

Structure	Silicon Monolithic Integrated Circuit
Product series	PWM Driver for combi drive
Туре	BD7790KVT
Function	 3-phase-sensor-less system, therefore don't need three hall sensors for spindle motor driver.

• Stability high-speed start from the state of the stop for spindle motor driver.

OAbsolute maximum ratings

Parameter	Symbol	Limits	Unit
Power MOS supply voltage	PVcc	6	V
Control circuit power supply voltage	Vcc	6	V
Maximum driver output current	IoMAX	3 #1	А
Power dissipation	Pd	1.37 #2	W
Operating temperature range	Topr	-30~85	°C
Storage temperature range	Tstg	-55~150	°C
Joint part temperature	Tjmax	150	°C

#1 The current is guaranteed 3.0A in case of the current is turned on/off in a duty-ratio of less than 1/10 with a maximum on-time of 5ms and when short brake.

#2 PCB (70mm × 70mm × 1.6mm,occupied copper foil is less than 3%,glass epoxy standard board) mounting. Reduce power by 11.0mW for each degree above 25°C.

ORecommended operating conditions(Ta=-30~+85°C)

[Set the power supply voltage taking allowable dissipation into considering]

Parameter	Symbol	MIN	TYP	MAX	Unit
Power MOS supply voltage	PVcc	4.0	5.0	5.5	V
Control circuit power supply voltage	Vcc	4.0	5.0	5.5	V

This product isn't designed for protection against radioactive rays.

O Electrical characteristics

(Unless otherwise noted Ta=25°	C, Vcc=PVcc=5V, Vref=1.25V, RL(ACT,STP,LOAD)=8Ω+47μH, RL(SP)=2Ω+47μH, RNF=0.2	2Ω
	CTL1,2=3.3V, GVSW=0V, VIN1,2,3,4,5,6=OPEN, VCOM=OPEN, VCCOM=OPEN, VCOUT=OPEN,	EN)

