

30V N-Channel Power MOSFET

SOT-26

1. Dra 2. Dra 3. Ga

Pin Definition:

Drain
 Drain
 Drain
 Drain
 Gate
 Source

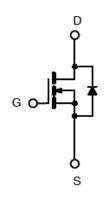
Note:

MSL 1 (Moisture Sensitivity Level) per J-STD-020

Key Parameter Performance

Parameter		Value	Unit	
$V_{ t DS}$		30	٧	
R _{DS(on)} (max)	V _{GS} = 10V	24	mΩ	
	V _{GS} = 4.5V	34		
Q_{g}		4.1	nC	

Features


- Halogen-free
- Improved dV/dt capability
- Fast Switching

Ordering Information

Ordering code	Package	Packing		
TSM240N03CX6 RFG	SOT-26	3kpcs / 7" Reel		

Note: Halogen-free according to IEC 61249-2-21 definition

Block Diagram

N-Channel MOSFET

Absolute Maximum Ratings (T_C = 25°C unless otherwise noted)

Parameter		Symbol	Limit	Unit
Drain-Source Voltage		V_{DS}	30	V
Gate-Source Voltage		V _{GS}	±20	V
Continuous Drain Current	$T_C = 25^{\circ}C$	l _D	6.5	Α
	$T_C = 100$ °C		4.1	Α
Pulsed Drain Current (Note 1)		I _{DM}	26	Α
Single Pulse Avalanche Energy (Note 2)		E _{AS}	32	mJ
Power Dissipation @ T _C = 25°C		P _D	1.56	W
Operating Junction Temperature		T _J	150	°C
Storage Temperature Range		T _{STG}	-55 to +150	°C

Thermal Performance

Parameter	Symbol	Limit	Unit
Thermal Resistance - Junction to Ambient	$R_{\Theta JA}$	80	°C/W

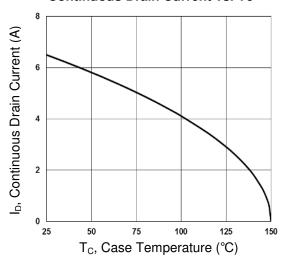
30V N-Channel Power MOSFET

Electrical Specifications (T_C = 25°C unless otherwise noted)

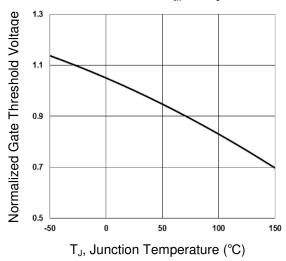
Parameter	Conditions	Symbol	Min	Тур	Max	Unit
Static						
Drain-Source Breakdown Voltage	$V_{GS} = 0V, I_D = 250\mu A$	BV _{DSS}	30			V
	$V_{GS} = 10V, I_D = 6A$	_		17	24	mΩ
Drain-Source On-State Resistance	$V_{GS} = 4.5V, I_D = 4A$	$R_{DS(on)}$		22	34	
Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = 250 \mu A$	$V_{GS(TH)}$	1.2	1.4	2.5	V
	$V_{DS} = 30V, V_{GS} = 0V$				1	μА
Zero Gate Voltage Drain Current	V _{DS} = 24V, T _J = 125°C	I _{DSS}			10	
Gate Body Leakage	$V_{GS} = \pm 20V, V_{DS} = 0V$	I _{GSS}			±100	nA
Forward Transconductance (Note 3)	$V_{DS} = 10V, I_{D} = 4A$	g _{fs}		6.5		S
Dynamic				l		
Total Gate Charge (Note 3,4)		Q_g		4.1		nC
Gate-Source Charge (Note 3,4)	$V_{DS} = 15V, I_{D} = 6A,$	Q_gs		1		
Gate-Drain Charge (Note 3,4)	$V_{GS} = 4.5V$	Q_{gd}		2.1		
Input Capacitance		C _{iss}		345		
Output Capacitance	$V_{DS} = 25V, V_{GS} = 0V,$	C _{oss}		55		pF
Reverse Transfer Capacitance	- f = 1.0MHz	C _{rss}		32		
Switching				l		
Turn-On Delay Time (Note 3,4)		t _{d(on)}		2.8		
Turn-On Rise Time (Note 3,4)	$V_{DD} = 15V, I_{D} = 1A,$	t _r		7.2		
Turn-Off Delay Time (Note 3,4)	$V_{GS} = 10V, R_{GEN} = 6\Omega$	t _{d(off)}		15.8		ns
Turn-Off Fall Time (Note 3,4)		t _f		4.6		
Source-Drain Diode Ratings and Ch	aracteristic			l		
Maximum Continuous Drain-Source		ı			6.5	Α
Diode Forward Current	Integral reverse diode in the MOSFET	I _S			0.0	A
Maximum Pulse Drain-Source Diode		I _{SM}			26	Α
Forward Current						
Diode-Source Forward Voltage	$V_{GS} = 0V$, $I_S = 1A$	$V_{\sf SD}$			1	V

Note:

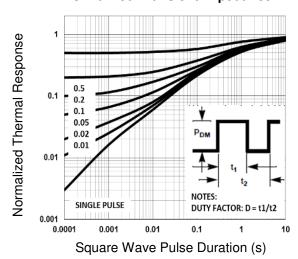
- 1. Pulse width limited by safe operating area
- 2. L = 1mH, I_{AS} = 8A, V_{DD} = 25V, R_G = 25 Ω , Starting T_J = 25 $^{\circ}$ C
- 3. Pulse test: pulse width $\leq 300\mu s$, duty cycle $\leq 2\%$
- 4. Switching time is essentially independent of operating temperature.

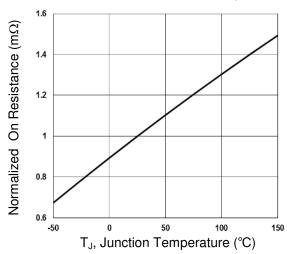


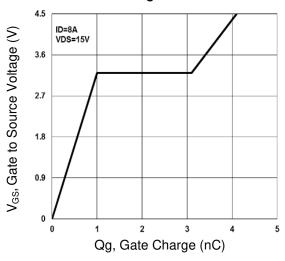
30V N-Channel Power MOSFET

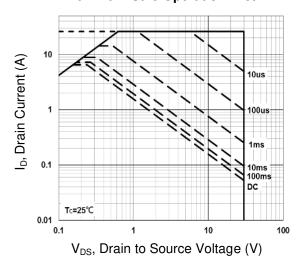


Electrical Characteristics Curve


Continuous Drain Current vs. Tc

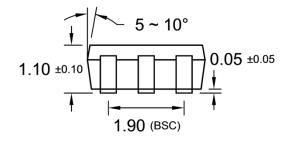

Normalized V_{th} vs. T_J

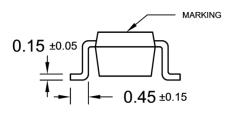

Normalized Transient Impedance


Normalized RDSON vs. T_J

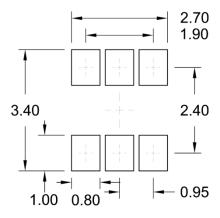
Gate Charge Waveform

Maximum Safe Operation Area




30V N-Channel Power MOSFET

SOT-26 Mechanical Drawing



Unit: Millimeters

SUGGESTED PAD LAYOUT (Unit: Millimeters)

Marking Diagram

24 = Device Code

Y = Year Code

M = Month Code for Halogen Free Product (O=Jan, P=Feb, Q=Mar, R=Apl, S=May, T=Jun, U=Jul, V=Aug, W=Sep, X=Oct, Y=Nov, Z=Dec)

L = Lot Code

Pb RóHS

TSM240N03CX6 30V N-Channel Power MOSFET

Notice

Specifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in TSC's terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale.