www.ti.com

SN74GTLPH306 8-BIT LVTTL-TO-GTLP BUS TRANSCEIVER

SCES284E-OCTOBER 1999-REVISED APRIL 2005

FEATURES

- TI-OPC[™] Circuitry Limits Ringing on Unevenly Loaded Backplanes
- OEC[™] Circuitry Improves Signal Integrity and Reduces Electromagnetic Interference
- Bidirectional Interface Between GTLP Signal Levels and LVTTL Logic Levels
- LVTTL Interfaces Are 5-V Tolerant
- Medium-Drive GTLP Outputs (50 mA)
- LVTTL Outputs (-24 mA/24 mA)
- GTLP Rise and Fall Times Designed for Optimal Data-Transfer Rate and Signal Integrity in Distributed Loads
- I_{off} and Power-Up 3-State Support Hot Insertion
- Bus Hold on A-Port Data Inputs
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)

DGV, DW, OR PW PACKAGE (TOP VIEW) OE 24 [] DIR 2 23 V_{REF} V_{CC} 22 B1 Α1 A2 🛮 4 21 B2 А3 20 B3 ∐ 5 Α4 19 B4 **∐** 6 GND 18 **∏** GND 17 **∏** B5 A5 A6 16 🛮 B6 1 9 15 B7 Α7 14 🛮 B8 11 Α8 13 GND GND 1 12

DESCRIPTION/ORDERING INFORMATION

The SN74GTLPH306 is a medium-drive, 8-bit bus transceiver that provides LVTTL-to-GTLP and GTLP-to-LVTTL signal-level translation. The device provides a high-speed interface between cards operating at LVTTL logic levels and a backplane operating at GTLP signal levels. High-speed (about three times faster than standard LVTTL or TTL) backplane operation is a direct result of GTLP's reduced output swing (<1 V), reduced input threshold levels, improved differential input, OECTM circuitry, and TI-OPCTM circuitry. Improved GTLP OEC and TI-OPC circuits minimize bus-settling time and have been designed and tested using several backplane models. The medium drive allows incident-wave switching in heavily loaded backplanes with equivalent load impedance down to 19 Ω .

GTLP is the Texas Instruments (TITM) derivative of the Gunning Transceiver Logic (GTL) JEDEC standard JESD 8-3. The ac specification of the SN74GTLPH306 is given only at the preferred higher-noise-margin GTLP, but the user has the flexibility of using this device at either GTL ($V_{TT} = 1.2 \text{ V}$ and $V_{REF} = 0.8 \text{ V}$) or GTLP ($V_{TT} = 1.5 \text{ V}$ and $V_{REF} = 1 \text{ V}$) signal levels.

Normally, the B port operates at GTLP signal levels. The A-port and control inputs operate at LVTTL logic levels, but are 5-V tolerant and are compatible with TTL and 5-V CMOS inputs. V_{REF} is the B-port differential input reference voltage.

This device is fully specified for hot-insertion applications using I_{off} and power-up 3-state. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down. The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down, which prevents driver conflict.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

TI-OPC, OEC, TI are trademarks of Texas Instruments.

SN74GTLPH306 8-BIT LVTTL-TO-GTLP BUS TRANSCEIVER

SCES284E-OCTOBER 1999-REVISED APRIL 2005

DESCRIPTION/ORDERING INFORMATION (CONTINUED)

This GTLP device features TI-OPC circuitry, which actively limits overshoot caused by improperly terminated backplanes, unevenly distributed cards, or empty slots during low-to-high signal transitions. This improves signal integrity, which allows adequate noise margin to be maintained at higher frequencies.

Active bus-hold circuitry holds unused or undriven LVTTL data inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

When V_{CC} is between 0 and 1.5 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.5 V, the output-enable (\overline{OE}) input should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

ORDERING INFORMATION

T _A	PACK	AGE ⁽¹⁾	ORDERABLE PART NUMBER	TOP-SIDE MARKING		
4000 45 0500	SOIC – DW		SN74GTLPH306DW	GTLPH306		
	SOIC - DW	Tape and reel	SN74GTLPH306DWR	GILPHS00		
–40°C to 85°C	TSSOP - PW	Tape and reel	SN74GTLPH306PWR	GH306		
	TVSOP - DGV	Tape and reel	SN74GTLPH306DGVR	GH306		

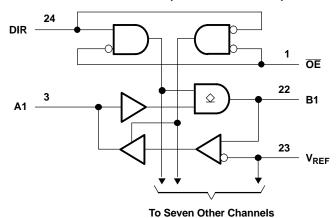
⁽¹⁾ Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

FUNCTIONAL DESCRIPTION


The SN74GTLPH306 is an 8-bit bus transceiver and is designed for asynchronous communication between data buses. The device transmits data from the A port to the B port or from the B port to the A port, depending on the logic level at the direction-control (DIR) input. $\overline{\text{OE}}$ can be used to disable the device so the buses are effectively isolated. Data polarity is noninverting.

For A-to-B data flow, when \overline{OE} is low and DIR is high, the B outputs take on the logic value of the A inputs. When \overline{OE} is high, the outputs are in the high-impedance state.

The data flow for B to A is similar to A to B, except \overline{OE} and DIR are low.


FUNCTION TABLE

INP	UTS	OUTDUT	MODE			
OE DIR		OUTPUT	MODE			
Н	Х	Z	Isolation			
L	L	B data to A port	True transparent			
L	Н	A data to B port	True transparent			

LOGIC DIAGRAM (POSITIVE LOGIC)

Absolute Maximum Ratings(1)

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V_{CC}	Supply voltage range		-0.5	4.6	V
	land college and an (2)	A port and control inputs	-0.5	7	W
VI	Input voltage range ⁽²⁾	B port and V _{REF}	-0.5	4.6	V
.,	Voltage range applied to any output in the	A port	-0.5	7	W
Vo	high-impedance or power-off state (2)	B port	-0.5	4.6	V
	Compart into any output in the law state	A port		48	A
Io	Current into any output in the low state	B port		100	mA
Io	Current into any A port output in the high state (3))		48	mA
	Continuous current through each V _{CC} or GND			±100	mA
I _{IK}	Input clamp current	V _I < 0		-50	mA
I _{OK}	Output clamp current	V _O < 0		-50	mA
		DGV package		86	
θ_{JA}	Package thermal impedance (4)	DW package		46	°C/W
		PW package		88	
T _{stg}	Storage temperature range		-65	150	°C

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

⁽²⁾ The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

⁽³⁾ This current flows only when the output is in the high state and $V_O > V_{CC}$.

⁽⁴⁾ The package thermal impedance is calculated in accordance with JESD 51-7.

SN74GTLPH306 8-BIT LVTTL-TO-GTLP BUS TRANSCEIVER

Recommended Operating Conditions (1)(2)(3)(4)

			MIN	NOM	MAX	UNIT
V _{CC}	Supply voltage		3.15	3.3	3.45	V
V	Termination voltage	GTL	1.14	1.2	1.26	V
V_{TT}	Termination voltage	GTLP	1.35	1.5	1.65	V
V	Deference voltage	GTL	0.74	0.8	0.87	V
V_{REF}	Reference voltage	GTLP	0.87	1	1.1	V
V	lanut valtaga	B port			V_{TT}	V
VI	Input voltage	Except B port		V _{CC}	5.5	V
V	High level input valtage	B port	V _{REF} + 0.05			V
V _{IH}	High-level input voltage	Except B port	2			V
V	I avulaval input valtaga				$V_{REF} - 0.05$	V
V_{IL}	Low-level input voltage	Except B port			0.8	V
I _{IK}	Input clamp current				-18	mA
I _{OH}	High-level output current	A port			-24	mA
	Laveland autout annuat	A port			24	mA
I _{OL}	Low-level output current	B port		50		
Δt/Δν	Input transition rise or fall rate	Outputs enabled			10	ns/V
Δt/ΔV _{CC}	Power-up ramp rate		20			μs/V
T _A	Operating free-air temperature		-40		85	°C

⁽¹⁾ All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

(3) V_{TT} and R_{TT} can be adjusted to accommodate backplane impedances if the dc recommended I_{OL} ratings are not exceeded.

⁽²⁾ Proper connection sequence for use of the B-port I/O precharge feature is GND and BIAS V_{CC} = 3.3 V first, I/O second, and V_{CC} = 3.3 V last, because the BIAS V_{CC} precharge circuitry is disabled when any V_{CC} pin is connected. The control and V_{REF} inputs can be connected anytime, but normally are connected during the I/O stage. If B-port precharge is not required, any connection sequence is acceptable, but generally, GND is connected first.

⁽⁴⁾ V_{REF} can be adjusted to optimize noise margins, but normally is two-thirds V_{TT}. TI-OPC circuitry is enabled in the A-to-B direction and is activated when V_{TT} > 0.7 V above V_{REF}. If operated in the A-to-B direction, V_{REF} should be set to within 0.6 V of V_{TT} to minimize current drain.

Electrical Characteristics

over recommended operating free-air temperature range for GTLP (unless otherwise noted)

Р	ARAMETER	TEST CONDITIONS		MIN TYP(1)	MAX	UNIT		
V _{IK}		V _{CC} = 3.15 V,	I _I = -18 mA		-1.2	V		
		V _{CC} = 3.15 V to 3.45 V,	I _{OH} = -100 μA	V _{CC} - 0.2				
V _{OH}	A port	V _{CC} = 3.15 V	I _{OH} = -12 mA	2.4		V		
		V _{CC} = 3.13 V	$I_{OH} = -24 \text{ mA}$	2				
		$V_{CC} = 3.15 \text{ V to } 3.45 \text{ V},$	$I_{OL} = 100 \mu A$		0.2			
	A port	V _{CC} = 3.15 V	I _{OL} = 12 mA		0.4			
V _{OL}		V _{CC} = 3.15 V	I _{OL} = 24 mA		0.5	V		
	Poort	V _{CC} = 3.15 V	$I_{OL} = 40 \text{ mA}$		0.4			
	B port	V _{CC} = 3.13 V	$I_{OL} = 50 \text{ mA}$		0.55			
	A-port and		$V_I = 0$ or V_{CC}					
I _I ⁽²⁾	control inputs	V _{CC} = 3.45 V	$V_1 = 5.5 V$		±20	μΑ		
	B port		$V_{I} = 0 \text{ to } 1.5 \text{ V}$		±5			
I _{BHL} (3)	A port	V _{CC} = 3.15 V,	$V_{I} = 0.8 \ V$	75		μΑ		
I _{BHH} ⁽⁴⁾	A port	V _{CC} = 3.15 V,	$V_I = 2 V$	-75		μΑ		
I _{BHLO} ⁽⁵⁾	A port	$V_{CC} = 3.45 \text{ V},$	$V_I = 0$ to V_{CC}	500		μΑ		
I _{BHHO} ⁽⁶⁾	A port	$V_{CC} = 3.45 \text{ V},$	$V_I = 0$ to V_{CC}	-500		μΑ		
		$V_{CC} = 3.45 \text{ V}, I_{O} = 0,$	Outputs high		20			
I _{CC}	A or B port	V_{I} (A-port or control input) = V_{CC} or GND,	Outputs low		20	mA		
		V_I (B port) = V_{TT} or GND	Outputs disabled		20	1		
ΔI _{CC} ⁽⁷⁾		V _{CC} = 3.45 V, One A-port or control input at \ Other A-port or control inputs at V _{CC} or GND		1.5	mA			
Ci	Control inputs	V _I = 3.15 V or 0		4.5	5	pF		
C	A port	V _O = 3.15 V or 0		7.5	9	nE.		
C _{io}	B port	V _O = 1.5 V or 0		7.5	9	pF		

- (1) All typical values are at V_{CC} = 3.3 V, T_A = 25°C.
- For I/O ports, the parameter I_I includes the off-state output leakage current. The bus-hold circuit can sink at least the minimum low sustaining current at V_{IL} max. I_{BHL} should be measured after lowering V_{IN} to GND and then raising it to V_{IL}max.
- The bus-hold circuit can source at least the minimum high sustaining current at V_{IH}min. I_{BHH} should be measured after raising V_{IN} to V_{CC} and then lowering it to VIHmin.
- An external driver must source at least I_{BHLO} to switch this node from low to high. An external driver must sink at least I_{BHHO} to switch this node from high to low.
- This is the increase in supply current for each input that is at the specified TTL voltage level, rather than V_{CC} or GND.

Hot-Insertion Specifications for A Port

over recommended operating free-air temperature range

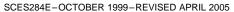

PARAMETER		TEST CONDITIONS		MIN	MAX	UNIT
l _{off}	$V_{CC} = 0$,	V_I or $V_O = 0$ to 5.5 V			10	μΑ
I _{OZPU}	$V_{CC} = 0 \text{ to } 1.5 \text{ V},$	$V_0 = 0.5 \text{ V to 3 V},$	$\overline{OE} = 0$		±30	μΑ
l _{OZPD}	$V_{CC} = 1.5 \text{ V to } 0,$	$V_0 = 0.5 \text{ V to 3 V},$	$\overline{OE} = 0$		±30	μΑ

Hot-Insertion Specifications for B Port

over recommended operating free-air temperature range

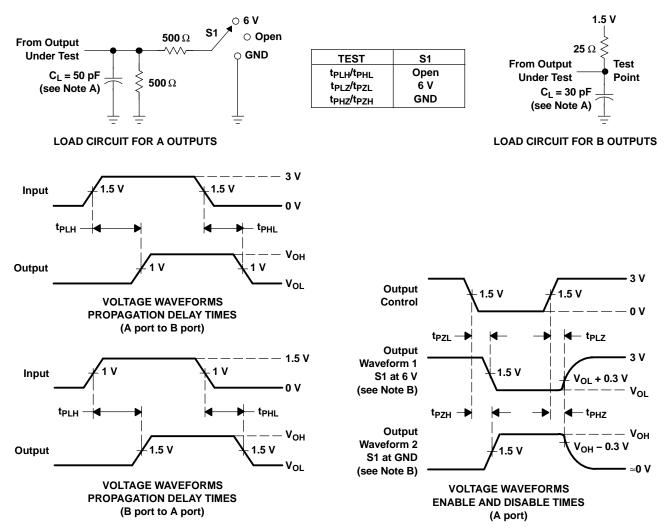
PARAMETER		TEST CONDITIONS		MIN	MAX	UNIT
I _{off}	$V_{CC} = 0$,	V_I or $V_O = 0$ to 1.5 V			10	μΑ
l _{OZPU}	$V_{CC} = 0 \text{ to } 1.5 \text{ V},$	$V_O = 0.5 \text{ V to } 1.5 \text{ V},$	$\overline{OE} = 0$		±30	μΑ
I _{OZPD}	$V_{CC} = 1.5 \text{ V to } 0,$	$V_0 = 0.5 \text{ V to } 1.5 \text{ V},$	$\overline{OE} = 0$		±30	μΑ

SN74GTLPH306 8-BIT LVTTL-TO-GTLP BUS TRANSCEIVER



Switching Characteristics

over recommended ranges of supply voltage and operating free-air temperature, V_{TT} = 1.5 V and V_{REF} = 1 V for GTLP (see Figure 1)


PARAMETER	FROM (INPUT)	TO (OUTPUT)	MIN	TYP ⁽¹⁾	MAX	UNIT	
t _{PLH}	- A	В	1		7.5	ns	
t _{PHL}	A	Ь	1		7.5	115	
t _{en}	- <u>0E</u>	В	1		8	no	
t _{dis}	- GE	Б	1	8		ns	
t _r	Rise time, B output		2.2		ns		
t _f	Fall time, B output	Fall time, B outputs (80% to 20%)					
t _r	Rise time, A outpu	ts (10% to 90%)		4.1		ns	
t _f	Fall time, A output	s (90% to 10%)		3.3		ns	
t _{PLH}	В	٨	1		7		
t _{PHL}	- B	A	1		7	ns	
t _{en}	- OE	٨	1		8		
t _{dis}	JE	A	1		8	ns	

⁽¹⁾ All typical values are at V_{CC} = 3.3 V, T_A = 25°C.

PARAMETER MEASUREMENT INFORMATION

- NOTES: A. C_L includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR \approx 10 MHz, $Z_O = 50~\Omega$, $t_r \approx 2$ ns, $t_f \approx 2$ ns.
 - D. The outputs are measured one at a time, with one transition per measurement.

Figure 1. Load Circuits and Voltage Waveforms

Distributed-Load Backplane Switching Characteristics

The preceding switching characteristics table shows the switching characteristics of the device into a lumped load (Figure 1). However, the designer's backplane application probably is a distributed load. The physical representation is shown in Figure 2. This backplane, or distributed load, can be approximated closely to a resistor inductance capacitance (RLC) circuit, as shown in Figure 3. This device has been designed for optimum performance in this RLC circuit. The following switching characteristics table shows the switching characteristics of the device into the RLC load, to help the designer better understand the performance of the GTLP device in this typical backplane. See www.ti.com/sc/gtlp for more information.

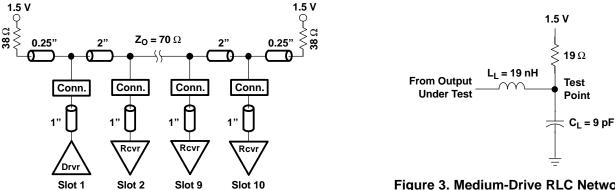


Figure 2. Medium-Drive Test Backplane

Figure 3. Medium-Drive RLC Network

Switching Characteristics

over recommended ranges of supply voltage and operating free-air temperature, $V_{TT} = 1.5 \text{ V}$ and $V_{RFF} = 1 \text{ V}$ for GTLP (see Figure 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TYP ⁽¹⁾	UNIT
t _{PLH}	Λ	В	3.6	ne
t _{PHL}	A	Ь	4.1	ns
t _{en}	ŌĒ	В	4.4	ns
t _{dis}	OE	Ь	4.6	
t _r	Rise time, B outpu	1.2	ns	
t _f	Fall time, B output	s (80% to 20%)	2.2	ns

(1) All typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$. All values are derived from TI-SPICE models.

www.ti.com 14-Oct-2022

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
SN74GTLPH306DGVR	ACTIVE	TVSOP	DGV	24	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	GH306	Samples
SN74GTLPH306DW	ACTIVE	SOIC	DW	24	25	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	GTLPH306	Samples
SN74GTLPH306DWR	ACTIVE	SOIC	DW	24	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	GTLPH306	Samples
SN74GTLPH306PW	ACTIVE	TSSOP	PW	24	60	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	GH306	Samples
SN74GTLPH306PWR	ACTIVE	TSSOP	PW	24	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	GH306	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

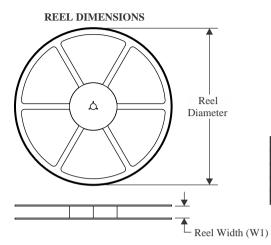
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

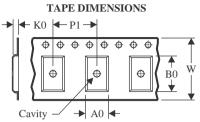
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

PACKAGE OPTION ADDENDUM

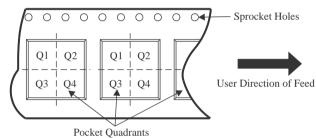
www.ti.com 14-Oct-2022


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

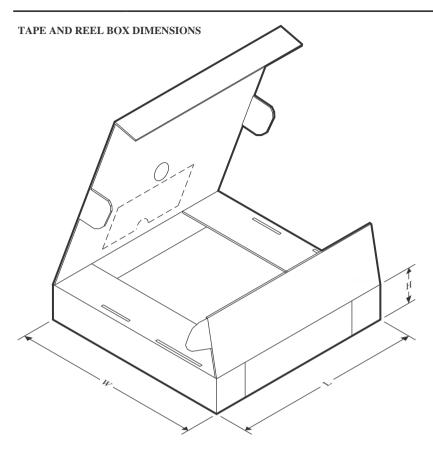

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 3-Jun-2022


TAPE AND REEL INFORMATION

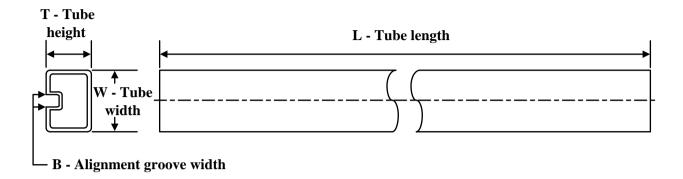
A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74GTLPH306DGVR	TVSOP	DGV	24	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
SN74GTLPH306DWR	SOIC	DW	24	2000	330.0	24.4	10.75	15.7	2.7	12.0	24.0	Q1
SN74GTLPH306PWR	TSSOP	PW	24	2000	330.0	16.4	6.95	8.3	1.6	8.0	16.0	Q1

www.ti.com 3-Jun-2022

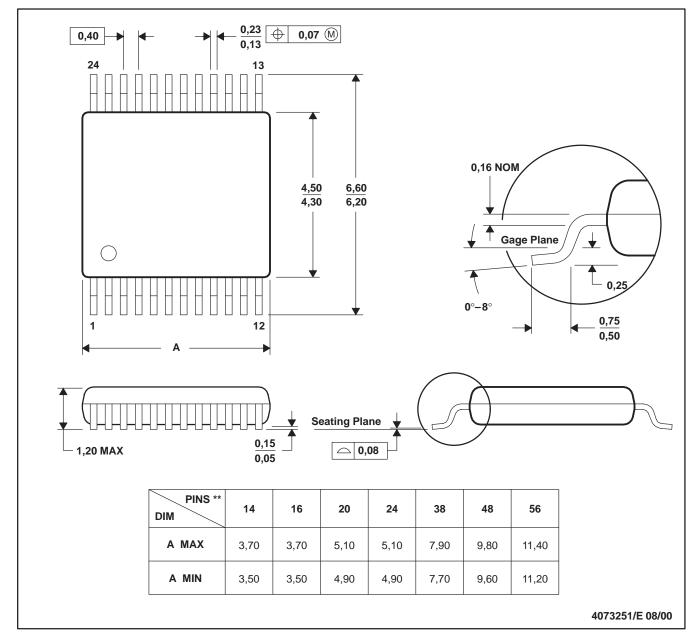

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74GTLPH306DGVR	TVSOP	DGV	24	2000	356.0	356.0	35.0
SN74GTLPH306DWR	SOIC	DW	24	2000	350.0	350.0	43.0
SN74GTLPH306PWR	TSSOP	PW	24	2000	356.0	356.0	35.0

PACKAGE MATERIALS INFORMATION

www.ti.com 3-Jun-2022

TUBE


*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
SN74GTLPH306DW	DW	SOIC	24	25	506.98	12.7	4826	6.6
SN74GTLPH306PW	PW	TSSOP	24	60	530	10.2	3600	3.5

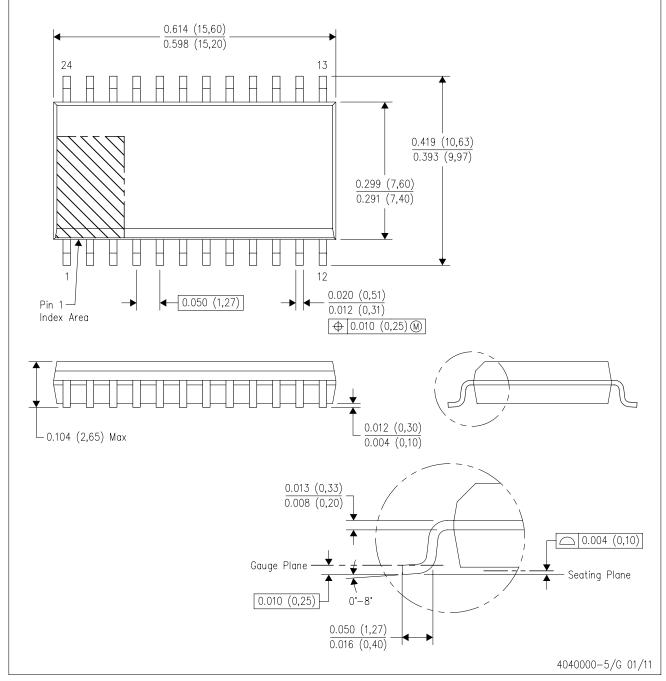
DGV (R-PDSO-G**)

24 PINS SHOWN

PLASTIC SMALL-OUTLINE

NOTES: A. All linear dimensions are in millimeters.

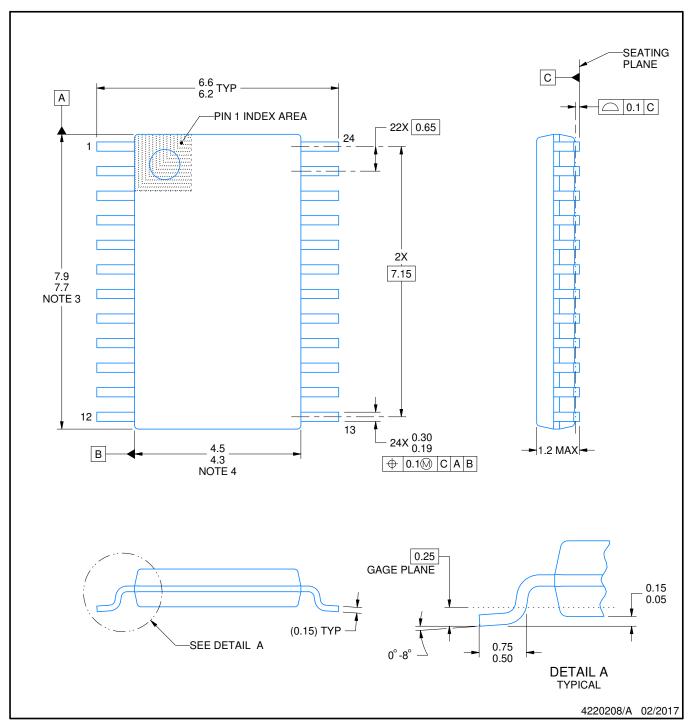
B. This drawing is subject to change without notice.


C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.

D. Falls within JEDEC: 24/48 Pins – MO-153 14/16/20/56 Pins – MO-194

DW (R-PDSO-G24)

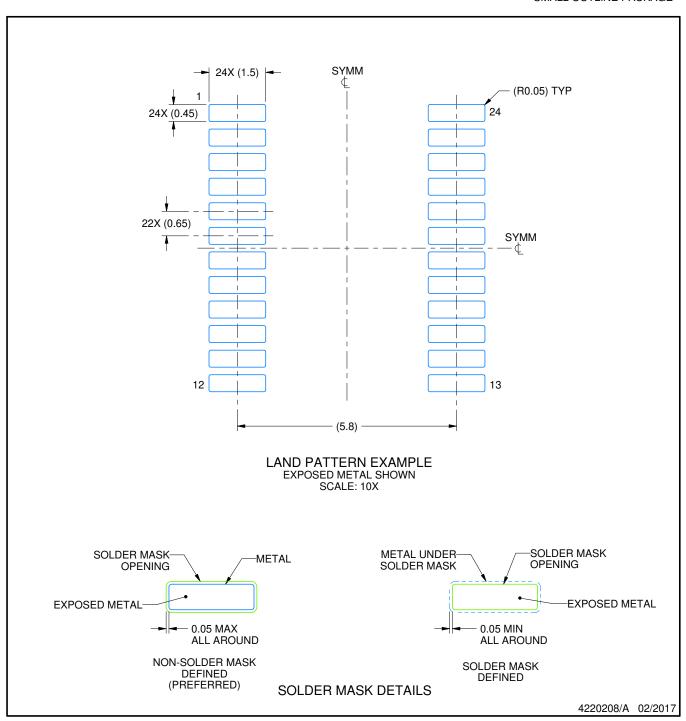
PLASTIC SMALL OUTLINE


NOTES: A. All linear dimensions are in inches (millimeters). Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-013 variation AD.

SMALL OUTLINE PACKAGE

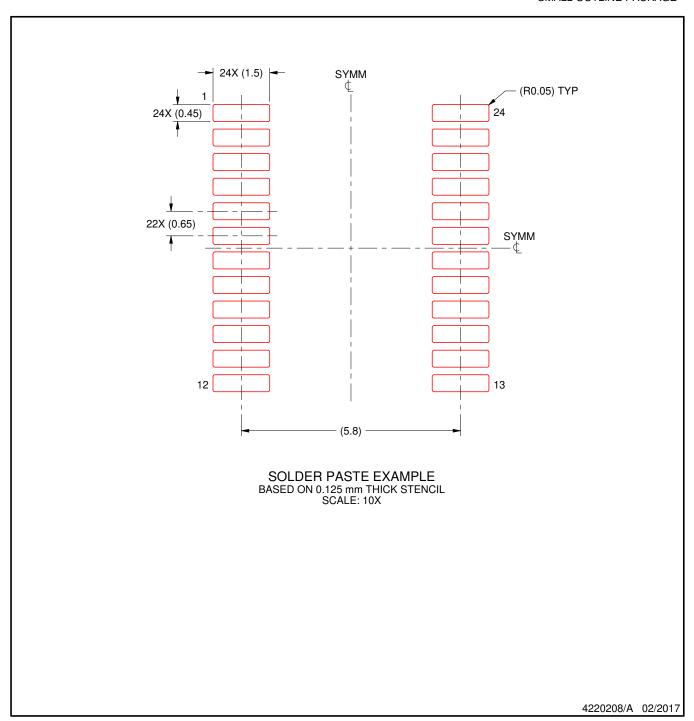
NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.

SMALL OUTLINE PACKAGE


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated