

LOW NOISE, LOW POWER, 1MHZ, RRIO SINGLE / DUAL CMOS OPERATIONAL AMPLIFIERS

Description

The DIODES AS348/AS2348 are single/dual channels RRIO amplifiers (rail-to-rail input and output), which provide not only maximum output-voltage swing capability but also an extended 300mV common-mode voltage beyond the supply rail. The devices are fully specified to operate from 1.6V to 5.5V single-supply, or ±0.8V and ±2.5V dual-supply applications.

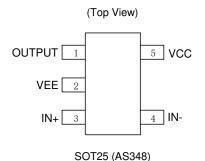
The devices feature a good speed/power consumption ratio, offering 1MHz gain bandwidth while consuming $70\mu A$ per channel (typ). They are unity-gain stable for capacitive loads up to 100pF. The low noise density $27nV/\sqrt{Hz}$, low input offset voltage 0.5mV and low input offset drift $2\mu V/^{\circ}C$ make them ideal for applications that require precision. With the input bias current is 1pA at room temperature, it is well suitable for low-voltage, low-noise, and low-power applications.

The AS348/AS2348 offer industry-standard packages. The AS348 is available in the SOT25 package, and the AS2348 is offered in the MSOP-8 and SO-8 packages. Temperature is specified for operation: from -40°C to +125°C among all supply voltages. The wide temperature ranges and high ESD tolerance facilitate their use in harsh applications.

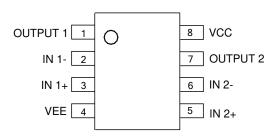
Features

- Single-Supply Voltage Range: 1.6V to 5.5V
- Dual-Supply Voltage Range: ±0.8V to ±2.5V
- Ultra-Low Input Bias Current: 1pA (typ)
- Offset Voltage: 0.5mV (typ), 2.5mV (max)
- Low Input Offset Drift: 2µV/°C (typ)
- Rail-to-Rail Input

V_{CM}: 300mV Beyond Supply Rail @ V_{CC} = 3V or 5V


Rail-to-Rail Output Swing: $10k\Omega$ Load: 4mV from Rail

1kΩ Load: 25mV from Rail


- Supply Current: 70µA/Channel (typ)
- Unity-Gain Stable up to 100pF Capacitive Load Gain Bandwidth: 1.0MHz
- Slew Rate: 0.45V/µs @ Vcc = 5.0V
- Operation Ambient Temperature Range: -40°C to +125°C
- ESD Protection JESD 22, 4000V HBM (A114)
- Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)
- Halogen and Antimony Free. "Green" Device (Note 3)
- For automotive applications requiring specific change control (i.e. parts qualified to AEC-Q100/101/104/200, PPAP capable, and manufactured in IATF 16949 certified facilities), please <u>contact us</u> or your local Diodes representative. https://www.diodes.com/quality/product-definitions/

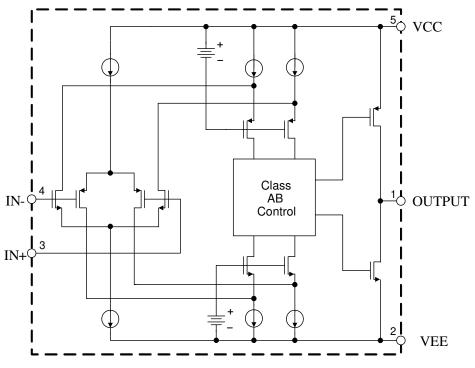
nttps://www.diodes.com/quanty/product-definitions/

Pin Assignments

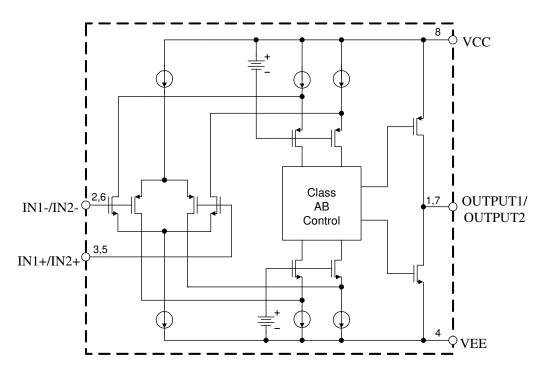
(Top View)

SO-8/MSOP-8 (AS2348)

Applications


- Active filters
- Sensors interfaces
- Photodiode amplification
- Smoke alarms, CO detectors
- Battery-powered applications
- Portable equipment
- Medical instrumentation
- Pulse blood oximeters, glucose meters

Notes:


- 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.
- 2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
- 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.

Functional Block Diagram

Block Diagram of AS348

Block Diagram of AS2348

Absolute Maximum Ratings (Note 4)

Symbol	Parameter	Rat	ing	Unit
Vcc	Power-Supply Voltage	6	.0	V
V _{ID}	Differential Input Voltage	6	.0	V
Vin	Input Voltage	-0.3 to \	√ _{CC+} 0.5	V
TJ	Operating Junction Temperature	+1	50	°C
		SOT25	220	
θја	Thermal Resistance (Junction to Ambient)	SO-8	150	°C/W
		MSOP-8	200	
Tstg	Storage Temperature Range	-65 to	+150	°C
T _{LEAD}	Lead Temperature (Soldering, 10 Seconds) +260		°C	
_	ESD (Human Body Model) ±4000		V	
_	ESD (Machine Model)	±3	00	V

Note 4: Stresses greater than those listed under "Absolute Maximum Ratings" can cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods can affect device reliability.

Recommended Operating Conditions

Symbol	Parameter	Min	Max	Unit
Vcc	Supply Voltage	1.6	5.5	V
T _A	Operating Ambient Temperature Range	-40	+125	°C

Electrical Characteristics

1.6V DC Electrical Characteristics (Vcc = 1.6V, VEE = 0, VouT = Vcc/2, VcM = Vcc/2, Ta = +25°C, unless otherwise specified.)

Symbol	Param	eter	Conditions	Min	Тур	Max	Unit
Vos	Input Offset Voltage		_	_	0.5	2.5	mV
lв	Input Bias Current		_	_	1.0	_	рА
los	Input Offset Current		_		1.0	_	рА
V _{CM}	Input Common-Mod	e Voltage Range	_	-0.2	_	1.8	V
CMRR	Common-Mode Reje	ection Ratio	V _{CM} = -0.2V to 1.8V	55	75	_	dB
Gv	Large Signal Voltage	e Gain	$R_L = 10k\Omega$ to $V_{CC}/2$, $V_{OUT} = 0.2V$ to $1.4V$	90	110	_	dB
ΔVos/ΔT	Input Offset Voltage	Drift	_	_	2.0	_	μV/°C
		. 5 "	$R_L = 1k\Omega$ to $V_{CC}/2$	_	30	50	.,
Vol/Voн	Output-Voltage Swir	ig from Rail	$R_L = 10k\Omega$ to $V_{CC}/2$		3	15	mV
Isink	_	Sink	Vout = Vcc	8	10	_	_
Isource	Output Current	Source	Vout = 0V	5	8.5	_	mA
Z _{OUT}	Closed-Loop Output Impedance		f = 10kHz, Av = 1	_	9	_	Ω
PSRR	Power-Supply Rejection Ratio		V _{CC} = 1.6V to 5.0V	66	80	_	dB
Icc	Supply Current (Per	Amplifier)	Vout = Vcc/2, lout = 0	_	70	90	μΑ

1.6V AC Electrical Characteristics ($V_{CC} = 1.6V$, $V_{EE} = 0$, $V_{OUT} = V_{CC}/2$, $V_{CM} = V_{CC}/2$, $T_A = +25^{\circ}C$, unless otherwise specified.)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
GBP	Gain Bandwidth Product	C _L = 100pF	_	1.0	_	MHz
SR	Slew Rate (Note 5)	1V Step, $C_L = 100pF$, $R_L = 10k\Omega$		0.32	_	V/µs
φм	Phase Margin	R _L = 100kΩ	_	67	_	Degrees
THD+N	Total Harmonic Distortion+Noise	$f=1kHz,\ A_V=1,\ V_{IN}=1V_{PP},$ $R_L=10k\Omega,\ C_L=100pF$	_	-70	_	dB
en	Voltage Noise Density	f = 1kHz		27	_	nV/\sqrt{Hz}

Electrical Characteristics (continued)

1.8V DC Electrical Characteristics ($V_{CC} = 1.8V$, $V_{EE} = 0$, $V_{OUT} = V_{CC}/2$, $V_{CM} = V_{CC}/2$, $T_A = +25^{\circ}C$, unless otherwise specified.)

Symbol	Param	eter	Conditions	Min	Тур	Max	Unit
Vos	Input Offset Voltage		_	_	0.5	2.5	mV
Ів	Input Bias Current		_	_	1.0	_	рА
los	Input Offset Current		_	_	1.0	_	рА
VcM	Input Common-Mod	e Voltage Range	_	-0.2	_	2.0	V
CMRR	Common-Mode Reje	ection Ratio	V _{CM} = -0.2V to 2.0V	55	75	_	dB
Gv	Large Signal Voltage Gain		$R_L = 10k\Omega \text{ to V}_{CC}/2,$ $V_{OUT} = 0.2V \text{ to } 1.6V$	90	112	_	dB
ΔV _{OS} /ΔT	Input Offset Voltage Drift		_	_	2.0	_	μV/°C
			$R_L = 1k\Omega$ to $V_{CC}/2$	_	25	50	
V _{OL} /V _{OH}	Output-Voltage Swir	ng from Rail	$R_L = 10k\Omega$ to $V_{CC}/2$	_	3	15	mV
Isink		Sink	Vout = Vcc	12	16	_	_
Isource	Output Current	Source	V _{OUT} = 0V	10	14	_	mA
Z _{OUT}	Closed-Loop Output Impedance		f = 10kHz	_	9	_	Ω
PSRR	Power-Supply Rejection Ratio		V _{CC} = 1.6V to 5.0V	66	80	_	dB
lcc	Supply Current (Per	Amplifier)	Vout = Vcc/2, lout = 0	_	70	90	μΑ

1.8V AC Electrical Characteristics (Vcc = 1.8V, VEE = 0, Vout = Vcc/2, VcM = Vcc/2, Ta = +25°C, unless otherwise specified.)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
GBP	Gain Bandwidth Product	C _L = 100pF		1.0	_	MHz
SR	Slew Rate (Note 5)	1V Step, $C_L = 100pF$, $R_L = 10kΩ$		0.34		V/µs
φм	Phase Margin	R _L = 100kΩ		67	_	Degrees
THD+N	Total Harmonic Distortion+Noise	$\begin{split} f &= 1kHz, \ A_V = 1, \ V_{IN} = 1V_{PP}, \\ R_L &= 10k\Omega, \ C_L = 100pF \end{split}$		-70		dB
e n	Voltage Noise Density	f = 1kHz	_	27	_	nV/\sqrt{Hz}

Electrical Characteristics (continued)

3.0V DC Electrical Characteristics ($V_{CC} = 3.0V$, $V_{EE} = 0$, $V_{OUT} = V_{CC}/2$, $V_{CM} = V_{CC}/2$, $V_$

Symbol	Param	eter	Conditions	Min	Тур	Max	Unit
Vos	Input Offset Voltage		_	_	0.5	2.5	mV
lв	Input Bias Current		_	_	1.0	_	pA
los	Input Offset Current		_	_	1.0	_	pA
Vсм	Input Common-Mod	e Voltage Range	_	-0.3	_	3.3	V
			V _{CM} = -0.3V to 1.8V	62	80	_	
CMRR	Common-Mode Reje	ection Ratio	V _{CM} = -0.3V to 3.3V	58	75	_	dB
_			$R_L = 1k\Omega$ to $V_{CC}/2$, $V_{OUT} = 0.2V$ to $2.8V$	90	110	_	
Gv	Large Signal Voltage	e Gain	$R_L = 10k\Omega$ to $V_{CC}/2$, $V_{OUT} = 0.1V$ to $2.9V$	95	115	_	dB
ΔV _{OS} /ΔT	Input Offset Voltage	Drift	_	_	2.0	_	μV/°C
			$R_L = 1k\Omega$ to $V_{CC}/2$	_	20	50	
Vol/Voн	Output-Voltage Swir	ng from Rail	$R_L = 10k\Omega$ to $V_{CC}/2$	_	3	15	mV
Isink		Sink	V _{OUT} = V _{CC}	50	60	_	_
Isource	Output Current Source		Vout = 0V	50	65	_	mA
Zout	Closed-Loop Output Impedance		f = 10kHz	_	9	_	Ω
PSRR	Power-Supply Rejection Ratio		Vcc = 1.6V to 5.0V	66	80	_	dB
Icc	Supply Current (Per	Amplifier)	Vout = Vcc/2, lout = 0		70	90	μΑ

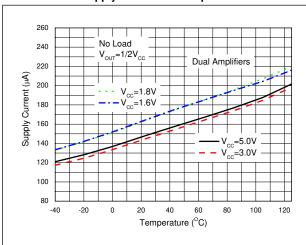
3.0V AC Electrical Characteristics ($V_{CC} = 3.0V$, $V_{EE} = 0$, $V_{OUT} = V_{CC}/2$, $V_{CM} = V_{CC}/2$, $T_{A} = +25$ °C, unless otherwise specified.)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
GBP	Gain Bandwidth Product	C _L = 100pF	_	1.0	_	MHz
SR	Slew Rate (Note 5)	G = 1, 2V Step, $C_L = 100pF$, $R_L = 10k\Omega$		0.40		V/µs
φм	Phase Margin	$R_L = 100k\Omega$	_	67	_	Degrees
THD+N	Total Harmonic Distortion+Noise	$\begin{split} f &= 1kHz, G = 1, V_{IN} = 1V_{PP}, \\ R_L &= 10k\Omega, C_L = 100pF \end{split}$	_	-70	_	dB
e n	Voltage Noise Density	f = 1kHz	_	27	_	nV/\sqrt{Hz}

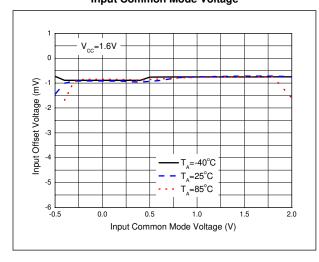
Electrical Characteristics (continued)

 $\textbf{5.0V DC Electrical Characteristics} \ (V_{CC} = 5.0V, \ V_{EE} = 0, \ V_{OUT} = V_{CC}/2, \ V_{CM} = V_{CC}/2, \ T_A = +25^{\circ}C, \ unless \ otherwise \ specified.)$

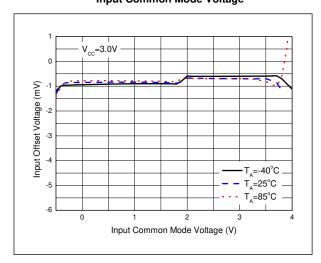
Symbol	Parame	eter	Conditions	Min	Тур	Max	Unit
Vos	Input Offset Voltage		_	_	0.5	2.5	mV
lΒ	Input Bias Current		_	_	1.0	_	pA
los	Input Offset Current		_	_	1.0	_	pA
Vсм	Input Common-Mode	e Voltage Range	_	-0.3	_	5.3	V
			V _{CM} = -0.3V to 3.8V	70	85	_	
CMRR	Common-Mode Reje	ection Ratio	V _{CM} = -0.3V to 5.3V	65	90		dB
_			$R_L = 1k\Omega$ to $V_{CC}/2$, $V_{OUT} = 0.2V$ to $4.8V$	80	92	_	
Gv	Large Signal Voltage	e Gain	$R_L = 10k\Omega$ to $V_{CC}/2$, $V_{OUT} = 0.05V$ to $4.95V$	85	98	_	dB
ΔV _{OS} /ΔT	Input Offset Voltage	Drift	_	_	2.0	_	μV/°C
			$R_L = 1k\Omega$ to $V_{CC}/2$	_	25	50	
Vol/Voh	Output-Voltage Swir	ig from Rail	$R_L = 10k\Omega$ to $V_{CC}/2$	_	4	15	mV
Isink		Sink	V _{OUT} = V _{CC}	100	150	_	
Isource	Output Current	Source	Vout = 0V	110	185	_	mA
_	Closed-Loop Output Impedance		f = 1kHz, Av = 1	_	9	_	Ω
PSRR	Power-Supply Rejection Ratio		Vcc = 1.6V to 5.0V	66	80	_	dB
Icc	Supply Current (Per	Amplifier)	Vout = Vcc/2, lout = 0		70	90	μΑ

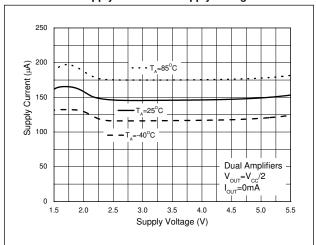

5.0V AC Electrical Characteristics ($V_{CC} = 5.0V$, $V_{EE} = 0$, $V_{OUT} = V_{CC}/2$, $V_{CM} = V_{CC}/2$, $T_{A} = +25^{\circ}C$, unless otherwise specified.)

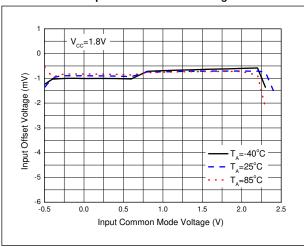
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
GBP	Gain Bandwidth Product	C _L = 100pF		1.0	_	MHz
SR	Slew Rate (Note 5)	2V Step, C _L = 100pF, R _L = 10kΩ		0.45	-	V/µs
φм	Phase Margin	$R_L = 100k\Omega$		67	_	Degrees
THD+N	THD+N	$\begin{split} f &= 1kHz, Av = 1, V_{IN} = 1V_{PP}, \\ R_L &= 10k\Omega, C_L = 100pF \end{split}$		-70		dB
e n	Voltage Noise Density	f = 1kHz	_	27	_	nV/\sqrt{Hz}

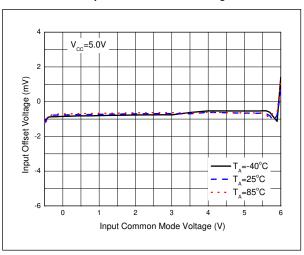


Performance Characteristics

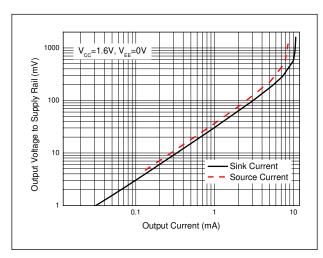

Supply Current vs. Temperature


Input Offset Voltage vs.
Input Common Mode Voltage

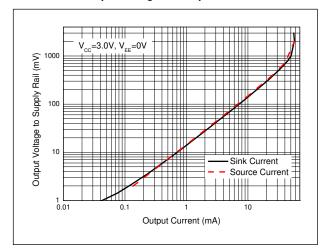

Input Offset Voltage vs.
Input Common Mode Voltage

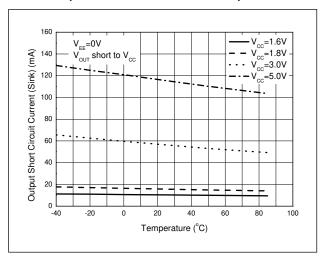

Supply Current vs. Supply Voltage

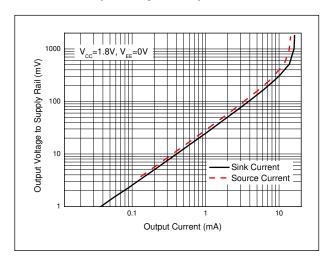
Input Offset Voltage vs.
Input Common Mode Voltage

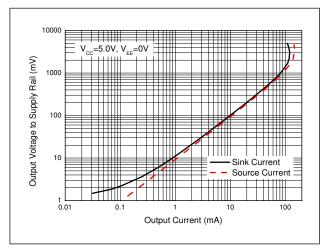


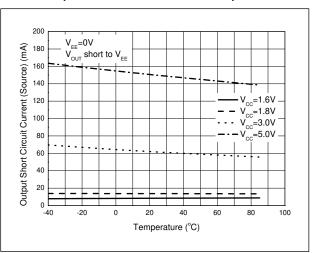
Input Offset Voltage vs.
Input Common Mode Voltage



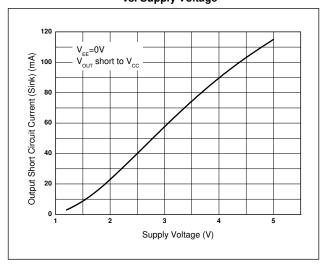

Output Voltage vs. Output Current


Output Voltage vs. Output Current

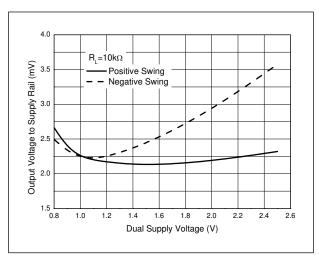

Output Short Circuit Current vs. Temperature

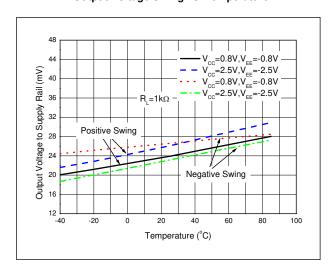

Output Voltage vs. Output Current

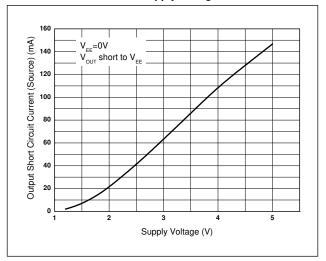
Output Voltage vs. Output Current

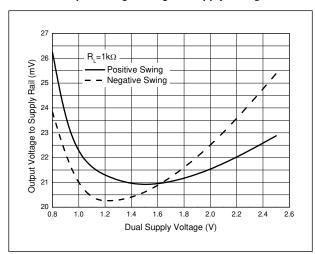


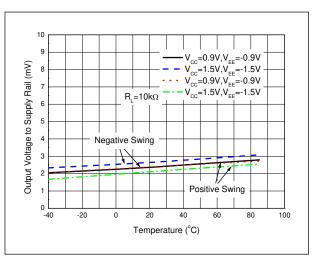
Output Short Circuit Current vs. Temperature



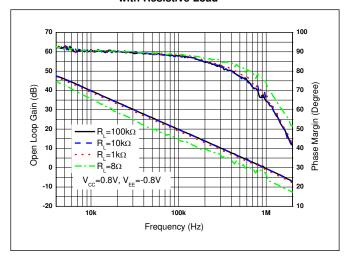

Output Short Circuit Current vs. Supply Voltage


Output Voltage Swing vs. Supply Voltage

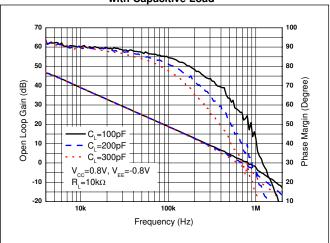

Output Voltage Swing vs. Temperature

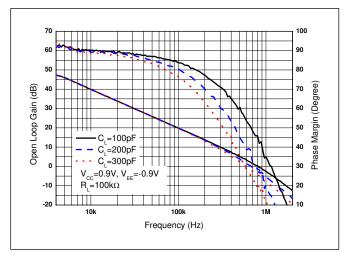

Output Short Circuit Current vs. Supply Voltage

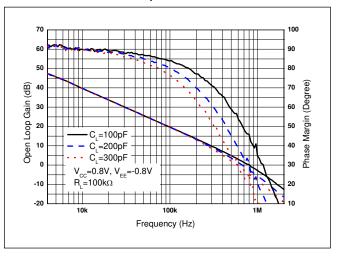
Output Voltage Swing vs. Supply Voltage

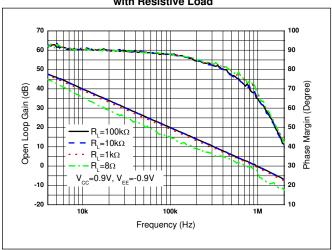


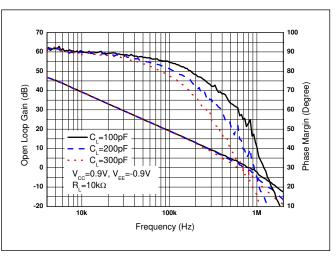
Output Voltage Swing vs. Temperature



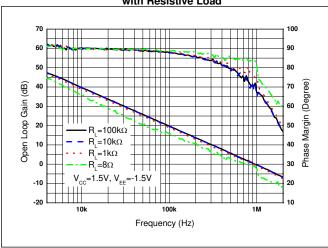

Gain and Phase vs. Frequency with Resistive Load


Gain and Phase vs. Frequency with Capacitive Load

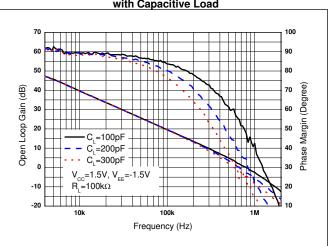

Gain and Phase vs. Frequency with Capacitive Load

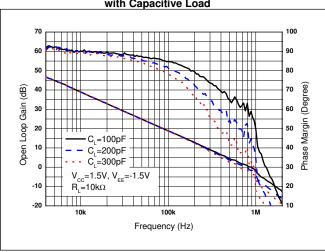

Gain and Phase vs. Frequency with Capacitive Load

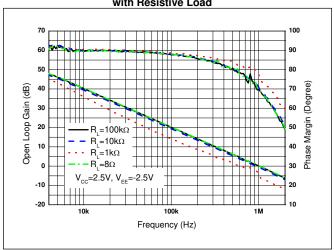
Gain and Phase vs. Frequency with Resistive Load

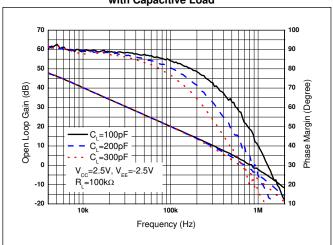


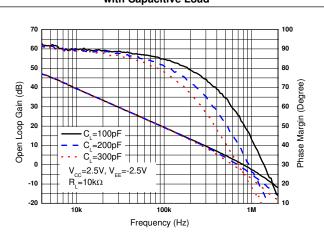
Gain and Phase vs. Frequency with Capacitive Load



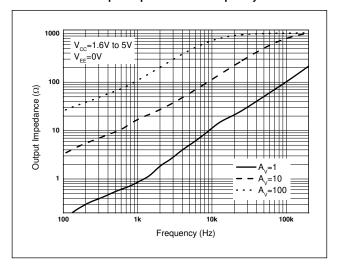

Gain and Phase vs. Frequency with Resistive Load


Gain and Phase vs. Frequency with Capacitive Load

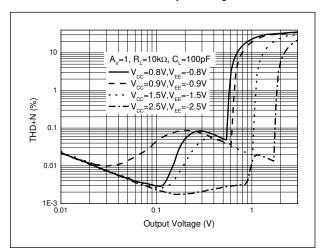

Gain and Phase vs. Frequency with Capacitive Load

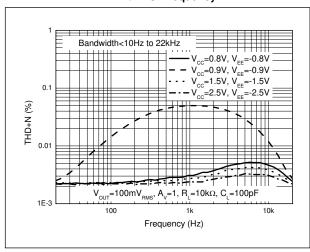

Gain and Phase vs. Frequency with Resistive Load

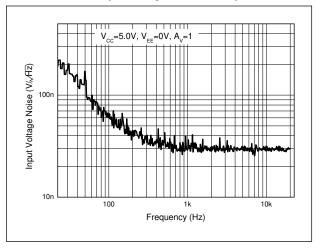
Gain and Phase vs. Frequency with Capacitive Load

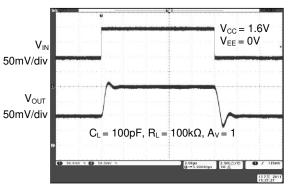


Gain and Phase vs. Frequency with Capacitive Load

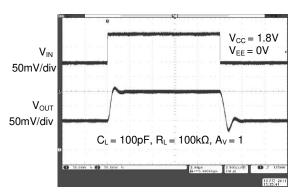



Output Impedance vs. Frequency


THD+N vs. Output Voltage

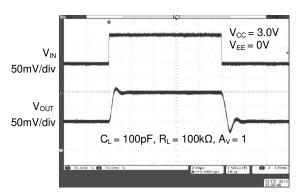

THD+N vs. Frequency

Input Voltage Noise Density

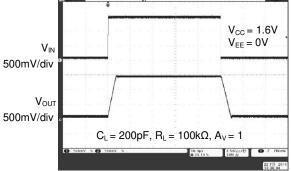


Small Signal Pulse Response

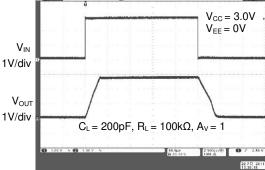
Time (2µs/div)


Small Signal Pulse Response

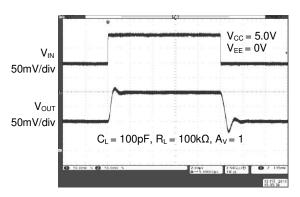
Time (2µs/div)



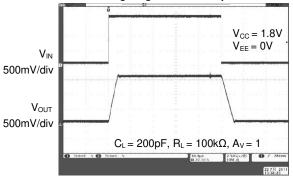
Small Signal Pulse Response


Time (2µs/div)

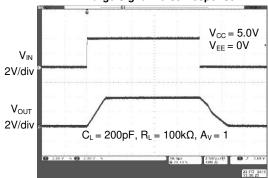
Large Signal Pulse Response


Time (10µs/div)

Large Signal Pulse Response

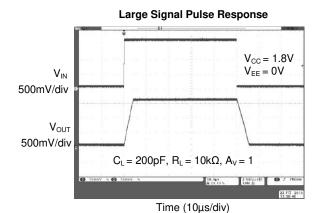

Time (10µs/div)

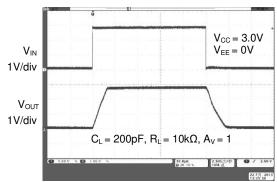
Small Signal Pulse Response

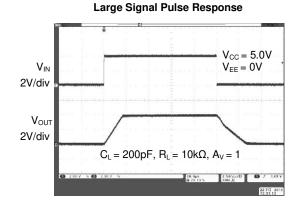

Time (2µs/div)

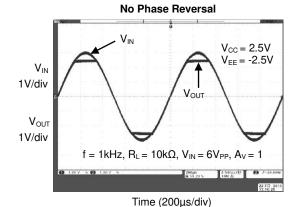
Large Signal Pulse Response

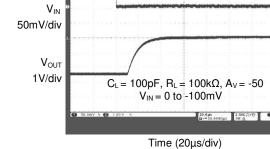
Time (10µs/div)


Large Signal Pulse Response


Time (10µs/div)


$V_{IN} = 0 \text{ V}_{IN} \text{ V}_{OUT} \text{ S00mV/div}$ $V_{OUT} = 0 \text{ V}_{EE} = 0 \text{$



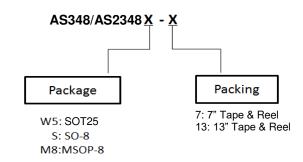

Time (10µs/div)

Time (10µs/div)

Overload Recovery Time

 $V_{CC} = 2.5V$

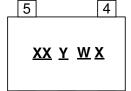
 $V_{EE} = -2.5V$



Overload Recovery Time $V_{IN} = 0 \quad V_{CC} = 2.5 V \quad V_{EE} = -2.5 V \quad V_{EE} = -2$

Time (20µs/div)

Ordering Information



Part Number	Package Code	Dookogo	Packir	ng
Part Number	Package Code	Package –	Qty.	Carrier
AS348W5-7	W5	SOT25	3,000	7" Tape and Reel
AS2348S-13	S	SO-8	4,000	13" Tape and Reel
AS2348M8-13	M8	MSOP-8	3,000	13" Tape and Reel

Marking Information

(1) SOT25

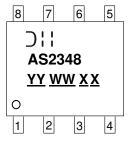
2

3

 \underline{XX} : Identification Code

Y: Year 0 to 9

 \underline{W} : Week: A to Z: 1 to 26 week;

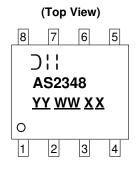

a to z : 27 to 52 week; z represents

52 and 53 week \underline{X} : Internal Code

Part Number	Package	Identification Code
AS348W5-7	SOT25	PH

(2) SO-8

YY: Year: 23, 24, 25~ WW: Week: 01~52; 52


represents 52 and 53 week

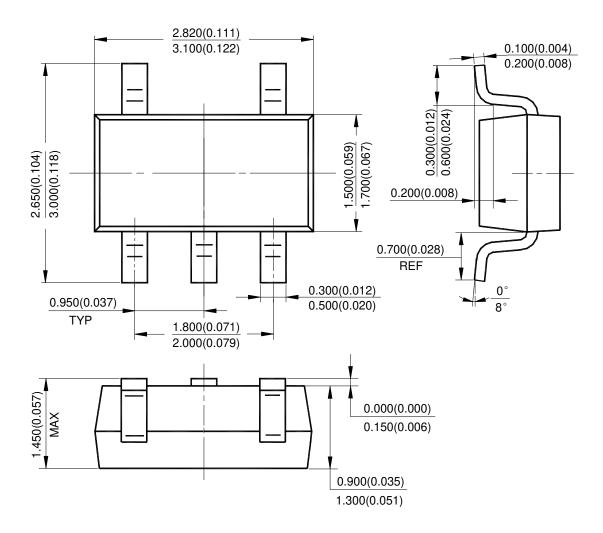
XX: Internal Code

Part Number	Package	Identification Code	
AS2348S-13	SO-8	AS2348	

(3) MSOP-8

<u>YY</u>: Year: 23, 24, 25~

WW: Week: 01~52; 52 represents 52 and 53 week

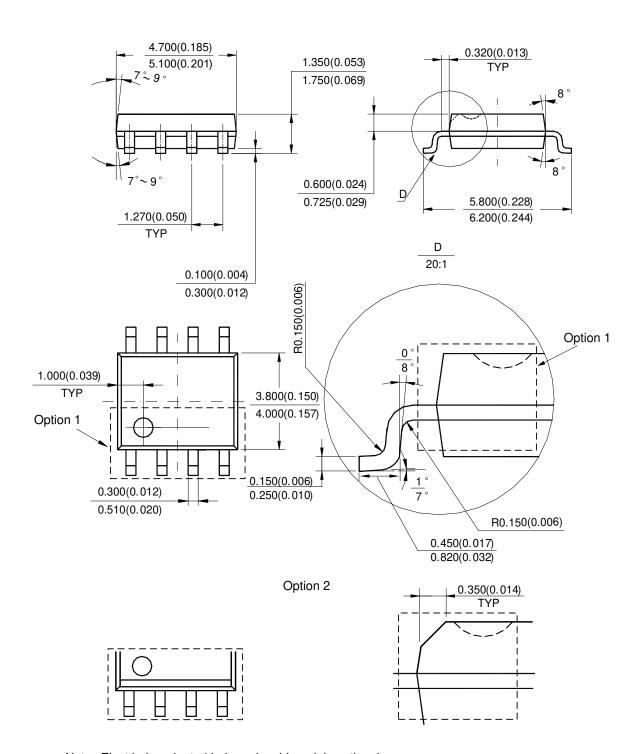

XX: Internal Code

Part Number	Package	Identification Code		
AS2348M8-13	MSOP-8	AS2348		

Package Outline Dimensions (All dimensions in mm(inch).)

Please see http://www.diodes.com/package-outlines.html for the latest version.

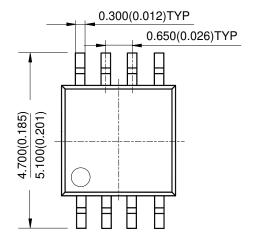
(1) Package Type: SOT25

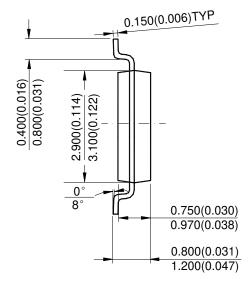


Package Outline Dimensions (All dimensions in mm(inch).) (continued)

Please see http://www.diodes.com/package-outlines.html for the latest version.

(2) Package Type: SO-8

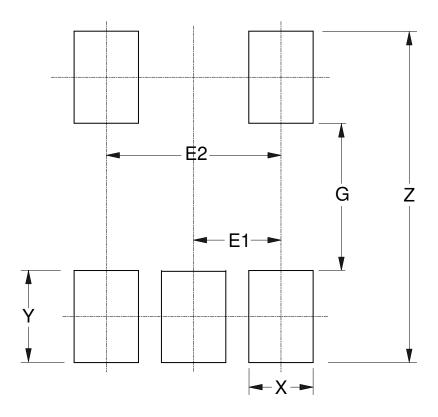

Note: Eject hole, oriented hole and mold mark is optional.



Package Outline Dimensions (All dimensions in mm(inch).) (continued)

Please see http://www.diodes.com/package-outlines.html for the latest version.

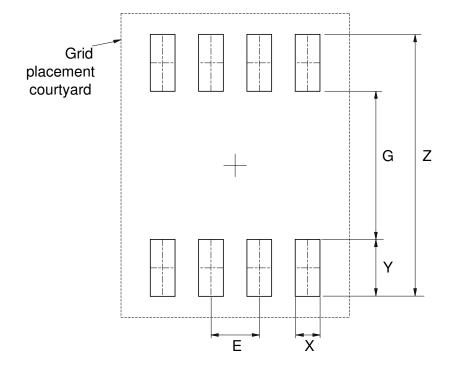
(3) Package Type: MSOP-8


Note: Eject hole, oriented hole and mold mark is optional.

Suggested Pad Layout

 $Please\ see\ http://www.diodes.com/package-outlines.html\ for\ the\ latest\ version.$

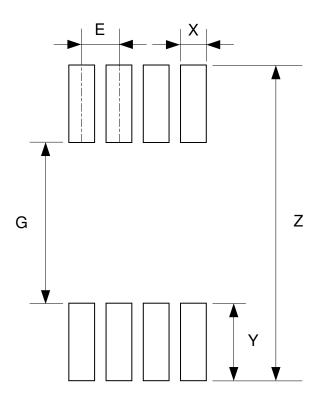
(1) Package Type: SOT25


Dimensions	Z	G	X	Y	E1	E2
	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)
Value	3.600/0.142	1.600/0.063	0.700/0.028	1.000/0.039	0.950/0.037	1.900/0.075

Suggested Pad Layout (continued)

Please see http://www.diodes.com/package-outlines.html for the latest version.

(2) Package Type: SO-8


Dimensions	Z (mm)/(inch)	G (mm)/(inch)	X (mm)/(inch)	Y (mm)/(inch)	E (mm)/(inch)
Value	6.900/0.272	3.900/0.154	0.650/0.026	1.500/0.059	1.270/0.050

Suggested Pad Layout (continued)

Please see http://www.diodes.com/package-outlines.html for the latest version.

(3) Package Type: MSOP-8

Dimensions	Z	G	X	Y	E
	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)
Value	5.500/0.217	2.800/0.110	0.450/0.018	1.350/0.053	0.650/0.026

23 of 24

Mechanical Data

SOT25

- Moisture Sensitivity: Level 1 per J-STD-020
- Terminals: Finish Matte Tin Plated Leads, Solderable per MIL-STD-202, Method 208 (3)
- Weight: 0.015 grams (Approximate)

SO-8

- Moisture Sensitivity: Level 1 per J-STD-020
- Terminals: Finish Matte Tin Plated Leads, Solderable per MIL-STD-202, Method 208 (3)
- Weight: 0.074 grams (Approximate)

MSOP-8

- Moisture Sensitivity: Level 1 per J-STD-020
- Terminals: Finish Matte Tin Plated Leads, Solderable per MIL-STD-202, Method 208 (3)
- Weight: 0.0246 grams (Approximate)

IMPORTANT NOTICE

- 1. DIODES INCORPORATED (Diodes) AND ITS SUBSIDIARIES MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO ANY INFORMATION CONTAINED IN THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).
- 2. The Information contained herein is for informational purpose only and is provided only to illustrate the operation of Diodes' products described herein and application examples. Diodes does not assume any liability arising out of the application or use of this document or any product described herein. This document is intended for skilled and technically trained engineering customers and users who design with Diodes' products. Diodes' products may be used to facilitate safety-related applications; however, in all instances customers and users are responsible for (a) selecting the appropriate Diodes products for their applications, (b) evaluating the suitability of Diodes' products for their intended applications, (c) ensuring their applications, which incorporate Diodes' products, comply the applicable legal and regulatory requirements as well as safety and functional-safety related standards, and (d) ensuring they design with appropriate safeguards (including testing, validation, quality control techniques, redundancy, malfunction prevention, and appropriate treatment for aging degradation) to minimize the risks associated with their applications.
- 3. Diodes assumes no liability for any application-related information, support, assistance or feedback that may be provided by Diodes from time to time. Any customer or user of this document or products described herein will assume all risks and liabilities associated with such use, and will hold Diodes and all companies whose products are represented herein or on Diodes' websites, harmless against all damages and liabilities.
- 4. Products described herein may be covered by one or more United States, international or foreign patents and pending patent applications. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks and trademark applications. Diodes does not convey any license under any of its intellectual property rights or the rights of any third parties (including third parties whose products and services may be described in this document or on Diodes' website) under this document.
- 5. Diodes' products are provided subject to Diodes' Standard Terms and Conditions of Sale (https://www.diodes.com/about/company/terms-and-conditions/terms-and-conditions-of-sales/) or other applicable terms. This document does not alter or expand the applicable warranties provided by Diodes. Diodes does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.
- 6. Diodes' products and technology may not be used for or incorporated into any products or systems whose manufacture, use or sale is prohibited under any applicable laws and regulations. Should customers or users use Diodes' products in contravention of any applicable laws or regulations, or for any unintended or unauthorized application, customers and users will (a) be solely responsible for any damages, losses or penalties arising in connection therewith or as a result thereof, and (b) indemnify and hold Diodes and its representatives and agents harmless against any and all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim relating to any noncompliance with the applicable laws and regulations, as well as any unintended or unauthorized application.
- 7. While efforts have been made to ensure the information contained in this document is accurate, complete and current, it may contain technical inaccuracies, omissions and typographical errors. Diodes does not warrant that information contained in this document is error-free and Diodes is under no obligation to update or otherwise correct this information. Notwithstanding the foregoing, Diodes reserves the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes.
- 8. Any unauthorized copying, modification, distribution, transmission, display or other use of this document (or any portion hereof) is prohibited. Diodes assumes no responsibility for any losses incurred by the customers or users or any third parties arising from any such unauthorized use.
- 9. This Notice may be periodically updated with the most recent version available at https://www.diodes.com/about/company/terms-and-conditions/important-notice

The Diodes logo is a registered trademark of Diodes Incorporated in the United States and other countries. All other trademarks are the property of their respective owners.

© 2023 Diodes Incorporated. All Rights Reserved.

www.diodes.com

AS348/AS2348 2
Document number: DS45094 Rev. 1 - 2 **www.**