Circuit current Oulescent current ICC - 8 20 mA CTL1,2=H Current in standby mode IST - - 0.2 mA CTL1,2=L Input dead zone (one side) VU2ACT1,2,3 - - 3 mV Voltage gain (CH1,2.3) GVC1,2,3 15.5 17.5 19.5 dB External input resistor (10k,Q) Output of resistor (up and battom) RON1,2,3 - 1.2 1.8 Q lo =500mA PWM freguency f12,3CH 215 310 405 kHz lo lo lo Output of fiest voltage VOC4,5 10 30 50 mV lo mV lo		Parameter	Symbol	MIN.	TYP.	MAX.	Unit	Condition
Clucic Current in standby mode IST - - 0.2 mA CTL1,2=L Actuator driver block Output offset voltage VOZACT1,2,3 - - 3 mV Actuator driver block Output offset voltage VOC1,2,3 15.5 17.5 19.5 dB External input resistor 10k Ω Output offset voltage ROM1,2,3 - 1.2 1.8 Q le=500mA PWM frequency f12.3CH 215 310 405 kHz input dead zone (one side) VD24,5 10 30 50 mV input dead zone (one side) VD24,5 10 30 50 mV input dead zone (one side) VD24,5 10 30 50 mV input dead zone (one side) VD24,5 10 30 50 mV input dead zone (one side) VD24,5 10 30 50 mV input dead zone (one side) VD26 60 00 10 mV CTL1+H, CTL2+L input dead zone (one side) VD25 10 150 50	Circuit ourrept	Quiescent current	ICC	—	8	20	mA	CTL1,2=H
Actuator chive Input dead zone (one side) VD2ACT1.2.3 3 mV Actuator chive Output offset voltage VOO1,2.3 -50 50 mV Voltage gain (CH1.2.3) GVC1,2.3 15.5 17.5 19.5 dB External input resistor 10k.Q Output of nesistor (top and bottom) RON1,2.3 1.2 1.8 Q los=500mA Input dead zone (one side) VD24,5 10 300 50 mV Output offset voltage VOC4,5 -50 50 mV Output offset voltage VOC4,5 -50 50 mV Output offset voltage VOC4,5 -50 50 mV Output offset voltage VOC6 1.6 2.4 Q los=500mA Output offset voltage VOC6 -0 50 mV CTL1=H, CTL2=L Output offset voltage VOZ6 15.5 17.5 19.5 dB CTL1=H, CTL2=L<	Circuit current	Current in standby mode	IST	_	_	0.2	mA	CTL1,2=L
Actuator driver block Output offset voltage VOO1,2,3 -50 mV External input resistor 10k Q Output offset voltage gain (CH1,2,3) GVC1,2,3 1.5.5 17.5 19.5 dB External input resistor 10k Q Output offset voltage MO12,2,3 - 1.2 1.8 Q Ioe500mA Stepping driver block Input dead zone (one side) VD24,5 10 30 50 mV Output offset voltage VOO4,5 50 - 50 mV Output offset voltage VOO4,5 15.5 17.5 19.5 dB Output offset voltage Output offset voltage VOO4,5 15.5 17.5 19.5 dB Input dead zone (one side) VD26 20 60 100 mV CTL1=H, CTL2=L Output offset voltage VOO6 -50 mV CTL1=H, CTL2=L Undut offset voltage VOO6 15.5 17.5 19.5 dB CTL1=H, CTL2=L Output offset voltage VOZ5P1 2 30 100 mV		Input dead zone (one side)	VDZACT1,2,3		-	3	mV	
Actual differ Voltage gain (CH1,2,3) GVC1,2,3 15.5 17.5 19.5 dB External input resistor 10k Q Output On resistor (top and bottom) RON1,2,3 - 1.2 1.8 Q Io=500mA PWM frequency 11,2,30/L 215 310 405 kHz Output offset voltage VOO4,5 -50 - 50 mV Voltage gain GVC4,5 15.5 17.5 19.5 dB - Output offset voltage VOO4,5 - 50 mV - 50 mV Voltage gain GVC4,5 15.5 17.5 19.5 dB - - 19.5 dB - Voltage gain GVC4,5 15.5 17.5 19.5 dB - - 1.6 0.100 mV CTL1=H, CTL2=L - - 1.6 0.100 mV - - 1.8 2.7 Q 10=500mA - 1.0 1.0 0.0 - 1.0	A atuatar drivar	Output offset voltage	VOO1,2,3	-50	-	50	mV	
Duck Output On resistor (top and bottom) RON1,2,3 1.2 1.8 Q Io=500mA PVMM frequency I1,2,3CH 215 310 405 kHz Input dead zone (one side) VDZ4,5 10 30 50 mV Output offset voltage VOC4,5 15.5 17.5 19.5 dB Output offset voltage VOC4,5 15.5 17.5 19.5 dB Output Onresistor (top and bottom) RONA,5 - 1.6 2.4 Q lo=500mA PVMM frequency 14,5CH 215 310 405 kHz Loading driver Output Onresistor (top and bottom) RON6 - 50 mV CTL1=H, CTL2=L Voltage gain GVC6 15.5 17.5 19.5 dB CTL1=H, CTL2=L Voltage gain GVC6 15.5 17.5 19.5 dB CTL1=H, CTL2=L Valtage gain GVC6 15.5 17.5 19.5 dB CTL1=H, CTL2=L	Actuator unver	Voltage gain (CH1,2,3)	GVC1,2,3	15.5	17.5	19.5	dB	External input resistor $10k\Omega$
PWM frequency f1,2,3CH 215 310 405 kHz Input dead zone (one side) VD24,5 10 30 50 mV Output offset voltage VO24,5 50 - 50 mV Voltage gain GVC4,5 15.5 17.5 19.5 dB Output offset voltage VO26 20 60 100 mV CTL1=H, CTL2=L Loading driver Input dead zone (one side) VD26 20 60 100 mV CTL1=H, CTL2=L Loading driver Input dead zone (one side) VD26 20 60 100 mV CTL1=H, CTL2=L Output offset voltage VO06 -50 - 50 mV CTL1=H, CTL2=L Output on resistor (top and bottom) RON6 - 18.8 2.7 Q loe500mA, CTL1=H, CTL2=L Output drad zone of gm1(one side) VD2SP1 2 30 100 mV Input dead zone of gm2(one side) VD2SP3 10 150 500 mV </td <td>DIOCK</td> <td>Output On resistor (top and bottom)</td> <td>RON1,2,3</td> <td>-</td> <td>1.2</td> <td>1.8</td> <td>Ω</td> <td>lo=500mA</td>	DIOCK	Output On resistor (top and bottom)	RON1,2,3	-	1.2	1.8	Ω	lo=500mA
Input dead zone (one side) VDZ4,5 10 30 50 mV Output offset voltage VOO4,5 -50 - 50 mV Voltage gain GVC4,5 15.5 17.5 19.5 dB Output On resistor (top and bottom) RON4,5 - 1.6 2.4 Ω lo=500mA PWM frequency f4,5CH 215 310 405 kHz Loading driver Output offset voltage VOC6 -50 - 50 mV CTL1=H, CTL2=L Output offset voltage gain GVC6 15.5 17.5 19.5 dB CTL1=H, CTL2=L Output offset voltage gain GVC6 15.5 17.5 19.5 dB CTL1=H, CTL2=L Output offset voltage ind bottom) RON6 - 1.8 2.7 Q lo=500mA, CTL1=H, CTL2=L Input dead zone of gm1(one side) VDZSP1 2 30 100 mV GVSW=M Input dead zone of gm2(one side) VDZSP3 10 150 5		PWM frequency	f1,2,3CH	215	310	405	kHz	
Stepping divier block Output offset voltage VOO4,5 -50 - 50 mV Output offset voltage gain GVC4,5 15.5 17.5 19.5 dB Output on resistor (top and bottom) RON4,5 - 1.6 2.4 Q lo=500mA PWM frequency 14,5CH 215 310 405 kHz Output offset voltage VOC6 -50 - 50 mV CTL1=H, CTL2=L Output offset voltage VOC6 -50 - 50 mV CTL1=H, CTL2=L Output on resistor (top and bottom) RON6 - 1.8 2.7 Q lo=500mA, CTL1=H, CTL2=L Output dead zone of gm1(one side) VDZSP1 2 30 100 mV Input dead zone of gm2(one side) VDZSP2 6 90 300 mV GVSW=M Input dead zone of gm2(one side) VDZSP3 10 150 500 mV GVSW=M Input dead zone of gm3(one side) VDZSP3 10 150 500 mV		Input dead zone (one side)	VDZ4,5	10	30	50	mV	
Stepping unversion Voltage gain GVC4,5 15.5 17.5 19.5 dB Output On resistor (top and bottom) RON4,5 - 1.6 2.4 Q lo=500mA PWM frequency f4,5CH 215 310 405 kHz Input dead zone (one side) VDZ6 20 60 100 mV CTL1=H, CTL2=L Output offset voltage VOC6 -50 - 50 mV CTL1=H, CTL2=L Output offset voltage gain GVC6 15.5 17.5 19.5 dB CTL1=H, CTL2=L Output on resistor (top and bottom) RON6 - 1.8 2.7 Q lo=500mA, CTL1=H, CTL2=L Output dead zone of gm1(one side) VDZSP1 2 30 100 mV GVSW=M Input dead zone of gm3(one side) VDZSP2 6 90 300 mV GVSW=M Input dead zone of gm3(one side) VDZSP3 10 150 500 mV GVSW=M Input output gain 3 gm2 0.28 <td>Stopping driver</td> <td>Output offset voltage</td> <td>VOO4,5</td> <td>-50</td> <td>-</td> <td>50</td> <td>mV</td> <td></td>	Stopping driver	Output offset voltage	VOO4,5	-50	-	50	mV	
Duck Output On resistor (top and bottom) RON4,5 - 1.6 2.4 Ω Io=500mA PWM frequency f4,5CH 215 310 405 kHz Input dead zone (one side) VDZ6 20 60 100 mV CTL1=H, CTL2=L Loading driver block Output offset voltage VOC6 55 17.5 19.5 dB CTL1=H, CTL2=L Output On resistor (top and bottom) RON6 - 1.8 2.7 Ω Io=500mA, CTL1=H, CTL2=L Output dead zone of gm1(one side) VDZSP1 2 30 100 mV Input dead zone of gm2(one side) VDZSP1 2 30 100 mV Input dead zone of gm3(one side) VDZSP2 6 90 300 mV GVSW=M Input output gain 1 gm1 0.88 1.1 1.32 AV Input output gain 2 gm3 0.17 0.22 0.26 V Output On resistor (top and bottom) RONSP - 0.6 1.4 Ω Io=500	Stepping unver	Voltage gain	GVC4,5	15.5	17.5	19.5	dB	
PWM frequency f4,5CH 215 310 405 kHz Loading driver block Input dead zone (one side) VDZ6 20 60 100 mV CTL1=H, CTL2=L Output offset voltage VOC6 -50 - 50 mV CTL1=H, CTL2=L Voltage gain GVC6 15.5 17.5 19.5 dB CTL1=H, CTL2=L Output on resistor (top and bottom) RON6 - 1.8 2.7 Ω lo=500mA, CTL1=H, CTL2=L PWM frequency f6CH 215 310 405 kHz CTL1=H, CTL2=L Input dead zone of gm1(one side) VDZSP1 2 30 100 mV Input dead zone of gm2(one side) VDZSP2 6 90 300 mV GVSW=M Input dead zone of gm3(one side) VDZSP3 10 150 500 mV GVSW=H Input output gain 1 gm1 gm3 0.17 0.22 0.27 AV GVSW=H Output On resistor (top and bottom) RONSP	DIOCK	Output On resistor (top and bottom)	RON4,5	-	1.6	2.4	Ω	lo=500mA
Loading driver block Input dead zone (one side) VDZ6 20 60 100 mV CTL1=H, CTL2=L Output offset voltage gain GVC6 15.5 17.5 19.5 dB CTL1=H, CTL2=L Output On resistor (top and bottom) RON6 - 1.8 2.7 Q lo=500mA, CTL1=H, CTL2=L Output On resistor (top and bottom) RON6 - 1.8 2.7 Q lo=500mA, CTL1=H, CTL2=L WM frequency f6CH 215 310 405 kHz CTL1=H, CTL2=L Input dead zone of gm1(one side) VDZSP1 2 30 100 mV Input dead zone of gm3(one side) VDZSP3 10 150 500 mV GVSW=M Input output gain 1 gm1 0.88 1.1 1.32 AV Input output gain 3 gm3 0.17 0.22 0.27 AV GVSW=H Output On resistor (top and bottom) RONSP - 0.6 1.4 Q Io=500mA Output Imit voltage		PWM frequency	f4,5CH	215	310	405	kHz	
Loading driver block Output offset voltage VOO6 -50 50 mV CTL1=H, CTL2=L Voltage gain GVC6 15.5 17.5 19.5 dB CTL1=H, CTL2=L Output On resistor (top and bottom) RON6 1.8 2.7 Q lo=500mA, CTL1=H, CTL2=L PWM frequency f6CH 215 310 405 kHz CTL1=H, CTL2=L Input dead zone of gm1(one side) VDZSP1 2 30 100 mV GVSW=M Input dead zone of gm2(one side) VDZSP2 6 90 300 mV GVSW=M Input dead zone of gm3(one side) VDZSP3 10 150 500 mV GVSW=M Input output gain 1 gm1 0.88 1.1 1.32 AV Input output gain 3 gm3 0.17 0.22 0.27 AV GVSW=M Output 10n resistor (top and bottom) RONSP - 0.6 1.4 Ω Io=500mA Output 100 rutput gain 3		Input dead zone (one side)	VDZ6	20	60	100	mV	CTL1=H, CTL2=L
Loading Unvert Voltage gain GVC6 15.5 17.5 19.5 dB CTL1=H, CTL2=L Output On resistor (top and bottom) RON6 - 1.8 2.7 Ω Io=500mA, CTL1=H, CTL2=L PWM frequency f6CH 215 310 405 kHz CTL1=H, CTL2=L Input dead zone of gm1(one side) VDZSP1 2 30 100 mV Input dead zone of gm3(one side) VDZSP2 6 90 300 mV GVSW=M Input dead zone of gm3(one side) VDZSP2 6 90 300 mV GVSW=M Input output gain 1 gm1 0.88 1.1 1.32 AV Input output gain 3 gm2 0.28 0.36 0.44 AV GVSW=M Output On resistor (top and bottom) RONSP - 0.6 1.4 Ω Io=500mA Output Imit voltage VLIMSP 0.18 0.22 0.26 V Io=500mA Output On threshold voltage VMVref - 1	Looding driver	Output offset voltage	VOO6	-50	-	50	mV	CTL1=H, CTL2=L
Dick Output On resistor (top and bottom) RON6 - 1.8 2.7 Ω Io=500mA, CTL1=H, CTL2=L PWM frequency f6CH 215 310 405 kHz CTL1=H, CTL2=L Input dead zone of gm1(one side) VDZSP1 2 30 100 mV Input dead zone of gm2(one side) VDZSP2 6 90 300 mV GVSW=M Input dead zone of gm3(one side) VDZSP3 10 150 500 mV GVSW=H Input dead zone of gm3(one side) VDZSP3 10 150 500 mV GVSW=H Input output gain 1 gm1 0.88 1.1 1.32 AV GVSW=H Input output gain 2 gm2 0.28 0.36 0.44 AV GVSW=M Output On resistor (top and bottom) RONSP - 0.6 1.4 Ω Io=500mA Output On resistor (top and bottom) RONSP - 0.6 1.4 Ω Io=500mA Output on resistor (top anute ON threshold voltage <td>Loading unver</td> <td>Voltage gain</td> <td>GVC6</td> <td>15.5</td> <td>17.5</td> <td>19.5</td> <td>dB</td> <td>CTL1=H, CTL2=L</td>	Loading unver	Voltage gain	GVC6	15.5	17.5	19.5	dB	CTL1=H, CTL2=L
PWM frequency f6CH 215 310 405 kHz CTL1=H, CTL2=L Input dead zone of gm1(one side) VDZSP1 2 30 100 mV GVSW=M Input dead zone of gm2(one side) VDZSP2 6 90 300 mV GVSW=M Input dead zone of gm3(one side) VDZSP3 10 150 500 mV GVSW=H Input output gain 1 gm1 0.88 1.1 1.32 AV AV Input output gain 2 gm2 0.28 0.36 0.44 AV GVSW=M Output output gain 3 gm3 0.17 0.22 0.27 AV GVSW=H Output On resistor (top and bottom) RONSP - 0.6 1.4 AV Io=500mA Output finit voltage VLIMSP 0.18 0.22 0.26 V Others Vref drop mute ON threshold voltage VMVrccD 3.2 3.6 4.0 V CTL1 L voltage VCTL11 0 - </td <td>DIOCK</td> <td>Output On resistor (top and bottom)</td> <td>RON6</td> <td>-</td> <td>1.8</td> <td>2.7</td> <td>Ω</td> <td>lo=500mA, CTL1=H, CTL2=L</td>	DIOCK	Output On resistor (top and bottom)	RON6	-	1.8	2.7	Ω	lo=500mA, CTL1=H, CTL2=L
Spindle driver block Input dead zone of gm2(one side) VDZSP1 2 30 100 mV Spindle driver block Input dead zone of gm3(one side) VDZSP3 10 150 500 mV GVSW=M Input dead zone of gm3(one side) VDZSP3 10 150 500 mV GVSW=H Input output gain 1 gm1 0.88 1.1 1.32 AV Input output gain 2 gm2 0.28 0.36 0.44 AV GVSW=M Input output gain 3 gm3 0.17 0.22 0.27 AV GVSW=H Output on resistor (top and bottom) RONSP - 0.6 1.4 Ω Io=500mA Output limit voltage VLIMSP 0.18 0.22 0.26 V Io=500mA Output limit voltage VLIMSP 0.18 0.22 0.26 V Io=500mA Other frequency fSP - 167 - kHz Io=500mA Other CTL1 L voltage VCTL1L 0 -		PWM frequency	f6CH	215	310	405	kHz	CTL1=H, CTL2=L
Spindle driver blockInput dead zone of gm2(one side)VDZSP2690300mVGVSW=MInput dead zone of gm3(one side)VDZSP310150500mVGVSW=HInput output gain 1gm10.881.11.32A/VInput output gain 2gm20.280.360.44A/VGVSW=MInput output gain 3gm30.170.220.27A/VGVSW=HOutput On resistor (top and bottom)RONSP-0.61.4 Ω Io=500mAOutput Imit voltageVLIMSP0.180.220.26VPWM frequencyfSP-167-kHzVer drop mute ON threshold voltageVMVref-0.71.0VCTL1 L voltageVCTL1L0-1.0VCTL2, GVSW L voltageVCTL2L, VGVL0-1.0VCTL2, GVSW L voltageVCTL2M, VGVM1.6-2.0VCTV2, GVSW H voltageVCTL2H, VGVH2.6-3.3VGain modegm1gm2gm33.3V		Input dead zone of gm1(one side)	VDZSP1	2	30	100	mV	
Spindle driver block Input dead zone of gm3(one side) VDZSP3 10 150 500 mV GVSW=H Input output gain 1 gm1 0.88 1.1 1.32 A/V Input output gain 2 gm2 0.28 0.36 0.44 A/V GVSW=M Input output gain 3 gm3 0.17 0.22 0.27 A/V GVSW=H Output On resistor (top and bottom) RONSP - 0.6 1.4 Ω Io=500mA Output limit voltage VLIMSP 0.18 0.22 0.26 V Io=500mA Output limit voltage VLIMSP 0.18 0.22 0.26 V Io=500mA Output on threshold voltage VLIMSP 0.18 0.22 0.26 V Io=500mA Vef drop mute ON threshold voltage VMVref - 10.7 1.0 V Io=500mA CTL1 L voltage VCTL1L 0 - 1.0 V Io=500mA CTL2, GVSW L voltage VCTL2H, VGVL 0 -		Input dead zone of gm2(one side)	VDZSP2	6	90	300	mV	GVSW=M
Spindle driver blockInput output gain 1gm10.881.11.32AVVInput output gain 2gm20.280.360.44AVVGVSW=MInput output gain 3gm30.170.220.27AVVGVSW=HOutput On resistor (top and bottom)RONSP-0.61.4ΩIo=500mAOutput limit voltageVLIMSP0.180.220.26VVPWM frequencyfSP-167-kHzVref drop mute ON threshold voltageVMVref-0.71.0VVcc drop mute ON threshold voltageVMVccD3.23.64.0VCTL1 L voltageVCTL1L0-1.0VCTL2, GVSW L voltageVCTL2L, VGVL0-3.3VCTL2, GVSW M (Hi-z) voltageVCTL2M, VGVM1.6-2.0VCTL2, GVSW H voltageVCTL2H, VGVH2.6-3.3VGain modegm1gm2gm3		Input dead zone of gm3(one side)	VDZSP3	10	150	500	mV	GVSW=H
Spinitule Univer block Input output gain 2 Input output gain 3 gm2 (mmatheta) 0.28 0.36 0.44 AVV GVSW=M Output output gain 3 gm3 0.17 0.22 0.27 AVV GVSW=H Output On resistor (top and bottom) RONSP - 0.6 1.4 Ω Io=500mA Output limit voltage VLIMSP 0.18 0.22 0.26 V V PWM frequency fSP - 167 - kHz Vref drop mute ON threshold voltage VMVref - 0.7 1.0 V Vcc drop mute ON threshold voltage VMVccD 3.2 3.6 4.0 V Others CTL1 L voltage VCTL1L 0 - 1.0 V CTL2, GVSW L voltage VCTL2H, VGVL 0 - 1.0 V CTL2, GVSW H voltage VCTL2H, VGVH 1.6 - 2.0 V OPEN (Hi-z) is also available. CTL2, GVSW H voltage VCTL2H, VGVH <td>Spindle driver</td> <td>Input output gain 1</td> <td>gm1</td> <td>0.88</td> <td>1.1</td> <td>1.32</td> <td>A/V</td> <td></td>	Spindle driver	Input output gain 1	gm1	0.88	1.1	1.32	A/V	
block Input output gain 3 gm3 0.17 0.22 0.27 AVV GVSW=H Output On resistor (top and bottom) RONSP - 0.6 1.4 Ω lo=500mA Output limit voltage VLIMSP 0.18 0.22 0.26 V PWM frequency fSP - 167 - kHz Vref drop mute ON threshold voltage VMVref - 0.7 1.0 V Vcc drop mute ON threshold voltage VMVccD 3.2 3.6 4.0 V CTL1 L voltage VCTL1L 0 - 1.0 V CTL1 L voltage VCTL2L, VGVL 0 - 3.3 V CTL2, GVSW L voltage VCTL2L, VGVH 0 - 1.0 V CTL2, GVSW M (Hi-2) voltage VCTL2H, VGVH 0.6 - 3.3 V CTL2, GVSW H voltage VCTL2H, VGVH 2.6 - 3.3 V Gain mode gm1 gm2 gm3 <td>Spinule unver</td> <td>Input output gain 2</td> <td>gm2</td> <td>0.28</td> <td>0.36</td> <td>0.44</td> <td>A/V</td> <td>GVSW=M</td>	Spinule unver	Input output gain 2	gm2	0.28	0.36	0.44	A/V	GVSW=M
Output On resistor (top and bottom) RONSP - 0.6 1.4 Ω Io=500mA Output limit voltage VLIMSP 0.18 0.22 0.26 V PWM frequency fSP - 167 - kHz Veri drop mute ON threshold voltage VMVref - 0.7 1.0 V Vcc drop mute ON threshold voltage VMVccD 3.2 3.6 4.0 V Others CTL1 L voltage VCTL1L 0 - 1.0 V CTL1, kortage VCTL1H 2.0 - 3.3 V CTL2, GVSW L voltage VCTL2L, VGVL 0 - 1.0 V CTL2, GVSW M voltage VCTL2M, VGVM 1.6 - 2.0 V OPEN (Hi-z) is also available. CTL2, GVSW H voltage VCTL2H, VGVH 2.6 - 3.3 V Gain mode gm1 gm2 gm3 - - <	DIOCK	Input output gain 3	gm3	0.17	0.22	0.27	A/V	GVSW=H
Output limit voltage VLIMSP 0.18 0.22 0.26 V PWM frequency fSP - 167 - kHz Vref drop mute ON threshold voltage VMVref - 0.7 1.0 V Vcc drop mute ON threshold voltage VMVccD 3.2 3.6 4.0 V Others CTL1 L voltage VCTL1L 0 - 1.0 V CTL1 L voltage VCTL1H 2.0 - 3.3 V CTL2, GVSW L voltage VCTL2L, VGVL 0 - 1.0 V CTL2, GVSW M (Hi-2) voltage VCTL2H, VGVH 0 - 1.0 V CTL2, GVSW H voltage VCTL2H, VGVH 0 - 1.0 V CTL2, GVSW H voltage VCTL2H, VGVH 2.6 - 3.3 V Gain mode gm1 gm2 gm3 - - - 3.4 -		Output On resistor (top and bottom)	RONSP	-	0.6	1.4	Ω	lo=500mA
PWM frequency fSP - 167 - kHz Vref drop mute ON threshold voltage VMVref - 0.7 1.0 V Vcc drop mute ON threshold voltage VMVccD 3.2 3.6 4.0 V CTL1 L voltage VCTL1L 0 1.0 V CTL1 L voltage VCTL1H 2.0 3.3 V CTL2, GVSW L voltage VCTL2L, VGVL 0 1.0 V CTL2, GVSW L voltage VCTL2H, VGVH 0 1.0 V CTL2, GVSW H voltage VCTL2H, VGVH 0 1.0 V CTL2, GVSW H voltage VCTL2H, VGVH 1.6 2.0 V OPEN (Hi-z) is also available. CTL2, GVSW H voltage VCTL2H, VGVH 2.6 3.3 V		Output limit voltage	VLIMSP	0.18	0.22	0.26	V	
Vref drop mute ON threshold voltage VMVref - 0.7 1.0 V Vcc drop mute ON threshold voltage VMVccD 3.2 3.6 4.0 V CTL1 L voltage VCTL1L 0 1.0 V CTL1 L voltage VCTL1H 2.0 3.3 V CTL2, GVSW L voltage VCTL2L, VGVL 0 1.0 V CTL2, GVSW M(Hi-z) voltage VCTL2M, VGVM 1.6 2.0 V CTL2, GVSW M voltage VCTL2H, VGVH 2.6 3.3 V		PWM frequency	fSP	—	167	—	kHz	
Vcc drop mute ON threshold voltage VMVccD 3.2 3.6 4.0 V Others CTL1 L voltage VCTL1L 0 1.0 V CTL1 L voltage VCTL1H 2.0 3.3 V CTL2, GVSW L voltage VCTL2L, VGVL 0 1.0 V CTL2, GVSW M(Hi-z) voltage VCTL2M, VGVM 1.6 2.0 V OPEN (Hi-z) is also available. CTL2, GVSW H voltage VCTL2H, VGVH 2.6 3.3 V Gain mode gm1 gm2 gm3		Vref drop mute ON threshold voltage	VMVref	—	0.7	1.0	V	
CTL1 L voltage VCTL1L 0 - 1.0 V Others CTL1 H voltage VCTL1H 2.0 - 3.3 V CTL2, GVSW L voltage VCTL2L, VGVL 0 - 1.0 V CTL2, GVSW L voltage VCTL2L, VGVL 0 - 1.0 V CTL2, GVSW M(Hi-z) voltage VCTL2M, VGVM 1.6 - 2.0 V OPEN (Hi-z) is also available. CTL2, GVSW H voltage VCTL2H, VGVH 2.6 - 3.3 V Gain mode gm1 gm2 gm3		Vcc drop mute ON threshold voltage	VMVccD	3.2	3.6	4.0	V	
Others CTL1 H voltage VCTL1H 2.0 - 3.3 V CTL2, GVSW L voltage VCTL2L, VGVL 0 - 1.0 V CTL2, GVSW M(Hi-z) voltage VCTL2M, VGVM 1.6 - 2.0 V OPEN (Hi-z) is also available. CTL2, GVSW H voltage VCTL2H, VGVH 2.6 - 3.3 V Gain mode gm1 gm2 gm3 - <td rowspan="3">Others</td> <td>CTL1 L voltage</td> <td>VCTL1L</td> <td>0</td> <td>—</td> <td>1.0</td> <td>V</td> <td></td>	Others	CTL1 L voltage	VCTL1L	0	—	1.0	V	
CTL2, GVSW L voltage VCTL2L, VGVL 0 - 1.0 V CTL2, GVSW M(Hi-z) voltage VCTL2M, VGVM 1.6 - 2.0 V OPEN (Hi-z) is also available. CTL2, GVSW H voltage VCTL2H, VGVH 2.6 - 3.3 V GVSW L M (Hi-z) H Gain mode gm1 gm2 gm3		CTL1 H voltage	VCTL1H	2.0	—	3.3	V	
CTL2, GVSW M(Hi-z) Voltage VCTL2M, VGVM 1.6 - 2.0 V OPEN (Hi-z) is also available. CTL2, GVSW H voltage VCTL2H, VGVH 2.6 - 3.3 V GVSW L M (Hi-z) H Gain mode gm1 gm2 gm3		CTL2, GVSW L voltage		0	_	1.0	V	
GVSW L M (Hi-z) H Gain mode gm1 gm2 gm3		CTL2, GVSVV IVI(HI-Z) Voltage		1.6	_	2.0	V	OPEN (HI-Z) is also available.
GVSW L M (Hi-z) H Gain mode gm1 gm2 gm3				2.0		3.3	v	
Gain mode gm1 gm2 gm3	GVSW	L M (Hi-z)	H					
	Gain mode	gm1 gm2	gm3					

CTL1	CTL2	Brake mode	SPINDLE Output	CH1,2,3 Output	CH4,5 Output	CH6 Output
	L	—	Hi-Z	Hi-Z	Hi-Z	Hi-Z
L	M	Short brako	ACTIVE	Hi-Z	Hi-Z	Hi-Z
	Н	Short brake	ACTIVE	ACTIVE	ACTIVE	Hi-Z
	L		Hi-Z	Hi-Z	ACTIVE	ACTIVE
н	M (Hi-z)	Reverse brake	ACTIVE	Hi-Z	Hi-Z	Hi-Z
	Н	1	ACTIVE	ACTIVE	ACTIVE	Hi-Z

Please supply the middle level voltage for CTL2 when using it in the mode of CTL1=L and CTL2=M.

OPackage outlines

OBlock diagram / Application circuit

O PIN DESCRIPTION

Pin No.	Symbol	Description	Pin No.	Symbol	Description
1	IN6	PWM Driver (CH6) input	25	U	Spindle driver output U
2	VO6F	PWM Driver(CH6) positive output	26	V	Spindle driver output V
3	VO6R	PWM Driver(CH6) negative output	27	PVcc22	Spindle driver power supply22
4	CTL1	Driver logic control input1	28	RNF2	Spindle driver current sense output2
5	CTL2	Driver logic control input2	29	W	Spindle driver output W
6	VO1F	PWM Driver(CH1) positive output	30	PGND3	PWM driver power ground3
7	VO1R	PWM Driver(CH1) negative output	31	VO4F	PWM Driver(CH4) positive output
8	PGND1	PWM driver power ground1	32	VO4R	PWM Driver(CH4) negative output
9	VO2F	PWM Driver(CH2) positive output	33	PVcc3	PWM driver power supply3
10	VO2R	PWM Driver(CH2) negative output	34	VO5F	PWM Driver(CH5) positive output
11	PVcc1	PWM driver power supply1	35	VO5R	PWM Driver(CH5) negative output
12	VO3F	PWM Driver(CH3) positive output	36	Vref	Reference voltage input
13	VO3R	PWM Driver(CH3) negative output	37	CNF5	PWM driver (CH5) feedback filter
14	TEST1	Test terminal1	38	CNF4	PWM driver (CH4) feedback filter
15	TEST2	Test terminal2	39	CNF3	PWM driver (CH3) feedback filter
16	TEST3	Test terminal3	40	CNF2	PWM driver (CH2) feedback filter
17	GND	Pre unit ground	41	CNF1	PWM driver (CH1) feedback filter
18	Vcc	Pre unit power supply	42	IN1	PWM driver (CH1) input
19	COUT	Smoothing capacitor connection terminal(Output side)	43	IN2	PWM driver (CH2) input
20	CCOM	Smoothing capacitor connection terminal(COM side)	44	IN3	PWM driver (CH3) input
21	COM	Motor coil center point input terminal	45	IN4	PWM driver (CH4) input
22	GVSW	Control for gain of spindle	46	IN5	PWM driver (CH5) input
23	PVcc21	Spindle driver power supply21	47	INSP	Spindle driver input
24	RNF1	Spindle driver current sense output1	48	FG	Frequency generator output

Positive/Negative of the output terminals are determined in reference to those of the input terminals.

Cautions on use

1. Absolute maximum ratings

This IC might be destroyed when the absolute maximum ratings, such as impressed voltage (PVcc, Vcc) or the operating temperature range (Topr), is exceeded, and whether the destruction is short circuit mode or open circuit mode cannot be specified. Please take into consideration the physical countermeasures for safety, such as fusing, if a particular mode that exceeds the absolute maximum rating is assumed. 2. Reverse polarity connection

- Connecting the power line to the IC in reverse polarity (from that recommended) will damage the part. Please utilize the direction protection device as a diode in the supply line.
- 3. GND line
- The ground line is where the lowest potential and transient voltages are connected to the IC.
- 4. Thermal design
 - Do not exceed the power dissipation (Pd) of the package specification rating under actual operation, and please design enough temperature margins.
- 5. Short circuit mode between terminals and wrong mounting
 - Do not mount the IC in the wrong direction and be careful about the reverse-connection of the power connector.

Moreover, this IC might be destroyed when the dust short the terminals between them or GND.

- 6. Radiation
 - Strong electromagnetic radiation can cause operation failures.
- 7. ASO (Area of Safety Operation)
 - When using the IC, set the output transistor so that it does not exceed absolute maximum ratings or ASO.
- 8. TSD (Thermal Shut-Down)

The TSD is activated when the junction temperature (Tj) reaches 175°C (with +/-25°C hysteresis), and the output terminal is switched to Hi-z. The TSD circuit designed to shut the IC off to prevent runaway thermal operation. It is not designed to protect or guarantee its operation. Do not continue to use the IC after operating this circuit.

9. Vcc, GND and RNF wiring layout

Vcc, GND and RNF layout should be as wide as possible and at minimum distance. Wire to ground to prevent Vcc-PVcc and GND-PGND-GND side of RNF resistor from having common impedance. Connect a capacitor between Vcc and GND to stabilize.

10. Regarding input pin of the IC

This monolithic IC contains P+ isolation and P substrate layers between adjacent elements to keep them isolated. PN junctions are formed at the intersection of these P layers with the N layers of other elements, creating a parasitic diode or transistor. For example, the relation between each potential is as follows:

When GND > Pin A and GND > Pin B, the PN junction operates as a parasitic diode.

When Pin B > GND > Pin A, the PN junction operates as a parasitic transistor.

Parasitic diodes can occur inevitably in the structure of the IC. The operation of parasitic diodes can result in mutual interference among circuits, operational faults, or physical damage. Accordingly, methods by which parasitic diodes operate, such as applying a voltage that is lower than the GND (P substrate) voltage to an input pin, should not be used.

11. Capacitor between Vcc and GND

This IC has steep change of the voltage and current because of PWM driver. Therefore, the capacitor controls Vcc voltage by attaching a capacitor between Vcc and GND. Wiring impedance decreases the capacitors capabilities if the capacitor is far from the IC. Therefore, a capacitor should be placed between Vcc and GND, close to the IC.

12. Supply fault, ground fault and short-circuit between output terminals

Do not short-circuit between any output terminal and supply terminal (supply fault) or ground (ground fault), or between any output terminals (load short-circuit). When mounting the IC on the circuit board, be extremely cautious about the orientation of the IC. If the orientation is mistaken, the IC may break down and produce smoke in some cases.

13. Inspection by the set circuit board

When testing the IC on an application board, connecting a capacitor to a pin with low impedance subjects the IC to stress. Always discharge capacitors after each process or step. Always turn the IC's power supply off before connecting it to, or removing it from a jig or fixture, during the inspection process. Ground the IC during assembly steps as an antistatic measure. Use similar precaution when transporting and storing the IC.

14. Reverse-rotation braking

High-speed rotation may cause reverse-rotation braking. Monitor the voltage applied to the output terminal and consider the revolutions applied to the reversed-rotation brake.

15. Application circuit

It is one sample that explains standard operation and usage of this IC about the described example of the application circuit and information on the constant etc. Therefore, please be sure to consult with our sales representative in advance before mass production design, when a circuit different from application circuit is composed of external.

	Notes
No cop consent	ying or reproduction of this document, in part or in whole, is permitted without the t of ROHM Co.,Ltd.
The cor	tent specified herein is subject to change for improvement without notice.
The cor	ntent specified herein is for the purpose of introducing ROHM's products (hereinafter
"Produc	cts"). If you wish to use any such Product, please be sure to refer to the specifications,
which c	an be obtained from ROHM upon request.
Exampl	es of application circuits, circuit constants and any other information contained herein
illustrate	e the standard usage and operations of the Products. The peripheral conditions must
be take	n into account when designing circuits for mass production.
Great c	are was taken in ensuring the accuracy of the information specified in this document.
Howeve	er, should you incur any damage arising from any inaccuracy or misprint of such
informa	tion, ROHM shall bear no responsibility for such damage.
The tec	hnical information specified herein is intended only to show the typical functions of and
example	es of application circuits for the Products. ROHM does not grant you, explicitly or
implicitl	y, any license to use or exercise intellectual property or other rights held by ROHM and
other pa	arties. ROHM shall bear no responsibility whatsoever for any dispute arising from the
use of s	uch technical information.
The Pro	ducts specified in this document are intended to be used with general-use electronic
equipm	ent or devices (such as audio visual equipment, office-automation equipment, commu-
nication	devices, electronic appliances and amusement devices).
The Pro	ducts specified in this document are not designed to be radiation tolerant.
While F Product	ROHM always makes efforts to enhance the quality and reliability of its Products, a tray fail or malfunction for a variety of reasons.
Please	be sure to implement in your equipment using the Products safety measures to guard
against	the possibility of physical injury, fire or any other damage caused in the event of the
failure c	of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM
shall be	ear no responsibility whatsoever for your use of any Product outside of the prescribed
scope c	or not in accordance with the instruction manual.
The Pro	oducts are not designed or manufactured to be used with any equipment, device or
system	which requires an extremely high level of reliability the failure or malfunction of which
may res	sult in a direct threat to human life or create a risk of human injury (such as a medical
instrum	ent, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-
controll	er or other safety device). ROHM shall bear no responsibility in any way for use of any
of the F	Products for the above special purposes. If a Product is intended to be used for any
such sp	necial purpose, please contact a ROHM sales representative before purchasing.
lf you ir	ntend to export or ship overseas any Product or technology specified herein that may
be cont	rolled under the Foreign Exchange and the Foreign Trade Law, you will be required to
obtain a	a license or permit under the Law.

Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us.

ROHM Customer Support System

http://www.rohm.com/contact/