IM_GP3_ EINT1	IM_GP2_ EINT1	IM_GP1_ EINT1	FFFFh
R6228 (1854h)	IRQ1_Mask_21	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	IM_ TIMER1_ EINT1	0001h
R6229 (1855h)	IRQ1_Mask_22	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	IM_ EVENT1_ NOT_ EMPTY_ EINT1	0001h
R6230 (1856h)	IRQ1_Mask_23	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	IM_ EVENT1_ FULL_ EINT1	0001h
R6231 (1857h)	IRQ1_Mask_24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	IM_ EVENT1_ WMARK_ EINT1	0001h
R6232 (1858h)	IRQ1_Mask_25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	IM_DSP1_ DMA_ EINT1	0001h
R6234 (185Ah)	IRQ1_Mask_27	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	IM_DSP1_ START1_ EINT1	0001h
R6235 (185Bh)	IRQ1_Mask_28	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	IM_DSP1_ START2_ EINT1	0001h
R6237 (185Dh)	IRQ1_Mask_30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	IM_DSP1_ BUSY_ EINT1	0001h
R6240 (1860h)	IRQ1_Mask_33	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	IM_DSP1_ BUS_ ERR_ EINT1	0001h
R6243 (1863h)	IRQ1_Mask_36	0	0	0	0	0	0	0	0	0	0	0	0	IM_ TIMER_ ALM1_ CH4_ EINT1	IM_ TIMER_ ALM1_ CH3_ EINT1	IM_ TIMER_ ALM1_ CH2_ EINT1	IM_ TIMER_ ALM1_ CH1_ EINT1	000Fh
R6247 (1867h)	IRQ1_Mask_40	0	0	0	0	0	0	IM_FLL2_ SYNC_ ACTIVE_ EINT1	IM_FLL1_ SYNC_ ACTIVE_ EINT1	0	0	0	0	0	0	0	0	0300h
R6272 (1880h)	IRQ1_Raw_Status_1	0	0	0	CTRLIF_ ERR_ STS1	0	0	0	0	BOOT_ DONE_ STS1	0	0	0	0	0	0	0	0000h
R6273 (1881h)	IRQ1_Raw_Status_2	0	0	CLK_ ASYNC_ ERR_ STS1	CLK_SYS_ ERR_ STS1	0	0	FLL2_ LOCK_ STS1	FLL1_ LOCK_ STS1	0	FLL2_ REF_ LOST_ STS1	FLL1_ REF_ LOST_ STS1	0	0	0	0	0	0000h
R6278 (1886h)	IRQ1_Raw_Status_7	0	0	0	0	0	0	0	JD3_STS1	0	0	0	MICD_ CLAMP_ STS1	0	JD2_STS1		JD1_STS1	0000h
R6280 (1888h)	IRQ1_Raw_Status_9	0	0	0	0	0	0	ASRC1_ IN2_ LOCK_ STS1	ASRC1_ IN1_ LOCK_ STS1	0	0	0	0		INPUTS_ SIG_DET_ STS1	STS1 -	DRC1_ SIG_DET_ STS1	0000h
R6283 (188Bh)	IRQ1_Raw_Status_12	0	0	0	0	0	0	HP4R_ SC_STS1	HP4L_SC_ STS1	0	0	HP3R_ SC_STS1	HP3L_SC_ STS1	HP2R_ SC_STS1	HP2L_SC_ STS1	HP1R_ SC_STS1	HP1L_SC_ STS1	0000h
R6284 (188Ch)	IRQ1_Raw_Status_13	0	0	0	0	0	0	0	0	0	0	HP3R ENABLE_ DONE_ STS1	HP3L ENABLE_ DONE_ STS1	HP2R ENABLE_ DONE_ STS1	HP2L ENABLE_ DONE_ STS1	HP1R ENABLE_ DONE_ STS1	HP1L_ ENABLE_ DONE_ STS1	0000h
R6285 (188Dh)	IRQ1_Raw_Status_14	0	0	0	0	0	0	0	0	0	0	HP3R_ DISABLE_ DONE_ STS1	DONE_ STS1	DONE_ STS1	HP2L_ DISABLE_ DONE_ STS1	DONE_ STS1	HP1L_ DISABLE_ DONE_ STS1	0000h
R6288 (1890h)	IRQ1_Raw_Status_17	GP16_ STS1	GP15_ STS1	GP14_ STS1	GP13_ STS1	GP12_ STS1	GP11_ STS1	GP10_ STS1	GP9_STS1	GP8_STS1	GP7_STS1	IGP6_STS1	GP5_STS1	GP4_STS1	GP3_STS1	GP2_STS1	GP1_STS1	0000h
R6292 (1894h)	IRQ1_Raw_Status_21	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	TIMER1_ STS1	0000h
R6293 (1895h)	IRQ1_Raw_Status_22	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	EVENT1_ NOT_ EMPTY_ STS1_	0000h
R6294 (1896h)	IRQ1_Raw_Status_23	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	EVENT1_ FULL_ STS1	0000h
R6295 (1897h)	IRQ1_Raw_Status_24	0	0	0	0	0	0	0	0	0	0	0	0	0	0		EVENT1_ WMARK_ STS1	0000h
R6296 (1898h)	IRQ1_Raw_Status_25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	DSP1_ DMA_ STS1	0000h
R6301 (189Dh)	IRQ1_Raw_Status_30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	DSP1_ BUSY_ STS1	0000h
R6304 (18A0h)	IRQ1_Raw_Status_33	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	DSP1_ BUS_ ERR_ STS1	0000h
R6307 (18A3h)	IRQ1_Raw_Status_36	0	0	0	0	0	0	0	0	0	0	0	0	TIMER_ ALM1_ CH4_STS1	TIMER_ ALM1_ CH3_STS1	TIMER_ ALM1_ CH2_STS1	TIMER_ ALM1_ CH1 STS1	0000h

Register	Name	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Default
R6311	IRQ1_Raw_Status_40	0	0	0	0	0	0	FLL2_	FLL1_ SYNC	0	0	0	0	0	0	0	0	0000h
(18A7h)								SYNC_ ACTIVE_ STS1	ACTIVE_ STS1									
R6400 (1900h)	IRQ2_Status_1	0	0	0	CTRLIF_ ERR_ EINT2	0	0	SYSCLK_ FAIL_ EINT2	0	BOOT_ DONE_ EINT2	0	0	0	0	0	0	0	0000h
R6401 (1901h)	IRQ2_Status_2	0	0	CLK_ ASYNC_ ERR_ EINT2	CLK_SYS_ ERR_ EINT2	0	0	FLL2_ LOCK_ EINT2	FLL1_ LOCK_ EINT2	0	FLL2_ REF_ LOST_ EINT2	FLL1_ REF_ LOST_ EINT2	0	0	0	0	0	0000h
R6405 (1905h)	IRQ2_Status_6	0	0	0	0	0	0	MICDET2_ EINT2	MICDET1_ EINT2	0	0	0	0	0	0	0	HPDET_ EINT2	0000h
R6406 (1906h)	IRQ2_Status_7	0	0	0	0	0	0	JD3_ FALL_ EINT2	JD3_ RISE_ EINT2	0	0	MICD_ CLAMP_ FALL_ EINT2	MICD_ CLAMP_ RISE_ EINT2	JD2_ FALL_ EINT2	JD2_ RISE_ EINT2	JD1_ FALL_ EINT2	JD1_ RISE_ EINT2	0000h
R6408 (1908h)	IRQ2_Status_9	0	0	0	0	0	0	ASRC1_ IN2 LOCK_ EINT2	ASRC1_ IN1_ LOCK_ EINT2	0	0	0	0	0	INPUTS_ SIG_DET_ EINT2	DRC2_ SIG_DET_ EINT2	DRC1_ SIG_DET_ EINT2	0000h
R6410 (190Ah)	IRQ2_Status_11	DSP_ IRQ16_ EINT2	DSP IRQ15_ EINT2	DSP IRQ14_ EINT2	DSP_ IRQ13_ EINT2	DSP_ IRQ12_ EINT2	DSP_ IRQ11_ EINT2	DSP_ IRQ10_ EINT2	DSP_ IRQ9_ EINT2	DSP_ IRQ8_ EINT2	DSP_ IRQ7_ EINT2	DSP_ IRQ6_ EINT2	DSP_ IRQ5_ EINT2	DSP_ IRQ4_ EINT2	DSP_ IRQ3_ EINT2	DSP_ IRQ2_ EINT2	DSP_ IRQ1_ EINT2	0000h
R6411 (190Bh)	IRQ2_Status_12	0	0	0	0	0	0	HP4R_ SC_EINT2	HP4L_SC_ EINT2	0	0	HP3R_ SC_EINT2	HP3L_SC_ EINT2	HP2R_ SC_EINT2	HP2L_SC_ EINT2	HP1R_ SC_EINT2	HP1L_SC_ EINT2	0000h
R6412 (190Ch)	IRQ2_Status_13	0	0	0	0	0	0	0	0	0	0	HP3R ENABLE_ DONE_ EINT2	HP3L_ ENABLE_ DONE_ EINT2	HP2R ENABLE_ DONE_ EINT2	HP2L ENABLE_ DONE_ EINT2	HP1R_ ENABLE_ DONE_ EINT2	HP1L ENABLE_ DONE_ EINT2	0000h
R6413 (190Dh)	IRQ2_Status_14	0	0	0	0	0	0	0	0	0	0	HP3R_ DISABLE_ DONE_ EINT2	HP3L_ DISABLE_ DONE_ EINT2	HP2R_ DISABLE_ DONE_ EINT2	HP2L_ DISABLE_ DONE_ EINT2	HP1R_ DISABLE_ DONE_ EINT2	HP1L_ DISABLE_ DONE_ EINT2	0000h
R6414 (190Eh)	IRQ2_Status_15	0	0	0	DFC_ SATURAT E_EINT2	0	0	0	0	0	0	0	0	0	0	0	0	0000h
R6416 (1910h)	IRQ2_Status_17	GP16_ EINT2	GP15_ EINT2	GP14_ EINT2	GP13_ EINT2	GP12_ EINT2	GP11_ EINT2	GP10_ EINT2	GP9_ EINT2	GP8_ EINT2	GP7_ EINT2	GP6_ EINT2	GP5_ EINT2	GP4_ EINT2	GP3_ EINT2	GP2_ EINT2	GP1_ EINT2	0000h
R6420 (1914h)	IRQ2_Status_21	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	TIMER1_ EINT2	0000h
R6421 (1915h)	IRQ2_Status_22	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	EVENT1_ NOT_ EMPTY_ EINT2	0000h
R6422 (1916h)	IRQ2_Status_23	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	EVENT1_ FULL_ EINT2	0000h
R6423 (1917h)	IRQ2_Status_24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	EVENT1_ WMARK_ EINT2	0000h
R6424 (1918h)	IRQ2_Status_25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	DSP1_ DMA_ EINT2	0000h
R6426 (191Ah)	IRQ2_Status_27	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	DSP1_ START1_ EINT2	0000h
R6427 (191Bh)	IRQ2_Status_28	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	DSP1_ START2_ EINT2	0000h
R6429 (191Dh)	IRQ2_Status_30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	DSP1_ BUSY_ EINT2	0000h
R6432 (1920h)	IRQ2_Status_33	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	DSP1_ BUS_ ERR_ EINT2	0000h
R6435 (1923h)	IRQ2_Status_36	0	0	0	0	0	0	0	0	0	0	0	0	TIMER_ ALM1_ CH4_ EINT2	TIMER_ ALM1_ CH3_ EINT2	TIMER_ ALM1_ CH2_ EINT2	TIMER_ ALM1_ CH1_ EINT2	0000h
R6439 (1927h)	IRQ2_Status_40	0	0	0	0	0	0	FLL2_ SYNC_ ACTIVE_ EINT2	FLL1_ SYNC_ ACTIVE_ EINT2	0	0	0	0	0	0	0	0	0000h
R6464 (1940h)	IRQ2_Mask_1	0	0	0	IM_ CTRLIF_ ERR_ EINT2	0	0	IM_ SYSCLK_ FAIL_ EINT2	0	IM_BOOT_ DONE_ EINT2	0	0	0	0	0	0	0	1280h
R6465 (1941h)	IRQ2_Mask_2	0	1	IM_CLK_ ASYNC_ ERR_ EINT2	IM_CLK_ SYS_ ERR_ EINT2	0	0	IM_FLL2_ LOCK_ EINT2	IM_FLL1_ LOCK_ EINT2	0	IM_FLL2_ REF_ LOST_ EINT2	IM_FLL1_ REF_ LOST_ EINT2	0	0	0	0	0	77E0h
R6469 (1945h)	IRQ2_Mask_6	0	0	0	0	0	0	IM_ MICDET2_ EINT2	IM_ MICDET1_ EINT2	0	0	0	0	0	0	0	IM HPDET_ EINT2	0301h
R6470 (1946h)	IRQ2_Mask_7	0	0	0	0	0	0	IM_JD3_ FALL_ EINT2	IM_JD3_ RISE_ EINT2	0	0	IM_MICD_ CLAMP_ FALL_ EINT2	IM_MICD_ CLAMP_ RISE_ EINT2	IM_JD2_ FALL_ EINT2	IM_JD2_ RISE_ EINT2	IM_JD1_ FALL_ EINT2	IM_JD1_ RISE_ EINT2	033Fh

Register	Name	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Default
R6472 (1948h)	IRQ2_Mask_9	0	0	0	0	0	0	IM_ ASRC1_	IM_ ASRC1_	0	0	0	1	1	IM_ INPUTS_		IM_DRC1_ SIG_DET_	031Fh
								IN2 LOCK_ EINT2	IN1_ LOCK_ EINT2						SIG_DET_ EINT2	EINT2	EINT2	
R6474 (194Ah)	IRQ2_Mask_11	IM_DSP_ IRQ16	IM_DSP_ IRQ15	IM_DSP_ IRQ14	IM_DSP_ IRQ13	IM_DSP_ IRQ12	IM_DSP_ IRQ11	IM_DSP_ IRQ10	IM_DSP_ IRQ9	IM_DSP_ IRQ8	IM_DSP_ IRQ7	IM_DSP_ IRQ6	IM_DSP_ IRQ5	IM_DSP_ IRQ4	IM_DSP_ IRQ3	IM_DSP_ IRQ2	IM_DSP_ IRQ1	FFFFh
R6475	IRQ2_Mask_12	EINT2	EINT2 0	EINT2 0	EINT2	EINT2 0	EINT2 0	EINT2 IM HP4R	EINT2	EINT2	EINT2	EINT2	EINT2	EINT2	EINT2	EINT2	EINT2	033Fh
(194Bh)								SC_EINT2	SC_EINT2			SC_EINT2	SC_EINT2	SC_EINT2	SC_EINT2	SC_EINT2	SC_EINT2	
R6476 (194Ch)	IRQ2_Mask_13	0	0	0	0	0	0	0	0	0	0	IM_HP3R_ ENABLE_ DONE	IM_HP3L_ ENABLE_ DONE	IM_HP2R_ ENABLE_ DONE	IM_HP2L_ ENABLE_ DONE	IM_HP1R_ ENABLE_ DONE	IM_HP1L_ ENABLE_ DONE	003Fh
D6477	IDO2 Mask 14	0	0	0	0	0	0	0	0	0	0	EINT2	EINT2	EINT2	EINT2	EINT2	EINT2	002Fb
R6477 (194Dh)	IRQ2_Mask_14	U	0	0	U	0	0	0	0	0	0	DISABLE_ DONE	DISABLE_ DONE		DISABLE_ DONE	DISABLE_ DONE	DISABLE_ DONE	003Fh
R6478	IRQ2_Mask_15	0	0	0	IM DFC	0	0	0	0	0	0	EINT2 0	EINT2 0	EINT2 0	EINT2 0	EINT2 0	EINT2 0	1000h
(194Eh)					SATURAT E_EINT2													
R6480 (1950h)	IRQ2_Mask_17	IM_GP16_ EINT2	IM_GP15_ EINT2	IM_GP14_ EINT2	IM_GP13_ EINT2	IM_GP12_ EINT2	IM_GP11_ EINT2	IM_GP10_ EINT2	IM_GP9_ EINT2	IM_GP8_ EINT2	IM_GP7_ EINT2	IM_GP6_ EINT2	IM_GP5_ EINT2	IM_GP4_ EINT2	IM_GP3_ EINT2	IM_GP2_ EINT2	IM_GP1_ EINT2	FFFFh
R6484 (1954h)	IRQ2_Mask_21	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	IM_ TIMER1	0001h
R6485	IRQ2 Mask 22	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	EINT2	0001h
(1955h)	IT CQ2_IVIGSI(_E2				v			Ů	Ů						Ů	Ů	EVENT1_ NOT_ EMPTY_ EINT2	000111
R6486 (1956h)	IRQ2_Mask_23	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	IM_ EVENT1_ FULL_ EINT2	0001h
R6487 (1957h)	IRQ2_Mask_24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	IM_ EVENT1_ WMARK_ EINT2	0001h
R6488 (1958h)	IRQ2_Mask_25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	IM_DSP1_ DMA_ EINT2	0001h
R6490 (195Ah)	IRQ2_Mask_27	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	IM_DSP1_ START1_ EINT2	0001h
R6491 (195Bh)	IRQ2_Mask_28	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	IM_DSP1_ START2_ EINT2	0001h
R6493 (195Dh)	IRQ2_Mask_30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	IM_DSP1_ BUSY_ EINT2	0001h
R6496 (1960h)	IRQ2_Mask_33	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	IM_DSP1_ BUS_ ERR_ EINT2	0001h
R6499 (1963h)	IRQ2_Mask_36	0	0	0	0	0	0	0	0	0	0	0	0	IM TIMER_ ALM1_ CH4_ EINT2	IM_ TIMER_ ALM1_ CH3_ EINT2	IM_ TIMER_ ALM1_ CH2_ EINT2	IM_ TIMER_ ALM1_ CH1_ EINT2	000Fh
R6503 (1967h)	IRQ2_Mask_40	0	0	0	0	0	0	IM_FLL2_ SYNC_ ACTIVE_ EINT2	IM_FLL1_ SYNC_ ACTIVE_ EINT2	0	0	0	0	0	0	0	0	0300h
R6528 (1980h)	IRQ2_Raw_Status_1	0	0	0	CTRLIF_ ERR_ STS2	0	0	0	0	BOOT_ DONE_ STS2	0	0	0	0	0	0	0	0000h
R6529 (1981h)	IRQ2_Raw_Status_2	0	0	CLK_ ASYNC_ ERR_ STS2	CLK_SYS_ ERR_ STS2	0	0	FLL2_ LOCK_ STS2	FLL1_ LOCK_ STS2	0	FLL2_ REF_ LOST_ STS2	FLL1_ REF_ LOST_ STS2	0	0	0	0	0	0000h
R6534 (1986h)	IRQ2_Raw_Status_7	0	0	0	0	0	0	0	JD3_STS2	0	0	0	MICD_ CLAMP_ STS2	0	JD2_STS2	0	JD1_STS2	0000h
R6536 (1988h)	IRQ2_Raw_Status_9	0	0	0	0	0	0	ASRC1_ IN2_ LOCK_ STS2	ASRC1_ IN1_ LOCK_ STS2	0	0	0	0	0	INPUTS_ SIG_DET_ STS2	DRC2_ SIG_DET_ STS2	DRC1_ SIG_DET_ STS2	0000h
R6539 (198Bh)	IRQ2_Raw_Status_12	0	0	0	0	0	0	HP4R_ SC_STS2	HP4L_SC_ STS2	0	0	HP3R_ SC_STS2	HP3L_SC_ STS2	HP2R_ SC_STS2	HP2L_SC_ STS2	HP1R_ SC_STS2	HP1L_SC_ STS2	0000h
R6540 (198Ch)	IRQ2_Raw_Status_13	0	0	0	0	0	0	0	0	0	0	HP3R ENABLE_ DONE_ STS2	HP3L ENABLE_ DONE_ STS2	HP2R ENABLE_ DONE_ STS2	HP2L ENABLE_ DONE_ STS2	HP1R ENABLE_ DONE_ STS2	HP1L_ ENABLE_ DONE_ STS2	0000h
R6541 (198Dh)	IRQ2_Raw_Status_14	0	0	0	0	0	0	0	0	0	0	HP3R_DISABLE_DONE_STS2	HP3L_ DISABLE_ DONE_ STS2	HP2R_ DISABLE_ DONE_ STS2	HP2L_ DISABLE_ DONE_ STS2	HP1R DISABLE DONE STS2	HP1L DISABLE_ DONE_ STS2	0000h
R6544 (1990h)	IRQ2_Raw_Status_17	GP16_ STS2	GP15_ STS2	GP14_ STS2	GP13_ STS2	GP12_ STS2	GP11_ STS2	GP10_ STS2	GP9_STS2	GP8_STS2	GP7_STS2	GP6_STS2						0000h
R6548	IRQ2_Raw_Status_21	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	TIMER1_	0000h
(1994h)																	STS2	

Table 6-1. Register Map Definition—16-bit region (Cont.)

Register	Name	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Default
R6549 (1995h)	IRQ2_Raw_Status_22	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	EVENT1_ NOT_ EMPTY_ STS2	0000h
R6550 (1996h)	IRQ2_Raw_Status_23	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	EVENT1_ FULL_ STS2	0000h
R6551 (1997h)	IRQ2_Raw_Status_24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	EVENT1_ WMARK_ STS2	0000h
R6552 (1998h)	IRQ2_Raw_Status_25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	DSP1_ DMA_ STS2	0000h
R6557 (199Dh)	IRQ2_Raw_Status_30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	DSP1_ BUSY_ STS2	0000h
R6560 (19A0h)	IRQ2_Raw_Status_33	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	DSP1_ BUS_ ERR_ STS2	0000h
R6563 (19A3h)	IRQ2_Raw_Status_36	0	0	0	0	0	0	0	0	0	0	0	0	TIMER_ ALM1_ CH4_STS2	TIMER_ ALM1_ CH3_STS2	TIMER_ ALM1_ CH2_STS2	TIMER_ ALM1_ CH1_STS2	0000h
R6567 (19A7h)	IRQ2_Raw_Status_40	0	0	0	0	0	0	FLL2_ SYNC_ ACTIVE_ STS2	FLL1_ SYNC_ ACTIVE_ STS2	0	0	0	0	0	0	0	0	0000h
R6662 (1A06h)	Interrupt_Debounce_7	0	0	0	0	0	0	0	JD3_DB	0	0	0	MICD_ CLAMP_ DB	0	JD2_DB	0	JD1_DB	0000h
R6784 (1A80h)	IRQ1_CTRL	0	1	0	0	IM_IRQ1	IRQ_POL	IRQ_OP_ CFG	0	0	0	0	0	0	0	0	0	4400h
R6786 (1A82h)	IRQ2_CTRL	0	0	0	0	IM_IRQ2	0	0	0	0	0	0	0	0	0	0	0	0000h
R6816 (1AA0h)	Interrupt_Raw_Status_1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	IRQ2_STS	IRQ1_STS	0000h
R6848 (1AC0h)	GPIO_Debounce_Config	0	0	0	0	0	0	0	0	0	0	0	0		GP_DBT	TME [3:0]		0000h
R6864 (1AD0h)	AOD_Pad_Ctrl	0	1	0	0	0	0	0	0	0	0	0	0	0	0	RESET_ PU	RESET_ PD	4002h

The 32-bit register space is described in Table 6-2.

Table 6-2. Register Map Definition—32-bit region

Register	Name	31 15	30 14	29 13	28 12	27 11	26 10	25 9	24 8	23 7	22 6	21 5	20 4	19 3	18 2	17 1	16 0	Default
R12288	WSEQ_Sequence_1	WSEQ_D/								WSE	Q_ADDR0	[12:0]						0000F000h
(3000h)			VSEQ_DE			W	SEQ_DATA	_START0 [3:0]				WSEQ_E	OATA0 [7:0]				
R12290	WSEQ_Sequence_2	WSEQ_D/								WSE	Q_ADDR1	[12:0]						0000F000h
(3002h)			VSEQ_DE			W	SEQ_DATA	_START1[3:0]				WSEQ_E	OATA1 [7:0]				
R12292	WSEQ_Sequence_3	WSEQ_D/								WSE	Q_ADDR2	[12:0]						0000F000h
(3004h)			VSEQ_DE	<u> </u>		W	SEQ_DATA	_START2[3:0]				WSEQ_E	ATA2 [7:0]				
R12294	WSEQ_Sequence_4	WSEQ_D/								WSE	Q_ADDR3	[12:0]						0000F000h
(3006h)			VSEQ_DE			W	SEQ_DATA	_START3 [3:0]				WSEQ_E	OATA3 [7:0]				
R12296	WSEQ_Sequence_5	WSEQ_D/								WSE	Q_ADDR4	[12:0]						82253719h
(3008h)			VSEQ_DE			W	SEQ_DATA	_START4 [3:0]				WSEQ_E	ATA4 [7:0]				
R12298	WSEQ_Sequence_6	WSEQ_D/	ATA_WIDT	H5 [2:0]						WSE	Q_ADDR5	[12:0]						C2300001h
(300Ah)		V	VSEQ_DE	LAY5 [3:0]		W	SEQ_DATA	_START5 [3:0]				WSEQ_E	ATA5 [7:0]				
R12300	WSEQ_Sequence_7	WSEQ_D/	ATA_WIDT	H6 [2:0]						WSE	Q_ADDR6	[12:0]						02251301h
(300Ch)		V	VSEQ_DE	LAY6 [3:0]		W	SEQ_DATA	_START6[3:0]				WSEQ_E	ATA6 [7:0]				
R12302	WSEQ_Sequence_8	WSEQ_D/	ATA_WIDT	H7 [2:0]						WSE	Q_ADDR7	[12:0]						8225191Fh
(300Eh)		V	VSEQ_DE	_AY7 [3:0]		W	SEQ_DATA	_START7 [3:0]				WSEQ_E	ATA7 [7:0]				
R12304	WSEQ_Sequence_9	WSEQ_D/	ATA_WIDT	H8 [2:0]						WSE	Q_ADDR8	[12:0]						82310B00h
(3010h)		V	VSEQ_DE	AY8 [3:0]		W	SEQ_DATA	_START8 [3:0]				WSEQ_E	ATA8 [7:0]				
R12306	WSEQ_Sequence_10	WSEQ_D/	ATA_WIDT	H9 [2:0]						WSE	Q_ADDR9	[12:0]						E231023Bh
(3012h)		V	VSEQ_DE	_AY9 [3:0]		W	SEQ_DATA	_START9[3:0]				WSEQ_E	ATA9 [7:0]				
R12308	WSEQ_Sequence_11	WSEQ_DA	ATA_WIDTI	110 [2:0]						WSE	Q_ADDR10	[12:0]						02313B01h
(3014h)		V	/SEQ_DEL	AY10 [3:0]		WS	SEQ_DATA	_START10	[3:0]				WSEQ_D	ATA10 [7:0]				
R12310	WSEQ_Sequence_12	WSEQ_DA	ATA_WIDTI	H11 [2:0]						WSE	Q_ADDR11	[12:0]						62300000h
(3016h)		V	/SEQ_DEL	AY11 [3:0]		WS	SEQ_DATA	_START11	[3:0]				WSEQ_D	ATA11 [7:0]				
R12312	WSEQ_Sequence_13	WSEQ_DA	TA_WIDTH	112 [2:0]						WSE	Q_ADDR12	[12:0]						E2314288h
(3018h)		W	/SEQ_DEL	AY12 [3:0]		WS	SEQ_DATA	START12	[3:0]				WSEQ_D	ATA12 [7:0]				
R12314	WSEQ_Sequence_14	WSEQ_DA	ATA_WIDTI	113 [2:0]						WSE	Q_ADDR13	[12:0]						02310B00h
(301Ah)		V	/SEQ_DEL	AY13 [3:0]		WS	SEQ_DATA	_START13	[3:0]				WSEQ_D	ATA13 [7:0]				
R12316	WSEQ_Sequence_15	WSEQ_DA	TA_WIDTH	114 [2:0]						WSE	Q_ADDR14	[12:0]						02310B00h
(301Ch)		V	/SEQ_DEL	AY14 [3:0]		WS	SEQ_DATA	_START14	[3:0]				WSEQ_D	ATA14 [7:0]				
R12318	WSEQ_Sequence_16	WSEQ_DA	TA_WIDTI	115 [2:0]	<u> </u>					WSE	Q_ADDR15	[12:0]						02250E01h
(301Eh)		W	/SEQ_DEL	AY15 [3:0]		WS	SEQ_DATA	START15	[3:0]				WSEQ_D	ATA15 [7:0]				

Register	Name	31 15	30 14	29 13	28 12	27 11	26 10	25 9	24 8	23 7	22 6	21 5	20 4	19 3		18	17 1	16 0	Default
R12320 (3020h)	WSEQ_Sequence_17	WSEQ_	DATA_WIDT			VACO	EO DATA	OTA DT40	20.01	WSEC	_ADDR16	[12:0]	14/050	DATA40.17	01				42310C02h
R12322	WSEQ Sequence 18	WSEQ	DATA WIDT	LAY16 [3:0] TH17 [2:0]		WS	EQ_DATA	_START16	[3:0]	WSEC	ADDR17	[12:0]	WSEQ	_DATA16 [7:	:0]				E2310227h
(3022h)	1102 Q_00 quon 00_10			LAY17 [3:0]		WS	EQ_DATA	START17	[3:0]	1		[]	WSEQ	_DATA17 [7:	:0]				
R12324 (3024h)	WSEQ_Sequence_19	WSEQ_	DATA_WIDT			VAIC	EO DATA	OTA DT40	20.01	WSEC	_ADDR18	[12:0]	WOEO	DATA40.17	01				02313B01h
R12326	WSEQ Sequence 20	WSEQ	DATA WIDT	LAY18 [3:0] FH19 [2:0]		VVS	EQ_DATA	_START18	[3:0]	WSEC	ADDR19	[12:0]	WSEQ	_DATA18 [7:	:0]				E2314266h
(3026h)	1102 Q_004001100_20			LAY19 [3:0]		WS	EQ_DATA	START19	[3:0]			[]	WSEQ	_DATA19 [7:	:0]				
R12328 (3028h)	WSEQ_Sequence_21	WSEQ_	DATA_WIDT			14/0	50 DITI	OTA DTOO	20.01	WSEC	_ADDR20	[12:0]	14/050	DATAON F	01				E2315294h
R12330	WSEQ Sequence 22	WSEQ	DATA WIDT	LAY20 [3:0] [H21 [2:0]		WS	EQ_DATA	_START20	[3:0]	WSEC	ADDR21	[12:0]	WSEQ	_DATA20 [7:	:0]				02310B00h
(302Ah)				LAY21 [3:0]		WS	EQ_DATA	START21	[3:0]			[]	WSEQ	_DATA21 [7:	:0]				- 0201020011
R12332 (302Ch)	WSEQ_Sequence_23	WSEQ_	DATA_WIDT			VAIC	EO DATA	OTA DTOO	20.01	WSEC	_ADDR22	[12:0]	WOEO	DATA00.17	01				02310B00h
R12334	WSEQ Sequence 24	WSEQ	DATA WIDT	LAY22 [3:0] FH23 [2:0]		VVS	EQ_DATA	_START22	[3:0]	WSEC	ADDR23	[12:0]	WSEQ	_DATA22 [7:	:0]				E2251734h
(302Eh)				LAY23 [3:0]		WS	EQ_DATA	START23	[3:0]				WSEQ	_DATA23 [7:	0]				
R12336 (3030h)	WSEQ_Sequence_25	WSEQ_	DATA_WIDT			MC	TO DATA	CTADTOA	2.01	WSEC	_ADDR24	[12:0]	WCEO	DATA 24 IZ	.01				0225F501h
R12338	WSEQ Sequence 26	WSEQ	DATA WIDT	LAY24 [3:0] FH25 [2:0]		VVO	EQ_DATA	_START24	[3:0]	WSEC	ADDR25	[12:0]	WSEQ	_DATA24 [7:	.UJ				0000F000h
(3032h)			WSEQ_DE	LAY25 [3:0]		WS	EQ_DATA	START25	[3:0]				WSEQ	_DATA25 [7:	0]				
R12340 (3034h)	WSEQ_Sequence_27	WSEQ_	DATA_WIDT	TH26 [2:0] ELAY26 [3:0]		WC	EO DATA	START26	2.01	WSEC	_ADDR26	[12:0]	Ween	DATA26 [7:	-01				0000F000h
R12342	WSEQ Sequence 28	WSEQ	DATA WIDT			Wo	DEQ_DAIA	_31AK120	[3.0]	WSEC	ADDR27	[12:0]	WSEQ	_DATA20 [7.	.uj				0000F000h
(3036h)	' _		WSEQ_DE	LAY27 [3:0]		WS	EQ_DATA	START27	[3:0]		_		WSEQ	_Data27 [7:	0]				
R12344 (3038h)	WSEQ_Sequence_29	WSEQ_	DATA_WIDT	TH28 [2:0] ELAY28 [3:0]		WC	EO DATA	START28	2.01	WSEC	_ADDR28	[12:0]	Ween	DATA28 [7:	-01				0000F000h
R12346	WSEQ Sequence 30	WSEQ	DATA WIDT			VVO	EQ_DATA	_START20	[3:0]	WSEC	ADDR29	[12:0]	WSEQ	_DATA26 [7:	.UJ				0000F000h
(303Ah)	72 1 211			LAY29 [3:0]		WS	EQ_DATA	START29	[3:0]				WSEQ	_DATA29 [7:	0]				
R12348 (303Ch)	WSEQ_Sequence_31	WSEQ_	DATA_WIDT	TH30 [2:0] ELAY30 [3:0]		WC	EO DATA	START30	2.01	WSEC	_ADDR30	[12:0]	Ween	DATA30 [7:	-01				0000F000h
R12350	WSEQ Sequence 32	WSEQ	DATA_WID1			VVO	DEQ_DAIA	_3141130	[3.0]	WSEC	ADDR31	[12:0]	WSEQ	_טאואט ני.	.uj				02253A01h
(303Eh)				LAY31 [3:0]		WS	EQ_DATA	START31	[3:0]				WSEQ	_DATA31 [7:	:0]				1
R12352 (3040h)	WSEQ_Sequence_33	WSEQ_	DATA_WIDT	TH32 [2:0] ELAY32 [3:0]		WC	EO DATA	CTADT22	2.01	WSEC	_ADDR32	[12:0]	Ween	DATA 22 17-	-01				C2251300h
R12354	WSEQ Sequence 34	WSEQ	DATA_WID1			VVO	DEQ_DAIA	_START32	[3.0]	WSEC	ADDR33	[12:0]	WSEQ	_DATA32 [7:	.uj				02250B00h
(3042h)				LAY33 [3:0]		WS	SEQ_DATA	_START33	[3:0]				WSEQ	_DATA33 [7:	:0]				
R12356 (3044h)	WSEQ_Sequence_35	WSEQ_	DATA_WIDT	FH34 [2:0] ELAY34 [3:0]	1	WS	EO DATA	START34	3.01	WSEC	_ADDR34	[12:0]	WSEO	DATA34 [7:	nı				0225FF01h
R12358	WSEQ_Sequence_36	WSEQ_	DATA_WIDT				LQ_D/II/	_01741104	.0.0]	WSEC	_ADDR35	[12:0]	HOLG		.0]				0000F000h
(3046h)				LAY35 [3:0]		WS	EQ_DATA	_START35	[3:0]				WSEQ	_DATA35 [7:	[0]				
R12360 (3048h)	WSEQ_Sequence_37	WSEQ_	DATA_WIDT WSEQ_DE	H36 [2:0] LAY36 [3:0]		WS	EQ DATA	START36	3:01	WSEC	_ADDR36	[12:0]	WSEQ	_DATA36 [7:	:01				0000F000h
R12362	WSEQ_Sequence_38	WSEQ_	DATA_WIDT						,	WSEC	_ADDR37	[12:0]			-,				0000F000h
(304Ah)		WOEG		LAY37 [3:0]		WS	EQ_DATA	_START37	[3:0]	14/05/	100000	740.01	WSEQ	_Data37 [7:	:0]				
R12364 (304Ch)	WSEQ_Sequence_39	WSEQ_	DATA_WIDT	LAY38 [3:0]		WS	EQ DATA	START38	3:01	WSEC	_ADDR38	[12:0]	WSEQ	_DATA38 [7:	:01				0000F000h
R12366	WSEQ_Sequence_40	WSEQ_	DATA_WIDT							WSEC	_ADDR39	[12:0]	-						0000F000h
(304Eh)	14050.0	WOEG		LAY39 [3:0]		WS	EQ_DATA	_START39	[3:0]	14050	100010	740.01	WSEQ	_DATA39 [7:	0]				000050001
R12368 (3050h)	WSEQ_Sequence_41	WSEQ_	DATA_WIDT	LAY40 [3:0]		WS	EQ DATA	START40	3:01	WSEC	_ADDR40	[12:0]	WSEQ	DATA40 [7:	:01				0000F000h
R12370	WSEQ_Sequence_42	WSEQ_	_DATA_WID1							WSEC	_ADDR41	[12:0]							0000F000h
(3052h)	MOEO 0 40	WOEO		LAY41 [3:0]		WS	EQ_DATA	START41	[3:0]	WOE	ADDD40	[40.01	WSEQ	_DATA41 [7:	0]				000050001
R12372 (3054h)	WSEQ_Sequence_43	WSEQ_	_DATA_WID1 WSEQ DE	LAY42 [3:0]		WS	EQ DATA	START42	[3:0]	WSEC	_ADDR42	[12:0]	WSEQ	DATA42 [7:	:0]				0000F000h
R12374	WSEQ_Sequence_44	WSEQ_	DATA_WID1	ГН43 [2:0]						WSEC	_ADDR43	[12:0]							0000F000h
(3056h) R12376	WSEQ Sequence 45	WCEO	WSEQ_DE DATA_WID1	LAY43 [3:0]		WS	EQ_DATA	_START43	[3:0]	WOE	ADDR44	[40.0]	WSEQ	_DATA43 [7:	0]				82263719h
(3058h)	WSEQ_Sequence_45	WSEQ_		LAY44 [3:0]		WS	EQ DATA	START44	[3:0]	WSEC	_ADDR44	[12:0]	WSEQ	DATA44 [7:	:0]				022037 1911
R12378	WSEQ_Sequence_46	WSEQ_	DATA_WID1	ΓH45 [2:0]						WSEC	_ADDR45	[12:0]							C2300001h
(305Ah)	WSEQ Sequence 47	WSEO	WSEQ_DE DATA WIDT	LAY45 [3:0]		WS	EQ_DATA	_START45	[3:0]	WSEC	ADDR46	[12:0]	WSEQ	_DATA45 [7:	.0]				02261201h
R12380 (305Ch)	VVOEW_Sequence_4/	WOEQ_		LAY46 [3:0]		WS	EQ_DATA	START46	[3:0]	WOE	<_∧₽₽₩40	[12.0]	WSEQ	_DATA46 [7:	0]				02261301h
R12382	WSEQ_Sequence_48	WSEQ_	DATA_WID1	ΓH47 [2:0]						WSEC	_ADDR47	[12:0]							8226191Fh
(305Eh) R12384	WSEQ Sequence 49	WSEO	WSEQ_DE DATA_WID1	LAY47 [3:0] FH48 [2:0]		WS	EQ_DATA	_START47	[3:0]	WISE	_ADDR48	[12:01	WSEQ	_DATA47 [7:	0]				82310B02h
(3060h)	WOLK_Sequence_49	TYOLQ_		LAY48 [3:0]		WS	EQ_DATA	START48	[3:0]	WOE	(_VDN1/40	[12.U]	WSEQ	_DATA48 [7:	[0]				OZO IUDUZII
R12386	WSEQ_Sequence_50	WSEQ_	DATA_WID1	ГН49 [2:0]						WSEC	_ADDR49	[12:0]							E231023Bh
(3062h) R12388	WSEQ Sequence 51	WSEO	WSEQ_DE DATA_WID1	LAY49 [3:0]		WS	EQ_DATA	_START49	[3:0]	WISE	ADDR50	[12-0]	WSEQ	_DATA49 [7:	0]				02313B01h
(3064h)	woEd_Sednetice_31	WOEQ_		LAY50 [3:0]		WS	EQ_DATA	START50	[3:0]	WOE	(_VDDU00	[12.0]	WSEQ	_DATA50 [7:	0]				UZSISBUIN
R12390	WSEQ_Sequence_52	WSEQ_	_DATA_WIDT	ΓH51 [2:0]						WSEC	_ADDR51	[12:0]		-					62300000h
(3066h)			WSEQ_DE	LAY51 [3:0]		WS	EQ_DATA	START51	[3:0]				WSEQ	_DATA51 [7:	:0]				

Register	Name	31 15	30 14	29 13	28 12	27 11	26 10	25 9	24 8	23 7	22 6	2		20 4	19 3	18 2	17 1	16 0	Default
R12392 (3068h)	WSEQ_Sequence_53	WSEQ_	DATA_WIDT			MC	EO DATA	OTADTCO	10.01	WSEC	_ADDR52	[12:0]		MOEO. D	ATAFO (7.0)				E2314288h
R12394	WSEQ Sequence 54	WSEQ	DATA WIDT	LAY52 [3:0] H53 [2:0]		WS	EQ_DATA	_START52	[3:0]	WSEC	ADDR53	[12:0]		WSEQ_D	ATA52 [7:0]				02310B00h
(306Ah)	1102 Q_00 quon 00_01		WSEQ_DE			WS	EQ_DATA	START53	[3:0]	1		[]	١	WSEQ_D	ATA53 [7:0]				0201080011
R12396 (306Ch)	WSEQ_Sequence_55	WSEQ_	DATA_WIDT			MC	EO DATA	OTADTEA	ro. 01	WSEC	_ADDR54	[12:0]		MOEO D	ATAF 4 (7.0)				02310B00h
R12398	WSEQ Sequence 56	WSEQ	WSEQ_DE DATA WIDT			VVS	EQ_DATA	_START54	[3:0]	WSEC	ADDR55	[12:0]		WSEQ_D	ATA54 [7:0]				02260E01h
(306Eh)	1102 Q_004u01100_00			LAY55 [3:0]		WS	EQ_DATA	_START55	[3:0]			[]	١	WSEQ_D	ATA55 [7:0]				- 0220020111
R12400 (3070h)	WSEQ_Sequence_57	WSEQ_	DATA_WIDT			14.6	50 BITI	OTABTES	ro. 01	WSEC	_ADDR56	[12:0]		H0E0 B	ATA 50 17 0				42310C03h
R12402	WSEQ Sequence 58	WSEQ	DATA WIDT	LAY56 [3:0] H57 [2:0]		WS	EQ_DATA	_START56	[3:0]	WSEC	ADDR57	[12:0]		WSEQ_D	ATA56 [7:0]				E2310227h
(3072h)			WSEQ_DE			WS	EQ_DATA	_START57	[3:0]			[]	١	WSEQ_D	ATA57 [7:0]				
R12404 (3074h)	WSEQ_Sequence_59	WSEQ_	DATA_WIDT			MC	EO DATA	OTADTCO	ro. 01	WSEC	Q_ADDR58	[12:0]		MOEO D	ATAFO (7.0)				02313B01h
R12406	WSEQ Sequence 60	WSEQ	DATA WIDT	LAY58 [3:0] H59 [2:0]		VVS	EQ_DATA	_START58	[3:0]	WSEC	ADDR59	[12:0]		WSEQ_D	ATA58 [7:0]				E2314266h
(3076h)			WSEQ_DE			WS	EQ_DATA	_START59	[3:0]				١	WSEQ_D	ATA59 [7:0]				
R12408 (3078h)	WSEQ_Sequence_61	WSEQ_	DATA_WIDT			VAIC	TO DATA	CTADTCO	12.01	WSE	_ADDR60	[12:0]		NCEO D	ATACO (7.0				E2315294h
R12410	WSEQ Sequence 62	WSEQ	DATA WIDT	LAY60 [3:0] H61 [2:0]		VVS	EQ_DATA	_START60	[3:0]	WSE	ADDR61	[12:0]		WSEQ_D	ATA60 [7:0]				02310B00h
(307Ah)			WSEQ_DE	LAY61 [3:0]		WS	EQ_DATA	_START61	[3:0]		_		١	WSEQ_D	ATA61 [7:0]				
R12412 (307Ch)	WSEQ_Sequence_63	WSEQ_	DATA_WIDT	H62 [2:0] LAY62 [3:0]		\A/C	EO DATA	START62	12-01	WSEC	_ADDR62	[12:0]		NSEO D	ATA62 [7:0	1			02310B00h
R12414	WSEQ Sequence 64	WSEQ	DATA WIDT			VVC	DEQ_DAIA	_51AK102	[3.0]	WSEC	ADDR63	[12:0]		W3EQ_D	H1A02 [1.0	l			E2261734h
(307Eh)			WSEQ_DE			WS	EQ_DATA	_START63	[3:0]		_		١	WSEQ_D	ATA63 [7:0]				
R12416 (3080h)	WSEQ_Sequence_65	WSEQ_	DATA_WIDT	H64 [2:0] LAY64 [3:0]		10/0	EO DATA	START64	12-01	WSEC	_ADDR64	[12:0]		NSEO D	ATA64 [7:0	1			0226F501h
R12418	WSEQ_Sequence_66	WSEQ	DATA_WIDT			VVC	DEQ_DAIA	_51AR104	[3.0]	WSEC	_ADDR65	[12:0]		W3EQ_D	H1A04 [7.0				0000F000h
(3082h)	72 1 211		WSEQ_DE			WS	EQ_DATA	_START65	[3:0]				١	WSEQ_D	ATA65 [7:0]				
R12420 (3084h)	WSEQ_Sequence_67	WSEQ_	DATA_WIDT	H66 [2:0] LAY66 [3:0]		10/0	EO DATA	START66	12-01	WSEC	_ADDR66	[12:0]		NSEO D	ATA66 [7:0	1			0000F000h
R12422	WSEQ Sequence 68	WSEQ	DATA_WIDT			VVC	DEQ_DAIA	_3141100	[3.0]	WSEC	_ADDR67	[12:0]		W3EQ_D	MIA00 [1.0				0000F000h
(3086h)				LAY67 [3:0]		WS	EQ_DATA	_START67	[3:0]				١	WSEQ_D	ATA67 [7:0]				1
R12424 (3088h)	WSEQ_Sequence_69	WSEQ_	DATA_WIDT	H68 [2:0] LAY68 [3:0]		\A/C	EO DATA	START68	12-01	WSEC	_ADDR68	[12:0]		NSEO D	ATA68 [7:0]	1			0000F000h
R12426	WSEQ Sequence 70	WSEQ	DATA_WIDT			VVC	DEQ_DAIA	_3141100	[3.0]	WSEC	_ADDR69	[12:0]		W3EQ_D	MIA00 [1.0				0000F000h
(308Ah)				LAY69 [3:0]		WS	SEQ_DATA	_START69	[3:0]				١	WSEQ_D	ATA69 [7:0]				
R12428 (308Ch)	WSEQ_Sequence_71	WSEQ_	DATA_WIDT	H70 [2:0] LAY70 [3:0]	1	WS	EO DATA	START70	r3·∩1	WSE	Q_ADDR70	[12:0]	١	NSEO D	ATA70 [7:0	1			0000F000h
R12430	WSEQ_Sequence_72	WSEQ_	_DATA_WIDT			****	LQ_D/II/	_01/4(1/0	[0.0]	WSE	_ADDR71	[12:0]		HOLQ_D					02263A01h
(308Eh)				LAY71 [3:0]		WS	EQ_DATA	_START71	[3:0]				١	WSEQ_D	ATA71 [7:0]				
R12432 (3090h)	WSEQ_Sequence_73	WSEQ_	DATA_WIDT WSEQ DE	H72 [2:0] LAY72 [3:0]		WS	EQ DATA	START72	[3:0]	WSEC	_ADDR72	[12:0]	١	WSEQ D	ATA72 [7:0]	1			C2261300h
R12434	WSEQ_Sequence_74	WSEQ_	DATA_WIDT						,	WSEC	_ADDR73	[12:0]							02260B00h
(3092h)		WOEG	WSEQ_DE			WS	EQ_DATA	_START73	[3:0]	1405	100074	740 O	١	WSEQ_D	ATA73 [7:0]				200055041
R12436 (3094h)	WSEQ_Sequence_75	WSEQ_	DATA_WIDT WSEQ DE	H/4 [2:0] LAY74 [3:0]		WS	EQ DATA	START74	[3:0]	WSEC	_ADDR74	[12:0]	1	WSEQ D	ATA74 [7:0]	ı			0226FF01h
R12438	WSEQ_Sequence_76	WSEQ_	DATA_WIDT							WSEC	_ADDR75	[12:0]							0000F000h
(3096h)	MOEO 0 77	WOEO	WSEQ_DE			WS	EQ_DATA	_START75	[3:0]	WOE	A DDD70	[40.0]	١	WSEQ_D	ATA75 [7:0]				000050001
R12440 (3098h)	WSEQ_Sequence_77	WSEQ_	DATA_WIDT WSEQ DE			WS	EQ DATA	START76	[3:0]	WSEC	Q_ADDR76	[12:0]	١	WSEQ D	ATA76 [7:0	1			0000F000h
R12442	WSEQ_Sequence_78	WSEQ_	_DATA_WIDT							WSEC	_ADDR77	[12:0]							0000F000h
(309Ah)	MCEO Comuenco 70	WCEO	WSEQ_DE			WS	EQ_DATA	_START77	[3:0]	WCE	ADDR78	[40.01	١	WSEQ_D	ATA77 [7:0]				000050006
R12444 (309Ch)	WSEQ_Sequence_79	WSEQ_	_Data_widt _wseq_de	LAY78 [3:0]		WS	EQ DATA	START78	[3:0]	WSEC	Z_ADDR76	[12:0]	١	WSEQ D	ATA78 [7:0	1			0000F000h
R12446	WSEQ_Sequence_80	WSEQ_	DATA_WIDT	H79 [2:0]						WSEC	_ADDR79	[12:0]							0000F000h
(309Eh) R12448	MCEO Comuence 04	WCEO	WSEQ_DE			WS	EQ_DATA	_START79	[3:0]	WCE	ADDR80	[40.01	١	WSEQ_D	ATA79 [7:0]				0000F000h
(30A0h)	WSEQ_Sequence_81	WSEQ_	_DATA_WIDT WSEQ_DE			WS	EQ DATA	START80	[3:0]	WSEC	Z_ADDR60	[12:0]	١	WSEQ D	ATA80 [7:0	1			0000F00011
R12450	WSEQ_Sequence_82	WSEQ_	DATA_WIDT							WSEC	_ADDR81	[12:0]							0000F000h
(30A2h)	MSEO Seguence 92	WSEO	WSEQ_DE DATA WIDT			WS	EQ_DATA	_START81	[3:0]	WSE	ADDR82	[12:0]	١	WSEQ_D	ATA81 [7:0]				000050006
R12452 (30A4h)	WSEQ_Sequence_83	WOEQ_	WSEQ_DE			WS	EQ_DATA	START82	[3:0]	WOE	k_∧∪∪N0Z	[12.0]	١	WSEQ_D	ATA82 [7:0]				0000F000h
R12454	WSEQ_Sequence_84	WSEQ_	_DATA_WIDT	H83 [2:0]						WSEC	_ADDR83	[12:0]							0000F000h
(30A6h) R12456	WSEQ Sequence 85	WSEO	WSEQ_DE DATA_WIDT			WS	EQ_DATA	_START83	[3:0]	Wee	_ADDR84	[12:01	١	WSEQ_D	ATA83 [7:0]				82273719h
(30A8h)	MAGE & Gedneline 02	TYOLQ_	WSEQ_DE			WS	EQ_DATA	START84	[3:0]	VVOE	k_√∩ΩΩ1/04	[14.0]	١	WSEQ_D	ATA84 [7:0]				0221311811
R12458	WSEQ_Sequence_86	WSEQ_	DATA_WIDT	H85 [2:0]						WSEC	_ADDR85	[12:0]							C2400001h
(30AAh) R12460	WSEQ Sequence 87	WSEO	WSEQ_DE DATA_WIDT			WS	SEQ_DATA	_START85	[3:0]	WSE	ADDR86	[12:0]	١	WSEQ_D	ATA85 [7:0]				02271301h
(30ACh)	VYOLW_Gequence_0/	**************************************		LAY86 [3:0]		WS	EQ_DATA	_START86	[3:0]	**55		[14.0]	١	WSEQ_D	ATA86 [7:0]	l			0221 130 111
R12462	WSEQ_Sequence_88	WSEQ_	DATA_WIDT							WSEC	_ADDR87	[12:0]							8227191Fh
(30AEh)			WSEQ_DE	LAY87 [3:0]		WS	EQ_DATA	_START87	[3:0]				١	WSEQ_D	ATA87 [7:0]				

Register	Name	31 15	30 14	29 13	28 12	27 11	26 10	25 9	24 8	23 7	22 6	21 5	20		19 3	18 2	17 1	1		Default
R12464 (30B0h)	WSEQ_Sequence_89	WSEQ_	DATA_WIDT	TH88 [2:0] ELAY88 [3:0]		W	EO DATA	CTADT00	[2-0]	WSEC	_ADDR88	[12:0]	Wee	DATAGO	17:01				=	82410B00h
R12466 (30B2h)	WSEQ_Sequence_90	WSEQ_	DATA_WIDT	ΓH89 [2:0]				_START88		WSEC	_ADDR89	[12:0]		_DATA88					=	E241023Bh
R12468 (30B4h)	WSEQ_Sequence_91	WSEQ_	DATA_WIDT	ELAY89 [3:0] FH90 [2:0] ELAY90 [3:0]				_START89 _START90		WSEC	_ADDR90	[12:0]		DATA89					=	02413B01h
R12470 (30B6h)	WSEQ_Sequence_92	WSEQ_	DATA_WIDT	ΓH91 [2:0]						WSEC	_ADDR91	[12:0]							#	62400000h
R12472 (30B8h)	WSEQ_Sequence_93	WSEQ_	DATA_WIDT					_START91		WSEC	_ADDR92	[12:0]		_DATA91					#	E2414288h
R12474 (30BAh)	WSEQ_Sequence_94	WSEQ_	DATA_WIDT	ELAY92 [3:0] FH93 [2:0] ELAY93 [3:0]				_START92 _START93		WSEC	_ADDR93	[12:0]		_DATA92					=	02410B00h
R12476 (30BCh)	WSEQ_Sequence_95	WSEQ_	DATA_WIDT					_START94		WSEC	_ADDR94	[12:0]		_DATA94					=	02410B00h
R12478 (30BEh)	WSEQ_Sequence_96	WSEQ_	DATA_WIDT					START95		WSEC	_ADDR95	[12:0]		DATA95					#	02270E01h
R12480 (30C0h)	WSEQ_Sequence_97	WSEQ_	DATA_WIDT					START96		WSEC	_ADDR96	[12:0]		DATA96					=	42410C02h
R12482 (30C2h)	WSEQ_Sequence_98	WSEQ_	DATA_WIDT					_START97		WSEC	Q_ADDR97	[12:0]		DATA97					#	E2410227h
R12484 (30C4h)	WSEQ_Sequence_99	WSEQ_	DATA_WIDT					START98		WSEC	_ADDR98	[12:0]		DATA98					=	02413B01h
R12486 (30C6h)	WSEQ_Sequence_100	WSEQ_	DATA_WIDT					START99		WSEC	Q_ADDR99	[12:0]		DATA99					=	E2414266h
R12488 (30C8h)	WSEQ_Sequence_101	WSEQ_I	DATA_WIDTI		1			START100		WSEC	_ADDR100	[12:0]		DATA10					=	E2415294h
R12490 (30CAh)	WSEQ_Sequence_102	WSEQ_I	DATA_WIDTI WSEQ_DEL	H101 [2:0]				START101		WSEC	_ADDR10	[12:0]		DATA10					=	02410B00h
R12492 (30CCh)	WSEQ_Sequence_103	WSEQ_I	DATA_WIDTI					START102		WSEC	_ADDR102	[12:0]		DATA10					=	02410B00h
R12494 (30CEh)	WSEQ_Sequence_104	WSEQ_I	DATA_WIDTI					START103		WSEC	_ADDR103	[12:0]		DATA10					=	E2271734h
R12496 (30D0h)	WSEQ_Sequence_105	WSEQ_I	DATA_WIDTI					START104		WSEC	_ADDR104	[12:0]		_DATA104					=	0227F501h
R12498 (30D2h)	WSEQ_Sequence_106	WSEQ_I	DATA_WIDTI					START105		WSEC	_ADDR105	[12:0]		DATA10					=	0000F000h
R12500 (30D4h)	WSEQ_Sequence_107	WSEQ_I	DATA_WIDTI					START106		WSEC	_ADDR106	[12:0]		DATA10					#	0000F000h
R12502 (30D6h)	WSEQ_Sequence_108	WSEQ_I	DATA_WIDTI					START107		WSEC	_ADDR107	[12:0]		DATA10					#	0000F000h
R12504 (30D8h)	WSEQ_Sequence_109	WSEQ_I	DATA_WIDTI					START108		WSEC	_ADDR108	[12:0]		DATA10					=	0000F000h
R12506 (30DAh)	WSEQ_Sequence_110	WSEQ_I	DATA_WIDTI	H109 [2:0]		WS	EQ DATA	START109	[3:0]	WSEC	_ADDR109	[12:0]		DATA10					=	0000F000h
R12508 (30DCh)	WSEQ_Sequence_111	WSEQ_	DATA_WIDTI	H110 [2:0] LAY110 [3:0				START110		WSEC	_ADDR110	[12:0]							=	0000F000h
R12510 (30DEh)	WSEQ_Sequence_112	WSEQ_	DATA_WIDT	H111 [2:0]				START111		WSEC	_ADDR111	[12:0]		DATA11					_	02273A01h
R12512 (30E0h)	WSEQ_Sequence_113	WSEQ_	DATA_WIDTI	H112 [2:0] LAY112 [3:0]				START112		WSEC	_ADDR112	[12:0]		DATA112					=	C2271300h
R12514 (30E2h)	WSEQ_Sequence_114	WSEQ_	DATA_WIDTI	H113 [2:0] LAY113 [3:0		WS	EQ DATA	START113	[3:0]	WSEC	_ADDR113	[12:0]		DATA11					_	02270B00h
R12516 (30E4h)	WSEQ_Sequence_115	WSEQ_	DATA_WIDTI	H114 [2:0] LAY114 [3:0]		WS	EQ DATA	START114	[3:0]	WSEC	_ADDR114	[12:0]		DATA114					=	0227FF01h
R12518 (30E6h)	WSEQ_Sequence_116	WSEQ_	DATA_WIDT	H115 [2:0] LAY115 [3:0]		WS	EQ DATA	START115	[3:0]	WSEC	_ADDR115	[12:0]	WSEQ	_DATA11	5 [7:0]				=	0000F000h
R12520 (30E8h)	WSEQ_Sequence_117	WSEQ_	DATA_WIDT			WS	EQ DATA	START116	[3:0]	WSEC	_ADDR116	[12:0]		DATA116					=	0000F000h
R12522 (30EAh)	WSEQ_Sequence_118	WSEQ_	DATA_WIDT					START117		WSEC	_ADDR117	[12:0]		_DATA11						0000F000h
R12524 (30ECh)	WSEQ_Sequence_119	WSEQ_	DATA_WIDT					START118		WSEC	_ADDR118	[12:0]		DATA118						0000F000h
R12526 (30EEh)	WSEQ_Sequence_120	WSEQ_	DATA_WIDT					START119		WSEC	_ADDR119	[12:0]		DATA119					=	0000F000h
R12528 (30F0h)	WSEQ_Sequence_121	WSEQ_I	DATA_WIDTI	H120 [2:0]				START120		WSEC	_ADDR120	[12:0]		DATA12					7	0000F000h
R12530 (30F2h)	WSEQ_Sequence_122	WSEQ_I	DATA_WIDTI					START121		WSEC	_ADDR12	[12:0]		DATA12					=	0000F000h
R12532 (30F4h)	WSEQ_Sequence_123	WSEQ_I	DATA_WIDTI					START122		WSEC	_ADDR122	[12:0]		DATA12					=	0000F000h
R12534 (30F6h)	WSEQ_Sequence_124	WSEQ_I	DATA_WIDTI					START123		WSEC	_ADDR12	[12:0]		DATA12					#	0000F000h
<u> </u>	I.	1								1					. 4					

Register	Name	31 15	30 14	29 13	28 12	27 11	26 10	25 9	24 8	23 7	22 6	21 5	20 4	19 3	18 2	17 1	16 0	Default
R12536 (30F8h)	WSEQ_Sequence_125	WSEQ_I	DATA_WIDT WSEQ DEI			WS	FO DATA	START124	[3:0]	WSEC	_ADDR124	[12:0]	WSEO DA	ATA124 [7:0	1			82283719h
R12538 (30FAh)	WSEQ_Sequence_126	WSEQ_I	DATA_WIDT WSEQ_DEI	H125 [2:0]				START125		WSEC	_ADDR125	[12:0]		ATA125 [7:0				C2400001h
R12540 (30FCh)	WSEQ_Sequence_127	WSEQ_I	DATA_WIDT WSEQ_DEI					START126			_ADDR126		WSEQ_D/	ATA126 [7:0				02281301h
R12542 (30FEh)	WSEQ_Sequence_128	WSEQ_I	DATA_WIDT WSEQ DEI			WS	FO DATA	START127	[3:0]	WSEC	_ADDR127	[12:0]	WSFQ D	ATA127 [7:0	1			8228191Fh
R12544 (3100h)	WSEQ_Sequence_129	WSEQ_I	DATA_WIDT WSEQ_DEI	H128 [2:0]				START128		WSEC	_ADDR128	3 [12:0]		ATA128 [7:0				82410B02h
R12546 (3102h)	WSEQ_Sequence_130	WSEQ_I	DATA_WIDT WSEQ_DEI	H129 [2:0] LAY129 [3:0		WS	EQ_DATA_	START129	[3:0]	WSEC	_ADDR129	[12:0]	WSEQ_D/	ATA129 [7:0				E241023Bh
R12548 (3104h)	WSEQ_Sequence_131	WSEQ_I	DATA_WIDT WSEQ DEI			WS	EQ DATA	START130	[3:0]	WSEC	_ADDR130	[12:0]	WSEQ DA	ATA130 [7:0	1			02413B01h
R12550 (3106h)	WSEQ_Sequence_132	WSEQ_I	DATA_WIDT					START131		WSEC	_ADDR131	[12:0]		ATA131 [7:0				62400000h
R12552 (3108h)	WSEQ_Sequence_133	WSEQ_I	DATA_WIDT WSEQ_DEI	H132 [2:0] LAY132 [3:0		WS	EQ_DATA_	START132	[3:0]	WSEC	_ADDR132	[12:0]	WSEQ_D/	ATA132 [7:0				E2414288h
R12554 (310Ah)	WSEQ_Sequence_134	WSEQ_I	DATA_WIDT WSEQ_DEI	H133 [2:0] LAY133 [3:0]		WS	EQ_DATA_	START133	[3:0]	WSEC	_ADDR133	3 [12:0]	WSEQ_D/	ATA133 [7:0				02410B00h
R12556 (310Ch)	WSEQ_Sequence_135	WSEQ_I	DATA_WIDT WSEQ_DEI			WS	EQ_DATA_	START134	[3:0]	WSEC	_ADDR134	[12:0]	WSEQ_DA	ATA134 [7:0				02410B00h
R12558 (310Eh)	WSEQ_Sequence_136	WSEQ_I	DATA_WIDT WSEQ_DEI	H135 [2:0] LAY135 [3:0]		WS	EQ_DATA_	START135	[3:0]	WSEC	_ADDR135	[12:0]	WSEQ_D/	ATA135 [7:0				02280E01h
R12560 (3110h)	WSEQ_Sequence_137	WSEQ_I	DATA_WIDT WSEQ_DEI			WS	EQ_DATA_	START136	[3:0]	WSEC	_ADDR136	[12:0]	WSEQ_D/	ATA136 [7:0]			42410C03h
R12562 (3112h)	WSEQ_Sequence_138	WSEQ_I	DATA_WIDT					START137		WSEC	_ADDR137	[12:0]	WSEQ_D/	ATA137 [7:0]			E2410227h
R12564 (3114h)	WSEQ_Sequence_139	WSEQ_I	DATA_WIDT	H138 [2:0] LAY138 [3:0				START138		WSEC	_ADDR138	3 [12:0]	WSEQ DA	ATA138 [7:0	1			02413B01h
R12566 (3116h)	WSEQ_Sequence_140	WSEQ_I	DATA_WIDT	H139 [2:0]				START139		WSEC	_ADDR139	[12:0]		ATA139 [7:0				E2414266h
R12568 (3118h)	WSEQ_Sequence_141	WSEQ_I	DATA_WIDT					START140		WSEC	_ADDR140	[12:0]		ATA140 [7:0				E2415294h
R12570 (311Ah)	WSEQ_Sequence_142	WSEQ_I	DATA_WIDT	H141 [2:0]				START141		WSEC	_ADDR141	[12:0]		ATA141 [7:0				02410B00h
R12572 (311Ch)	WSEQ_Sequence_143	WSEQ_I	DATA_WIDT	H142 [2:0]				START142		WSEC	_ADDR142	[12:0]		ATA142 [7:0				02410B00h
R12574 (311Eh)	WSEQ_Sequence_144	WSEQ_I	DATA_WIDT	H143 [2:0]				START143		WSEC	_ADDR143	3 [12:0]		ATA143 [7:0				E2281734h
R12576 (3120h)	WSEQ_Sequence_145	WSEQ_I	DATA_WIDT					START144		WSEC	_ADDR144	[12:0]		ATA144 [7:0				0228F501h
R12578 (3122h)	WSEQ_Sequence_146	WSEQ_I	DATA_WIDT WSEQ_DEI	H145 [2:0]				START145		WSEC	_ADDR145	[12:0]		ATA145 [7:0				0000F000h
R12580 (3124h)	WSEQ_Sequence_147	WSEQ_I	DATA_WIDT	H146 [2:0]						WSEC	_ADDR146	[12:0]						0000F000h
R12582 (3126h)	WSEQ_Sequence_148	WSEQ_I	DATA_WIDT					START146		WSEC	_ADDR147	[12:0]		ATA146 [7:0				0000F000h
R12584	WSEQ_Sequence_149	WSEQ_I	DATA_WIDT					START147		WSEC	_ADDR148	3 [12:0]		ATA147 [7:0				0000F000h
(3128h) R12586	WSEQ_Sequence_150	WSEQ_I	DATA_WIDT					START148		WSEC	_ADDR149	[12:0]		ATA148 [7:0				0000F000h
(312Ah) R12588	WSEQ_Sequence_151	WSEQ_I	WSEQ_DEI DATA_WIDT	LAY149 [3:0] H150 [2:0]				START149		WSEC	_ADDR150	[12:0]		ATA149 [7:0				0000F000h
(312Ch) R12590	WSEQ_Sequence_152	WSEQ_I	DATA_WIDT			WS	EQ_DATA_	START150	[3:0]	WSEC	_ADDR151	[12:0]	WSEQ_D/	ATA150 [7:0				02283A01h
(312Eh) R12592	WSEQ_Sequence_153	WSEQ_I	WSEQ_DEI DATA_WIDT	LAY151 [3:0 H152 [2:0]		WS	EQ_DATA_	START151	[3:0]	WSEC	_ADDR152	[12:0]	WSEQ_D/	ATA151 [7:0				C2281300h
(3130h) R12594	WSEQ_Sequence_154	WSEQ_I	WSEQ_DEI DATA_WIDT			WS	EQ_DATA_	START152	[3:0]	WSEC	_ADDR153	3 [12:0]	WSEQ_D/	ATA152 [7:0				02280B00h
(3132h) R12596	WSEQ_Sequence_155	WSEQ_I	WSEQ_DEI DATA_WIDT			WS	EQ_DATA_	START153	[3:0]	WSEC	_ADDR154	[12:0]	WSEQ_D/	ATA153 [7:0				0228FF01h
(3134h) R12598	WSEQ_Sequence_156	WSEQ_I	WSEQ_DEI			WS	EQ_DATA_	START154	[3:0]	WSEC	_ADDR155	5 [12:0]	WSEQ_D/	ATA154 [7:0				0000F000h
(3136h) R12600	WSEQ_Sequence_157		WSEQ_DEI	LAY155 [3:0		WS	EQ_DATA_	START155	[3:0]	WSEC	 _ADDR156	5 [12:0]	WSEQ_D/	ATA155 [7:0				0000F000h
(3138h) R12602	WSEQ_Sequence_158		WSEQ_DEI	LAY156 [3:0		WS	EQ_DATA_	START156	[3:0]		ADDR157		WSEQ_D/	ATA156 [7:0				0000F000h
(313Ah) R12604	WSEQ_Sequence_159		WSEQ_DEI	LAY157 [3:0		WS	EQ_DATA_	START157	[3:0]		ADDR158		WSEQ_D/	ATA157 [7:0				0000F000h
(313Ch)			WSEQ_DEI	LAY158 [3:0		WS	EQ_DATA_	START158	[3:0]				WSEQ_D/	ATA158 [7:0				
R12606 (313Eh)	WSEQ_Sequence_160	WOEQ_I	DATA_WIDT WSEQ_DEI	H159 [2:0] LAY159 [3:0]		WS	EQ_DATA_	START159	[3:0]	VVSEC	_ADDR159	[1Z:U]	WSEQ_D/	ATA159 [7:0				0000F000h

Register	Name	31 15	30 14	29 13	28 12	27 11	26 10	25 9	24 8	23 7	22 6	21 5	20 4	19 3	18 2	17 1	16 0	Default
R12608 (3140h)	WSEQ_Sequence_161	WSEQ_I	DATA_WIDT WSEQ DEI			WS	FO DATA	START160	[3:0]	WSEC	_ADDR160	[12:0]	WSFO D	ATA160 [7:0	1	•	•	0000F000h
R12610 (3142h)	WSEQ_Sequence_162	WSEQ_I	DATA_WIDT WSEQ_DEI	H161 [2:0]				START161		WSEC	_ADDR161	[12:0]		ATA161 [7:0				0000F000h
R12612 (3144h)	WSEQ_Sequence_163	WSEQ_I	DATA_WIDT WSEQ_DEI			WS	EQ_DATA_	START162	[3:0]	WSEC	_ADDR162	[12:0]	WSEQ_D	ATA162 [7:0				0000F000h
R12614 (3146h)	WSEQ_Sequence_164	WSEQ_I	DATA_WIDT WSEQ DEI		1	WS	EQ DATA	START163	[3:0]	WSEC	_ADDR163	[12:0]	WSEQ D	ATA163 [7:0	1			0000F000h
R12616 (3148h)	WSEQ_Sequence_165	WSEQ_I	DATA_WIDT WSEQ_DEI	H164 [2:0]				START164		WSEC	_ADDR164	[12:0]	_	ATA164 [7:0				82293719h
R12618 (314Ah)	WSEQ_Sequence_166	_		LAY165 [3:0		WS	EQ_DATA_	START165	[3:0]		_ADDR165		WSEQ_D	ATA165 [7:0				C2500001h
R12620 (314Ch)	WSEQ_Sequence_167	WSEQ_I	DATA_WIDT WSEQ_DEI	H166 [2:0] LAY166 [3:0]		WS	EQ_DATA_	START166	[3:0]	WSEC	_ADDR166	5 [12:0]	WSEQ_D	ATA166 [7:0]			02291301h
R12622 (314Eh)	WSEQ_Sequence_168	WSEQ_I	DATA_WIDT WSEQ_DEI	H167 [2:0] LAY167 [3:0		WS	EQ_DATA_	START167	[3:0]	WSEC	_ADDR167	[12:0]	WSEQ_D	ATA167 [7:0				8229191Fh
R12624 (3150h)	WSEQ_Sequence_169			LAY168 [3:0		WS	EQ_DATA_	START168	[3:0]		_ADDR168		WSEQ_D	ATA168 [7:0				82510B00h
R12626 (3152h)	WSEQ_Sequence_170	WSEQ_I	DATA_WIDT WSEQ_DEI	H169 [2:0] LAY169 [3:0]		WS	EQ_DATA_	START169	[3:0]	WSEC	_ADDR169	[12:0]	WSEQ_D	ATA169 [7:0]			E251023Bh
R12628 (3154h)	WSEQ_Sequence_171	WSEQ_I	DATA_WIDT WSEQ_DEI	H170 [2:0] LAY170 [3:0		WS	EQ_DATA_	START170	[3:0]	WSEC	_ADDR170	[12:0]	WSEQ_D	ATA170 [7:0				02513B01h
R12630 (3156h)	WSEQ_Sequence_172	WSEQ_I	DATA_WIDT WSEQ DEI	H171 [2:0] LAY171 [3:0		WS	EQ DATA	START171	[3:0]	WSEC	_ADDR171	[12:0]	WSEQ D	ATA171 [7:0	1			62500000h
R12632 (3158h)	WSEQ_Sequence_173	WSEQ_I	DATA_WIDT WSEQ_DEI	H172 [2:0]				START172		WSEC	_ADDR172	[12:0]		ATA172 [7:0				E2514288h
R12634 (315Ah)	WSEQ_Sequence_174	WSEQ_I	DATA_WIDT WSEQ_DEI			WS	EQ_DATA_	START173	[3:0]	WSEC	_ADDR173	3 [12:0]	WSEQ_D	ATA173 [7:0				02510B00h
R12636 (315Ch)	WSEQ_Sequence_175	WSEQ_I	DATA_WIDT	H174 [2:0] LAY174 [3:0		WS	EQ DATA	START174	[3:0]	WSEC	_ADDR174	[12:0]	WSEQ D	ATA174 [7:0	1			02510B00h
R12638 (315Eh)	WSEQ_Sequence_176	WSEQ_I	DATA_WIDT	H175 [2:0]				START175		WSEC	_ADDR175	[12:0]		ATA175 [7:0				02290E01h
R12640 (3160h)	WSEQ_Sequence_177	WSEQ_I	DATA_WIDT WSEQ_DEI	H176 [2:0] LAY176 [3:0		WS	EQ_DATA_	START176	[3:0]	WSEC	_ADDR176	[12:0]	WSEQ_D	ATA176 [7:0				42510C02h
R12642 (3162h)	WSEQ_Sequence_178	WSEQ_I	DATA_WIDT WSEQ DEI			WS	EQ DATA	START177	[3:0]	WSEC	_ADDR177	[12:0]	WSEQ D	ATA177 [7:0	1			E2510227h
R12644 (3164h)	WSEQ_Sequence_179	WSEQ_I	DATA_WIDT					START178		WSEC	_ADDR178	3 [12:0]		ATA178 [7:0				02513B01h
R12646 (3166h)	WSEQ_Sequence_180	WSEQ_I	DATA_WIDT WSEQ_DEI			WS	EO DATA	START179	[3:0]	WSEC	_ADDR179	[12:0]	WSEO D	ATA179 [7:0	1			E2514266h
R12648 (3168h)	WSEQ_Sequence_181	WSEQ_I	DATA_WIDT	H180 [2:0]						WSEC	_ADDR180	[12:0]						E2515294h
R12650	WSEQ_Sequence_182	WSEQ_I	DATA_WIDT		'			START180		WSEC	_ADDR181	[12:0]		ATA180 [7:0				02510B00h
(316Ah) R12652	WSEQ Sequence 183	WSEQ_I	WSEQ_DEI			WS	EQ_DATA_	START181	[3:0]	WSEC	_ADDR182	[12:0]	WSEQ_D	ATA181 [7:0				02510B00h
(316Ch) R12654	WSEQ_Sequence_184	WSEO I	WSEQ_DEI	LAY182 [3:0]		WS	EQ_DATA_	START182	[3:0]	WSEC	ADDR183	112:01	WSEQ_D	ATA182 [7:0				E2291734h
(316Eh)			WSEQ_DEI	LAY183 [3:0]		WS	EQ_DATA_	START183	[3:0]				WSEQ_D	ATA183 [7:0				
R12656 (3170h)	WSEQ_Sequence_185	_		LAY184 [3:0]		WS	EQ_DATA_	START184	[3:0]		_ADDR184		WSEQ_D	ATA184 [7:0				0229F501h
R12658 (3172h)	WSEQ_Sequence_186	WSEQ_I	DATA_WIDT WSEQ_DEI	H185 [2:0] LAY185 [3:0]		WS	EQ_DATA_	START185	[3:0]	WSEG	_ADDR185	[12:0]	WSEQ_D	ATA185 [7:0]			0000F000h
R12660 (3174h)	WSEQ_Sequence_187	WSEQ_I	DATA_WIDT WSEQ_DEI			WS	EQ_DATA_	START186	[3:0]	WSEC	_ADDR186	[12:0]	WSEQ_D	ATA186 [7:0				0000F000h
R12662 (3176h)	WSEQ_Sequence_188	WSEQ_I	DATA_WIDT WSEQ DEI	H187 [2:0] LAY187 [3:0		WS	EQ DATA	START187	[3:0]	WSEC	_ADDR187	[12:0]	WSEQ DA	ATA187 [7:0	1			0000F000h
R12664 (3178h)	WSEQ_Sequence_189	WSEQ_I	DATA_WIDT	H188 [2:0]				START188		WSEC	_ADDR188	3 [12:0]		ATA188 [7:0				0000F000h
R12666 (317Ah)	WSEQ_Sequence_190	WSEQ_I	DATA_WIDT WSEQ_DEI	H189 [2:0]				START189		WSEC	_ADDR189	[12:0]		ATA189 [7:0				0000F000h
R12668 (317Ch)	WSEQ_Sequence_191	WSEQ_I	DATA_WIDT WSEQ_DEI	H190 [2:0]				START190		WSEC	_ADDR190	[12:0]		ATA190 [7:0				0000F000h
R12670 (317Eh)	WSEQ_Sequence_192	WSEQ_I	DATA_WIDT WSEQ_DEI	H191 [2:0]				START191		WSEC	_ADDR191	[12:0]		ATA191 [7:0				02293A01h
R12672 (3180h)	WSEQ_Sequence_193	WSEQ_I	DATA_WIDT WSEQ_DEI	H192 [2:0]				START 191		WSEC	_ADDR192	[12:0]		ATA192 [7:0				C2291300h
R12674	WSEQ_Sequence_194	WSEQ_I	DATA_WIDT	H193 [2:0]						WSEC	_ADDR193	3 [12:0]						02290B00h
(3182h) R12676 (3184h)	WSEQ_Sequence_195	WSEQ_I	WSEQ_DEI	H194 [2:0]				START193		WSEC	_ADDR194	[12:0]		ATA193 [7:0				0229FF01h
R12678 (3186h)	WSEQ_Sequence_196	WSEQ_I	WSEQ_DEI	H195 [2:0]				START194		WSEC	_ADDR195	[12:0]		ATA194 [7:0				0000F000h
(0.0011)		<u> </u>	MOEM_DEI	LAY195 [3:0]		WS	EW_DATA_	START195	[3:0]	L			WOEQ_D	ATA195 [7:0				

Register	Name	31 15	30 14	29 13	28 12	27 11	26 10	25 9	24 8	23 7	22 6	2 ⁻ 5			19 3	18 2	17 1	16 0	Default
R12680 (3188h)	WSEQ_Sequence_197	WSEQ_	DATA_WIDT			14/01	EO DATA	OTADT400	10-01	WSEQ	_ADDR196	[12:0]	WOEO	DATA	400 [7.0]		•		0000F000h
R12682	WSEQ Sequence 198	WSEQ	DATA WIDT	LAY196 [3:0] H197 [2:0]		WSI	EQ_DATA_	START196	[3:0]	WSEC	ADDR197	7 [12:0]	WSEG	_DATA	196 [7:0]	1			0000F000h
(318Ah)	110E@_004u01100_100			LAY197 [3:0]		WSI	EQ_DATA_	START197	[3:0]			[]	WSEQ	_DATA	197 [7:0]]			- 00001 00011
R12684 (318Ch)	WSEQ_Sequence_199	WSEQ_	DATA_WIDT			MOI	EO DATA	OTADT400	ro. 01	WSEQ	_ADDR198	3 [12:0]	WOEO	DATA	400 [7.0				0000F000h
R12686	WSEQ Sequence 200	WSEQ	DATA WIDT	LAY198 [3:0] H199 [2:0]		WSI	EQ_DATA_	START198	[3:0]	WSEC	ADDR199	12:01	WSEG	_DATA	198 [7:0]	1			0000F000h
(318Eh)				LAY199 [3:0		WSI	EQ_DATA_	START199	[3:0]				WSEQ	_DATA	199 [7:0]]			
R12688 (3190h)	WSEQ_Sequence_201	WSEQ_	DATA_WIDT			MC	FO DATA	CTARTOO	12.01	WSEQ	_ADDR200	[12:0]	WCEC	DATA	200 [7:0]	1			0000F000h
R12690	WSEQ Sequence 202	WSEQ	DATA WIDT	LAY200 [3:0] H201 [2:0]		Wo	EQ_DATA_	START200	[3.0]	WSEQ	ADDR201	[12:0]	WOEG	_DAIA	200 [7.0	1			0000F000h
(3192h)	' _			LAY201 [3:0		WSI	eq_data_	START201	[3:0]				WSEQ	_DATA	201 [7:0]]			1
R12692 (3194h)	WSEQ_Sequence_203	WSEQ_	DATA_WIDT	H202 [2:0] LAY202 [3:0]		WC	EO DATA	START202	10.01	WSEQ	_ADDR202	2 [12:0]	Weed	DATA	202 [7:0]	1			0000F000h
R12694	WSEQ Sequence 204	WSEQ	DATA WIDT			Wo	EQ_DATA_	31AN1202	[3.0]	WSEQ	ADDR203	3 [12:0]	WOEG	_DAIA	1202 [1.0	1			0000F000h
(3196h)				LAY203 [3:0]		WSI	EQ_DATA_	START203	[3:0]				WSEQ	_DATA	203 [7:0]]			
R12696 (3198h)	WSEQ_Sequence_205	WSEQ_	DATA_WIDT	H204 [2:0] LAY204 [3:0]		WC	EO DATA	START204	10.01	WSEQ	_ADDR204	[12:0]	Weed	DATA	204 [7:0]	1			822A3719h
R12698	WSEQ_Sequence_206	WSEQ	DATA WIDT			Wo	EQ_DATA_	31AN1204	[3.0]	WSEQ	ADDR205	[12:0]	WOEG	_DAIA	1204 [7.0	1			C2500001h
(319Ah)				LAY205 [3:0		WSI	eq_data_	START205	[3:0]				WSEQ	_DATA	205 [7:0]]			
R12700 (319Ch)	WSEQ_Sequence_207	WSEQ_	DATA_WIDT	H206 [2:0] LAY206 [3:0]		W/SI	FO DATA	START206	[3-0]	WSEQ	_ADDR206	5 [12:0]	WSEO	ΠΔΤΔ	206 [7:0]	1			022A1301h
R12702	WSEQ_Sequence_208	WSEQ_	DATA_WIDT			****	LQ_DAIA_	OTAIN1200	[0.0]	WSEC	_ADDR207	7 [12:0]	WOLG		1200 [1.0	1			822A191Fh
(319Eh)				LAY207 [3:0]		WSI	eq_data_	START207	[3:0]				WSEQ	_DATA	207 [7:0]]			
R12704 (31A0h)	WSEQ_Sequence_209	WSEQ_	DATA_WIDT	H208 [2:0] LAY208 [3:0]		W/SI	FO DATA	START208	[3-0]	WSEQ	_ADDR208	3 [12:0]	WSEO	ΠΔΤΔ	208 [7:0]	1			82510B02h
R12706	WSEQ Sequence 210	WSEQ_	DATA_WIDT			****	LQ_DAIA_	OTAIN1200	[0.0]	WSEQ	_ADDR209	[12:0]	WOLG		1200 [1.0	1			E251023Bh
(31A2h)				LAY209 [3:0]		WSI	eq_data_	START209	[3:0]				WSEQ	_DATA	209 [7:0]]			
R12708 (31A4h)	WSEQ_Sequence_211	WSEQ_	DATA_WIDT	H210 [2:0] LAY210 [3:0]		\M/QI	EO DATA	START210	[3:0]	WSEQ	_ADDR210	[12:0]	WSEO	DATA	210 [7:0]	1			02513B01h
R12710	WSEQ Sequence 212	WSEQ_	DATA_WIDT			****	LQ_DAIA_	OTAINIZIO	[0.0]	WSEC	_ADDR211	[12:0]	WOLG		12 10 [1.0	1			62500000h
(31A6h)				LAY211 [3:0]		WS	eq_data_	START211	[3:0]				WSEC	_DATA	211 [7:0]]			
R12712 (31A8h)	WSEQ_Sequence_213	WSEQ_	DATA_WIDT	H212 [2:0] LAY212 [3:0]		W/SI	FO DATA	START212	[3-0]	WSEQ	_ADDR212	2 [12:0]	WSEO	ΠΔΤΔ	212 [7:0]	1			E2514288h
R12714	WSEQ_Sequence_214	WSEQ_	DATA_WIDT			WO	LQ_DAIA_	OTARTETE	[0.0]	WSEQ	_ADDR213	3 [12:0]	WOLG		12 12 [1.0	1			02510B00h
(31AAh)				LAY213 [3:0]		WSI	eq_data_	START213	[3:0]				WSEQ	_DATA	213 [7:0]]			1
R12716 (31ACh)	WSEQ_Sequence_215	WSEQ_	DATA_WIDT	H214 [2:0] LAY214 [3:0]		WSI	FQ DATA	START214	[3:0]	WSEQ	_ADDR214	[12:0]	WSFO	DATA	214 [7:0]	1			02510B00h
R12718	WSEQ_Sequence_216	WSEQ_	DATA_WIDT				_u	.0.7.0.1.2.1.	[0:0]	WSEQ	_ADDR215	[12:0]	.,,,,,		<u></u>	1			022A0E01h
(31AEh)	MOEO 0 047	WOEO		LAY215 [3:0]		WSI	EQ_DATA_	START215	[3:0]	WOEO	A DDD046	140.01	WSEQ	_DATA	215 [7:0]]			40540000h
R12720 (31B0h)	WSEQ_Sequence_217	WSEQ_	DATA_WIDT WSEQ DE	LAY216 [3:0]		WSI	EQ DATA	START216	[3:0]	WSEG	_ADDR216	[12:0]	WSEQ	DATA	216 [7:0]	1			42510C03h
R12722	WSEQ_Sequence_218	WSEQ_	DATA_WIDT							WSEQ	_ADDR217	7 [12:0]		_					E2510227h
(31B2h)	MOTO 0 040	WCEO		LAY217 [3:0]		WSI	EQ_DATA_	START217	[3:0]	WCEO	ADDD010	142.01	WSEQ	_DATA	217 [7:0]]			005400045
R12724 (31B4h)	WSEQ_Sequence_219	WOEQ_	DATA_WIDT WSEQ DE	LAY218 [3:0]		WSI	EQ DATA	START218	[3:0]	WSEG	_ADDR218	[12.0]	WSEQ	DATA	218 [7:0]	1			02513B01h
R12726	WSEQ_Sequence_220	WSEQ_	DATA_WIDT							WSEQ	_ADDR219	[12:0]							E2514266h
(31B6h) R12728	WSEQ Sequence 221	WSEO	WSEQ_DE DATA WIDT	LAY219 [3:0]		WSI	EQ_DATA_	START219	[3:0]	WSEC	ADDR220	112-01	WSEQ	_DATA	219 [7:0]]			E2515294h
(31B8h)	W3EQ_3equence_221	WOEQ_		LAY220 [3:0]		WSI	EQ_DATA_	START220	[3:0]	WOEG	_ADDR220	J [12.0]	WSEQ	_DATA	220 [7:0]]			E2313294II
R12730	WSEQ_Sequence_222	WSEQ_	DATA_WIDT							WSEQ	_ADDR221	[12:0]							02510B00h
(31BAh) R12732	WSEQ Sequence 223	WSEO	WSEQ_DE DATA WIDT	LAY221 [3:0]		WSI	EQ_DATA_	START221	[3:0]	WSEO	ADDR222	112-01	WSEQ	_DATA	221 [7:0]]			02510B00h
(31BCh)	WOLQ_Oequence_223	WOLK		LAY222 [3:0]		WSI	EQ_DATA_	START222	[3:0]	WOLG		[12.0]	WSEQ	_DATA	222 [7:0]]			0231000011
R12734	WSEQ_Sequence_224	WSEQ_	DATA_WIDT							WSEQ	_ADDR223	3 [12:0]							E22A1734h
(31BEh) R12736	WSEQ Sequence 225	WSEO	WSEQ_DE DATA WIDT	LAY223 [3:0]		WSI	EQ_DATA_	START223	[3:0]	WSEC	_ADDR224	L [12·0]	WSEQ	_DATA	223 [7:0]]			022AF501h
(31C0h)	WOLQ_Oequence_223	WOLK		LAY224 [3:0]		WSI	EQ_DATA_	START224	[3:0]	WOLG		r [12.0]	WSEQ	_DATA	224 [7:0]]			022/1 30111
R12738	WSEQ_Sequence_226	WSEQ_	DATA_WIDT							WSEQ	_ADDR225	[12:0]							0000F000h
(31C2h) R12740	WSEQ Sequence 227	WSFO	WSEQ_DE DATA_WIDT	LAY225 [3:0]		WSI	EQ_DATA_	START225	[3:0]	WSEC	ADDR226	10:01	WSEQ	_DATA	225 [7:0]]			0000F000h
(31C4h)	WOLK_OCHICHOC_227			LAY226 [3:0]		WSI	EQ_DATA_	START226	[3:0]	11020		, [.2.0]	WSEQ	_DATA	226 [7:0]]			00001 00011
R12742 (31C6h)	WSEQ_Sequence_228	WSEQ_	DATA_WIDT		, ,	1447	FO 51=:	OTABTOO	10.03	WSEQ	_ADDR227	[12:0]	14/6=	D.1=	0077	,			0000F000h
R12744	WSEQ Sequence 229	WSEO	DATA WIDT	LAY227 [3:0] H228 [2:0]		WSI	EQ_DAIA_	START227	[3:0]	WSEC	_ADDR228	3 [12:01	WSEC	_DATA	(227 [7:0]	J			0000F000h
(31C8h)				LAY228 [3:0]		WSI	EQ_DATA_	START228	[3:0]]	WSEC	_DATA	228 [7:0]]			
R12746 (31CAh)	WSEQ_Sequence_230	WSEQ_	DATA_WIDT			14/0	FO P.T.	OTAPTOCO	10.01	WSEQ	_ADDR229	[12:0]	WOE	D.*T.	000 77 0				0000F000h
R12748	WSEQ Sequence 231	WSEO	WSEQ_DE DATA_WIDT	LAY229 [3:0] H230 [2:0]		WS	EW_DAIA_	START229	[3:0]	WSEG	ADDR230	[12:0]	WSEQ	_DATA	229 [7:0]	J.			0000F000h
(31CCh)			WSEQ_DE	LAY230 [3:0		WSI	EQ_DATA_	START230	[3:0]				WSEQ	_DATA	230 [7:0]]			
R12750 (31CEh)	WSEQ_Sequence_232	WSEQ_	DATA_WIDT			MO	EO DATA	CTADTOO	13.01	WSEQ	_ADDR231	[12:0]	MOTO	DATA	224 [7.0	1			022A3A01h
(010LII)			WSEQ_DE	LAY231 [3:0]		WSI	EW_DAIA_	START231	[3:0]				WSEG	_DAIA	231 [7:0]]			

MESTAGE MEST	Register	Name	31 15	30 14	29 13	28 12	27 11	26 10	25 9	24 8	23 7	22 6	21 5	20 4	19 3	18 2	17 1	16 0	Default
REFERENCE SECTION MISSED GENERAL PROPERTY MISSED GENERAL PROPE		WSEQ_Sequence_233	WSEQ_I				WS	EQ DATA	START232	[3:0]	WSEC	_ADDR232	[12:0]	WSEQ DA	ATA232 [7:0)]			C22A1300h
STORY MEG_Sequence, 244 MEG_SEQUENCES MEG_DATA_SERTING MEG_D		WSEQ_Sequence_234	WSEQ_I	DATA_WIDT	H233 [2:0]						WSEC	_ADDR233	[12:0]						022A0B00h
MRSQ_Sequence_247 MRSQ_Sequence_247 MRSQ_Sequence_248 MRSQ		WSEQ_Sequence_235	WSEQ_I				WS	EQ_DATA_	START234	[3:0]	WSEC	_ADDR234	[12:0]	WSEQ_D/	ATA234 [7:0)]			022AFF01h
MISCL Sequence 23		WSEQ_Sequence_236	WSEQ_I			1	WS	EQ DATA	START235	[3:0]	WSEC	_ADDR235	[12:0]	WSEQ DA	ATA235 [7:0	וו			0000F000h
STICHA MESC, Sequence, 239 MESC, DATASTER MESC, DATASTER MESC, DATASTER MOSC, D		WSEQ_Sequence_237	WSEQ_I	DATA_WIDT	H236 [2:0]						WSEC	_ADDR236	[12:0]	_		•			0000F000h
STOCK SEC_Sequence_241 SEC_Sequence_241 SEC_SEQUENCE_2510 SEC_SEQUENCE_2510		WSEQ_Sequence_238	_	WSEQ_DEI	LAY237 [3:0		WS	EQ_DATA_	START237	[3:0]	WSEC	_ADDR237	[12:0]	WSEQ_D/	ATA237 [7:0]			0000F000h
SUSCED		WSEQ_Sequence_239	WSEQ_I				WS	EQ_DATA_	START238	[3:0]	WSEC	_ADDR238	3 [12:0]	WSEQ_D/	ATA238 [7:0)]			0000F000h
SEED		WSEQ_Sequence_240	WSEQ_I				WS	EQ_DATA_	START239	[3:0]	WSEC	_ADDR239	[12:0]	WSEQ_D/	ATA239 [7:0)]			0000F000h
STEED	(31E0h)	WSEQ_Sequence_241	WSEQ_I				WS	EQ_DATA_	START240	[3:0]	WSEC	_ADDR240	[12:0]	WSEQ_D/	ATA240 [7:0]			0000F000h
SECOND		WSEQ_Sequence_242	WSEQ_I				WS	EQ_DATA_	START241	[3:0]	WSEC	_ADDR241	[12:0]	WSEQ_D/	ATA241 [7:0)]			0000F000h
SEED		WSEQ_Sequence_243	WSEQ_I				WS	EQ_DATA_	START242	[3:0]	WSEC	_ADDR242	[12:0]	WSEQ_D/	ATA242 [7:0]			0000F000h
MSEQ_Sequence_245 MSEQ_Sequence_246 MSEQ_DATA_WIDTHERE[07] MSEQ_DATA_STRATZ46 [pt] MSE		WSEQ_Sequence_244	WSEQ_I				WS	EQ DATA	START243	[3:0]	WSEC	_ADDR243	3 [12:0]	WSEQ DA	ATA243 [7:0	0]			0000F000h
MISEQ DATA-WIDTH MISEQ DATA-		WSEQ_Sequence_245	WSEQ_I				WS	EQ DATA	START244	[3:0]	WSEC	_ADDR244	[12:0]	WSEQ DA	ATA244 [7:0)]			0000F000h
WSEQ_DELYZEF_DID WSEQ_DATA_STRETZEE_DID		WSEQ_Sequence_246	WSEQ_I								WSEC	_ADDR245	[12:0]						0000F000h
1812782 WSEQ_Sequence_249 WSEQ_DATA_WINTEXT_[27] WSEQ_DATA_START28[3:0] WSEQ_DATA_STAR		WSEQ_Sequence_247	WSEQ_I				WS	EQ DATA	START246	[3:0]	WSEC	_ADDR246	[12:0]	WSEQ DA	ATA246 [7:0	01			0000F000h
RECORD MISSEQ DATA WINTERS [27] WISSEQ DATA, START28 [36] WISSEQ DATA START28 [37] WISSEQ DA		WSEQ_Sequence_248	WSEQ_I	DATA_WIDT	H247 [2:0]						WSEC	_ADDR247	[12:0]	_		•			0000F000h
MSEQ_DATA_WIDTH25I [20] MSEQ_DATA_WIDTH2		WSEQ_Sequence_249	WSEQ_I	DATA_WIDT	H248 [2:0]						WSEC	_ADDR248	[12:0]						0000F000h
R12798 WSEQ_Sequence_251 WSEQ_DATA_WIDTH251[20] WSEQ_DATA_START250[30] WSEQ_ADDR250[120] WSEQ_DATA250[70] 0000F000h WSEQ_Sequence_252 WSEQ_DATA_WIDTH251[20] WSEQ_DATA_START250[30] WSEQ_ADDR251[120] WSEQ_DATA250[70] 0000F000h WSEQ_Sequence_253 WSEQ_DELAY251[80] WSEQ_DATA_START250[30] WSEQ_ADDR251[120] WSEQ_DATA250[70] 0000F000h WSEQ_DATA250[70] WSEQ_		WSEQ_Sequence_250	WSEQ_I	DATA_WIDT	H249 [2:0]						WSEC	_ADDR249	[12:0]	_		•			0000F000h
R12790 WSEQ_Sequence_252 WSEQ_DATA_WIDTH251 [2:0] WSEQ_DATA_START251 [3:0] WSEQ_DATA_START25	R12788	WSEQ_Sequence_251	WSEQ_I	DATA_WIDT	H250 [2:0]						WSEC	_ADDR250	[12:0]						0000F000h
R12792 WSEQ_Sequence_253 WSEQ_DATA_WIDTH252 [2:0] WSEQ_DATA_START252 [3:0] WSEQ_DATA_SS2 [7:0] O000F000h R12794 WSEQ_Sequence_254 WSEQ_DATA_WIDTH252 [2:0] WSEQ_DATA_START252 [3:0] WSEQ_DATA_SS2 [7:0] O000F000h R12796 WSEQ_Sequence_255 WSEQ_DATA_WIDTH252 [2:0] WSEQ_DATA_START253 [3:0] WSEQ_DATA_SS3 [7:0] O000F000h R12796 WSEQ_Sequence_255 WSEQ_DATA_WIDTH252 [2:0] WSEQ_DATA_START253 [3:0] WSEQ_DATA_SS3 [7:0] O000F000h R12796 WSEQ_Sequence_255 WSEQ_DATA_WIDTH252 [2:0] WSEQ_DATA_START253 [3:0] WSEQ_DATA_SS3 [7:0] O000F000h R12796 WSEQ_Sequence_256 WSEQ_DATA_WIDTH252 [2:0] WSEQ_DATA_START253 [3:0] WSEQ_DATA_SS3 [7:0] O000F000h R12800 WSEQ_Sequence_257 WSEQ_DATA_WIDTH252 [2:0] WSEQ_DATA_START256 [3:0] WSEQ_DATA_SS5 [7:0] O000F000h R12800 WSEQ_Sequence_258 WSEQ_DATA_WIDTH252 [2:0] WSEQ_DATA_START256 [3:0] WSEQ_DATA_SS5 [7:0] O000F000h R12801 WSEQ_Sequence_259 WSEQ_DATA_WIDTH252 [2:0] WSEQ_DATA_START256 [3:0] WSEQ_DATA_SS5 [7:0] O000F000h R12806 WSEQ_Sequence_259 WSEQ_DATA_WIDTH252 [2:0] WSEQ_DATA_START256 [3:0] WSEQ_DATA_SS5 [7:0] O000F000h R12806 WSEQ_Sequence_260 WSEQ_DATA_WIDTH252 [2:0] WSEQ_DATA_START256 [3:0] WSEQ_DATA_SS5 [7:0] O000F000h R12806 WSEQ_Sequence_260 WSEQ_DATA_WIDTH252 [2:0] WSEQ_DATA_START256 [3:0] WSEQ_DATA_SS5 [7:0] O000F000h R12806 WSEQ_Sequence_261 WSEQ_DATA_SS5 [7:0] WSEQ_DATA_SS5 [7:0] O000F000h R12806 WSEQ_Sequence_261 WSEQ_DATA_SS5 [7:0] WSEQ_DATA_SS5 [7:0] O000F000h WSEQ_DATA_WIDTH258 [2:0] WSEQ_DATA_SS5 [7:0] WSEQ_DATA_SS5 [7:0] O000F000h WSEQ_DATA_WIDTH258 [2:0] WSEQ_DATA_START258 [3:0] WSEQ_DATA_SS5 [7:0] O000F000h WSEQ_DATA_WIDTH258 [2:0] WSEQ_DATA_SS5 [7:0] WSEQ_DATA_SS5 [7:0] O000F000h WSEQ_DATA_WIDTH258 [2:0] WSEQ_DATA_SS5 [7:0] WSEQ_DATA_SS5 [7:0] O000F000h WSEQ_DATA_WIDTH258 [2:0] WSEQ_DATA_START258 [3:0] WSEQ_DATA_SS5 [7:0] O000F000h WSEQ_DA		WSEQ_Sequence_252	WSEQ_I	DATA_WIDT	H251 [2:0]						WSEC	_ADDR251	[12:0]	_		•			0000F000h
R12794 WSEQ_Sequence_254 WSEQ_DATA_WIDTH253_E0] WSEQ_DATA_START253_I30 WSEQ_DATA_253_I70] 0000F000h	R12792	WSEQ_Sequence_253	WSEQ_I	DATA_WIDT	H252 [2:0]						WSEC	_ADDR252	[12:0]						0000F000h
R12798 WSEQ_Sequence 255 WSEQ_DATA_WIDTH254 2:0	R12794	WSEQ_Sequence_254	WSEQ_I	DATA_WIDT	H253 [2:0]						WSEC	_ADDR253	i [12:0]		•				0000F000h
R12798 (31FEh WSEQ_Sequence_256 WSEQ_DATA_WIDTH255 [2:0] WSEQ_DATA_START255 [3:0] WSEQ_DATA_START255 [3:0] WSEQ_DATA_START255 [3:0] WSEQ_DATA_START256 [1:0] 0000F000h 00000F000h 0000F000h 0000F000h 0000F000h 0000F000h 0000F000h 0000F000h 0000F000h	R12796	WSEQ_Sequence_255	WSEQ_I	DATA_WIDT	H254 [2:0]						WSEC	_ADDR254	[12:0]		•	•			0000F000h
R12800 (3200h) WSEQ_Sequence_257	R12798	WSEQ_Sequence_256	WSEQ_I	DATA_WIDT	H255 [2:0]						WSEC	_ADDR255	i [12:0]						0000F000h
R12802 WSEQ_Sequence_258 WSEQ_DELAY257 [3:0] WSEQ_DATA_START257 [3:0] WSEQ_ADDR257 [12:0] WSEQ_DATA257 [7:0] WSEQ_DATA258	R12800	WSEQ_Sequence_257	WSEQ_I	DATA_WIDT	H256 [2:0]						WSEC	_ADDR256	[12:0]						0000F000h
R12804 (3204h) WSEQ_Sequence_259 WSEQ_DATA_WIDTH:258 [2:0] WSEQ_DATA_START:258 [3:0] WSEQ_ADDR258 [12:0] WSEQ_DATA_258 [7:0] WSEQ_DATA_259 [7:0] WSEQ_DATA_250 [R12802	WSEQ_Sequence_258	WSEQ_I				WS	EQ_DATA_	START256	[3:0]	WSEC	_ADDR257	[12:0]	WSEQ_D/	ATA256 [7:0)]			0000F000h
R12806 (3206h) WSEQ_Sequence_260 WSEQ_DATA_WIDTH259 [2:0] WSEQ_DATA_START259 [3:0] WSEQ_DATA259 [7:0] 0000F000h		WSEQ Sequence 259	WSEQ_[WS	EQ_DATA_	START257	[3:0]	WSEC	_ADDR258	3 [12:0]	WSEQ_D/	ATA257 [7:0)]			0000F000h
R12810 R12810 R12814 R12816 R220Eh R12818 R12820 R12820 R12820 R12820 R12820 R12820 R12820 R12820 R12820 R12822 R		WSEQ Sequence 260	WSEQ I				WS	EQ_DATA_	START258	[3:0]	WSEC	ADDR259	[12:0]	WSEQ_D/	ATA258 [7:0)]			0000F000h
WSEQ_DELAY260 [3:0] WSEQ_DATA_START260 [3:0] WSEQ_DATA_260 [7:0] 0000F000h R12810 (320Ah) WSEQ_Sequence_262 WSEQ_DATA_WIDTH261 [2:0] WSEQ_DATA_START261 [3:0] WSEQ_DATA_START261 [3:0] WSEQ_DATA_261 [7:0] 0000F000h R12812 (320Ch) WSEQ_DATA_WIDTH262 [2:0] WSEQ_DATA_START262 [3:0] WSEQ_DATA_262 [7:0] 0000F000h R12814 (320Ch) WSEQ_DATA_WIDTH263 [2:0] WSEQ_DATA_START262 [3:0] WSEQ_DATA_263 [7:0] 0000F000h R12816 (320Ch) WSEQ_DATA_WIDTH263 [2:0] WSEQ_DATA_START263 [3:0] WSEQ_DATA_263 [7:0] 0000F000h R12816 (3210h) WSEQ_Sequence_265 WSEQ_DATA_WIDTH263 [2:0] WSEQ_DATA_START264 [3:0] WSEQ_DATA_264 [7:0] 0000F000h R12818 WSEQ_Sequence_266 WSEQ_DATA_WIDTH265 [2:0] WSEQ_DATA_START265 [3:0] WSEQ_DATA_265 [7:0] 0000F000h R12818 WSEQ_Sequence_266 WSEQ_DATA_WIDTH266 [2:0] WSEQ_DATA_START265 [3:0] WSEQ_DATA_266 [7:0] 0000F000h R12820 WSEQ_Sequence_267 WSEQ_DATA_WIDTH266 [2:0] WSEQ_DATA_START266 [3:0] WSEQ_DATA_266 [7:0] 0000F000h R12822 WSEQ_Sequence_268 WSEQ_DATA_WIDTH267 [2:0] WSEQ_DATA_START266 [3:0] WSEQ_DATA_266 [7:0] 0000F000h R12822 WSEQ_Sequence_268 WSEQ_DATA_WIDTH267 [2:0] WSEQ_DATA_WIDTH267 [2:0] 0000F000h R12822 WSEQ_Sequence_268 WSEQ_DATA_WIDTH267 [2:0] WSEQ_DATA_START266 [3:0] WSEQ_DATA_266 [7:0] 0000F000h R12822 WSEQ_Sequence_268 WSEQ_DATA_WIDTH267 [2:0] WSEQ_DATA_WIDTH267 [2:0] 0000F000h R12822 WSEQ_Sequence_268 WSEQ_DATA_WIDTH267 [2:0] WSEQ_DATA_START266 [3:0] WSEQ_DATA_266 [7:0] 0000F000h R12822 WSEQ_Sequence_268 WSEQ_DATA_WIDTH267 [2:0] WSEQ_DATA_WIDTH267 [2:0] 0000F000h R12822 WSEQ_Sequence_268 WSEQ_DATA_WIDTH267 [2:0] WSEQ_DATA_WIDTH267 [2:0] 0000F000h R12822 WSEQ_Sequence_268 WSEQ_DATA_WIDTH267 [2:0] WSEQ_DATA_START266 [3:0] WSEQ_DATA_266 [7:0] 0000F000h R12822 WSEQ_Sequence_268 WSEQ_DATA_WIDTH267 [2:0] WSEQ_DATA_WIDTH267 [2:0] 0000F000h R12822 WSEQ_Sequence_268 WSEQ_DATA_WIDTH267 [2:0] WSEQ_DATA	(3206h)			WSEQ_DEI	LAY259 [3:0		WS	EQ_DATA_	START259	[3:0]	WSEC	ADDR260	1[12:0]	WSEQ_D/	ATA259 [7:0)]			
WSEQ_DELAY261 [3:0] WSEQ_DATA_START261 [3:0] WSEQ_DATA_262 [7:0] 0000F000h R12814 (320Eh) WSEQ_Sequence_263 WSEQ_DATA_WIDTH263 [2:0] WSEQ_DATA_START262 [3:0] WSEQ_DATA_START262 [3:0] WSEQ_DATA_262 [7:0] 0000F000h R12816 (320Eh) WSEQ_Sequence_265 WSEQ_DATA_WIDTH263 [2:0] WSEQ_DATA_START263 [3:0] WSEQ_DATA_START263 [3:0] WSEQ_DATA_263 [7:0] 0000F000h R12816 (3210h) WSEQ_Sequence_265 WSEQ_DATA_WIDTH264 [2:0] WSEQ_DATA_START264 [3:0] WSEQ_DATA_START264 [3:0] WSEQ_DATA_264 [7:0] 0000F000h R12818 WSEQ_Sequence_266 WSEQ_DATA_WIDTH265 [2:0] WSEQ_DATA_START264 [3:0] WSEQ_DATA_265 [7:0] 0000F000h R12820 (3214h) WSEQ_Sequence_267 WSEQ_DATA_WIDTH266 [2:0] WSEQ_DATA_START266 [3:0] WSEQ_DATA_266 [7:0] 0000F000h R12822 WSEQ_Sequence_268 WSEQ_DATA_WIDTH267 [2:0] WSEQ_DATA_START266 [3:0] WSEQ_DATA_266 [7:0] 0000F000h R12822 WSEQ_Sequence_268 WSEQ_DATA_WIDTH267 [2:0] WSEQ_DATA_WIDTH267 [2:0] 0000F000h R12822 WSEQ_Sequence_268 WSEQ_DATA_WIDTH267 [2:0] WSEQ_DATA_START266 [3:0] WSEQ_DATA_266 [7:0] 0000F000h R12822 WSEQ_Sequence_268 WSEQ_DATA_WIDTH267 [2:0] WSEQ_DATA_WIDTH267 [2:0] 0000F000h R12822 WSEQ_Sequence_268 WSEQ_DATA_WIDTH267 [2:0] WSEQ_DATA_WIDTH267 [2:0] 0000F000h R12822 WSEQ_Sequence_268 WSEQ_DATA_WIDTH267 [2:0] WSEQ_DATA_START266 [3:0] WSEQ_DATA_266 [7:0] 0000F000h R12822 WSEQ_Sequence_268 WSEQ_DATA_WIDTH267 [2:0] WSEQ_DATA_START266 [3:0] WSEQ_DATA_266 [7:0] 0000F000h R12822 WSEQ_Sequence_268 WSEQ_DATA_WIDTH267 [2:0] WSEQ_DATA_START266 [3:0] WSEQ_DATA_266 [7:0] 0000F000h R12822 WSEQ_Sequence_268 WSEQ_DATA_WIDTH267 [2:0] WSEQ_DATA_START266 [3:0] WSEQ_DATA_266 [7:0] 0000F000h R12822 WSEQ_Sequence_268 WSEQ_DATA_WIDTH267 [2:0] WSEQ_DATA_START266 [3:0] WSEQ_DATA_266 [7:0] 0000F000h R12822 WSEQ_Sequence_268 WSEQ_DATA_WIDTH267 [2:0] WSEQ_DATA_START266 [3:0] WSEQ_DATA_START266 [3:0] WSEQ_DATA_START266 [3:0] WSEQ_DATA_STAR	(3208h)		_	WSEQ_DEI	LAY260 [3:0		WS	EQ_DATA_	START260	[3:0]				WSEQ_D/	ATA260 [7:0)]			
WSEQ_DELAY262 [3:0] WSEQ_DATA_START262 [3:0] WSEQ_DATA_263 [7:0] WSEQ_DATA_263 [(320Ah)			WSEQ_DEI	LAY261 [3:0]		WS	EQ_DATA_	START261	[3:0]				WSEQ_D/	ATA261 [7:0)]			
R12816 (3210h) WSEQ_DELAY263 [3:0] WSEQ_DATA_START263 [3:0] WSEQ_DATA_263 [7:0]	(320Ch)			WSEQ_DEI	LAY262 [3:0]		WS	EQ_DATA_	START262	[3:0]				WSEQ_D/	ATA262 [7:0)]			
(3210h) WSEQ_DELAY264 [3:0] WSEQ_DATA_START264 [3:0] WSEQ_DATA_264 [7:0]	(320Eh)			WSEQ_DEI	LAY263 [3:0		WS	EQ_DATA_	START263	[3:0]				WSEQ_D/	ATA263 [7:0)]			
WSEQ_DELAY265 [3:0] WSEQ_DATA_START265 [3:0] WSEQ_DATA_265 [7:0]		WSEQ_Sequence_265		WSEQ_DEI	LAY264 [3:0		WS	EQ_DATA_	START264	[3:0]				WSEQ_D/	ATA264 [7:0]			0000F000h
R12820 WSEQ_Sequence_267 WSEQ_DATA_WIDTH266 [2:0] WSEQ_DATA_START266 [3:0] WSEQ_ADDR266 [12:0] WSEQ_DATA266 [7:0] WSEQ_DA		WSEQ_Sequence_266	WSEQ_I				WS	EQ_DATA_	START265	[3:0]	WSEC	ADDR265	[12:0]	WSEQ_D/	ATA265 [7:0]			0000F000h
R12822 WSEQ_Sequence_268 WSEQ_DATA_WIDTH267 [2:0] WSEQ_ADDR267 [12:0] 0000F000h		WSEQ_Sequence_267	WSEQ_I								WSEC	_ADDR266	[12:0]						0000F000h
	R12822	WSEQ_Sequence_268	WSEQ_I	DATA_WIDT	H267 [2:0]						WSEC	_ADDR267	[12:0]						0000F000h

Register	Name	31 15	30 14	29 13	28 12	27 11	26 10	25 9	24 8	23 7	22 6	21 5	20 4	19 3	18 2	17 1	16 0	Default
R12824 (3218h)	WSEQ_Sequence_269		DATA_WIDT WSEQ DEI			WS	EO DATA	START268	[3:0]	WSEC	_ADDR268	[12:0]	WSEO DA	ATA268 [7:0	1	•		0000F000h
R12826 (321Ah)	WSEQ_Sequence_270		DATA_WIDT WSEQ_DEI	H269 [2:0]				START269		WSEC	_ADDR269	[12:0]		ATA269 [7:0				0000F000h
R12828 (321Ch)	WSEQ_Sequence_271		DATA_WIDT WSEQ_DEI			WS	EQ_DATA_	START270	[3:0]	WSEC	_ADDR270	[12:0]		ATA270 [7:0				0000F000h
R12830 (321Eh)	WSEQ_Sequence_272		DATA_WIDT WSEQ DEI		1	WS	EQ DATA	START271	[3:0]	WSEC	_ADDR271	[12:0]	WSEQ D/	ATA271 [7:0	1			0000F000h
R12832 (3220h)	WSEQ_Sequence_273	WSEQ_[DATA_WIDT WSEQ_DEI	H272 [2:0]				START272		WSEC	_ADDR272	[12:0]		ATA272 [7:0				0000F000h
R12834 (3222h)	WSEQ_Sequence_274	_	DATA_WIDT WSEQ_DEI	AY273 [3:0		WS	EQ_DATA_	START273	[3:0]		_ADDR273		WSEQ_D/	ATA273 [7:0]			0000F000h
R12836 (3224h)	WSEQ_Sequence_275	WSEQ_[DATA_WIDT WSEQ DEI			WS	EQ DATA	START274	[3:0]	WSEC	_ADDR274	[12:0]	WSEQ DA	ATA274 [7:0	1			0000F000h
R12838 (3226h)	WSEQ_Sequence_276	_	DATA_WIDT WSEQ_DEI	AY275 [3:0		WS	EQ_DATA_	START275	[3:0]	WSEC	_ADDR275	[12:0]	WSEQ_D/	ATA275 [7:0]			0000F000h
R12840 (3228h)	WSEQ_Sequence_277		DATA_WIDT WSEQ_DEI	AY276 [3:0		WS	EQ_DATA_	START276	[3:0]		_ADDR276		WSEQ_D/	ATA276 [7:0]			0000F000h
R12842 (322Ah)	WSEQ_Sequence_278	WSEQ_[DATA_WIDT WSEQ DEI			WS	EQ DATA	START277	[3:0]	WSEC	_ADDR277	[12:0]	WSEQ DA	ATA277 [7:0	1			0000F000h
R12844 (322Ch)	WSEQ_Sequence_279	WSEQ_[DATA_WIDT WSEQ_DEI					START278		WSEC	_ADDR278	3 [12:0]		ATA278 [7:0				0000F000h
R12846 (322Eh)	WSEQ_Sequence_280	WSEQ_[DATA_WIDT WSEQ DEI			We	EO DATA	START279	[3:0]	WSEC	_ADDR279	[12:0]	WSEO D	ATA279 [7:0	1			0000F000h
R12848 (3230h)	WSEQ_Sequence_281	_	DATA_WIDT WSEQ_DEI	H280 [2:0]				START280		WSEC	_ADDR280	[12:0]		ATA280 [7:0				0000F000h
R12850 (3232h)	WSEQ_Sequence_282	WSEQ_[DATA_WIDT WSEQ_DEI	H281 [2:0]				START281		WSEC	_ADDR281	[12:0]		ATA281 [7:0				0000F000h
R12852 (3234h)	WSEQ_Sequence_283		DATA_WIDT	H282 [2:0]						WSEC	_ADDR282	[12:0]						0000F000h
R12854	WSEQ_Sequence_284		WSEQ_DEI	H283 [2:0]				START282		WSEC	_ADDR283	3 [12:0]		ATA282 [7:0	•			0000F000h
(3236h) R12856 (3238h)	WSEQ_Sequence_285		WSEQ_DEI	H284 [2:0]				START283		WSEC	_ADDR284	[12:0]		ATA283 [7:0				0000F000h
R12858	WSEQ_Sequence_286	WSEQ_[WSEQ_DEI DATA_WIDT			WS	EQ_DATA_	START284	[3:0]	WSEC	_ADDR285	[12:0]	WSEQ_D/	ATA284 [7:0	J			0000F000h
(323Ah) R12860	WSEQ_Sequence_287	_	WSEQ_DEI DATA_WIDT			WS	EQ_DATA_	START285	[3:0]	WSEC	_ADDR286	[12:0]	WSEQ_D/	ATA285 [7:0]			0000F000h
(323Ch) R12862	WSEQ_Sequence_288	WSEQ_[WSEQ_DEI DATA_WIDT			WS	EQ_DATA_	START286	[3:0]	WSEC	_ADDR287	[12:0]	WSEQ_D/	ATA286 [7:0]			0000F000h
(323Eh) R12864	WSEQ Sequence 289		WSEQ_DEI			WS	EQ_DATA_	START287	[3:0]	WSEC	ADDR288	112-01	WSEQ_D/	ATA287 [7:0]			0000F000h
(3240h)		_	WSEQ_DEI	AY288 [3:0		WS	EQ_DATA_	START288	[3:0]		_		WSEQ_D/	ATA288 [7:0]			
R12866 (3242h)	WSEQ_Sequence_290		DATA_WIDT WSEQ_DEI			WS	EQ_DATA_	START289	[3:0]	WSEG	_ADDR289	[12:0]	WSEQ_D/	ATA289 [7:0]			0000F000h
R12868 (3244h)	WSEQ_Sequence_291	WSEQ_[DATA_WIDT WSEQ DEI	H290 [2:0] LAY290 [3:0		WS	EQ DATA	START290	[3:0]	WSEC	_ADDR290	[12:0]	WSEQ DA	ATA290 [7:0	1			0000F000h
R12870 (3246h)	WSEQ_Sequence_292	WSEQ_[DATA_WIDT					START291		WSEC	_ADDR291	[12:0]		ATA291 [7:0				0000F000h
R12872 (3248h)	WSEQ_Sequence_293	WSEQ_[DATA_WIDT	H292 [2:0]		WS	FO DATA	START292	[3:0]	WSEC	_ADDR292	[12:0]		ATA292 [7:0				0000F000h
R12874 (324Ah)	WSEQ_Sequence_294	WSEQ_[DATA_WIDT	H293 [2:0]						WSEC	_ADDR293	3 [12:0]						0000F000h
R12876	WSEQ_Sequence_295	WSEQ_[WSEQ_DEI DATA_WIDT			WS	EQ_DATA_	START293	[3:0]	WSEC	_ADDR294	[12:0]	WSEQ_D/	ATA293 [7:0]			0000F000h
(324Ch) R12878	WSEQ Sequence 296	WSEQ [WSEQ_DEI			WS	EQ_DATA_	START294	[3:0]	WSEC	ADDR295	5 [12:0]	WSEQ_D/	ATA294 [7:0]			0000F000h
(324Eh)			WSEQ_DEI	AY295 [3:0		WS	EQ_DATA_	START295	[3:0]				WSEQ_D/	ATA295 [7:0]			
R12880 (3250h)	WSEQ_Sequence_297		DATA_WIDT WSEQ_DEI	AY296 [3:0		WS	EQ_DATA_	START296	[3:0]		_ADDR296		WSEQ_D/	ATA296 [7:0]			0000F000h
R12882 (3252h)	WSEQ_Sequence_298	WSEQ_[DATA_WIDT WSEQ_DEI			WS	EQ_DATA_	START297	[3:0]	WSEC	_ADDR297	[12:0]	WSEQ_D/	ATA297 [7:0]			0000F000h
R12884 (3254h)	WSEQ_Sequence_299		DATA_WIDT WSEQ_DEI			WS	EQ_DATA_	START298	[3:0]	WSEC	_ADDR298	3 [12:0]	WSEQ_D/	ATA298 [7:0]			0000F000h
R12886 (3256h)	WSEQ_Sequence_300	WSEQ_[DATA_WIDT	H299 [2:0]				START299		WSEC	_ADDR299	[12:0]		ATA299 [7:0				0000F000h
R12888 (3258h)	WSEQ_Sequence_301	WSEQ_[DATA_WIDT WSEQ_DEI	H300 [2:0]				START300		WSEC	_ADDR300	[12:0]		ATA300 [7:0				0000F000h
R12890	WSEQ_Sequence_302		DATA_WIDT	H301 [2:0]						WSEC	_ADDR301	[12:0]						0000F000h
(325Ah) R12892	WSEQ_Sequence_303		WSEQ_DEI DATA_WIDT	H302 [2:0]				START301		WSEC	_ADDR302	[12:0]		ATA301 [7:0				0000F000h
(325Ch) R12894	WSEQ_Sequence_304		WSEQ_DEI DATA_WIDT			WS	EQ_DATA_	START302	[3:0]	WSEC	_ADDR303	3 [12:0]	WSEQ_D/	ATA302 [7:0]			0000F000h
(325Eh)			WSEQ_DE			WS	EQ_DATA_	START303	[3:0]				WSEQ_D/	ATA303 [7:0]			

Register	Name	31 15	30 14	29 13	28 12	27 11	26 10	25 9	24 8	23 7	22 6	21 5	20 4	19 3	18 2	17 1	16 0	Default
R12896 (3260h)	WSEQ_Sequence_305		DATA_WIDT WSEQ DEI		1	WS	FO DATA	START304	[3:0]	WSEC	_ADDR304	[12:0]	WSEQ D	ATA304 [7:0	1	•	•	0000F000h
R12898 (3262h)	WSEQ_Sequence_306		DATA_WIDT WSEQ_DEI	H305 [2:0]				START305		WSEC	_ADDR305	5 [12:0]		ATA305 [7:0				0000F000h
R12900 (3264h)	WSEQ_Sequence_307		DATA_WIDT WSEQ_DEI]	WS	EQ_DATA_	START306	[3:0]		Q_ADDR306		WSEQ_D	ATA306 [7:0)]			0000F000h
R12902 (3266h)	WSEQ_Sequence_308		DATA_WIDT WSEQ DEI		1	WS	EQ DATA	START307	[3:0]	WSEC	_ADDR307	7 [12:0]	WSEQ DA	ATA307 [7:0)]			0000F000h
R12904 (3268h)	WSEQ_Sequence_309	WSEQ_[DATA_WIDT WSEQ_DEI	H308 [2:0]				START308		WSEC	_ADDR308	3 [12:0]		ATA308 [7:0	•			0000F000h
R12906 (326Ah)	WSEQ_Sequence_310		DATA_WIDT WSEQ_DEI	LAY309 [3:0]	WS	EQ_DATA_	START309	[3:0]		ADDR309		WSEQ_D	ATA309 [7:0)]			0000F000h
R12908 (326Ch)	WSEQ_Sequence_311	WSEQ_L	DATA_WIDT WSEQ_DEI]	WS	EQ_DATA_	START310	[3:0]	WSEC	Q_ADDR310	1[12:0]	WSEQ_D	ATA310 [7:0)]			0000F000h
R12910 (326Eh)	WSEQ_Sequence_312	_		LAY311 [3:0]		WS	EQ_DATA_	START311	[3:0]		_ADDR311		WSEQ_D	ATA311 [7:0]			0000F000h
R12912 (3270h)	WSEQ_Sequence_313		DATA_WIDT WSEQ_DEI	LAY312 [3:0]	WS	EQ_DATA_	START312	[3:0]		_ADDR312		WSEQ_D	ATA312 [7:0)]			0000F000h
R12914 (3272h)	WSEQ_Sequence_314	WSEQ_I	DATA_WIDT WSEQ_DEI]	WS	EQ_DATA_	START313	[3:0]	WSEC	_ADDR313	3 [12:0]	WSEQ_D	ATA313 [7:0)]			0000F000h
R12916 (3274h)	WSEQ_Sequence_315		DATA_WIDT WSEQ_DEI	LAY314 [3:0]	WS	EQ_DATA_	START314	[3:0]	WSEC	_ADDR314	[12:0]	WSEQ_D	ATA314 [7:0]			0000F000h
R12918 (3276h)	WSEQ_Sequence_316	WSEQ_[DATA_WIDT WSEQ_DEI]	WS	EQ_DATA_	START315	[3:0]	WSEC	_ADDR315	[12:0]	WSEQ_D	ATA315 [7:0)]			0000F000h
R12920 (3278h)	WSEQ_Sequence_317		DATA_WIDT WSEQ_DEI]	WS	EQ_DATA_	START316	[3:0]	WSEC	_ADDR316	6 [12:0]	WSEQ_D	ATA316 [7:0]			0000F000h
R12922 (327Ah)	WSEQ_Sequence_318		DATA_WIDT WSEQ_DEI]	WS	EQ_DATA_	START317	[3:0]	WSEC)_ADDR317	7 [12:0]	WSEQ_D/	ATA317 [7:0)]			0000F000h
R12924 (327Ch)	WSEQ_Sequence_319	WSEQ_[DATA_WIDT WSEQ DEI		1	WS	EQ DATA	START318	[3:0]	WSEC	_ADDR318	3 [12:0]	WSEQ D	ATA318 [7:0	1			0000F000h
R12926 (327Eh)	WSEQ_Sequence_320		DATA_WIDT	H319 [2:0]				START319		WSEC	_ADDR319	[12:0]		ATA319 [7:0				0000F000h
R12928 (3280h)	WSEQ_Sequence_321	WSEQ_[DATA_WIDT WSEQ_DEI]	WS	EQ_DATA_	START320	[3:0]	WSEC	_ADDR320	[12:0]	WSEQ_D	ATA320 [7:0]			0000F000h
R12930 (3282h)	WSEQ_Sequence_322		DATA_WIDT WSEQ DEI		1	WS	FO DATA	START321	[3:0]	WSEC)_ADDR321	[12:0]	WSFQ D	ATA321 [7:0	1			0000F000h
R12932 (3284h)	WSEQ_Sequence_323		DATA_WIDT	H322 [2:0]				START322		WSEC	_ADDR322	2 [12:0]		ATA322 [7:0				0000F000h
R12934 (3286h)	WSEQ_Sequence_324		DATA_WIDT WSEQ_DEI	H323 [2:0]				START323		WSEC	_ADDR323	3 [12:0]		ATA323 [7:0	•			0000F000h
R12936 (3288h)	WSEQ_Sequence_325		DATA_WIDT	H324 [2:0]						WSEC	_ADDR324	1[12:0]	_	ATA324 [7:0				0000F000h
R12938 (328Ah)	WSEQ_Sequence_326		WSEQ_DEI	H325 [2:0]				START324		WSEC	_ADDR325	5 [12:0]		•				0000F000h
R12940	WSEQ_Sequence_327		WSEQ_DEI DATA_WIDT			WS	EQ_DATA_	START325	[3:0]	WSEC	_ADDR326	6 [12:0]	WSEQ_D/	ATA325 [7:0)]			0000F000h
(328Ch) R12942	WSEQ_Sequence_328	WSEQ_[WSEQ_DEI DATA_WIDT	LAY326 [3:0] H327 [2:0]]	WS	EQ_DATA_	START326	[3:0]	WSEC	_ADDR327	7 [12:0]	WSEQ_D/	ATA326 [7:0)]			0000F000h
(328Eh) R12944	WSEQ Sequence 329	WSEO I	WSEQ_DEI	LAY327 [3:0]]	WS	EQ_DATA_	START327	[3:0]	WSEC	ADDR328	R [12·0]	WSEQ_D	ATA327 [7:0]			0000F000h
(3290h) R12946	WSEQ_Sequence 330	_	WSEQ_DEI	LAY328 [3:0]]	WS	EQ_DATA_	START328	[3:0]		ADDR329		WSEQ_D	ATA328 [7:0)]			0000F000h
(3292h)			WSEQ_DEI	LAY329 [3:0]	WS	EQ_DATA_	START329	[3:0]				WSEQ_D	ATA329 [7:0]			
R12948 (3294h)	WSEQ_Sequence_331		DATA_WIDT WSEQ_DEI	LAY330 [3:0]	WS	EQ_DATA_	START330	[3:0]	WSEC	_ADDR330) [12:0]	WSEQ_D	ATA330 [7:0)]			0000F000h
R12950 (3296h)	WSEQ_Sequence_332	WSEQ_[DATA_WIDT WSEQ_DEI]	WS	EQ_DATA_	START331	[3:0]	WSEC	_ADDR331	[12:0]	WSEQ_D	ATA331 [7:0)]			0000F000h
R12952 (3298h)	WSEQ_Sequence_333		DATA_WIDT WSEQ DEI		1	WS	EQ DATA	START332	[3:0]	WSEC	_ADDR332	2 [12:0]	WSEQ DA	ATA332 [7:0	0]			0000F000h
R12954 (329Ah)	WSEQ_Sequence_334	WSEQ_[DATA_WIDT	H333 [2:0]				START333		WSEC	_ADDR333	3 [12:0]		ATA333 [7:0				0000F000h
R12956 (329Ch)	WSEQ_Sequence_335	WSEQ_[DATA_WIDT WSEQ_DEI	H334 [2:0]				START334		WSEC	_ADDR334	l [12:0]		ATA334 [7:0	•			0000F000h
R12958 (329Eh)	WSEQ_Sequence_336	WSEQ_[DATA_WIDT WSEQ_DEI	H335 [2:0]				START335		WSEC	_ADDR335	5 [12:0]		ATA335 [7:0				0000F000h
R12960 (32A0h)	WSEQ_Sequence_337	WSEQ_[DATA_WIDT WSEQ_DEI	H336 [2:0]				START336		WSEC	_ADDR336	6 [12:0]		ATA336 [7:0				0000F000h
R12962 (32A2h)	WSEQ_Sequence_338	WSEQ_[DATA_WIDT	H337 [2:0]						WSEC	_ADDR337	7 [12:0]						0000F000h
R12964 (32A4h)	WSEQ_Sequence_339	WSEQ_[WSEQ_DEI	H338 [2:0]				START337		WSEC	_ADDR338	3 [12:0]		ATA337 [7:0				0000F000h
R12966 (32A6h)	WSEQ_Sequence_340		WSEQ_DEI	H339 [2:0]				START338		WSEC	_ADDR339	[12:0]		ATA338 [7:0				0000F000h
(UZAUII)		1	WSEQ_DEI	LAY 339 [3:0]	J	WS	EQ_DATA_	START339	[3:0]	1			wseQ_D	ATA339 [7:0	'J			1

Register	Name	31 15	30 14	29 13	28 12	27 11	26 10	25 9	24 8	23 7	22 6	21 5	20 4	19 3	18 2	17 1	16 0	Default
R12968 (32A8h)	WSEQ_Sequence_341	WSEQ_I	DATA_WIDT WSEQ DEI			WS	FO DATA	START340	[3:0]	WSEC	_ADDR340	[12:0]	WSEQ D	ATA340 [7:0	1			0000F000h
R12970 (32AAh)	WSEQ_Sequence_342	WSEQ_I	DATA_WIDT WSEQ_DEI	H341 [2:0]				START341		WSEC	_ADDR341	[12:0]		ATA341 [7:0				0000F000h
R12972 (32ACh)	WSEQ_Sequence_343	WSEQ_I	DATA_WIDT WSEQ_DEI			WS	EQ_DATA_	START342	[3:0])_ADDR342		WSEQ_D	ATA342 [7:0]			0000F000h
R12974 (32AEh)	WSEQ_Sequence_344	WSEQ_I	DATA_WIDT WSEQ DEI		1	WS	EQ DATA	START343	[3:0]	WSEC	_ADDR343	3 [12:0]	WSEQ D	ATA343 [7:0	1			0000F000h
R12976 (32B0h)	WSEQ_Sequence_345	WSEQ_I	DATA_WIDT WSEQ_DEI	H344 [2:0]				START344		WSEC	_ADDR344	[12:0]		ATA344 [7:0	•			0000F000h
R12978 (32B2h)	WSEQ_Sequence_346	_		LAY345 [3:0		WS	EQ_DATA_	START345	[3:0]	WSEC)_ADDR345	5 [12:0]	WSEQ_D	ATA345 [7:0]			0000F000h
R12980 (32B4h)	WSEQ_Sequence_347	WSEQ_I	DATA_WIDT WSEQ DEI			WS	EQ DATA	START346	[3:0]	WSEC	_ADDR346	6 [12:0]	WSEQ DA	ATA346 [7:0	1			0000F000h
R12982 (32B6h)	WSEQ_Sequence_348	WSEQ_I	DATA_WIDT WSEQ_DEI	H347 [2:0] LAY347 [3:0		WS	EQ_DATA_	START347	[3:0]	WSEC	_ADDR347	7 [12:0]	WSEQ_D	ATA347 [7:0]			0000F000h
R12984 (32B8h)	WSEQ_Sequence_349	WSEQ_I	DATA_WIDT WSEQ_DEI	H348 [2:0] LAY348 [3:0]		WS	EQ_DATA_	START348	[3:0]	WSEC	_ADDR348	3 [12:0]	WSEQ_D	ATA348 [7:0]			0000F000h
R12986 (32BAh)	WSEQ_Sequence_350	WSEQ_I	DATA_WIDT WSEQ_DEI	H349 [2:0] LAY349 [3:0]		WS	EQ_DATA_	START349	[3:0]	WSEC	_ADDR349	[12:0]	WSEQ_D	ATA349 [7:0]			0000F000h
R12988 (32BCh)	WSEQ_Sequence_351	WSEQ_I	DATA_WIDT WSEQ_DEI			WS	EQ_DATA_	START350	[3:0]	WSEC	_ADDR350	[12:0]	WSEQ_DA	ATA350 [7:0]			0000F000h
R12990 (32BEh)	WSEQ_Sequence_352	WSEQ_I	DATA_WIDT WSEQ DEI	H351 [2:0] LAY351 [3:0	1	WS	EQ DATA	START351	[3:0]	WSEC	_ADDR351	[12:0]	WSEQ DA	ATA351 [7:0	1			0000F000h
R12992 (32C0h)	WSEQ_Sequence_353	WSEQ_I	DATA_WIDT	H352 [2:0]				START352		WSEC	_ADDR352	2 [12:0]		ATA352 [7:0				0000F000h
R12994 (32C2h)	WSEQ_Sequence_354	WSEQ_I	DATA_WIDT					START353		WSEC	_ADDR353	3 [12:0]		ATA353 [7:0				0000F000h
R12996 (32C4h)	WSEQ_Sequence_355	WSEQ_I	DATA_WIDT	H354 [2:0] LAY354 [3:0	·			START354		WSEC	_ADDR354	[12:0]		ATA354 [7:0				0000F000h
R12998 (32C6h)	WSEQ_Sequence_356	WSEQ_I	DATA_WIDT WSEQ_DEI	H355 [2:0]				START355		WSEC	_ADDR355	5 [12:0]		ATA355 [7:0	•			0000F000h
R13000 (32C8h)	WSEQ_Sequence_357	WSEQ_I	DATA_WIDT					START356		WSEC	_ADDR356	3 [12:0]		ATA356 [7:0				0000F000h
R13002 (32CAh)	WSEQ_Sequence_358	WSEQ_I	DATA_WIDT	H357 [2:0]				START357		WSEC	_ADDR357	7 [12:0]		ATA357 [7:0	•			0000F000h
R13004 (32CCh)	WSEQ_Sequence_359	WSEQ_I	DATA_WIDT WSEQ_DEI	H358 [2:0]				START358		WSEC	_ADDR358	3 [12:0]		ATA358 [7:0				0000F000h
R13006 (32CEh)	WSEQ_Sequence_360	WSEQ_I	DATA_WIDT	H359 [2:0]				START359		WSEC	_ADDR359	[12:0]		ATA359 [7:0	•			0000F000h
R13008 (32D0h)	WSEQ_Sequence_361	WSEQ_I	DATA_WIDT							WSEC	_ADDR360	[12:0]	_	ATA360 [7:0				0000F000h
R13010 (32D2h)	WSEQ_Sequence_362	WSEQ_I	DATA_WIDT	H361 [2:0]				START360		WSEC	_ADDR361	[12:0]						0000F000h
R13012	WSEQ_Sequence_363	WSEQ_I	WSEQ_DEI DATA_WIDT	H362 [2:0]				START361		WSEC	_ADDR362	2 [12:0]		ATA361 [7:0				0000F000h
(32D4h) R13014	WSEQ_Sequence_364	WSEQ_I	DATA_WIDT					START362		WSEC	_ADDR363	3 [12:0]		ATA362 [7:0				0000F000h
(32D6h) R13016	WSEQ_Sequence_365	WSEQ_I	WSEQ_DEI DATA_WIDT	LAY363 [3:0] H364 [2:0]		WS	EQ_DATA_	START363	[3:0]	WSEC	_ADDR364	I [12:0]	WSEQ_D	ATA363 [7:0]			0000F000h
(32D8h) R13018	WSEQ Sequence 366	WSEQ_I	WSEQ_DEI	LAY364 [3:0] H365 [2:0]		WS	EQ_DATA_	START364	[3:0]	WSEC	_ADDR365	5 [12:0]	WSEQ_D	ATA364 [7:0]			0000F000h
(32DAh) R13020	WSEQ_Sequence_367	WSFQ I	WSEQ_DEI	LAY365 [3:0] H366 [2:0]		WS	EQ_DATA_	START365	[3:0]	WSEC	ADDR366	3 [12:0]	WSEQ_DA	ATA365 [7:0]			0000F000h
(32DCh)				LAY366 [3:0		WS	EQ_DATA_	START366	[3:0]		_		WSEQ_D	ATA366 [7:0]			
R13022 (32DEh)	WSEQ_Sequence_368		WSEQ_DEI	LAY367 [3:0		WS	EQ_DATA_	START367	[3:0]		_ADDR367		WSEQ_D	ATA367 [7:0]			0000F000h
R13024 (32E0h)	WSEQ_Sequence_369		DATA_WIDT WSEQ_DEI	LAY368 [3:0		WS	EQ_DATA_	START368	[3:0]		_ADDR368		WSEQ_D	ATA368 [7:0]			0000F000h
R13026 (32E2h)	WSEQ_Sequence_370	WSEQ_I	DATA_WIDT WSEQ_DEI			WS	EQ_DATA_	START369	[3:0]	WSEC	_ADDR369	[12:0]	WSEQ_D	ATA369 [7:0]			0000F000h
R13028 (32E4h)	WSEQ_Sequence_371	WSEQ_I	DATA_WIDT WSEQ_DEI			WS	EQ_DATA_	START370	[3:0]	WSEC	_ADDR370	[12:0]	WSEQ_D	ATA370 [7:0]			0000F000h
R13030 (32E6h)	WSEQ_Sequence_372	WSEQ_I	DATA_WIDT			WS	EQ DATA	START371	[3:0]	WSEC	_ADDR371	[12:0]	WSEQ DA	ATA371 [7:0	1			0000F000h
R13032 (32E8h)	WSEQ_Sequence_373	WSEQ_I	DATA_WIDT	H372 [2:0]				START372		WSEC	_ADDR372	2 [12:0]		ATA372 [7:0				0000F000h
R13034 (32EAh)	WSEQ_Sequence_374	WSEQ_I	DATA_WIDT	H373 [2:0]				START373		WSEC	_ADDR373	3 [12:0]		ATA373 [7:0				0000F000h
R13036 (32ECh)	WSEQ_Sequence_375	WSEQ_I	DATA_WIDT WSEQ_DEI	H374 [2:0]				START374		WSEC	_ADDR374	[12:0]		ATA374 [7:0				0000F000h
R13038 (32EEh)	WSEQ_Sequence_376	WSEQ_I	DATA_WIDT					START374		WSEC	_ADDR375	5 [12:0]		ATA374 [7:0				0000F000h
()	1	1	110LW_DE	LA1010 [0:0]		VVO	LW_DAIA_	_O 1/1(13/3	[0.0]	1			WOEW_D	ט:זן טוטחור	ı			1

Register	Name	31 15	30 14	29 13	28 12	27 11	26 10	25 9	24 8	23 7	22 6	21 5	20 4	19 3	18 2	17 1	16 0	Default
R13040 (32F0h)	WSEQ_Sequence_377	WSEQ_	DATA_WIDT			14/01	50 D.ITA	OTA DTOTO	ro o1	WSEQ	_ADDR376	[12:0]	14/050 5					0000F000h
R13042	WSEQ Sequence 378	WSEO	DATA WIDT	LAY376 [3:0]		WSI	EQ_DATA_	START376	[3:0]	WSEC	ADDR37	10:01	WSEQ_L	ATA376 [7:0)]			0000F000h
(32F2h)	WSEQ_Sequence_576	WOLK		LAY377 [3:0]		WSI	EQ_DATA_	START377	[3:0]	WOLG	_ADDI(011	[12.0]	WSEQ_D	ATA377 [7:0)]			00001 00011
R13044	WSEQ_Sequence_379	WSEQ_	DATA_WIDT							WSEC	_ADDR378	3 [12:0]						0000F000h
(32F4h)	MCEO Comuenos 200	WEED		LAY378 [3:0]		WSI	EQ_DATA_	START378	[3:0]	Weed	ADDD27	10-01	WSEQ_D	ATA378 [7:0)]			000050006
R13046 (32F6h)	WSEQ_Sequence_380	WSEQ_	DATA_WIDT WSEQ_DE	LAY379 [3:0]		WSI	EQ DATA	START379	[3:0]	WSEG	_ADDR379	9 [12:U]	WSEQ D	ATA379 [7:0)]			0000F000h
R13048	WSEQ_Sequence_381	WSEQ_	DATA_WIDT						[]	WSEC	_ADDR380	[12:0]						0000F000h
(32F8h)				LAY380 [3:0]		WSI	eq_data_	START380	[3:0]				WSEQ_D	ATA380 [7:0]			
R13050 (32FAh)	WSEQ_Sequence_382	WSEQ_	DATA_WIDT	H381 [2:0] LAY381 [3:0]		WS!	FO DATA	START381	[3-0]	WSEQ	_ADDR38	[12:0]	WSEO F	ATA381 [7:0	11			0000F000h
R13052	WSEQ Sequence 383	WSEQ	DATA WIDT			VVOI	LQ_DAIA_	JIANIOI	[3.0]	WSEQ	ADDR382	2 [12:0]	WOLQ_L	/A1/3001 [1.0	'1			0000F000h
(32FCh)				LAY382 [3:0		WSI	EQ_DATA_	START382	[3:0]			. ,	WSEQ_D	ATA382 [7:0)]			_
R13054 (32FEh)	WSEQ_Sequence_384	WSEQ_	DATA_WIDT			14/01	50 D.ITA	OTABTOOS	ro o1	WSEQ	_ADDR383	3 [12:0]	14050 5	47400017.0				0000F000h
R13056	WSEQ Sequence 385	WSEO	DATA WIDT	LAY383 [3:0]		WSI	EQ_DATA_	START383	[3:0]	WSEO	ADDR384	I [12·0]	WSEQ_L	ATA383 [7:0)]			FFFFFFFFh
(3300h)	WOLQ_Oequence_505	WOLK_		LAY384 [3:0]		WSI	EQ_DATA_	START384	[3:0]	11024	_/1001100	r [12.0]	WSEQ_D	ATA384 [7:0)]			-
R13058	WSEQ_Sequence_386	WSEQ_	DATA_WIDT							WSEC	_ADDR38	[12:0]	_					FFFFFFFh
(3302h)	MOTO 0 207	WCEO		LAY385 [3:0]		WSI	EQ_DATA_	START385	[3:0]	WCEO	ADDR386	[0.01]	WSEQ_D	ATA385 [7:0)]			
R13060 (3304h)	WSEQ_Sequence_387	WSEQ_	DATA_WIDT WSEQ_DE	LAY386 [3:0]		WSI	EQ DATA	START386	[3:0]	WSEG	_ADDR300	0 [12.0]	WSEQ D	ATA386 [7:0	1			FFFFFFFh
R13062	WSEQ_Sequence_388	WSEQ_	DATA_WIDT						[]	WSEC	_ADDR387	[12:0]			,			FFFFFFFh
(3306h)				LAY387 [3:0		WSI	eq_data_	START387	[3:0]				WSEQ_D	ATA387 [7:0)]			
R13064 (3308h)	WSEQ_Sequence_389	WSEQ_	DATA_WIDT	TH388 [2:0] ELAY388 [3:0]		MC	FO DATA	CTADTOO	10.01	WSEQ	_ADDR388	3 [12:0]	WCEO F	ATA 200 [7.0				FFFFFFFh
R13066	WSEQ_Sequence_390	WSEQ	DATA_WIDT			Wo	EQ_DATA_	START388	[3:0]	WSEC	ADDR389	9 [12:0]	WSEQ_L	ATA388 [7:0	'J			FFFFFFF
(330Ah)				LAY389 [3:0		WSI	EQ_DATA_	START389	[3:0]		_		WSEQ_D	ATA389 [7:0)]			1
R13068	WSEQ_Sequence_391	WSEQ_	DATA_WIDT							WSEC	_ADDR390	[12:0]						FFFFFFFh
(330Ch)	MCEO Comuenos 202	WEED	WSEQ_DE DATA WIDT	LAY390 [3:0]		WSI	EQ_DATA_	START390	[3:0]	Weed	ADDR39	[1.5.0]	WSEQ_E	ATA390 [7:0]			
R13070 (330Eh)	WSEQ_Sequence_392	WSEQ_		LAY391 [3:0]		WSI	EQ DATA	START391	[3:0]	WSEG	_ADDR39	[12:0]	WSEQ D	ATA391 [7:0)]			FFFFFFFh
R13072	WSEQ_Sequence_393	WSEQ_	DATA_WIDT						[]	WSEC	_ADDR392	2 [12:0]			,			FFFFFFFh
(3310h)				LAY392 [3:0		WSI	eq_data_	START392	[3:0]				WSEQ_D	ATA392 [7:0]			
R13074 (3312h)	WSEQ_Sequence_394	WSEQ_	DATA_WIDT	H393 [2:0] LAY393 [3:0]		WS!	FO DATA	START393	[3-0]	WSEQ	_ADDR393	3 [12:0]	WSEO F	ATA393 [7:0	11			FFFFFFFh
R13076	WSEQ Sequence 395	WSEQ	DATA WIDT			****	LQ_DAIA_	OTAIN1000	[0.0]	WSEQ	ADDR394	[12:0]	WOLQ_L	/ I CCC// I	'1			FFFFFFFh
(3314h)	NZ (2000		WSEQ_DE	LAY394 [3:0		WSI	eq_data_	START394	[3:0]				WSEQ_D	ATA394 [7:0]			
R13078 (3316h)	WSEQ_Sequence_396	WSEQ_	DATA_WIDT			14/01	50 D.ITA	OTABTOOL	ro o1	WSEQ	_ADDR39	[12:0]	14050 5	47400517				FFFFFFFh
R13080	WSEQ Sequence 397	WSFO	DATA WIDT	LAY395 [3:0] H396 [2:0]		WSI	EQ_DATA_	START395	[3:0]	WSEC	ADDR396	112:01	WSEQ_L	ATA395 [7:0)]			FFFFFFF
(3318h)	1102 <u>4_</u> 004401100_001			LAY396 [3:0]		WSI	EQ_DATA_	START396	[3:0]	11024		,[.2.0]	WSEQ_D	ATA396 [7:0)]			1
R13082	WSEQ_Sequence_398	WSEQ_	DATA_WIDT							WSEQ	_ADDR397	7 [12:0]						FFFFFFFh
(331Ah)	MOTO 0 200	WCEO	WSEQ_DE DATA WIDT	LAY397 [3:0]		WSI	EQ_DATA_	START397	[3:0]	WCEO	A DDD000	142.01	WSEQ_D	ATA397 [7:0)]			
R13084 (331Ch)	WSEQ_Sequence_399	WOEQ_		LAY398 [3:0		WSI	EQ DATA	START398	[3:0]	WSEG	_ADDR398	0 [12.0]	WSEQ D	ATA398 [7:0)]			FFFFFFFh
R13086	WSEQ_Sequence_400	WSEQ_	DATA_WIDT							WSEC	_ADDR399	[12:0]			<u> </u>			FFFFFFFh
(331Eh)				LAY399 [3:0]		WSI	eq_data_	START399	[3:0]				WSEQ_D	ATA399 [7:0)]			
R13088 (3320h)	WSEQ_Sequence_401	WSEQ_	DATA_WIDT	H400 [2:0] LAY400 [3:0]		WS!	FO DATA	START400	[3-0]	WSEQ	_ADDR400	[12:0]	WSEO F	ATA400 [7:0	11			FFFFFFFh
R13090	WSEQ Sequence 402	WSEQ	DATA_WIDT			110	LQ_D/II/L	0174111100	[0.0]	WSEQ	_ADDR40	[12:0]	WOLK_E	, 11 0011 10	ני			FFFFFFFh
(3322h)				LAY401 [3:0		WSI	EQ_DATA_	START401	[3:0]				WSEQ_D	ATA401 [7:0)]			
R13092 (3324h)	WSEQ_Sequence_403	WSEQ_	DATA_WIDT			MC	FO DATA	CTADT 400	10.01	WSEQ	_ADDR402	2 [12:0]	WCEO F	ATA 400 [7.0				FFFFFFFh
R13094	WSEQ Sequence 404	WSEQ	DATA_WIDT	LAY402 [3:0] H403 [2:0]		Wo	EQ_DATA_	START402	[3:0]	WSEC	ADDR403	3 [12:0]	WSEQ_L	ATA402 [7:0	']			FFFFFFF
(3326h)	1702@_00quoi100_101			LAY403 [3:0		WSI	EQ_DATA_	START403	[3:0]			[]	WSEQ_D	ATA403 [7:0)]			1
R13096	WSEQ_Sequence_405	WSEQ_	DATA_WIDT							WSEC	_ADDR404	[12:0]						FFFFFFFh
(3328h)	MCEO Comuenos 406	WEED	WSEQ_DE DATA WIDT	LAY404 [3:0]		WSI	EQ_DATA_	START404	[3:0]	Weed	ADDR405	[0.01]	WSEQ_E	ATA404 [7:0)]			FFFFFFFh
R13098 (332Ah)	WSEQ_Sequence_406	WSEQ_		LAY405 [3:0]		WSI	EQ DATA	START405	[3:0]	WSEG	_ADDN40	0 [12.0]	WSEQ D	ATA405 [7:0	1			FFFFFFF
R13100	WSEQ_Sequence_407	WSEQ_	DATA_WIDT						[]	WSEC	_ADDR406	[12:0]						FFFFFFFh
(332Ch)				LAY406 [3:0		WSI	eq_data_	START406	[3:0]				WSEQ_D	ATA406 [7:0]			
R13102 (332Eh)	WSEQ_Sequence_408	WSEQ_	DATA_WIDT	TH407 [2:0] LAY407 [3:0]		1//01	FO DATA	START407	[3:0]	WSEQ	_ADDR407	[12:0]	WSEO F	ATA407 [7:0	1			FFFFFFFh
R13104	WSEQ Sequence 409	WSEQ	DATA_WIDT			VVOI	LW_DAIH_		[0.0]	WSEQ	_ADDR408	3 [12:0]	**OEQ_L	ar at ur [r.t	'I			FFFFFFFh
(3330h)				LAY408 [3:0		WSI	EQ_DATA_	START408	[3:0]				WSEQ_D	ATA408 [7:0)]			
R13106	WSEQ_Sequence_410	WSEQ_	DATA_WIDT					07157	ro o-	WSEQ	_ADDR409	[12:0]	11:05	ATA				FFFFFFFh
(3332h) R13108	WSEQ Sequence 411	WSEO	WSEQ_DE DATA_WIDT	LAY409 [3:0]		WSI	eq_data_	START409	[3:0]	WSEO	ADDR410	112-01	WSEQ_E	ATA409 [7:0)]			FFFFFFFh
(3334h)	VYOLW_Ocqueilce_411	11020_		LAY410 [3:0]		WSI	EQ_DATA	START410	[3:0]	**OLG	וו +אוטטיי.	. [12.0]	WSEQ D	ATA410 [7:0)]			
R13110	WSEQ_Sequence_412	WSEQ_	DATA_WIDT	TH411 [2:0]						WSEC	_ADDR411	[12:0]						FFFFFFFh
(3336h)			WSEQ_DE	LAY411 [3:0]		WS	EQ_DATA_	START411	[3:0]				WSEQ_E	ATA411 [7:0]			

Register	Name	31 15	30 14	29 13	28 12	27 11	26 10	25 9	24 8	23 7	22 6	21 5	20 4	19 3	18 2	17 1	16 0	Default
R13112 (3338h)	WSEQ_Sequence_413		DATA_WIDT WSEQ DEI		1	WS	EQ DATA	START412	[3:0]	WSEC	_ADDR412	[12:0]	WSEQ DA	ATA412 [7:0	1			FFFFFFFh
R13114 (333Ah)	WSEQ_Sequence_414	WSEQ_[DATA_WIDT WSEQ_DEI	H413 [2:0]				START413		WSEC	_ADDR413	3 [12:0]		ATA413 [7:0				FFFFFFFh
R13116 (333Ch)	WSEQ_Sequence_415		DATA_WIDT WSEQ_DEI]	WS	EQ_DATA_	START414	[3:0]	WSEC	_ADDR414	[12:0]	WSEQ_D/	ATA414 [7:0]			FFFFFFFh
R13118 (333Eh)	WSEQ_Sequence_416		DATA_WIDT WSEQ DEI		1	WS	EQ DATA	START415	[3:0]	WSEC	_ADDR415	[12:0]	WSEQ DA	ATA415 [7:0	1			FFFFFFFh
R13120 (3340h)	WSEQ_Sequence_417	WSEQ_[DATA_WIDT	H416 [2:0]				START416		WSEC	_ADDR416	[12:0]		ATA416 [7:0				FFFFFFFh
R13122 (3342h)	WSEQ_Sequence_418	WSEQ_[DATA_WIDT WSEQ_DEI	H417 [2:0] LAY417 [3:0]	WS	EQ_DATA_	START417	[3:0]	WSEC	_ADDR417	[12:0]	WSEQ_D/	ATA417 [7:0]			FFFFFFFh
R13124 (3344h)	WSEQ_Sequence_419		DATA_WIDT WSEQ DEI		1	WS	EQ DATA	START418	[3:0]	WSEC	_ADDR418	3 [12:0]	WSEQ DA	ATA418 [7:0	1			FFFFFFFh
R13126 (3346h)	WSEQ_Sequence_420		DATA_WIDT					START419		WSEC	_ADDR419	[12:0]		ATA419 [7:0				FFFFFFFh
R13128 (3348h)	WSEQ_Sequence_421	WSEQ_[DATA_WIDT WSEQ_DEI	H420 [2:0] LAY420 [3:0]	WS	EQ_DATA_	START420	[3:0]	WSEC	_ADDR420	[12:0]	WSEQ_D/	ATA420 [7:0]			FFFFFFFh
R13130 (334Ah)	WSEQ_Sequence_422	WSEQ_[DATA_WIDT WSEQ_DEI	H421 [2:0] LAY421 [3:0]	WS	EQ_DATA_	START421	[3:0]	WSEC	_ADDR421	[12:0]	WSEQ_D/	ATA421 [7:0]			FFFFFFFh
R13132 (334Ch)	WSEQ_Sequence_423		DATA_WIDT WSEQ_DEI]	WS	EQ_DATA_	START422	[3:0]	WSEC	_ADDR422	[12:0]	WSEQ_D/	ATA422 [7:0]			FFFFFFFh
R13134 (334Eh)	WSEQ_Sequence_424	WSEQ_[DATA_WIDT WSEQ_DEI	H423 [2:0] LAY423 [3:0]	WS	EQ_DATA_	START423	[3:0]	WSEC	_ADDR423	3 [12:0]	WSEQ_D/	ATA423 [7:0]			FFFFFFFh
R13136 (3350h)	WSEQ_Sequence_425	_	DATA_WIDT WSEQ_DEI]	WS	EQ_DATA_	START424	[3:0]	WSEC	_ADDR424	[12:0]	WSEQ_D/	ATA424 [7:0]			FFFFFFFh
R13138 (3352h)	WSEQ_Sequence_426		DATA_WIDT WSEQ_DEI]	WS	EQ_DATA_	START425	[3:0]	WSEC	_ADDR425	[12:0]	WSEQ_D/	ATA425 [7:0]			FFFFFFFh
R13140 (3354h)	WSEQ_Sequence_427		DATA_WIDT WSEQ DEI		1	WS	EQ DATA	START426	[3:0]	WSEC	_ADDR426	[12:0]	WSEQ DA	ATA426 [7:0	1			FFFFFFFh
R13142 (3356h)	WSEQ_Sequence_428		DATA_WIDT		1	WS	EQ DATA	START427	[3:0]	WSEC	_ADDR427	[12:0]	WSEQ DA	ATA427 [7:0	1			FFFFFFFh
R13144 (3358h)	WSEQ_Sequence_429	WSEQ_[DATA_WIDT	H428 [2:0] LAY428 [3:0	1	WS	EQ DATA	START428	[3:0]	WSEC	_ADDR428	3 [12:0]	WSEQ DA	ATA428 [7:0	1			FFFFFFFh
R13146 (335Ah)	WSEQ_Sequence_430		DATA_WIDT		1	WS	EQ DATA	START429	[3:0]	WSEC	_ADDR429	[12:0]	WSEQ DA	ATA429 [7:0	1			FFFFFFFh
R13148 (335Ch)	WSEQ_Sequence_431	WSEQ_[DATA_WIDT	H430 [2:0]				START430		WSEC	_ADDR430	[12:0]		ATA430 [7:0				FFFFFFFh
R13150 (335Eh)	WSEQ_Sequence_432	WSEQ_[DATA_WIDT WSEQ_DEI	H431 [2:0]				START431		WSEC	_ADDR431	[12:0]		ATA431 [7:0				FFFFFFFh
R13152 (3360h)	WSEQ_Sequence_433		DATA_WIDT					START432		WSEC	_ADDR432	[12:0]		ATA432 [7:0				FFFFFFFh
R13154 (3362h)	WSEQ_Sequence_434		DATA_WIDT	H433 [2:0]				START433		WSEC	_ADDR433	i [12:0]		ATA433 [7:0				FFFFFFFh
R13156 (3364h)	WSEQ_Sequence_435		DATA_WIDT					START434		WSEC	_ADDR434	[12:0]		ATA434 [7:0				FFFFFFFh
R13158 (3366h)	WSEQ_Sequence_436	WSEQ_[DATA_WIDT					START435		WSEC	_ADDR435	[12:0]		ATA435 [7:0				FFFFFFFh
R13160 (3368h)	WSEQ_Sequence_437	WSEQ_[DATA_WIDT					START436		WSEC	_ADDR436	[12:0]		ATA436 [7:0				FFFFFFFh
R13162 (336Ah)	WSEQ_Sequence_438	WSEQ_[DATA_WIDT							WSEC	_ADDR437	[12:0]		ATA430 [7:0				FFFFFFFh
R13164 (336Ch)	WSEQ_Sequence_439	WSEQ_[DATA_WIDT	H438 [2:0]				START437		WSEC	_ADDR438	3 [12:0]		ATA438 [7:0				FFFFFFFh
R13166 (336Eh)	WSEQ_Sequence_440	WSEQ_[DATA_WIDT					START438		WSEC	_ADDR439	[12:0]						FFFFFFFh
R13168	WSEQ_Sequence_441		DATA_WIDT					START439		WSEC	_ADDR440	[12:0]		ATA439 [7:0				FFFFFFFh
(3370h) R13170	WSEQ_Sequence_442	WSEQ_[WSEQ_DEI	H441 [2:0]				START440		WSEC	_ADDR441	[12:0]		ATA440 [7:0				FFFFFFFh
(3372h) R13172	WSEQ_Sequence_443	WSEQ_[WSEQ_DEI	H442 [2:0]				START441		WSEC	_ADDR442	[12:0]		ATA441 [7:0				FFFFFFFh
(3374h) R13174	WSEQ_Sequence_444	WSEQ_[WSEQ_DEI DATA_WIDT	H443 [2:0]				START442		WSEC	_ADDR443	3 [12:0]		ATA442 [7:0				FFFFFFFh
(3376h) R13176	WSEQ_Sequence_445	WSEQ_[WSEQ_DEI DATA_WIDT	H444 [2:0]				START443		WSEC	_ADDR444	[12:0]		ATA443 [7:0				FFFFFFFh
(3378h) R13178	WSEQ_Sequence_446	WSEQ_[WSEQ_DEI DATA_WIDT	H445 [2:0]				START444		WSEC	_ADDR445	[12:0]		ATA444 [7:0				FFFFFFFh
(337Ah) R13180	WSEQ_Sequence_447		WSEQ_DEI DATA_WIDT]	WS	EQ_DATA_	START445	[3:0]	WSEC	_ADDR446	5 [12:0]	WSEQ_D/	ATA445 [7:0]			FFFFFFF
(337Ch) R13182	WSEQ_Sequence_448		WSEQ_DEI DATA_WIDT]	WS	EQ_DATA_	START446	[3:0]	WSEC	_ADDR447	[12:0]	WSEQ_D/	ATA446 [7:0]			FFFFFFF
(337Eh)				LAY447 [3:0]	WS	EQ_DATA_	START447	[3:0]			-	WSEQ_D/	ATA447 [7:0]			1

Register	Name	31 15	30 14	29 13	28 12	27 11	26 10	25 9	24 8	23 7	22 6	21 5	20 4	19 3	18 2	17 1	16 0	Default
R13184 (3380h)	WSEQ_Sequence_449	WSEQ_I	DATA_WIDT WSEQ DEI		1	WS	FO DATA	START448	[3:0]	WSEC	_ADDR448	[12:0]	WSFO DA	ATA448 [7:0	1		•	FFFFFFFh
R13186 (3382h)	WSEQ_Sequence_450	WSEQ_I	DATA_WIDT WSEQ_DEI	H449 [2:0]				START449		WSEC	_ADDR449	[12:0]		ATA449 [7:0				FFFFFFFh
R13188 (3384h)	WSEQ_Sequence_451	WSEQ_I	DATA_WIDT WSEQ_DEI]	WS	EQ_DATA_	START450	[3:0]	WSEC	_ADDR450	[12:0]		ATA450 [7:0				FFFFFFFh
R13190 (3386h)	WSEQ_Sequence_452	WSEQ_I	DATA_WIDT WSEQ DEI		1	WS	EQ DATA	START451	[3:0]	WSEC	_ADDR451	[12:0]	WSEQ D	ATA451 [7:0)]			FFFFFFFh
R13192 (3388h)	WSEQ_Sequence_453	WSEQ_I	DATA_WIDT WSEQ_DEI	H452 [2:0]				START452		WSEC	_ADDR452	[12:0]		ATA452 [7:0	•			FFFFFFFh
R13194 (338Ah)	WSEQ_Sequence_454	WSEQ_I	DATA_WIDT WSEQ_DEI	H453 [2:0] LAY453 [3:0]	WS	EQ_DATA_	START453	[3:0]	WSEC	_ADDR453	3 [12:0]	WSEQ_D/	ATA453 [7:0)]			FFFFFFFh
R13196 (338Ch)	WSEQ_Sequence_455	WSEQ_I	DATA_WIDT WSEQ DEI		1	WS	EQ DATA	START454	[3:0]	WSEC	_ADDR454	[12:0]	WSEQ DA	ATA454 [7:0	0]			FFFFFFFh
R13198 (338Eh)	WSEQ_Sequence_456	WSEQ_I	DATA_WIDT					START455		WSEC	_ADDR455	[12:0]		ATA455 [7:0				FFFFFFFh
R13200 (3390h)	WSEQ_Sequence_457	WSEQ_I	DATA_WIDT WSEQ_DEI	H456 [2:0] LAY456 [3:0]	WS	EQ_DATA_	START456	[3:0]	WSEC	_ADDR456	[12:0]	WSEQ_D/	ATA456 [7:0)]			FFFFFFFh
R13202 (3392h)	WSEQ_Sequence_458	WSEQ_I	DATA_WIDT WSEQ DEI	H457 [2:0] LAY457 [3:0	1	WS	EQ DATA	START457	[3:0]	WSEC	_ADDR457	[12:0]	WSEQ DA	ATA457 [7:0	0]			FFFFFFFh
R13204 (3394h)	WSEQ_Sequence_459	WSEQ_I	DATA_WIDT	H458 [2:0] LAY458 [3:0	1			START458		WSEC	_ADDR458	3 [12:0]		ATA458 [7:0				FFFFFFFh
R13206 (3396h)	WSEQ_Sequence_460	WSEQ_I	DATA_WIDT					START459		WSEC	_ADDR459	[12:0]		ATA459 [7:0				FFFFFFF
R13208 (3398h)	WSEQ_Sequence_461	WSEQ_I	DATA_WIDT WSEQ_DEI	H460 [2:0]				START460		WSEC	_ADDR460	[12:0]		ATA460 [7:0				FFFFFFFh
R13210 (339Ah)	WSEQ_Sequence_462	WSEQ_I	DATA_WIDT WSEQ_DEI	H461 [2:0]				START461		WSEC	_ADDR461	[12:0]		ATA461 [7:0				FFFFFFFh
R13212 (339Ch)	WSEQ_Sequence_463	WSEQ_I	DATA_WIDT	H462 [2:0]						WSEC	_ADDR462	[12:0]						FFFFFFFh
R13214 (339Eh)	WSEQ_Sequence_464	WSEQ_I	WSEQ_DEI DATA_WIDT WSEQ_DEI	H463 [2:0]				START462 START463		WSEC	_ADDR463	3 [12:0]		ATA462 [7:0 ATA463 [7:0				FFFFFFFh
R13216 (33A0h)	WSEQ_Sequence_465	WSEQ_I	DATA_WIDT					START464		WSEC	_ADDR464	[12:0]		ATA463 [7:0				FFFFFFFh
R13218 (33A2h)	WSEQ_Sequence_466	WSEQ_I	DATA_WIDT	H465 [2:0]						WSEC	_ADDR465	[12:0]			•			FFFFFFFh
R13220 (33A4h)	WSEQ_Sequence_467	WSEQ_I	WSEQ_DEI	H466 [2:0]				START465		WSEC	_ADDR466	[12:0]		ATA465 [7:0				FFFFFFFh
R13222 (33A6h)	WSEQ_Sequence_468	WSEQ_I	WSEQ_DEI	H467 [2:0]				START466		WSEC	_ADDR467	[12:0]	_	ATA466 [7:0	•			FFFFFFFh
R13224	WSEQ_Sequence_469	WSEQ_I	WSEQ_DEI DATA_WIDT	H468 [2:0]				START467		WSEC	_ADDR468	3 [12:0]		ATA467 [7:0				FFFFFFFh
(33A8h) R13226	WSEQ_Sequence_470	WSEQ_I	DATA_WIDT			WS	EQ_DATA_	START468	[3:0]	WSEC	_ADDR469	[12:0]	WSEQ_D/	ATA468 [7:0	0]			FFFFFFFh
(33AAh) R13228	WSEQ Sequence 471	WSEQ_I	WSEQ_DEI DATA_WIDT]	WS	EQ_DATA_	START469	[3:0]	WSEC	_ADDR470	[12:0]	WSEQ_D/	ATA469 [7:0)]			FFFFFFF
(33ACh) R13230	WSEQ_Sequence_472	WSEQ I	WSEQ_DEI	LAY470 [3:0 H471 [2:0]]	WS	EQ_DATA_	START470	[3:0]	WSEC	ADDR471	[12:0]	WSEQ_D/	ATA470 [7:0)]			FFFFFFFF
(33AEh)			WSEQ_DEI	LAY471 [3:0]	WS	EQ_DATA_	START471	[3:0]				WSEQ_D/	ATA471 [7:0)]			
R13232 (33B0h)	WSEQ_Sequence_473	_		LAY472 [3:0]	WS	EQ_DATA_	START472	[3:0]		_ADDR472		WSEQ_D/	ATA472 [7:0)]			FFFFFFFh
R13234 (33B2h)	WSEQ_Sequence_474			LAY473 [3:0]	WS	EQ_DATA_	START473	[3:0]		_ADDR473		WSEQ_D/	ATA473 [7:0)]			FFFFFFFh
R13236 (33B4h)	WSEQ_Sequence_475	WSEQ_I	DATA_WIDT WSEQ_DEI	H474 [2:0] LAY474 [3:0]	WS	EQ_DATA_	START474	[3:0]	WSEC	_ADDR474	[12:0]	WSEQ_D/	ATA474 [7:0)]			FFFFFFFh
R13238 (33B6h)	WSEQ_Sequence_476	WSEQ_I	DATA_WIDT WSEQ_DEI]	WS	EQ_DATA_	START475	[3:0]	WSEC	_ADDR475	[12:0]	WSEQ_D/	ATA475 [7:0)]			FFFFFFFh
R13240 (33B8h)	WSEQ_Sequence_477	WSEQ_DELAY475 [3:0] WSEQ_DATA_START475 [3:0] WSEQ_DATA475 [7:0] WSEQ_DATA_WIDTH476 [2:0] WSEQ_ADDR476 [12:0] F WSEQ_DELAY476 [3:0] WSEQ_DATA_START476 [3:0] WSEQ_DATA476 [7:0]								FFFFFFFh								
R13242 (33BAh)	WSEQ_Sequence_478	WSEQ_I	WSEQ_DELAY477 [3:0]									FFFFFFFh						
R13244 (33BCh)	WSEQ_Sequence_479	WSEQ_I		H478 [2:0]				START478		WSEC	_ADDR478	3 [12:0]		ATA478 [7:0				FFFFFFFh
R13246 (33BEh)	WSEQ_Sequence_480	WSEQ_I	DATA_WIDT WSEQ_DEI	H479 [2:0]						WSEC	_ADDR479	[12:0]						FFFFFFFh
R13248 (33C0h)	WSEQ_Sequence_481	WSEQ_I	DATA_WIDT WSEQ_DEI	H480 [2:0]				START479		WSEC	_ADDR480	[12:0]		ATA479 [7:0				FFFFFFFh
R13250	WSEQ_Sequence_482	WSEQ_I	DATA_WIDT	H481 [2:0]				START480		WSEC	_ADDR481	[12:0]		ATA480 [7:0				FFFFFFFh
(33C2h) R13252	WSEQ_Sequence_483	WSEQ_I	WSEQ_DEI DATA_WIDT	H482 [2:0]				START481		WSEC	_ADDR482	[12:0]		ATA481 [7:0				FFFFFFFh
(33C4h) R13254	WSEQ_Sequence_484	WSEQ_I	WSEQ_DELAY482 [3:0] WSEQ_DATA_START482 [3:0] WSEQ_DATA482 [7:0] WSEQ_DATA_WIDTH483 [2:0] WSEQ_ADDR483 [12:0] F										FFFFFFFh					
(33C6h)			WSEQ_DEI	LAY483 [3:0		WS	EQ_DATA_	START483	[3:0]				WSEQ_D/	ATA483 [7:0]			

Register	Name	31 15	30 14	29 13	28 12	27 11	26 10	25 9	24 8	23 7	22 6	21 5	20 4	19 3	18 2	17 1	16 0	Default
R13256 (33C8h)	WSEQ_Sequence_485		DATA_WIDT)]	WS	EQ DATA	START484	[3:0]	WSEC	Q_ADDR484		WSEQ DA	TA484 [7:0]		•		FFFFFFFh
R13258 (33CAh)	WSEQ_Sequence_486		DATA_WIDT		1			START485		WSEC	Q_ADDR48		WSEQ DA	TA485 [7:0]				FFFFFFFh
R13260 (33CCh)	WSEQ_Sequence_487	WSEQ_D	DATA_WIDT	H486 [2:0]		L		START486		WSEC	Q_ADDR486	6 [12:0]	WSEQ DA					FFFFFFFh
R13262 (33CEh)	WSEQ_Sequence_488	WSEQ_E	DATA_WIDT WSEQ_DE	H487 [2:0]		ı		START487		WSEC	Q_ADDR487	7 [12:0]	WSEQ_DA					FFFFFFFh
R13264 (33D0h)	WSEQ_Sequence_489	WSEQ_E	DATA_WIDT	H488 [2:0]				START488		WSEC	Q_ADDR488							FFFFFFFh
R13266 (33D2h)	WSEQ_Sequence_490	WSEQ_E	WSEQ_DE	H489 [2:0]						WSEC	Q_ADDR489			TA488 [7:0]				FFFFFFFh
R13268	WSEQ_Sequence_491	WSEQ_E	WSEQ_DE DATA_WIDT	H490 [2:0]				START489		WSEC	Q_ADDR490	[12:0]	WSEQ_DA					FFFFFFFh
(33D4h) R13270	WSEQ_Sequence_492	WSEQ_D	WSEQ_DE DATA_WIDT	H491 [2:0]		ı		START490		WSEC	Q_ADDR49	1 [12:0]	WSEQ_DA					FFFFFFF
(33D6h) R13272	WSEQ_Sequence_493		WSEQ_DE DATA_WIDT	LAY491 [3:0 H492 [2:0]]	WS	EQ_DATA_	START491	[3:0]	WSEC	Q_ADDR492		WSEQ_DA	TA491 [7:0]				FFFFFFFh
(33D8h) R13274	WSEQ_Sequence_494		WSEQ_DE]	WS	EQ_DATA_	START492	[3:0]	WSEC	Q ADDR493		WSEQ_DA	TA492 [7:0]				FFFFFFF
(33DAh) R13276	WSEQ Sequence 495		WSEQ_DE]	WS	EQ_DATA_	START493	[3:0]	WSEC	 Q_ADDR494		WSEQ_DA	TA493 [7:0]				FFFFFFF
(33DCh)			WSEQ_DE	LAY494 [3:0]	WS	EQ_DATA_	START494	[3:0]		Q ADDR495		WSEQ_DA	TA494 [7:0]				FFFFFFF
(33DEh)	WSEQ_Sequence_496	_	WSEQ_DE	LAY495 [3:0]	WS	EQ_DATA_	START495	[3:0]				WSEQ_DA	TA495 [7:0]				
R13280 (33E0h)	WSEQ_Sequence_497		DATA_WIDT WSEQ_DE	LAY496 [3:0]	WS	EQ_DATA_	START496	[3:0]		Q_ADDR496		WSEQ_DA	TA496 [7:0]				FFFFFFFh
R13282 (33E2h)	WSEQ_Sequence_498		DATA_WIDT WSEQ_DE]	WS	EQ_DATA_	START497	[3:0]	WSEC	Q_ADDR497		WSEQ_DA	TA497 [7:0]				FFFFFFFh
R13284 (33E4h)	WSEQ_Sequence_499		DATA_WIDT WSEQ_DE	H498 [2:0] LAY498 [3:0]	WS	EQ_DATA_	START498	[3:0]	WSEC	Q_ADDR498		WSEQ_DA	TA498 [7:0]				FFFFFFFh
R13286 (33E6h)	WSEQ_Sequence_500		DATA_WIDT WSEQ DE)]	WS	EQ DATA	START499	[3:0]	WSEC	Q_ADDR499		WSEQ DA	TA499 [7:0]				FFFFFFFh
R13288 (33E8h)	WSEQ_Sequence_501		DATA_WIDT	H500 [2:0] LAY500 [3:0	1			START500		WSEC	Q_ADDR500		WSEQ DA	TA500 [7:0]				FFFFFFFh
R13290 (33EAh)	WSEQ_Sequence_502	WSEQ_D	DATA_WIDT	H501 [2:0]				START501		WSEC	Q_ADDR50°	1 [12:0]	WSEQ DA					FFFFFFFh
R13292 (33ECh)	WSEQ_Sequence_503	WSEQ_E	DATA_WIDT	H502 [2:0]				START502		WSEC	Q_ADDR502	2 [12:0]	WSEQ_DA					FFFFFFFh
R13294 (33EEh)	WSEQ_Sequence_504	WSEQ_D	DATA_WIDT	H503 [2:0]		ı				WSEC	Q_ADDR503	3 [12:0]						FFFFFFFh
R13296 (33F0h)	WSEQ_Sequence_505	WSEQ_E	WSEQ_DE DATA_WIDT	H504 [2:0]		ı		START503		WSEC	Q_ADDR504	1 [12:0]	WSEQ_DA					FFFFFFFh
R13298	WSEQ_Sequence_506	WSEQ_D	WSEQ_DE DATA_WIDT	H505 [2:0]		ı		START504		WSEC	Q_ADDR50	5 [12:0]	WSEQ_DA					FFFFFFFh
(33F2h) R13300	WSEQ_Sequence_507	WSEQ_E	WSEQ_DE DATA_WIDT	H506 [2:0]		WS	EQ_DATA_	START505	[3:0]	WSEC	Q_ADDR506		WSEQ_DA	TA505 [7:0]				FFFFFFFh
(33F4h) R13302	WSEQ_Sequence_508		WSEQ_DE DATA_WIDT	LAY506 [3:0 H507 [2:0]]	WS	EQ_DATA_	START506	[3:0]	WSEC	Q_ADDR507		WSEQ_DA	TA506 [7:0]				FFFFFFF
(33F6h) R131076	OTP_HPDET_Cal_1		WSEQ_DE	LAY507 [3:0		WS ET_11 [7:0]		START507	[3:0]					TA507 [7:0] ET_10 [7:0]				00000000h
(20004h)	OTP HPDET Cal 2				HP_OFFSI	ET_01 [7:0] E2 [7:0]							HP_OFFSI	T_00 [7:0]				00000000h
(20006h)	EVENTLOG1_	0	0) 0		ENT_1X [7:0	0	0	0	0	0	0 H	IP_GRADIE		0	0	0	00000000h
(48000h)	CONTROL	0	0	0	0	0	0	0	0	0	0	0	0	0	0		EVENTLO G1_ENA	
R294916 (48004h)	EVENTLOG1_TIMER_ SEL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 EVENT	0	00000000h
` '	EVENTLOG1_FIFO_	0	0	0	0	0	0	0	0	0	0	0	0	0	0		SEL [1:0]	00000001h
(4800Ch)	CONTROL1 EVENTLOG1 FIFO	0	0	0	0	0	0	0	0	0	0	0	0			FO_WMAR		00000000h
	POINTER1														G1_FULL	EVENTLO G1_ WMARK_ STS	G1_NOT_ EMPTY	300000011
D204044	EVENTI OCA CUI	0	0	0	0	EVE 0	NTLOG1_F	IFO_WPTR	[3:0]	0	0	0	0	EVE 0	NTLOG1_F	FIFO_RPTR	[3:0]	0000000
	EVENTLOG1_CH_ ENABLE1	-	EVENTLO G1_CH15_	-	-	-		_	_	-			_		_	EVENTLO G1_CH2_		00000000h
R294948	EVENTLOG1 EVENT	ENA 0	ENA 0	ENA 0	ENA 0	ENA 0	ENA 0	ENA 0	ENA 0	ENA 0	ENA 0	ENA 0	ENA 0	ENA 0	ENA 0	ENA 0	ENA 0	00000000h
(48024h)	EVENTLOG1_EVENT_ STATUS	EVENTLO G1 CH16	EVENTLO G1 CH15	EVENTLO G1 CH14	EVENTLO G1 CH13	EVENTLO G1 CH12	G1 CH11	EVENTLO G1_CH10	G1 CH9	G1 CH8	G1 CH7	EVENTLO G1 CH6	EVENTLO G1 CH5	EVENTLO G1 CH4	EVENTLO G1_CH3_	EVENTLO G1 CH2	EVENTLO G1 CH1	
		STS	STS	STS	STS	STS	STS	STS	STS -	STS -	STS -	STS -	STS -	STS -	STS	STS -	STS -	

Register	Name	31 15	30 14	29 13	28 12	27 11	26 10	25 9	24 8	23 7	22 6	21 5	20 4	19 3	18 2	17 1	16 0	Default
R294976 (48040h)	EVENTLOG1_CH1_ DEFINE	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	00000000h
(4604011)	DEFINE	EVENTLO G1_CH1_ DB	EVENTLO G1_CH1_ POL	EVENTLO G1_CH1_ FILT	0	0	0				EV	ENTLOG1_	CH1_SEL [9:0]				
R294978 (48042h)	EVENTLOG1_CH2_ DEFINE	0 EVENTLO	0 EVENTLO	0 EVENTLO	0	0	0	0	0	0	0 EV	0 'ENTLOG1_	0 CH2_SEL [9:0]	0	0	0	00000000h
		DB _	POL _	G1_CH2_ FILT														
R294980 (48044h)	EVENTLOG1_CH3_ DEFINE	0 EVENTI O	0 EVENTLO	0 EVENTI O	0	0	0	0	0	0	0	0 'ENTLOG1	O 0	0	0	0	0	00000000h
		G1_CH3_ DB	G1_CH3_ POL	G1_CH3_ FILT						•			O110_0LL					
R294982 (48046h)	EVENTLOG1_CH4_ DEFINE	0 EVENTLO	0 EVENTLO	0 EVENTLO	0	0	0	0	0	0	0 FV	0 ENTLOG1	CH4 SELI	9-01	0	0	0	00000000h
, ,		G1_CH4_ DB	G1_CH4_ POL	G1_CH4_ FILT					1			_				_		
R294984 (48048h)	EVENTLOG1_CH5_ DEFINE	0 EVENTLO	0 EVENTLO	0 EVENTLO	0	0	0	0	0	0	0 EV	0 'ENTLOG1	0 CHE SEL I	0	0	0	0	00000000h
(100 1011)	DE1 1112	G1_CH5_ DB		G1_CH5_ FILT	o	U	U				EV	ENILOGI_	CH3_SEL [9.0]				
	EVENTLOG1_CH6_ DEFINE	0 EVENTLO	0 EVENTLO	0 EVENTLO	0	0	0	0	0	0	0	0 'ENTLOG1	0	0	0	0	0	00000000h
(100 17 11)	DE1 1112	G1_CH6_ DB	G1_CH6_ POL	G1_CH6_ FILT	o	U	U				EV	ENILOGI_	CH0_SEL [9.0]				
	EVENTLOG1_CH7_ DEFINE	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	00000000h
(4004011)	DEI INC	EVENTLO G1_CH7_ DB		EVENTLO G1_CH7_ FILT	0	0	0				EV	ENTLOG1_	CH/_SEL	9:0]				
	EVENTLOG1_CH8_ DEFINE	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	00000000h
(4004L11)	DEI INC	EVENTLO G1_CH8_ DB	EVENTLO G1_CH8_ POL	EVENTLO G1_CH8_ FILT	0	0	0				EV	'ENTLOG1_	CH8_SEL [9:0]				
	EVENTLOG1_CH9_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	00000000h
(48050h)	DEFINE	EVENTLO G1_CH9_ DB		EVENTLO G1_CH9_ FILT	0	0	0				EV	'ENTLOG1_	CH9_SEL [9:0]				
	EVENTLOG1_CH10_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	00000000h
(48052h)	DEFINE	EVENTLO G1_CH10_ DB	EVENTLO G1_CH10_ POL	EVENTLO G1_CH10_ FILT	0	0	0				EVI	ENTLOG1_	CH10_SEL	[9:0]				
	EVENTLOG1_CH11_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	00000000h
(48054h)	DEFINE	EVENTLO G1_CH11_ DB	EVENTLO G1_CH11_ POL	EVENTLO G1_CH11_ FILT	0	0	0				EVI	ENTLOG1_	CH11_SEL	[9:0]				
	EVENTLOG1_CH12_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	00000000h
(48056h)	DEFINE	EVENTLO G1_CH12_ DB	EVENTLO G1_CH12_ POL	EVENTLO G1_CH12_ FILT	0	0	0				EVI	ENTLOG1_	CH12_SEL	[9:0]				
	EVENTLOG1_CH13_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	00000000h
(48058h)	DEFINE		EVENTLO G1_CH13_ POL		0	0	0				EVI	ENTLOG1_	CH13_SEL	[9:0]				
	EVENTLOG1_CH14_ DEFINE	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	00000000h
(4003AII)	DEFINE	G1_CH14_ DB	EVENTLO G1_CH14_ POL	G1_CH14_ FILT	0	0	0				EVI	ENTLOG1_	CH14_SEL	[9:0]				
R295004 (4805Ch)	EVENTLOG1_CH15_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	00000000h
(4000011)	DET INC	G1_CH15_ DB	EVENTLO G1_CH15_ POL	G1_CH15_ FILT	0	0	0				EVI	ENTLOG1_	CH15_SEL	[9:0]				
R295006 (4805Eh)	EVENTLOG1_CH16_	0	0 EVENTLO	0	0	0	0	0	0	0	0	0 ENTLOG1	0	0	0	0	0	00000000h
(4000211)	DET INC	G1_CH16_ DB	G1_CH16_ POL	G1_CH16_ FILT	U	U	U				EVI	ENTLOGI_	CHI0_SEL	[9:0]				
R295040	EVENTLOG1_FIFO0_ READ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	00000000h
(4000011)	NLAD	0	0	0	EVENTLO G1_ FIFO0_	0	0				EV	ENTLOG1_	FIFO0_ID [9:0]				
R295042	EVENTLOG1_FIFO0_		l		POL ⁻		I			IFO0_TIME								00000000h
, ,	TIME EVENTLOG1 FIFO1	0	0	0	0	0	0	EVEN 0	NTLOG1_F	IFO0_TIME	[15:0]	0	0	0	0	0	0	00000000h
(48084h)	READ	0	0	0	EVENTLO G1	0	0	0	0	1 0		ENTLOG1_	-	_	U	U		000000001
R295046	EVENTLOG1 FIFO1				FIFO1_ POL			EVEN	ITLOG1 F	IFO1 TIME	[31:16]							00000000h
(48086h)	TIME – –	0	0	0	0	0	I 0			IFO1_TIME		I 0	I ^	I 0	0	0	0	00000000h
(48088h)	EVENTLOG1_FIFO2_ READ	0	0	0	EVENTLO G1	0	0	U	U	0		ENTLOG1_	0 FIFO2_ID [9:0]	l v	U	l u	บบบบบบบบท
					FIFO2_ POL													
	EVENTLOG1_FIFO2_ TIME									IFO2_TIME								00000000h
,,	l .	1						_ v Ll	001_1	04_11WL	[]							i

Register	Name	31 15	30 14	29 13	28 12	27 11	26 10	25 9	24 8	23 7	22 6	21 5	20 4	19 3	18 2	17 1	16 0	Default
R295052 (4808Ch)	EVENTLOG1_FIFO3_ READ	0	0	0	0 EVENTLO	0	0	0	0	0	0	0 ENTLOG1	0	0	0	0	0	00000000h
(1000011)				U	G1_ FIFO3_ POL	U					EV	ENILOGI_	,FIFO3_ID	9.0]				
R295054 (4808Eh)	EVENTLOG1_FIFO3_ TIME									FO3_TIME IFO3_TIME								00000000h
R295056	EVENTLOG1 FIEO4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	00000000h
(48090h)	READ	0	0	0	EVENTLO G1_ FIFO4_ POL	0	0				EV	ENTLOG1_	FIFO4_ID	9:0]				
R295058 (48092h)	EVENTLOG1_FIFO4_ TIME									FO4_TIME IFO4_TIME								00000000h
R295060	EVENTLOG1_FIEO5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	00000000h
(48094h)	READ	0	0	0	EVENTLO G1_ FIFO5_ POL	0	0				EV	ENTLOG1_	FIFO5_ID	9:0]				
R295062 (48096h)	EVENTLOG1_FIFO5_ TIME		•				•			FO5_TIME IFO5_TIME								00000000h
R295064	EVENTLOG1_FIFO6_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	00000000h
(48098h)	READ	0	0	0	EVENTLO G1_ FIFO6_ POL	0	0				EV	ENTLOG1_	FIFO6_ID [9:0]				
R295066 (4809Ah)	EVENTLOG1_FIFO6_ TIME									FO6_TIME IFO6_TIME								00000000h
R295068	EVENTLOG1_FIFO7_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	00000000h
(4809Ch)	READ	0	0	0	EVENTLO G1_ FIFO7_ POL	0	0				EV	ENTLOG1_	FIFO7_ID	9:0]				
R295070 (4809Eh)	EVENTLOG1_FIFO7_				1					FO7_TIME								00000000h
R295072	EVENTLOG1 FIFO8	0	0	0	0	0	0	0	NILOG1_F	IFO7_TIME 0	[15:0]	0	0	0	0	0	0	00000000h
(480A0h)	READ	0	0	0	EVENTLO G1_ FIFO8_ POL	0	0				EV	ENTLOG1_	FIFO8_ID	9:0]				
R295074 (480A2h)	EVENTLOG1_FIFO8_			1	I I					FO8_TIME								00000000h
	EVENTLOG1 FIFO9	0	0	0	0	0	0	0 EVE	NILOG1_F	IFO8_TIME 0	[15:0]	0	0	0	0	0	0	00000000h
(480A4h)	READ — —	0	0	0	EVENTLO G1_ FIFO9_ POL	0	0			•	EV	ENTLOG1_	FIFO9_ID	9:0]	•			
R295078 (480A6h)	EVENTLOG1_FIFO9_			•						FO9_TIME IFO9_TIME								00000000h
R295080	EVENTLOG1 FIFO10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	00000000h
(480A8h)	READ	0	0	0	EVENTLO G1_ FIFO10_ POL	0	0				EVI	ENTLOG1_I	FIFO10_ID	[9:0]				
R295082 (480AAh)	EVENTLOG1_FIFO10_									FO10_TIME								00000000h
R295084	EVENTLOG1 FIFO11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	00000000h
(480ACh)		0	0	0	EVENTLO G1_ FIFO11_ POL	0	0				EV	Entlog1_i	FIFO11_ID	[9:0]				
R295086 (480AEh)	EVENTLOG1_FIFO11_ TIME									FO11_TIME								00000000h
R295088	EVENTLOG1 FIFO12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	00000000h
(480B0h)	READ	0	0	0	EVENTLO G1_ FIFO12_ POL	0	0				EVI	ENTLOG1_I	FIFO12_ID	[9:0]				
R295090 (480B2h)	EVENTLOG1_FIFO12_		•	•			•			O12_TIME								00000000h
R295092	EVENTLOG1 FIFO13	0	0	0	0	0	0	0 EVEN	0 0	FO12_TIME 0	0	0	0	0	0	0	0	00000000h
(480B4h)	READ	0	0	0	EVENTLO G1_ FIFO13_ POL	0	0			•	EVI	ENTLOG1_I	FIFO13_ID	[9:0]	•			
R295094 (480B6h)	EVENTLOG1_FIFO13_ TIME		•	•			•			O13_TIME								00000000h
R295096	EVENTLOG1 FIFO14	0	0	0	0	0	0	0 EVEN	0 0	FO13_TIME 0	0	0	0	0	0	0	0	00000000h
(480B8h)	READ	0	0	0	EVENTLO G1_ FIFO14_ POL	0	0		•	•	EVI	ENTLOG1_I	FIFO14_ID	[9:0]	•	•		
R295098	EVENTLOG1_FIFO14_		•	•			•			O14_TIME								00000000h
(480BAh)	TIME	<u> </u>						EVEN	NILOG1_FI	FO14_TIME	: [15:0]							

Register	Name	31 15	30 14	29 13	28 12	27 11	26 10	25 9	24 8	23 7	22 6	21 5	20 4	19 3	18 2	17 1	16 0	Default
R295100	EVENTLOG1_FIFO15_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	00000000h
(480BCh)	READ	0	0	0	EVENTLO G1_ FIFO15_ POL	0	0				EV	ENTLOG1_	FIFO15_ID	[9:0]				
R295102 (480BEh)	EVENTLOG1_FIFO15_ TIME			•					TLOG1_FIF ITLOG1_FIF									00000000h
R303104	ALM1_CFG	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	00000000h
(4A000h)		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ALM1_ TIMER_ SEL	
R303120 (4A010h)	ALM1_CONFIG1	0	0	0	0	0	0	0	0	0	0	0	0 ALM1_ CH1_ CONT	0	0	0 ALM1_CH MOD	0 H1_TRIG_ E[1:0]	00000000h
	ALM1_CTRL1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	00000000h
(4A012h)		ALM1_ CH1_UPD	0	0	0	0	0	0	0	0	0	0	ALM1_ CH1_ STOP	0	0	0	ALM1_ CH1_ START	
R303124 (4A0124h)	ALM1_TRIG_VAL1								M1_CH1_TE M1_CH1_T									00000000h
R303126 (4A016h)	ALM1_PULSE_DUR1								1_CH1_PU									00000000h
,	ALM1_STATUS1	0	0	0	0	0	0	0	11_CH1_PU 0	0 0	0	0	0	0	0	0	0	00000000h
(4A018h)		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ALM1 CH1 STS	
	ALM1_CONFIG2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	00000000h
(4A020h)		0	0	0	0	0	0	0	0	0	0	0	ALM1_ CH2_ CONT	0	0	MŌD	H2_TRIG_ E[1:0]	
R303138 (4A022h)	ALM1_CTRL2	0 ALM1 CH2_UPD	0	0	0	0	0	0	0	0	0	0	0 ALM1_ CH2_ STOP	0	0	0	0 ALM1_ CH2_ START	00000000h
R303140 (4A024h)	ALM1_TRIG_VAL2								M1_CH2_TF				0101	<u> </u>	I.		01/11(1	00000000h
, ,	ALM1_PULSE_DUR2	ALM1_CH2_TRIG_VAL[15:0]									00000000h							
R303144 (4A028h)	ALM1_STATUS2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	00000000h
,	ALM1_CONFIG3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ALM1_ CH2_STS	00000000h
(4A030h)	7.EM1_00111100	0	0	0	0	0	0	0	0	0	0	0	ALM1_ CH3_ CONT	0	0	ALM1 CH	H3_TRIG_ E[1:0]	000000011
R303154 (4A032h)	ALM1_CTRL3	0 ALM1	0	0	0	0	0	0	0	0	0	0	0 ALM1	0	0	0	0 ALM1	00000000h
, ,	ALAM TRIC MALO	CH3_UPD	U	U	U	U	U					U	CH3_ STOP	U	U	U	CH3_ START	00000000
R303156 (4A034h)	ALM1_TRIG_VAL3								M1_CH3_TF M1_CH3_T									00000000h
R303158 (4A036h)	ALM1_PULSE_DUR3							ALM	1_CH3_PU 11_CH3_PU	LSE_DUR[31:16]							00000000h
, ,	ALM1 STATUS3	0	0	0	0	0	0	0	0 0	0 0	0	0	0	0	0	0	0	00000000h
(4A038h)	_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ALM1_ CH3_STS	
R303168 (4A040h)	ALM1_CONFIG4	0	0	0	0	0	0	0	0	0	0	0	0 ALM1_ CH4_ CONT	0	0	0 ALM1_CH MOD	0 H4_TRIG_ E[1:0]	00000000h
	ALM1_CTRL4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	00000000h
(4A042h)		ALM1_ CH4_UPD	0	0	0	0	0	0	0	0	0	0	ALM1_ CH4_ STOP	0	0	0	ALM1_ CH4_ START	
R303172 (4A044h)	ALM1_TRIG_VAL4								M1_CH4_TF M1_CH4_T		-							00000000h
R303174 (4A046h)	ALM1_PULSE_DUR4								1_CH4_PU 11_CH4_PU									00000000h
R303176 (4A048h)	ALM1_STATUS4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	00000000h
R311296	Timer1_Control	0	0	0	0	0	0	0	0	0	0	0 TIMER1_	0 TIMER1_	0	0 TIMER	0 1_PRESCA	ALM1_ CH4_STS LE [2:0]	00000000h
(4C000h)		0	TIMER1	_REFCLK_	DIV [2:0]	0	TIMER1_	REFCLK_F	REQ_SEL	0	0	CONTINŪ OUS 0	DIR O	TIT	MER1_REF	CLK_SRC [3:0]	
R311298	Timer1_Count_Preset							[2:0] TIM	ER1_MAX_	COUNT [3	<u> </u> 1:16]	<u> </u>		<u> </u>				00000000h
(4C002h)		_	^	I ^	.	^	I ^	TIN	IER1_MAX	_COUNT [1	5:0]		I ^	I ^		I ^	I ^	
R311302 (4C006h)	Timer1_Start_and_Stop	0	0	0	0	0	0	0	0	0	0	0	0 TIMER1_ STOP	0	0	0	0 TIMER1_ START	00000000h

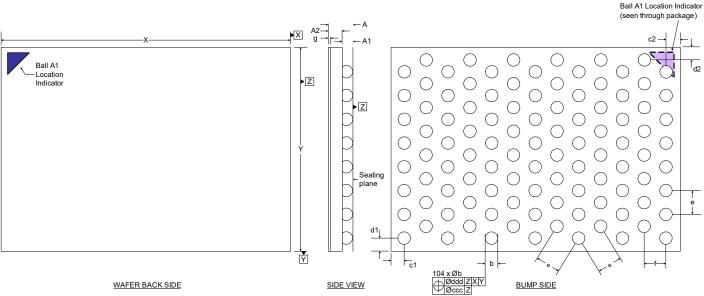
Register	Name	31 15	30 14	29 13	28 12	27 11	26 10	25 9	24 8	23 7	22 6	21 5	20 4	19 3	18 2	17 1	16 0	Default
R311304 (4C008h)	Timer1_Status	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 TIMER1	00000000h
(1000011)		U	0	0	0	0	U	U	0	U	U	0	0	0	0	U	RUNNING STS	
R311306 (4C00Ah)	Timer1_Count_ Readback		I	I	I	I			ER1_CUR_				I		I		_	00000000h
R311308	Timer1_DSP_Clock_	0	0	0	0	0	0	0	IER1_CUR	_COUNT [1	5:0]	0	0	0	0	0	0	00000000h
(4C00Ch)	Config Timer1 DSP Clock	0	0	0	0	0	0	TIMER 0	1_DSPCLK	_FREQ_SE	L [15:0]	0	0	1 0	0	0	0	00000000h
(4C00Eh)	Status		ı					TIMER	1_DSPCLK	_FREQ_ST	S [15:0]							
R315392 (4D000h)	DSPGP_Status_1	0 DSPGP16	0 DSPGP15	0 DSPGP14	0 DSPGP13	0 DSPGP12	0 DSPGP11	0 DSPGP10	0 DSPGP9	0 DSPGP8	0 DSPGP7	0 DSPGP6	0 DSPGP5	0 DSPGP4	0 DSPGP3	0 DSPGP2	0 DSPGP1	00000000h
R315424	DSPGP SET1 Mask 1	_STS	_STS 0	_STS 0	_STS 0	_STS 0	_STS	_STS 0	STS O	STS ⁻	0000FFFFh							
(4D020h)	Ber er _ez r _mask_r	DSPGP16 SET1		DSPGP14 SET1	DSPGP13 SET1	DSPGP12 SET1		DSPGP10 SET1	DSPGP9_ SET1	DSPGP8_ SET1	DSPGP7_ SET1	DSPGP6_ SET1	DSPGP5_ SET1	DSPGP4_ SET1	DSPGP3_ SET1	DSPGP2_ SET1	DSPGP1_ SET1	0000111111
R315432	DSPGP SET1	MASK 0	MASK 0	MASK 0	MASK 0	MASK 0	MASK 0	MASK 0	MASK 0	MASK 0	MASK 0	0000FFFFh						
(4D028h)	Direction_1	DSPGP16	DSPGP15 SET1	DSPGP14 SET1	DSPGP13 SET1	DSPGP12 SET1	DSPGP11	DSPGP10 SET1	DSPGP9	DSPGP8	DSPGP7	DSPGP6	DSPGP5	DSPGP4	DSPGP3	DSPGP2	DSPGP1 SET1 DIR	0000111111
D045440	DODOD OFTI I	_SET1_ DIR	DIR =	DIR -	DIR -	DIR -	_SET1_ DIR	DIR -	_	_	_	_	_	_	_	_	_	000000001
R315440 (4D030h)	DSPGP_SET1_Level_1	0 DSPGP16		0 DSPGP14	0 DSPGP13	0 DSPGP12		0 DSPGP10	0 DSPGP9_	0 DSPGP8_	0 DSPGP7_	0 DSPGP6_	0 DSPGP5_	0 DSPGP4_		0 DSPGP2_		00000000h
		SET1 LVL	_	_	_	_	_	SET1_LVL	_	_	_							
R315456 (4D040h)	DSPGP_SET2_Mask_1	0 DSPGP16	0 DSPGP15	0 DSPGP14	0 DSPGP13	0 DSPGP12	0 DSPGP11	0 DSPGP10	0 DSPGP9	0 DSPGP8	0 DSPGP7	0 DSPGP6	0 DSPGP5	0 DSPGP4	0 DSPGP3	0 DSPGP2	0 DSPGP1	0000FFFFh
		SET2 MASK	SET2_ MASK															
	DSPGP_SET2_ Direction 1	0 DSPGP16	0 DSPGP15	0 DSPGP14	0 DSPGP13	0 DSPGP12	0 DSPGP11	0 DSPGP10	0 DSPGP9	0 DSPGP8	0 DSPGP7	0 DSPGP6	0 DSPGP5	0 DSPGP4	0 DSPGP3	0 DSPGP2	0 DSPGP1	0000FFFFh
,	_	_SET2_ DIR			SET2_DIR	SET2_DIR	SET2_DIR	SET2_DIR										
R315472 (4D050h)	DSPGP_SET2_Level_1	0 DSPGP16	0 DSPGP15	0 DSPGP14	0 DSPGP13	0 DSPGP12	0 DSPGP11	0 DSPGP10	0 DSPGP9	0 DSPGP8	0 DSPGP7	0 DSPGP6	0 DSPGP5	0 DSPGP4	0 DSPGP3	0	0 DSPGP1	00000000h
(1200011)		_SET2_ LVL	SET2_LVL	SET2_LVL	SET2_LVL	SET2_LVL	SET2_LVL	SET2_LVL										
R315488 (4D060h)	DSPGP_SET3_Mask_1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0000FFFFh
(4000011)		DSPGP16 _SET3_ MASK	DSPGP15 _SET3_ MASK	DSPGP14 _SET3_ MASK	DSPGP13 _SET3_ MASK	DSPGP12 _SET3_ MASK	DSPGP11 _SET3_ MASK	DSPGP10 _SET3_ MASK	DSPGP9_ SET3_ MASK	DSPGP8_ SET3_ MASK	DSPGP7_ SET3_ MASK	DSPGP6_ SET3_ MASK	DSPGP5_ SET3_ MASK	DSPGP4_ SET3_ MASK	DSPGP3_ SET3_ MASK	DSPGP2_ SET3_ MASK	DSPGP1_ SET3_ MASK	
	DSPGP_SET3_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0000FFFFh
(4D068h)	Direction_1	DSPGP16 _SET3_ DIR	DSPGP15 _SET3_ DIR	DSPGP14 _SET3_ DIR	DSPGP13 _SET3_ DIR	DSPGP12 _SET3_ DIR	DSPGP11 _SET3_ DIR	DSPGP10 _SET3_ DIR		DSPGP8_ SET3_DIR	DSPGP7_ SET3_DIR		DSPGP5_ SET3_DIR	DSPGP4_ SET3_DIR		DSPGP2_ SET3_DIR	DSPGP1_ SET3_DIR	
R315504	DSPGP_SET3_Level_1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	00000000h
(4D070h)		DSPGP16 _SET3_	DSPGP15 _SET3_	DSPGP14 _SET3_	DSPGP13 _SET3_	DSPGP12 _SET3_	DSPGP11 _SET3_	DSPGP10 _SET3_	DSPGP9_ SET3_LVL	DSPGP8_ SET3_LVL	DSPGP7_ SET3_LVL	DSPGP6_ SET3_LVL	DSPGP5_ SET3_LVL	DSPGP4_ SET3_LVL	DSPGP3_ SET3_LVL	DSPGP2_ SET3_LVL	DSPGP1_ SET3_LVL	
R315520	DSPGP_SET4_Mask_1	UVL 0	LVL 0	LVL 0	LVL 0	LVL 0	UVL 0	UVL 0	0	0	0	0	0	0	0	0	0	0000FFFFh
(4D080h)		DSPGP16 _SET4_	DSPGP15 _SET4_	DSPGP14 _SET4_	DSPGP13 _SET4_	DSPGP12 _SET4_	DSPGP11 _SET4_	DSPGP10 _SET4_	DSPGP9_ SET4_	DSPGP8_ SET4_	DSPGP7_ SET4_	DSPGP6_ SET4_	DSPGP5_ SET4_	DSPGP4_ SET4_	DSPGP3_ SET4_	DSPGP2_ SET4_	DSPGP1_ SET4_	
R315528	DSPGP SET4	MASK 0	MASK 0	MASK 0	0000FFFFh													
(4D088h)	Direction_1	DSPGP16 SET4	SET4	DSPGP14 SET4	SET4	DSPGP12 SET4	SET4	DSPGP10 SET4		DSPGP8 SET4 DIR		DSPGP6 SET4 DIR	DSPGP5 SET4 DIR	DSPGP4 SET4 DIR	DSPGP3 SET4 DIR	DSPGP2 SET4 DIR	DSPGP1 SET4 DIR	
R315536	DSPGP SET4 Level 1	DIR 0	0	0	0	0	0	0	0	0	0	00000000h						
(4D090h)		DSPGP16 _SET4_	DSPGP15 SET4	DSPGP14 SET4	DSPGP13 _SET4_	DSPGP12 SET4	DSPGP11 _SET4_	DSPGP10 SET4	DSPGP9 SET4_LVL	DSPGP8_ SET4_LVL	DSPGP7_ SET4_LVL	DSPGP6_ SET4_LVL	DSPGP5_ SET4_LVL	DSPGP4_ SET4_LVL	DSPGP3_ SET4_LVL	DSPGP2_ SET4_LVL	DSPGP1_ SET4_LVL	
R315552	DSPGP SET5 Mask 1	- LVL -	- LVL -	- LVL -	LVL	- LVL -	- LVL -	- LVL -	0	0	0	0	0	0	0	0	0	0000FFFFh
(4D0A0h)	Ber er _ez re_maek_r	DSPGP16 _SET5_		DSPGP14 _SET5_	DSPGP13 SET5	DSPGP12 _SET5_	DSPGP11 SET5	DSPGP10 _SET5_	DSPGP9_ SET5_	DSPGP8_ SET5	DSPGP7_ SET5	DSPGP6_ SET5	DSPGP5_ SET5_	DSPGP4_ SET5	DSPGP3_ SET5	DSPGP2_ SET5_	DSPGP1_ SET5_	0000111111
R315560	DSPGP SET5	MASK 0	MASK 0	MASK 0	MASK 0	MASK 0	MASK 0	MASK 0	MASK 0	MASK 0	MASK 0	0000FFFFh						
	Direction_1	DSPGP16	DSPGP15	DSPGP14	DSPGP13	DSPGP12	DSPGP11	DSPGP10	DSPGP9	DSPGP8	DSPGP7	DSPGP6	DSPGP5	DSPGP4 SET5 DIR	DSPGP3	DSPGP2	DSPGP1	0000111111
DOAFFCO	DODOD OFTE Lavel 4	_SET5_ DIR	_SET5_ DIR	_SET5_ DIR	_SET5_ DIR	_SET5_ DIR	_SET5_ DIR	_SET5_ DIR 0	0 0	_	0 0	_	_	_	_		_	00000000
R315568 (4D0B0h)	DSPGP_SET5_Level_1	DSPGP16		0 DSPGP14	0 DSPGP13	0 DSPGP12	DSPGP11	DSPGP10	DSPGP9	0 DSPGP8_	DSPGP7	0 DSPGP6_	0 DSPGP5_	0 DSPGP4_	0 DSPGP3_	0 DSPGP2_	0 DSPGP1_	00000000h
		SET5 LVL	_	_	_	_	_	SET5_LVL	_	_	_							
R315584 (4D0C0h)	DSPGP_SET6_Mask_1	0 DSPGP16		0 DSPGP14	0 DSPGP13	0 DSPGP12		0 DSPGP10		0 DSPGP8_	0 DSPGP7_	0 DSPGP6_	0 DSPGP5_	0 DSPGP4_	0 DSPGP3_	0 DSPGP2_	0 DSPGP1_	0000FFFFh
		SET6 MASK	SET6_ MASK															
	DSPGP_SET6_ Direction_1	0 DSPGP16	0 DSPGP15	0 DSPGP14	0 DSPGP13	0 DSPGP12	0 DSPGP11	0 DSPGP10	0 DSPGP9	0 DSPGP8	0 DSPGP7	0 DSPGP6	0 DSPGP5	0 DSPGP4	0 DSPGP3	0 DSPGP2	0 DSPGP1	0000FFFFh
	_	_SET6_ DIR	SET6_DIR															
R315600 (4D0D0h)	DSPGP_SET6_Level_1	0 DSPGP16	0 DSPGP15	0 DSPGP14	0 DSPGP13	0 DSPGP12	0 DSPGP11	0 DSPGP10	0 DSPGP9	0 DSPGP8	0 DSPGP7	0 DSPGP6	0 DSPGP5	0 DSPGP4	0 DSPGP3	0 DSPGP2	0 DSPGP1	00000000h
(= 323.1)		_SET6_ LVL	SET6_LVL															
L	1	1												1				

Register	Name	31 15	30 14	29 13	28 12	27 11	26 10	25 9	24 8	23 7	22 6	21 5	20 4	19 3	18 2	17 1	16 0	Default
R315616 (4D0E0h)	DSPGP_SET7_Mask_1	0 DSPGP16	0 DSPGP15	0 DSPGP14	0 DSPGP13	0 DSPGP12	0 DSPGP11	0 DSPGP10	0 DSPGP9	0 DSPGP8	0 DSPGP7	0 DSPGP6	0 DSPGP5	0 DSPGP4	0 DSPGP3	0 DSPGP2	0 DSPGP1	0000FFFFh
,		_SET7_ MASK	_SET7_ MASK	_SET7_ MASK	_SET7_ MASK	_SET7_ MASK	_SET7_ MASK	_SET7_ MASK	SET7_ MASK	SET7_ MASK	SET7_ MASK	SET7_ MASK	SET7_ MASK	SET7_ MASK	SET7_ MASK	SET7_ MASK	SET7_ MASK	
	DSPGP_SET7_ Direction_1	0 DSPGP16	0 DSPGP15	0 DSPGP14	0 DSPGP13	0 DSPGP12	0 DSPGP11	0 DSPGP10	0 DSPGP9	0 DSPGP8	0 DSPGP7	0 DSPGP6	0 DSPGP5	0 DSPGP4	0 DSPGP3	0 DSPGP2	0 DSPGP1	0000FFFFh
	_	_SET7_ DIR	_SET7_ DIR	_SET7_ DIR	_SET7_ DIR	_SET7_ DIR	_SET7_ DIR	_SET7_ DIR	SET7_DIR	SET7_DIR	SET7_DIR	SET7_DIR	SET7_DIR	SET7_DIR	SET7_DIF	SET7_DIF	SET7_DIR	
R315632 (4D0F0h)	DSPGP_SET7_Level_1	0 DSPGP16		0 DSPGP14	0 DSPGP13	0 DSPGP12	0 DSPGP11	0 DSPGP10	0 DSPGP9_	0 DSPGP8_	0 DSPGP7_	0 DSPGP6_	0 DSPGP5_	0 DSPGP4_	0 DSPGP3_	0 DSPGP2		00000000h
		SET7 LVL	_SET7_ LVL	_SET7_ LVL	_SET7_ LVL	_SET7_ LVL	_SET7_ LVL	_SET7_ LVL								SET7_LVĪ		
R315648 (4D100h)	DSPGP_SET8_Mask_1	DSPGP16		0 DSPGP14	0 DSPGP13	0 DSPGP12	DSPGP11	0 DSPGP10	0 DSPGP9_	0 DSPGP8_	DSPGP7_	DSPGP6_	DSPGP5_	0 DSPGP4_	DSPGP3_	DSPGP2_	DSPGP1_	0000FFFFh
DOAFCEC	DODOD OFTO	_SET8_ MASK_	_SET8_ MASK 0	_SET8_ MASK 0	_SET8_ MASK 0	SET8_ MASK 0	_SET8_ MASK 0	_SET8_ MASK 0	SET8_ MASK	SET8_ MASK	SET8_ MASK 0	SET8_ MASK	SET8_ MASK 0	SET8_ MASK 0	SET8_ MASK	SET8_ MASK	SET8_ MASK 0	00005555
R315656 (4D108h)	DSPGP_SET8_ Direction_1	DSPGP16 SET8		DSPGP14 SET8	DSPGP13 SET8	DSPGP12 SET8		DSPGP10 SET8	DSPGP9	DSPGP8	DSPGP7	DSPGP6	DSPGP5	DSPGP4	DSPGP3	DSPGP2	DSPGP1_ SET8_DIR	0000FFFFh
R315664	DSPGP SET8 Level 1	DIR 0	DIR 0	DIR 0	DIR	DIR 0	DIR 0	DIR 0	0 0	0 0	0 0	0	0	0	0	0	0	00000000h
(4D110h)	DOI OI _OLTO_Level_T	DSPGP16 SET8		DSPGP14 SET8	DSPGP13 SET8	DSPGP12 SET8		DSPGP10 SET8	DSPGP9	DSPGP8	DSPGP7	DSPGP6	DSPGP5	DSPGP4	DSPGP3	DSPGP2		0000000011
R524288	DSP1 PMEM 0	LVL	LVL	LVL	LVL	LVL	LVL	LVL	0	02.10_2112	02.0_272	_	_	START [39:3	_	02.10_2.12	02.0_2.0	00000000h
(80000h)								D	SP1_PM_S OSP1_PM_S		•							00000000h
R524290 (80002h)	DSP1_PMEM_1	0	0	0	0	0	0	0	0	·	UJ		DSP1_PN	И_1 [39:32]				
R524292 (80004h)	DSP1_PMEM_2								DSP1_PN DSP1_PN	1_1 [31:16] VI_1 [15:0]								00000000h
R561146 (88FFAh)	DSP1_PMEM_18429	0	0	0	0	0	0	0	0 OSP1 PM 1	12286 [31:1	61	[OSP1_PM_	12286 [39:3	2]			00000000h
R561148 (88FFCh)	DSP1_PMEM_18430	0	I 0	I 0	I 0	1 0	1 0		DSP1_PM_		•		DOD4 DM	END (00.00	N .			00000000h
R561150	DSP1_PMEM_18431	0	0	0	0	0	0		0 DSP1_PM_		-		DSP1_PM_	END [39:32	2]			00000000h
(88FFEh) R655360	DSP1 XMEM 0	0	0	0	0	0	0	0	DSP1_PM_ 0	END [15:0] DSP1_XM_START [23:16]								00000000h
(A0000h) R655362	DSP1 XMEM 1	0	I 0	0	0	0	0	0	OSP1_XM_S	START [15:	0]		DSP1 XI	Л_1 [23:16]				00000000h
(A0002h)		0	0					0	DSP1_XM	M_1 [15:0]					61			
R696316 (A9FFCh)	DSP1_XMEM_20478			0	0	0	0		DSP1_XM_	20478 [15:0)]			20478 [23:1				00000000h
R696318 (A9FFEh)	DSP1_XMEM_20479	0	0	0	0	0	0	0	0 DSP1_XM_	END [15:0]		DSP1_XM_	END [23:16	6]			00000000h
R786432 (C0000h)	DSP1_YMEM_0	0	0	0	0	0	0	0	0 OSP1 YM S	START (15)	01	D	SP1_YM_S	START [23:1	[6]			00000000h
R786434 (C0002h)	DSP1_YMEM_1	0	0	0	0	0	0	0	0		~1		DSP1_YN	M_1 [23:16]				00000000h
R802812	DSP1_YMEM_8190	0	0	0	0	0	0	0	DSP1_YN				DSP1_YM_	8190 [23:16	6]			00000000h
(C3FFCh) R802814	DSP1_YMEM_8191	0	0	0	0	0	0	0	DSP1_YM_ 0	_8190 [15:0]		DSP1_YM_	END [23:16	5]			00000000h
(C3FFEh) R917504	DSP1 ZMEM 0	0	0	0	0	0	0	0	DSP1_YM_ 0	END [15:0]	Г	SP1 7M S	START [23:1	61			00000000h
(E0000h)		0	0	0	0	0	0		OSP1_ZM_S	START [15:	0]			И 1 [23:16]				
R917506 (E0002h)	DSP1_ZMEM_1			l					DSP1_ZN	M_1 [15:0]								00000000h
R925692 (E1FFCh)	DSP1_ZMEM_4094	0	0	0	0	0	0	0	0 DSP1_ZM_	4094 [15:0]		DSP1_ZM_	4094 [23:16	6]			00000000h
R925694 (E1FFEh)	DSP1_ZMEM_4095	0	0	0	0	0	0	0	0 DSP1 ZM	END [15:0]	1		DSP1_ZM_	END [23:16	6]			00000000h
R1048064 (FFE00h)	DSP1_Config_1	0	0	0	0 ATE [3:0]	0	0	0	0	0	0	0	0 DSP1	0 DSP1_	0	0 DSP1	0 DSP1	00000000h
(11 2001)		0		DOF I_N	ATE [3.0]		0	U	U	0	U	0	MEM_ENA	DBG_ CLK_ENA		CORE_ ENA	START	
R1048066 (FFE02h)	DSP1_Config_2	0	0	0	0	0	0	0 DSI	0 21 CLK FE	0 REQ SEL [0	0	0	0	0	0	0	00000000h
` '	DSP1_Status_1	DSP1_ PING	DSP1_ PONG	0	0	0	0	0	0			DSP1_W	DMA_ACTI	IVE_CHANN	NELS [7:0]			00000000h
(11 20411)		FULL 0	FULL 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
R1048070 (FFE06h)	DSP1_Status_2		0						ALMEM_CC	_	ADDR [15:0] 0						1	00000000h
(1 1 20011)		0		0	0	0	0	U	0	U		0	0	0	0	0	DSP1_ CLK_ AVAIL	
R1048072 (FFE08h)	DSP1_Status_3	0	0	0	0	0	0	0 DSI	0 P1 CLK FF	0 REQ STS[0	0	0	0	0	0	0	00000000h
, ,	DSP1_Watchdog_1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	00000000h
(IILUAII)		0	0	0	0	0	0	0	0	0	0	0	DSF	P1_WDT_M/	AX_COUNT	[3:0]	DSP1_ WDT_ENA	

Register	Name	31 15	30 14	29 13	28 12	27 11	26 10	25 9	24 8	23 7	22 6	21 5	20 4	19 3	18 2	17 1	16 0	Default
R1048080 (FFE10h)	DSP1_WDMA_Buffer_1				ı			P1_START_ P1_START	•		'							00000000h
R1048082 (FFE12h)	DSP1_WDMA_Buffer_2						DS	P1_START_ P1_START	ADDRESS	_WDMA_B	UFFER_3 [15:0]						00000000h
R1048084 (FFE14h)	DSP1_WDMA_Buffer_3						DS	P1_START_ P1_START	ADDRESS	_WDMA_B	UFFER_5 [15:0]						00000000h
R1048086 (FFE16h)	DSP1_WDMA_Buffer_4						DS	P1_START_ P1_START	ADDRESS	_WDMA_B	UFFER_7 [15:0]						00000000h
R1048096 (FFE20h)	DSP1_RDMA_Buffer_1						DS	SP1_START_ SP1_START_	ADDRESS	 _RDMA_BI	JFFER_1 [1	5:0]						00000000h
R1048098 (FFE22h)	DSP1_RDMA_Buffer_2						DS	SP1_START_ SP1_START	ADDRESS	 _RDMA_BI	JFFER_3 [1	5:0]						00000000h
R1048100 (FFE24h)	DSP1_RDMA_Buffer_3						DS	SP1_START_ SP1_START	ADDRESS	 _RDMA_BI	JFFER_5 [1	5:0]						00000000h
,	DSP1_DMA_Config_1	0	0	0	0	0	0	0	0		ER LENGT	DSP1_W	/DMA_CHA	NNEL_EN/	ABLE [7:0]			00000000h
R1048114 (FFE32h)	DSP1_DMA_Config_2	0	0	0	0	0	0	0	0	0	0	0	0 /DMA_CHA	0 NNEL OFF	0 SET (7:01	0	0	00000000h
` ,	DSP1_DMA_Config_3	0	0	0	0	0	0	0	0	0	0	DOI 1_W	DSP1_F	RDMA_CHA	NNEL_OFF			00000000h
R1048118	DSP1 DMA Config 4	0	0	0	0	0	0	0	0	0	0	0	DSP1_F	RDMA_CHA	NNEL_ENA	(BLE [5:0]	0	00000000h
(FFE36h)	3_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	DSP1_ DMA_ WORD_ SEL	
R1048120 (FFE38h)	DSP1_External_Start	0	0	0	0	0	0	0	0	0	0	0	0	0 DSP1_5	0 START_IN_	0 SEL [4:0]	0	00000000h
R1048128 (FFE40h)	DSP1_Scratch_1									ATCH_1 [15 ATCH 0 [15	•							00000000h
R1048130 (FFE42h)	DSP1_Scratch_2							D	SP1_SCR/	ATCH_3 [15 ATCH_2 [15	:0]							00000000h
R1048146 (FFE52h)	DSP1_Bus_Error_Addr	0	0	0	0	0	0	0 DSF	0	RR ADDR		DSP	1_BUS_EF	RR_ADDR [23:16]			00000000h
R1048148 (FFE54h)	DSP1_Ext_window_A	DSP1_ EXT_A_ PSIZE16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	00000000h
	DSP1_Ext_window_B	DSP1_ EXT_B	0	0	0	0	0	0	0 0	A_PAGE [15 0	0	0	0	0	0	0	0	00000000h
(FFE56h)		PSIZE16						D:	SP1 EXT I	B PAGE [15	i:01							
R1048152 (FFE58h)	DSP1_Ext_window_C	DSP1_ EXT_C_ PSIZE16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	00000000h
R1048154	DSP1_Ext_window_D	DSP1	0	0	0	0	0	0	SP1_EXT_0	C_PAGE [15 0	i:0] 0	0	0	0	0	0	0	00000000h
(FFE5Ah)	Bor I_Ext_wildow_B	EXT_D PSIZE16			_	Ţ	-		DA EVI			Ţ						000000011
	DSP1_Watchdog_2	0	0	0	0	0	0	0	0 0	D_PAGE [15 0	0	0	0	0	0	0	0	00000000h
(FFE5Eh)	DSP1 Identity	0	0	0	0	0	0	D 0	SP1_WDT_	RESET [15	:0]	0	0	0	0	0	0	00000000h
(FFE60h)	_ ,	0	0	0	0	0	0	0	0	0	0	0		DSP1_0	ORE_NUM	BER [4:0]		
R1048164 (FFE64h)	DSP1_Region_lock_sts_ 0	0	0	0	0	0	0	DSP1_ CTRL_ REGION9_ LOCK_ STS	DSP1_ CTRL_ REGION8_ LOCK_ STS	DSP1_ CTRL_ REGION7_ LOCK_ STS	0 DSP1_ CTRL_ REGION6_ LOCK_ STS	0 DSP1_ CTRL_ REGION5_ LOCK_ STS	DSP1_ CTRL_ REGION4_ LOCK_ STS	DSP1_ CTRL_ REGION3 LOCK_ STS	DSP1_ CTRL_ REGION2_ LOCK_ STS	DSP1_ CTRL_ REGION1_ LOCK_ STS	DSP1_ CTRL_ REGIONO_ LOCK_ STS	00000000h
R1048166 (FFE66h)	DSP1_Region_lock_1_ DSP1_Region_lock_0		l				l	DSP1_	CTRL_REC	GION1_LOC	K [15:0]	0.0	0.0	1 0.0	1 0.0	0.0	0.0	00000000h
, ,	DSP1_Region_lock_3_ _DSP1_Region_lock_2							DSP1_	CTRL_REC	GION3_LOC	K [15:0]							00000000h
	DSP1_Region_lock_5_ _DSP1_Region_lock_4							DSP1_	CTRL_REC	GION5_LOC	K [15:0]							00000000h
	DSP1_Region_lock_7_ _DSP1_Region_lock_6							DSP1_	CTRL_REC	GION7_LOC	K [15:0]							00000000h
	DSP1_Region_lock_9_ _DSP1_Region_lock_8							DSP1_	CTRL_REC	GION9_LOC	K [15:0]							00000000h
	DSP1_Region_lock_ctrl_ 0	0 DSP1_ LOCK_ ERR_STS	0 DSP1_ ADDR_ ERR_STS	0 DSP1_ WDT_ STIMEOUT_ STS	0	0	0	0 0	0 0	0	0 0	0	0	0	0	DSP1_ ERR_ PAUSE	0 DSP1_ ERR_ CLEAR	00000000h
	DSP1_PMEM_Err_ AddrXMEM_Err_ Addr	0		010	l		l	DSP		EM_ERR_ <i>E</i> ERR_ADDR	DDR [14:0] [15:0]							00000000h

7 Thermal Characteristics

Table 7-1. Typical JEDEC Four-Layer, 2s2p Board Thermal Characteristics


Parameter	Symbol	WLCSP	Units
Junction-to-ambient thermal resistance	$\theta_{\sf JA}$	38.5	°C/W
Junction-to-board thermal resistance	θЈВ	9.3	°C/W
Junction-to-case thermal resistance	θЈС	2.11	°C/W
Junction-to-board thermal-characterization parameter	Ψ_{JB}	9.3	°C/W
Junction-to-package-top thermal-characterization parameter	Ψ_{JT}	0.10	°C/W

Notes:

- Natural convection at the maximum recommended operating temperature T_A (see Table 3-3)
- Four-layer, 2s2p PCB as specified by JESD51-9 and JESD51-11; dimensions: 101.5 x 114.5 x 1.6 mm
- Thermal parameters as defined by JESD51-12

8 Package Dimensions

Notes:

- Dimensioning and tolerances per ASME Y 14.5M-2009.
- The Ball A1 position indicator is for illustration purposes only and may not be to scale.
- Dimension "b" applies to the solder sphere diameter and is measured at the midpoint between the package body and the seating plane Datum Z.

Table 8-1. WLCSP Package Dimensions

Dimension		Millimeters	
Dimension	Minimum	Nominal	Maximum
Α	0.464	0.494	0.524
A1	0.161	0.19	0.219
A2	0.289	0.304	0.319
b	0.24	0.27	0.3
c1	0.3279	0.3579	0.3879
d1	0.2062	0.2362	0.2662
c2	0.2307	0.2607	0.2907
d2	0.206	0.236	0.266
е	BSC	0.4	BSC
f	BSC	0.3464	BSC
g	REF	0.3464	BSC
Х	4.7504	4.7754	4.8004
Y	3.4472	3.4722	3.4972
ccc = 0.05 ddd = 0.15			

Note: Controlling dimension is millimeters.

9 Ordering Information

Table 9-1. Ordering Information

Product	Description	Package	Halogen Free	Pb Free	Grade	Temperature Range	Container	Order#
CS42L92	32-Bit 384-kHz Hi-Fi Audio Codec	104-ball WLCSP	Yes	Yes	Commercial	–40 to +85°C	Tape and Reel ¹	CS42L92-CWZR

1. Reel quantity = 6000 units.

10 References

- MIPI Alliance, MIPI Alliance Specification for Serial Low-Power Inter-Chip Media Bus (SLIMbus). http://www.mipi.org/
- Google Inc, Android Wired Headset Specification, Version 1.1. http://source.android.com/accessories/ headset-spec.html
- International Electrotechnical Commission, IEC60958-3 Digital Audio Interface—Consumer. http://www.ansi.org/

11 Revision History

Table 11-1. Revision History

Revision	Changes
F1	AVDD maximum rating amended (Table 3-2). DSD maximum rating amended (Table 4.20).
NOV '17	 DSP memory sizes amended (Table 4-29). Package dimension tolerances added (Section 8).

Contacting Cirrus Logic Support

For all product questions and inquiries, contact a Cirrus Logic Sales Representative. To find the one nearest you, go to www.cirrus.com.

IMPORTANT NOTICE

The products and services of Cirrus Logic International (UK) Limited; Cirrus Logic, Inc.; and other companies in the Cirrus Logic group (collectively either "Cirrus Logic" or "Cirrus") are sold subject to Cirrus Logic's terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, indemnification, and limitation of liability. Software is provided pursuant to applicable license terms. Cirrus Logic reserves the right to make changes to its products and specifications or to discontinue any product or service without notice. Customers should therefore obtain the latest version of relevant information from Cirrus Logic to verify that the information is current and complete. Testing and other quality control techniques are utilized to the extent Cirrus Logic deems necessary. Specific testing of all parameters of each device is not necessarily performed. In order to minimize risks associated with customer applications, the customer must use adequate design and operating safeguards to minimize inherent or procedural hazards. Cirrus Logic is not liable for applications assistance or customer product design. The customer is solely responsible for its selection and use of Cirrus Logic products. Use of Cirrus Logic products may entail a choice between many different modes of operation, some or all of which may require action by the user, and some or all of which may be optional. Nothing in these materials should be interpreted as instructions or suggestions to choose one mode over another. Likewise, description of a single mode should not be interpreted as a suggestion that other modes should not be used or that they would not be suitable for operation. Features and operations described herein are for illustrative purposes only.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). CIRRUS LOGIC PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE IN PRODUCTS SURGICALLY IMPLANTED INTO THE BODY, AUTOMOTIVE SAFETY OR SECURITY DEVICES, NUCLEAR SYSTEMS, LIFE SUPPORT PRODUCTS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF CIRRUS LOGIC PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK AND CIRRUS LOGIC DISCLAIMS AND MAKES NO WARRANTY, EXPRESS, STATUTORY OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR PARTICULAR PURPOSE, WITH REGARD TO ANY CIRRUS LOGIC PRODUCT THAT IS USED IN SUCH A MANNER. IF THE CUSTOMER OR CUSTOMER'S CUSTOMER USES OR PERMITS THE USE OF CIRRUS LOGIC PRODUCTS IN CRITICAL APPLICATIONS, CUSTOMER AGREES, BY SUCH USE, TO FULLY INDEMNIFY CIRRUS LOGIC, ITS OFFICERS, DIRECTORS, EMPLOYEES, DISTRIBUTORS AND OTHER AGENTS FROM ANY AND ALL LIABILITY, INCLUDING ATTORNEYS' FEES AND COSTS, THAT MAY RESULT FROM OR ARISE IN CONNECTION WITH THESE USES.

This document is the property of Cirrus Logic and by furnishing this information, Cirrus Logic grants no license, express or implied, under any patents, mask work rights, copyrights, trade secrets or other intellectual property rights. Any provision or publication of any third party's products or services does not constitute Cirrus Logic's approval, license, warranty or endorsement thereof. Cirrus Logic gives consent for copies to be made of the information contained herein only for use within your organization with respect to Cirrus Logic integrated circuits or other products of Cirrus Logic, and only if the reproduction is without alteration and is accompanied by all associated copyright, proprietary and other notices and conditions (including this notice). This consent does not extend to other copying such as copying for general distribution, advertising or promotional purposes, or for creating any work for resale. This document and its information is provided "AS IS" without warranty of any kind (express or implied). All statutory warranties and conditions are excluded to the fullest extent possible. No responsibility is assumed by Cirrus Logic for the use of information herein, including use of this information as the basis for manufacture or sale of any items, or for infringement of patents or other rights of third parties. Cirrus Logic, Cirrus, the Cirrus Logic logo design, SoundClear, and WISCE are among the trademarks of Scirrus Logic. Other brand and product names may be trademarks or service marks of their respective owners.

Copyright © 2017 Cirrus Logic, Inc. All rights reserved.

MIPI and SLIMbus are trademarks or registered trademarks of MIPI Alliance, Inc.

USB-C is a trademark of USB Implementers Forum.

Android is a trademark of Google, Inc.

SPI is a trademark of Motorola.