#### **MAX40018**

# Dual nanoPower Op Amps in Tiny WLP and TDFN Packages

### **General Description**

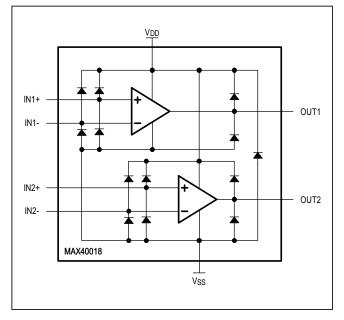
The MAX40018 is a dual operational amplifier that consumes only 400nA supply current (per channel). At such low power consumption, the device is ideal for battery-powered applications such as portable medical equipment, portable instruments and wireless handsets.

The MAX40018 operates from a single 1.7V to 5.5V supply, allowing the device to be powered by the same 1.8V, 2.5V, or 3.3V nominal supply that powers the microcontroller. The MAX40018 features rail-to-rail outputs and is unity-gain stable with a 9kHz gain bandwidth product (GBP).

The ultra-low supply current, ultra-low input bias current, low operating voltage, and rail-to-rail output capabilities make this dual operational amplifier ideal for use with single lithium-ion (Li+), or two-cell NiCd or alkaline batteries.

The MAX40018 is available in a tiny, 8-bump, 1.63mm  $\times$  0.91mm wafer-level package (WLP), with a bump pitch of 0.4mm, as well as in an 8-pin 3mm  $\times$  3mm TDFN package. The device is specified over the -40°C to +125°C, automotive temperature range.

# **Applications**


- Wearable Devices
- Handheld Devices
- Notebook and Tablet Computers
- Portable Medical Devices
- Portable Instrumentation

#### **Benefits and Features**

- Ultra-Low Power Preserves Battery Life
  - 400nA Typical Supply Current (Per Channel)
- Single 1.7V to 5.5V Supply Voltage Range
  - The Device Can be Powered From the Same 1.8V/2.5V/3.3V/5V System Rails
- Tiny Packages Save Board Space
  - 1.63mm x 0.91mm x 0.5mm WLP-8 with 0.4mm Bump Pitch
  - 3mm x 3mm x 0.75mm TDFN-8 Package
- Precision Specifications for Buffer/Filter/Gain Stages
  - Low  $350\mu V$  Input Offset Voltage
  - · Rail-to-Rail Output Voltage
  - 9kHz GBP
  - Low 0.1pA Input Bias Current
  - · Unity-Gain Stable
- -40°C to +125°C Temperature Range

Ordering Information appears at end of data sheet.

# **Simplified Block Diagram**





# Dual nanoPower Op Amps in Tiny WLP and TDFN Packages

# **Absolute Maximum Ratings**

| V <sub>DD</sub> to V <sub>SS</sub> 0.3                              | V to +6V |
|---------------------------------------------------------------------|----------|
| OUT_ to V <sub>SS</sub> V <sub>SS</sub> - 0.3V to V <sub>D</sub>    | D + 0.3V |
| IN_+, IN to $V_{SS}$ $V_{SS}$ - 0.3V to $V_{DS}$                    | D + 0.3V |
| IN_+ to IN                                                          | ±2V      |
| Continuous Current Into Any Input Pin                               | ±10mA    |
| Continuous Current Into Any Output Pin                              | ±20mA    |
| Output Short-Circuit Duration to V <sub>DD</sub> or V <sub>SS</sub> | 10s      |
| Continuous Power Dissipation (T <sub>A</sub> = +70°C; 8-Bump V      | VLP,     |
| derate 11.4mW/°C above +70°C)                                       | 912mW    |

| Continuous Power Dissipation (T <sub>A</sub> = +70°C; TI | DFN-8,          |
|----------------------------------------------------------|-----------------|
| derate 24.4mW/°C above +70°C)                            | 1951.2mW        |
| Operating Temperature Range                              | -40°C to +125°C |
| Junction Temperature                                     | +150°C          |
| Storage Temperature Range                                | -65°C to +150°C |
| Lead Temperature (soldering, 10s)                        | +300°C          |
| Reflow Soldering Peak Temperature (Pb-free).             | +260°C          |
|                                                          |                 |

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

# **Package Information**

#### TDFN-8

| PACKAGE CODE                           | T833+2  |  |  |  |  |
|----------------------------------------|---------|--|--|--|--|
| Outline Number                         | 21-0137 |  |  |  |  |
| Land Pattern Number                    | 90-0059 |  |  |  |  |
| Thermal Resistance, Four-Layer Board:  |         |  |  |  |  |
| Junction to Ambient (θ <sub>JA</sub> ) | 41°C/W  |  |  |  |  |
| Junction to Case (θ <sub>JC</sub> )    | 8°C/W   |  |  |  |  |

#### WLP-8

| PACKAGE CODE                           | N80B1+1                        |  |  |  |
|----------------------------------------|--------------------------------|--|--|--|
| Outline Number                         | 21-100228                      |  |  |  |
| Land Pattern Number                    | Refer to Application Note 1891 |  |  |  |
| Thermal Resistance, Four-Layer Board:  |                                |  |  |  |
| Junction to Ambient (θ <sub>JA</sub> ) | 87.71°C/W                      |  |  |  |
| Junction to Case $(\theta_{JC})$       | N/A                            |  |  |  |

For the latest package outline information and land patterns (footprints), go to <a href="www.maximintegrated.com/packages">www.maximintegrated.com/packages</a>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.

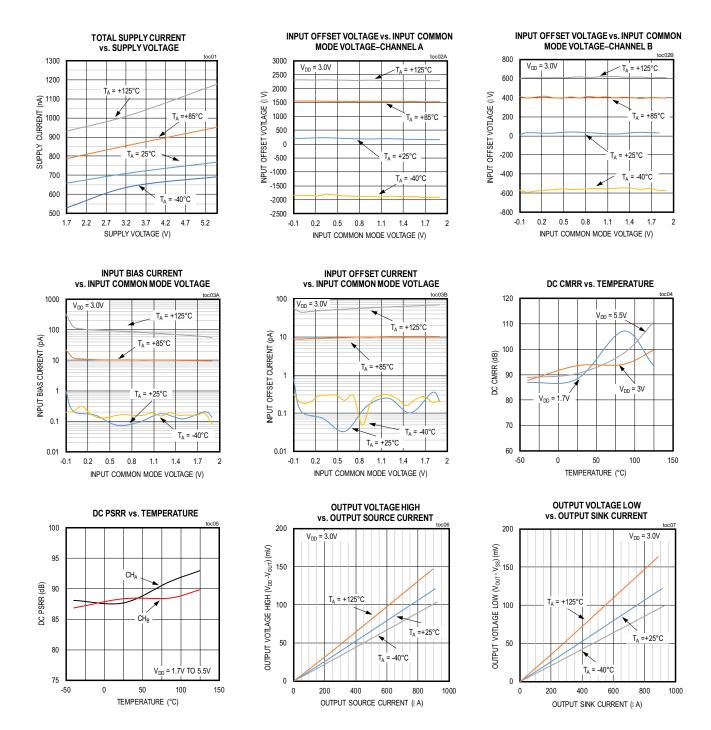
#### **Electrical Characteristics**

 $(V_{DD}$  = +3V,  $V_{SS}$  = 0V,  $V_{CM}$  = 0.5V,  $V_{OUT}$  =  $V_{DD}/2$ ,  $R_L$  = 1M $\Omega$  to  $V_{DD}/2$ ,  $T_A$  = +25°C, unless otherwise noted (Note 1).)

| PARAMETER             | SYMBOL          | CONDITIONS                                     | MIN | TYP | MAX | UNITS |
|-----------------------|-----------------|------------------------------------------------|-----|-----|-----|-------|
| Supply Voltage Range  | $V_{DD}$        | Guaranteed by PSRR tests                       | 1.7 |     | 5.5 | V     |
| Supply Current (Dual) | I <sub>DD</sub> | T <sub>A</sub> = +25°C                         |     | 0.8 | 1.3 |       |
|                       |                 | $T_A = -40^{\circ}C \text{ to } +85^{\circ}C$  |     |     | 1.4 | μA    |
|                       |                 | $T_A = -40^{\circ}C \text{ to } +125^{\circ}C$ |     |     | 1.6 |       |

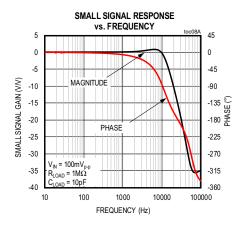
# **Electrical Characteristics (continued)**

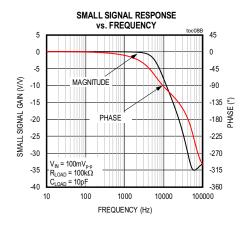
 $(V_{DD}$  = +3V,  $V_{SS}$  = 0V,  $V_{CM}$  = 0.5V,  $V_{OUT}$  =  $V_{DD}/2$ ,  $R_L$  = 1M $\Omega$  to  $V_{DD}/2$ ,  $T_A$  = +25°C, unless otherwise noted (Note 1).)

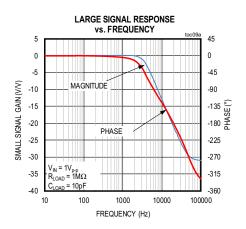

| PARAMETER                     | SYMBOL                                                                                              | CONDITIONS                                                                     |                                   | MIN                   | TYP  | MAX                   | UNITS              |
|-------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------|-----------------------|------|-----------------------|--------------------|
|                               |                                                                                                     | $T_A = +25^{\circ}C, V_{SS} - 0.7$                                             |                                   | ±0.35                 | ±1.3 |                       |                    |
| Input Offset Voltage          | out Offset Voltage $V_{OS}$ $T_{A}$ = -40°C to +125°C, $V_{SS}$ - 0.1V < $V_{CM}$ < $V_{DD}$ - 1.1V |                                                                                |                                   |                       | ±9   | mV                    |                    |
| Input Offset Drift            |                                                                                                     |                                                                                |                                   |                       | 6.2  | 88                    | μV/°C              |
| Input Bias Current (Note 2)   | l_                                                                                                  | T <sub>A</sub> = +25°C                                                         |                                   |                       | 0.1  |                       | pА                 |
| input bias Current (Note 2)   | I <sub>B</sub>                                                                                      | $T_A = -40^{\circ}C \text{ to } +125^{\circ}C$                                 |                                   |                       |      | 200                   | pΑ                 |
| Input Offset Current (Note 2) | laa                                                                                                 | T <sub>A</sub> = +25°C                                                         |                                   |                       | 0.1  |                       | pА                 |
| input Onset Guitent (Note 2)  | los                                                                                                 | $T_A = -40^{\circ}C \text{ to } +125^{\circ}C$                                 |                                   |                       |      | 60                    |                    |
| Input Capacitance             |                                                                                                     | Either input, over ent                                                         | ire CMVR                          |                       | 3    |                       | pF                 |
| Common Mode Voltage Range     | CMVR                                                                                                | Guaranteed by CMR                                                              | R tests                           | V <sub>SS</sub> - 0.1 |      | V <sub>DD</sub> - 1.1 | V                  |
| Common Mode Rejection Ratio   | CMRR                                                                                                | DC, $(V_{SS} - 0.1V) \le V_{CM} \le (V_{DD} - 1.1V)$                           |                                   | 70                    | 95   |                       | dB                 |
| Common wode Rejection Ratio   | CIVILLIA                                                                                            | AC, 100mV <sub>PP</sub> 1kHz,                                                  | with output at V <sub>DD</sub> /2 |                       | 48   |                       | aB                 |
| Power Supply Rejection Ratio  | PSRR                                                                                                | DC, 1.7V ≤ V <sub>DD</sub> ≤ 5.5V                                              |                                   | 67                    | 88   |                       | dB                 |
| Fower Supply Rejection Ratio  | FOINIX                                                                                              | AC, 100mV <sub>PP</sub> 1kHz,                                                  | superimposed on V <sub>DD</sub>   |                       | 35   |                       | ub                 |
| Open Loop Gain                | A <sub>VOL</sub>                                                                                    | $R_L = 1M\Omega$ , $V_{OUT} = +$                                               | 50mV to V <sub>DD</sub> - 50mV    | 75                    | 110  |                       | dB                 |
|                               | V <sub>OH</sub>                                                                                     | Swing high specified as V <sub>DD</sub> - V <sub>OUT</sub> Swing low specified | $R_L$ = 100kΩ to $V_{DD}/2$       |                       | 2.2  | 8                     | 70 mV              |
| Output Voltage Swing          |                                                                                                     |                                                                                | $R_L = 10k\Omega$ to $V_{DD}/2$   |                       | 19.3 | 70                    |                    |
| Output voltage owing          |                                                                                                     |                                                                                | $R_L$ = 100kΩ to $V_{DD}/2$       |                       | 2.2  | 8                     |                    |
|                               |                                                                                                     | as V <sub>OUT</sub> - V <sub>SS</sub>                                          | $R_L = 10k\Omega$ to $V_{DD}/2$   |                       | 20   | 70                    |                    |
| Output Short-Circuit Current  |                                                                                                     | Shorted to V <sub>SS</sub> (sour                                               | cing)                             |                       | 8    |                       | mA                 |
| Output Onort-Oncort Current   |                                                                                                     | Shorted to V <sub>DD</sub> (sink                                               | ing)                              |                       | 8    |                       | 111/4              |
| Gain Bandwidth Product        | GBP                                                                                                 | $A_V = 1V/V , C_L = 20p$                                                       | F                                 |                       | 9    |                       | kHz                |
| Phase Margin                  | φΜ                                                                                                  | C <sub>L</sub> = 20pF                                                          |                                   |                       | 64   |                       | ٥                  |
| Slew Rate                     | SR                                                                                                  | V <sub>OUT</sub> = 1V <sub>PP</sub> step, A <sub>V</sub> = 1V/V                |                                   |                       | 6.4  |                       | V/ms               |
| Settling Time                 |                                                                                                     | 100mV step, A <sub>V</sub> = 1V/V, C <sub>L</sub> = 20pF, 0.1% settling        |                                   |                       | 165  |                       | μs                 |
| Input Voltage Noise Density   | e <sub>N</sub>                                                                                      | f = 1kHz                                                                       |                                   |                       | 730  |                       | nV/√ <del>Hz</del> |
| Noise Voltage                 |                                                                                                     | From 0.1Hz to 10Hz                                                             |                                   |                       | 7    |                       | μV <sub>RMS</sub>  |
| Power-On Time                 | t <sub>ON</sub>                                                                                     | Output reaches 1% of final value                                               |                                   |                       | 0.39 |                       | ms                 |
| Stable Capacitive Load        | CL                                                                                                  | No sustained oscillations                                                      |                                   |                       | 30   |                       | pF                 |
| Crosstalk                     |                                                                                                     | IN1+, 100mV <sub>PP</sub> , f = 1kHz, test VOUT2                               |                                   |                       | 78   |                       | dB                 |

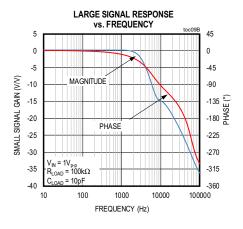
**Note 1:** Limits are 100% tested at  $T_A$  = +25°C. Limits over the temperature range and relevant supply voltage range are guaranteed by design and characterization.

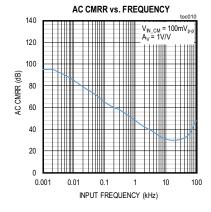
Note 2: Guaranteed by design.

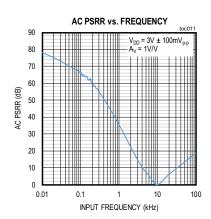

# **Typical Operating Characteristics**

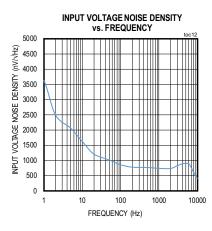

 $(V_{DD} = +3.0V, \, V_{SS} = 0V, \, V_{CM} = 0.5V, \, V_{OUT} = V_{DD}/2, \, R_L = 1 M\Omega \text{ to } V_{DD}/2, \, T_A = +25^{\circ}C, \, unless \, otherwise \, noted.)$ 





# **Typical Operating Characteristics (continued)**


 $(V_{DD} = +3.0V, V_{SS} = 0V, V_{CM} = 0.5V, V_{OUT} = V_{DD}/2, R_L = 1M\Omega \text{ to } V_{DD}/2, T_A = +25^{\circ}C, \text{ unless otherwise noted.})$ 

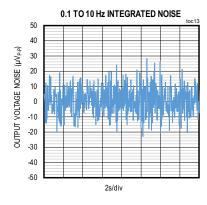


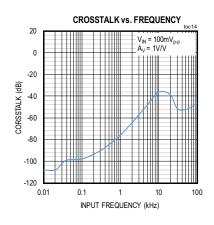



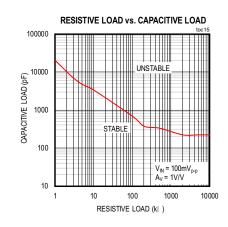


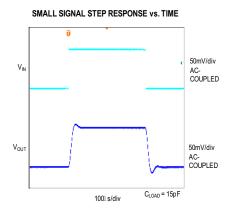


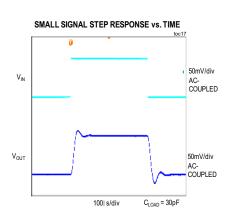


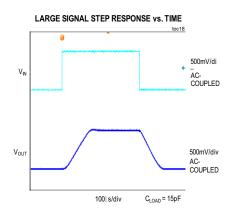



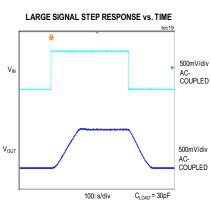



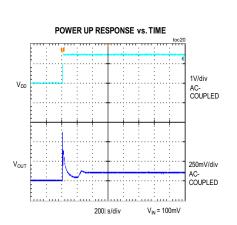


# Dual nanoPower Op Amps in Tiny WLP and TDFN Packages


# **Typical Operating Characteristics (continued)**

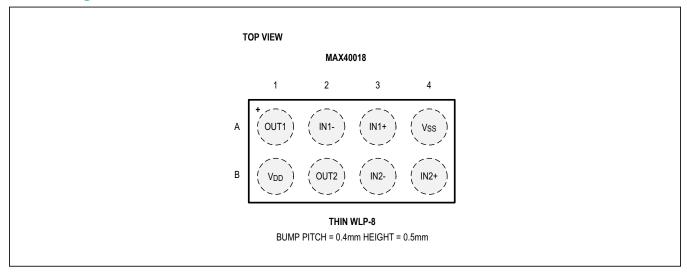

 $(V_{DD} = +3.0V, V_{SS} = 0V, V_{CM} = 0.5V, V_{OUT} = V_{DD}/2, R_L = 1M\Omega \text{ to } V_{DD}/2, T_A = +25^{\circ}\text{C}, \text{ unless otherwise noted.})$ 

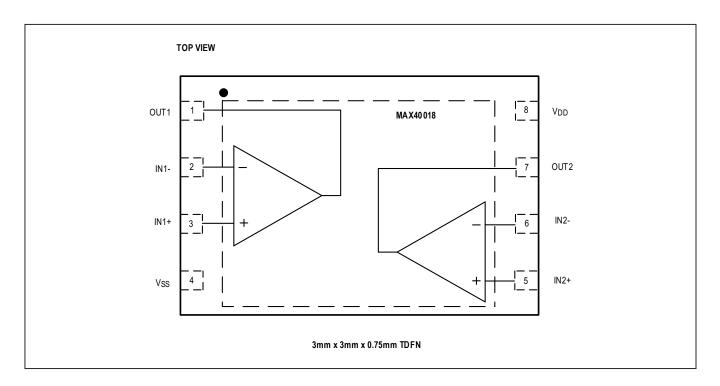









# **Pin Configuration**





## **Pin Description**

| Р   | IN   | NAME            | FUNCTION                                                                                 |  |  |
|-----|------|-----------------|------------------------------------------------------------------------------------------|--|--|
| WLP | TDFN | NAME            | FUNCTION                                                                                 |  |  |
| A1  | 1    | OUT1            | Amplifier 1 Output                                                                       |  |  |
| A2  | 2    | IN1-            | Inverting Input, Channel 1                                                               |  |  |
| A3  | 3    | IN1+            | Noninverting Input, Channel 1                                                            |  |  |
| A4  | 4    | V <sub>SS</sub> | legative Power Supply Input. Connect V <sub>SS</sub> to 0V in single-supply application. |  |  |
| B1  | 8    | $V_{DD}$        | Positive Power Supply Input                                                              |  |  |
| B2  | 7    | OUT2            | Amplifier 2 Output                                                                       |  |  |
| В3  | 6    | IN2-            | Inverting Input, Channel 2                                                               |  |  |
| B4  | 5    | IN2+            | Noninverting Input, Channel 2                                                            |  |  |
|     | _    | EP              | Exposed Pad. Connect EP to V <sub>SS</sub> or leave unconnected.                         |  |  |

## **Detailed Description**

The MAX40018 is a dual operational amplifier that draws just 400nA supply current (typical, per channel). It is ideal for battery-powered applications, such as portable medical equipment, portable instruments, and wireless handsets. The amplifiers feature rail-to-rail outputs and are unity-gain stable with a 9kHz GBP. The ultra-low supply current, ultra-low input bias current, low operating voltage, and rail-to-rail output capabilities make this dual operational amplifier ideal for use with single lithium-ion (Li+), or two-cell NiCd or alkaline batteries.

#### **Power Supplies and PCB Layout**

The MAX40018 operates from a single  $\pm 1.7V$  to  $\pm 5.5V$  power supply, or dual  $\pm 0.85V$  to  $\pm 2.75V$  power supplies. Bypass the power supplies with a  $0.1\mu F$  ceramic capacitor placed close to  $V_{DD}$  and  $V_{SS}$  pins. Adding a solid ground plane improves performance generally by decreasing the noise at the op amp's inputs. However, in very high impedance circuits, it may be worth removing the ground plane under the IN\_- pins to reduce the stray capacitance and help avoid reducing the phase margin. To further decrease stray capacitance, minimize PCB trace lengths and resistor and capacitor leads, and place external components close to the amplifier's pins.

#### **Ground Sensing Inputs**

The common-mode voltage range of the MAX40018 extends down to  $V_{SS}$  - 0.1V, and offers excellent common-mode rejection. This feature allows input voltage below ground in a single power supply application, where ground sensing is very common. This op amp is also guaranteed not to exhibit phase reversal when either input is overdriven.

#### **Rail-To-Rail Outputs**

The outputs of the MAX40018 dual op amps are guaranteed to swing within 8mV of the power supply rails with a  $100k\Omega$  load.

### **ESD Protection**

The MAX40018 input and output pins are protected against electrical discharge (ESD) with dedicated diodes as shown in the <u>Simplified Block Diagram</u>. Caution must be used when input voltages are beyond the power rails. Also, the maximum current in or out of any input pin as shown in the <u>Absolute Maximum Ratings</u> must be observed.

#### **Stability**

The MAX40018 maintains stability in its minimum gain configuration while driving capacitive loads up to 30pF or so. Larger capacitive loading is achieved using the techniques described in the Capacitive Load Stability section below. Although this amplifier is primarily designed for low frequency applications, good layout can still be extremely important, especially if very high value resistors are being used, as is likely in ultra-low-power circuitry. However, some stray capacitance may be unavoidable; and it may be necessary to add a 2pF to 10pF capacitor across the feedback resistor, as shown in Figure 1. Select the smallest capacitor value that ensures stability so that BW and settling time are not significantly impacted.

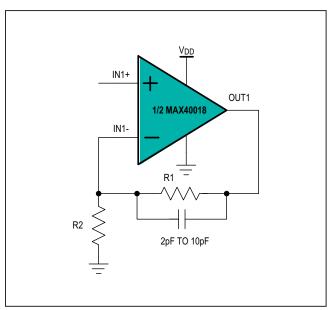



Figure 1. Compensation for Feedback Node Capacitance

### **Capacitive Load Stability**

Driving large capacitive loads can cause instability in amplifiers. The MAX40018 is stable with capacitive loads up to 30pF. Stability with higher capacitive loads can be achieved by adding a resistive load in parallel with the capacitive load, as shown in <a href="Figure 2">Figure 2</a>. This resistor improves the circuit's phase margin by reducing the effective bandwidth of the amplifier. The graph in the <a href="Typical Operating Characteristics">Typical Operating Characteristics</a> gives the stable operation region for capacitive load versus resistive load.

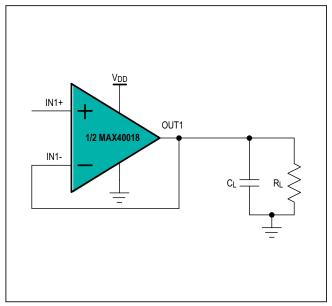



Figure 2. RL Improving Capacitive Load Drive Capability of Op Amp

# **Applications Information**

#### **Optimizing for Ultra-Low-Power Applications**

The MAX40018 is designed for ultra-low-power applications. To reduce the power consumption in the application circuits, use impedance as large as the performance allows. For example, choose low leakage ceramic capacitors and high-value resistors. If moisture in high-value resistors causes stray capacitance or current leakage, use special coating process to reduce the leakage.

### **General Purpose Active Filters**

<u>Figure 3</u> shows an active band-pass filter implemented with the MAX40018. Set the operating point based on the power supply voltage and the input signal range. Pay attention that the common mode input range is from -0.1V to  $V_{DD}$  - 1.1V. The example circuit sets the operating point at  $V_{DD}/2$ .

The low cut-off frequency is

$$f_{LOW} = \frac{1}{(2 \times \pi \times R2 \times C2)}$$

The high cut-off frequency is

$$f_{HIGH} = \frac{1}{(2 \times \pi \times R1 \times C1)}$$

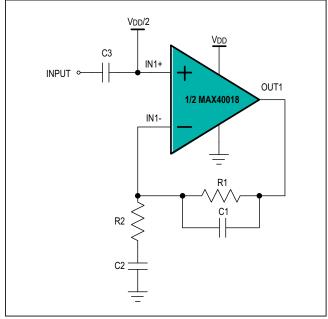



Figure 3. Active Band-Pass Filter

#### **Motion Detection Application Circuit**

Figure 4 shows a human motion detection circuit using the MAX40018 dual op amp.

The motion sensor is a Murata IRA-S210ST0 pyroelectric passive infrared (PIR) sensor with a typical responsivity (RV) of 4.6mVpp. With a power supply of 3.3V, the PIR sensor output is biased around 1.0V. Since we are interested in human motion, the frequency range of interest is set to 0.5 Hz to 7 Hz.

The first stage amplifies the PIR sensor output. The high frequency noise is filtered by R3 and C3 feedback filter, with a cutoff frequency  $f_{HIGH1} = 1/(2 \times \pi \times R3 \times C3) = 7Hz$ . The low frequency noise is filtered by the R1 and C1 high pass filter, with a cutoff frequency  $f_{LOW1} = 1/(2 \times \pi \times R1 \times C1) = 0.5$  Hz. The DC signal of the sensor output and the op amp input offset voltage are not amplified, they are showing at the output of the first stage op amp.

The first stage gain is set by G1 = 1 + R3/R1 = 46.3. This gain guarantees the amplified signal will not saturate the first stage op amp, but large enough to distinguish the motion generated signal from the background noise.

The second stage is similar to the first stage. It amplifies the AC component of the signal and rejects the DC component.

The high cutoff frequency  $f_{HIGH2}$  = 1/(2 x  $\pi$  x R5 x C5) = 7 Hz. The low cutoff frequency is  $f_{LOW2}$  = 1/(2 x  $\pi$  x R4 x C4) = 0.5 Hz. The second stage gain is G2 = 1 + R5/R4 = 46.3. Similar to the first stage, the input offset voltage does not matter because only AC is amplified. The bias voltage at the noninverting input is set to 1.1V, so that the input has the largest swing between 0V to V<sub>DD</sub> - 1.1V. Use large divider network resistors to reduce power consumption of the system.

The circuit has a GBP requirement of 7Hz x 46.3 = 324.1Hz, which is guaranteed by the MAX40018's GBP of 9kHz.

The MAX40018's dual op amps and the ultra-low supply current of 350nA per channel make it a perfect fit for this motion detection circuit.

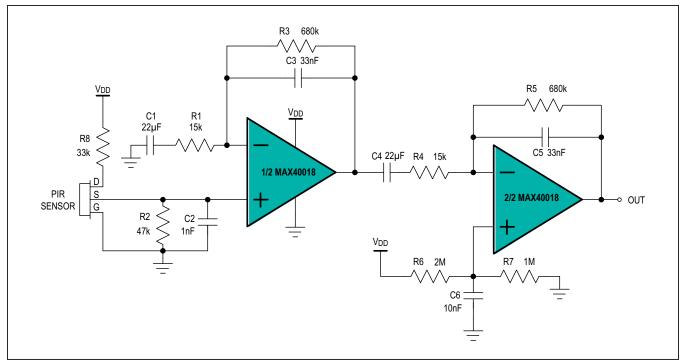



Figure 4. Motion Detection Circuit

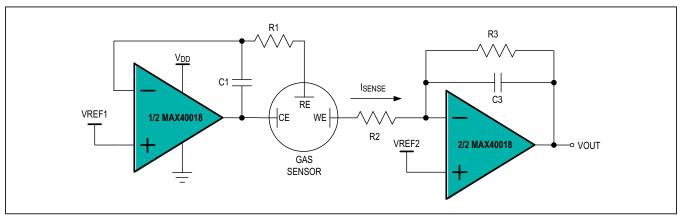



Figure 5. