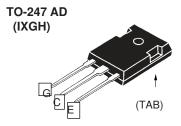
GenX3™ 300V IGBT

IXGH60N30C3


High Speed IGBTs for 50-150kHz switching

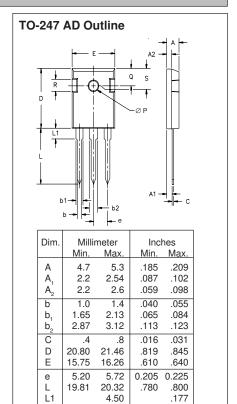
Symbol	Test Conditions	Maximum Ratings		
V _{CES}	T _J = 25°C to 150°C	300	V	
V _{CGR}	$T_{_J} = 25^{\circ}C$ to 150°C, $R_{_{GE}} = 1M\Omega$	300	V	
V _{GES}	Continuous	±20	V	
V _{GEM}	Transient	±30	V	
I _{C25}	T _C = 25°C (Limited by leads)	75	Α	
I _{C110}	$T_{\rm C} = 110^{\circ}$ C (chip capability)	60	Α	
I _{CM}	$T_{C} = 25^{\circ}C$, 1ms	420	Α	
I _A	T _C = 25°C	60	Α	
E _{AS}	$T_{C} = 25^{\circ}C$	400	mJ	
SSOA (RBSOA)	V_{GE} = 15V, T_{VJ} = 125°C, R_{G} = 5 Ω Clamped inductive load @ \leq 300V	I _{CM} = 170	А	
P _c	T _C = 25°C	300	W	
T,		-55 +150	°C	
T _{JM}		150	°C	
T _{stg}		-55 +150	°C	
T _L T _{SOLD}	Maximum lead temperature for soldering 1.6 mm (0.062 in.) from case for 10s	300 260	°C	
M _d	Mounting torque (TO-247)	1.13/10	Nm/lb.in.	
Weight		6	g	

Symbol	Test Conditions	(T _J = 25°C, unl Min.	ess oth		
BV _{CES}	$\begin{array}{ll} I_{_{C}} &= 250 \mu A, \ V_{_{GE}} = 0 V \\ I_{_{C}} &= 250 \mu A, \ V_{_{CE}} = V_{_{GE}} \end{array}$	300 2.5		5.0	V
I _{CES}	$egin{array}{lll} V_{\text{CE}} &= V_{\text{CES}} \ V_{\text{GE}} &= 0 \ \end{array}$	T _J = 125°C		30 750	μ Α μ Α
GES	V_{CE} = 0V, V_{GE} = \pm 20V			±100	nA
V _{CE(sat)}	$I_{\rm C} = 60A, V_{\rm GE} = 15V$	T _J = 125°C	1.55 1.60	1.8	V V

 $egin{array}{lll} V_{\text{CES}} & = & 300V \\ I_{\text{C110}} & = & 60A \\ V_{\text{CE(sat)}} & \leq & 1.8V \\ t_{\text{fi typ}} & = & 70 ns \\ \end{array}$

G = Gate C = Collector E = Emitter TAB = Collector

Features


- High Frequency IGBT
- Square RBSOA
- High avalanche capability
- Drive simplicity with MOS Gate Turn-On
- High current handling capability

Applications

- PFC Circuits
- PDP Systems
- Switched-mode and resonant-mode converters and inverters
- SMPS
- AC motor speed control
- DC servo and robot drives
- DC choppers

Symbol Test Conditions (T _J = 25°C, unless otherwise specified) Min		eristic Values Max.
\mathbf{g}_{fs} $\mathbf{I}_{C} = 0.5 \bullet \mathbf{I}_{C110}, \mathbf{V}_{CE} = 10 V$ 28 Pulse test, $t \leq 300 \mu s; duty cycle, d \leq 2 \%.$	3 46	S
$\left. egin{array}{l} oldsymbol{C}_{\text{les}} \\ oldsymbol{C}_{\text{oes}} \\ oldsymbol{C}_{\text{res}} \end{array} \right\} \ V_{\text{CE}} = 25 \text{V}, \ V_{\text{GE}} = 0 \text{V}, \ f = 1 \text{MHz}$	3800 240 63	pF pF pF
$ \begin{array}{c} \mathbf{Q}_{g} \\ \mathbf{Q}_{ge} \\ \mathbf{Q}_{gc} \end{array} \qquad \left. \begin{array}{c} \mathbf{I}_{C} = \mathbf{I}_{C110}, \ \mathbf{V}_{GE} = 15 \text{V}, \ \mathbf{V}_{CE} = 0.5 \bullet \mathbf{V}_{CES} \end{array} \right. $	101 21 37	nC nC
$ \begin{array}{c} \textbf{t}_{d(on)} \\ \textbf{t}_{ri} \\ \textbf{E}_{on} \\ \textbf{t}_{d(off)} \\ \textbf{t}_{fi} \\ \textbf{E}_{off} \\ \end{array} \right) \begin{array}{c} \textbf{Inductive Load, T}_{J} = \textbf{25}^{\circ}\textbf{C} \\ \textbf{I}_{C} = 0.5 \cdot \textbf{I}_{C110}, \textbf{V}_{GE} = 15 \textbf{V} \\ \textbf{V}_{CE} = 200 \textbf{V}, \textbf{R}_{G} = 5 \Omega \\ \end{array} $	23 28 0.15 108 68 0.30	ns ns mJ 160 ns ns 0.55 mJ
$ \begin{cases} \textbf{t}_{d(on)} \\ \textbf{t}_{ri} \\ \textbf{E}_{on} \\ \textbf{t}_{d(off)} \\ \textbf{t}_{fi} \\ \textbf{E}_{off} \\ \end{cases} $	22 28 0.26 120 101 0.40	ns ns mJ ns ns
R _{thJC}	0.21	0.42 °C/W °C/W

ØP

Q

R

S

3.55

5.89

4.32

6.15 BSC

3.65

6.40

5.49

.140

.170

0.232 0.252

242 BSC

.144

.216

ADVANCE TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a "considered reflection" of the anticipated result. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

