Features

- +115°C Maximum Case Temperature
- -45°C Minimum Case Temperature

ICF Technology*

 Ribbed Case Style 2250VDC Isolation

Built-in EMC Filter

- Wide 4:1 Input Voltage Range
- EN-55022 Class B

Description

The RPP20 series 4:1 input range DC/DC converters are ideal for high end industrial applications and COTS Military applications where a very wide operating temperature range of -45°C to +115°C is required. Although the case size is very compact, the converter contains a built-in EMC filter EN-55022 Class B without the need for any external components. The RPP20 is available in a ribbed case style for active cooling. They are UL-60950-1 certified.

RECOM **DC/DC** Converter

RPP20-2412SW

20 Watt 4:1 1.6" x 1" **Ribbed Style Single Output**

Selection Guide								
Part	Input	Input	Output	Output	Efficiency	Max. Capacitive		
Number	Voltage Range	Current	Voltage	Current	typ.	Load		
	[VDC]	[mA]	[VDC]	[mA]	[%]	[μF]		
RPP20-2412SW	9-36	950	12	1670	89	1000		

Notes:

Note1: Typical values at nominal input voltage and full load.



Specifications (measured @ ta= 25°C, nominal input voltage, full load and after warm-up)

BASIC CHARACTERISTICS	5			
Parameter	Condition	Min.	Тур.	Max.
Input Voltage Range	nom. Vin= 24VDC	9VDC	24VDC	36VDC
Transient Input Voltage	≤100ms			50VDC
Inrush Current	with EMC Filter without EMC Filter			20A 40A
Under Voltage Lockout	DC-DC ON DC-DC OFF	8.5VDC		8VDC
Remote ON/OFF	ON / high logic OFF / low logic	Open, 4.5V Short, 0V		5.5V 1.2V
Remote OFF Input Voltage	nominal input		5mA	
Start-up Time	when use CTRL function		20ms	
Internal Operating Frequency		220kHz	260kHz	300kHz
Output Voltage Trimming			±10%	
Efficiency	typ. Vin, full load	88%	89%	
Minimum Load		0%		
Output Ripple and Noise	20MHz limited, 1µF output MLCC		120mVp-p	180mVp-p

UL-60950-1 Certified EN-55022 Certified

Efficiency vs. Load

* ICE Technology

ICE (Innovation in Converter Excellence) uses state-of-the-art techniques to minimise internal power dissipation and to increase the internal temperature limits to extend the ambient operating temperature range to the maximum.

RPP20-2412SW

Series

Specifications (measured @ ta= 25°C, nominal input voltage, full load and after warm-up)

Trimming Output Voltage

Only the single output converters have a trim function that allows users to adjust the output voltage from +10% to -10%, please refer to the trim table that follow for details. Adjustment to the output voltage can be used with a simple fixed resistor as shown in Figures 1 and 2. A single fixed resistor can increase or decrease the output voltage depending on its connection. Resistor should be located close to the converter. If the trim function is not used, leave the trim pin open.

Trim adjustments higher than the specified range can have an adverse effect on the converter's performance and are not recommended. Excessive voltage differences between output voltage sense voltage, in conjunction with trim adjustment of the output voltage; can cause the OVP circuitry to activate. Thermal derating is based on maximum output current and voltage at the converter's output pins. Use of the trim and sense function can cause output voltages to increase, thereby increasing output power beyond the converter's specified rating. Therefore: (Vout at Pins) X (lout) \leq rated output power.

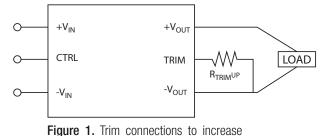



Figure 1. Trim connections to increase output voltage using fixed resistors

	Trim up resistor value (KΩ)									
Vout	1%	2%	3%	4%	5%	6%	7%	8%	9%	10%
12VDC	238.7	113.1	68.2	46.3	32.1	22.4	15.4	9.8	6.5	3.2

Figure 2. Trim connections to decrease output voltage using fixed resistors

	Trim down resistor value (ΚΩ)									
Vout	-1%	-2%	-3%	-4%	-5%	-6%	-7%	-8%	-9%	-10%
12VDC	322.2	137.2	81.1	53.1	35.5	24.0	16.0	9.7	5.0	1.3

REGULATIONS						
Parameter	Condition	Value				
Output Voltage Accuracy	50% load	±1.5% max.				
Line Voltage Regulation	low line to high line	±0.3% max.				
Load Voltage Regulation	10% to 100% load	±0.5% max.				
Transient Response	25% load step change, ∆lo/∆t=2.5A/us	800µs typ.				
Transient Peak Deviation	25% load step change, $\Delta lo/\Delta t=2.5A/us$	±2%Vout max.				

PROTECTIONS						
Parameter	Condition	Value				
Output Power Protection (OPP) (2)	current limit	120% typ.				
Over Voltage Protection (OVP)	10% load	120% typ.				
Over Temperature Protection (OTP)	case temperature	120°C, auto-recovery				
loolation Voltago	I/P to O/P, at 70% RH	2250VDC / 1 Minute				
Isolation Voltage	I/P to Case, O/P to Case	1500VDC / 1 Minute				
Isolation Resistance	I/P to O/P , at 70% RH	100MΩ min.				
Isolation Capacitance	I/P to O/P	1500pF typ.				

Note2: This Power Module is not internally fused. A input fuse must be always used. Recommended Fuse: T3.15A

RPP20-2412SW

Series

Specifications (measured @ ta= 25°C, nominal input voltage, full load and after warm-up)

ENVIRONMENTAL			
Parameter	Condition		Value
Relative Humidity			95%, non condensing
Temperature Coefficient			±0.04% / °C max.
Thermal Impedance	natural convection, mounting at FR4 (254x254mm) PCB	vertical horizontal	7.2°C/W 7.8°C/W
Operating Temperature Range	start up at -45°C		-45°C to (see calculation)
Maximum Case Temperature			+115°C
MTBF	according to MIL-HDBK-217F (+ according to BellCore-TR-332 (+	,	768 x 10 ³ hours 1572 x 10 ³ hours

Derating Graph

 $(Ta = +25^{\circ}C, natural convection, vertical mounting)$

Calculation

$$\begin{split} & \mathsf{R}_{\text{trcase-ambient}} = 7.2^{\circ}\text{C/W (vertical)} & \mathsf{T}_{\text{case}} = & \mathsf{Case Temperature} \\ & \mathsf{R}_{\text{trcase-ambient}} = & 7.8^{\circ}\text{C/W (horizontal)} & \mathsf{T}_{\text{ambient}} = & \mathsf{Environment Temperature} \\ & \mathsf{R}_{\text{trcase-ambient}} = & \frac{\mathsf{T}_{\text{case}} - \mathsf{T}_{\text{ambient}}}{\mathsf{P}_{\text{dissipation}}} & \mathsf{P}_{\text{loss}} = & \mathsf{Input Power} \\ & \mathsf{P}_{\text{oUT}} = & \mathsf{Output Power} \\ & \mathsf{P}_{\text{oUT}} = & \mathsf{Output Power} \\ & \mathsf{P}_{\text{oUT}} = & \mathsf{Output Power} \\ & \mathsf{P}_{\text{lossipation}} = \mathsf{P}_{\text{N}} - \mathsf{P}_{\text{OUT}} = & \frac{\mathsf{P}_{\text{OUTapp}}}{\mathsf{\eta}} - \mathsf{P}_{\text{OUTapp}} \\ & \mathsf{R}_{\text{trcase-ambient}} = & \mathsf{Thermal Impedance} \end{split}$$

Practical Example:

Take the RPP20-2412SW with 50% load. What is the maximum ambient operating temperature? Use converter vertical in application.

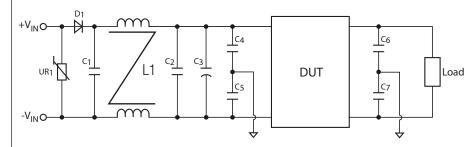
$$\begin{aligned} \text{Eff}_{\min} &= 88\% @ V_{\text{norm}} \\ \text{P}_{\text{OUT}} &= 20W \\ \text{P}_{\text{OUTapp}} &= 20 \times 0.5 = 10W \\ \text{P}_{\text{dissipation}} &= \frac{P_{\text{OUTapp}}}{\eta} - P_{\text{OUTapp}} \\ \text{P}_{\text{dissipation}} &= \frac{P_{\text{OUTapp}}}{\eta} - P_{\text{OUTapp}} \\ \eta &= ~84\% \text{ (from Eff vs Load Graph)} \\ \text{P}_{\text{dissipation}} &= \frac{10}{0.83} - 10 = 2.05W \end{aligned}$$

continued on next page

RPP20-2412SW

Series

Specifications (measured @ ta= 25°C, nominal input voltage, full load and after warm-up)


Soldering

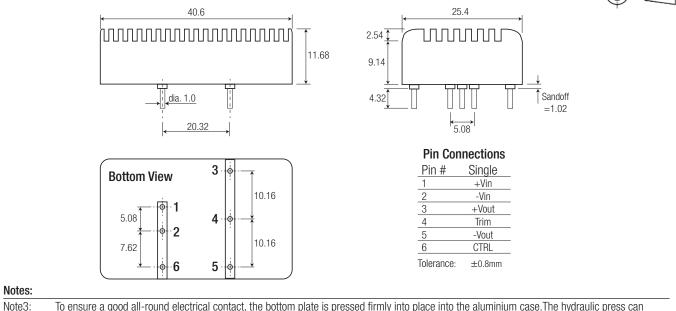
Wave Soldering
High temperature and long soldering time will result in IMC layer
increasing in thickness and thereby shorten the solder joint lifetime.
Therefore the peak temperature over 245°C is not suggested due
to the potential reliability risk of components under continuous high-
temperature. In the meanwhile, the soldering time of temperature
above 217°C should be less than 90 seconds. Please refer to the sol-
dering profile below for recommended temperature profile parameters.

	Table 1 Hand-So	Idering Guideline)	Temp
Parameter	Single-side Circuit Boad	Double-side Circuit Board	Multi-layers Circuit Board	Peak Temp. 240 - 245°C
Soldering Iron Wattage	90W	90W	90W	217°C
Tip Temperature	385 ±10°C	420 ±10°C	420 ±10°C	150°C Preheat time100-140 sec.
Soldering Time	2-6 seconds	4-10 seconds	4-10 seconds	25°C Ramp upmax. 3°C/sec → Time

SAFETY AND CERTIFICATIONS						
Certificate Type (Safety)	Report Number	Standard				
Information Technology Equipment, General Requirements for Safety	E224236	UL-60950-1, 1st Edition				
Certificate Type (Environmental)	Condition	Standard / Criterion				
Information technology equipment - Radio disturbance characteristics - Limits and methods of measuremen	t	EN55022, Class B				
ESD Immunity Test	±8kV Air Discharge, ±6kV Contact Discharge	IEC61000-4-2, Criteria B				
RF Field Strengh Susceptibility Test	10V/m	IEC61000-4-3, Criteria A				
Electrical Fast Transient Test / Burst Immunity Text	±4kV Applied	IEC61000-4-4, Criteria B				
Surge Immunity Test	±4kV Applied	IEC61000-4-5, Criteria B				
Conducted Disturbance Susceptibility Test	10V rms	IEC61000-4-6, Criteria A				
Vibration	50-150Hz, along X, Y and Z	EN60068-2-6				
Thermal Cycling (complies with MIL-STD-810F)	12 cycles	EN60068-2-14				
Shock	5g / 30ms	EN60068-2-27				

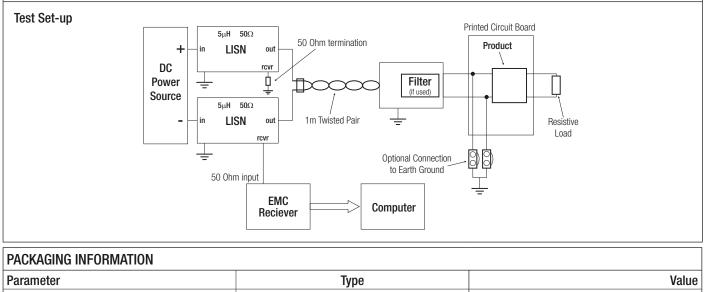
EMC Filtering - Suggestions

It is recommended to add UR1, D1 and C1 in railway application. C1, L1, C2 and C3 can be modified for required EMI standards. To meet EN61000-4-2, module case should be earth grounded. We offer independent case pin option on request.


Standard	UR1	D1	C1	L1	C2	C3	C4, C5, C6, C7
EN55022 Class B	MOVIADOCIK	E01/ / 0.4	1.5µF / 250V	550μH ±20%	6.8µF / 50V	220.05 / 501/	0.47pE V1.0pp
EN61000-4-2, 3, 4, 5, 6	MOV 14D361K	50V / 9A	N/A	N/A	N/A	330µF / 50V	0.47nF Y1-Cap

RPP20-2412SW

Series


Specifications (measured @ ta= 25°C, nominal input voltage, full load and after warm-up)

To ensure a good all-round electrical contact, the bottom plate is pressed firmly into place into the aluminium case. The hydraulic press can leave tooling marks and deformations to both the case and plate. The case is anodised aluminium, so there will be natural variations in the case colour and the aluminium is not scratch resistant. Any resultant marks, scratches and colour variations are cosmetic only and do not affect the operation or performance of the converters.

INSTALLATION and APPLICATION

Parameter	Туре	Value
Packaging Dimension (LxWxH)	Tube	160.0 x 45.0 x 16.0mm
Packaging Quantity		5pcs
Storage Temperature Range		-55°C to +125°C

The product information and specifications may be subject to changes even without prior written notice. The product has been designed for various applications; its suitability lies in the responsibility of each customer. The products are not authorized for use in safety-critical applications without RECOM's explicit written consent. A safety-critical application is an application where a failure may reasonably be expected to endanger or cause loss of life, inflict bodily harm or damage property. The applicant shall indemnify and hold harmless RECOM, its affiliated companies and its representatives against any damage claims in connection with the unauthorized use of RECOM products in such safety-critical applications.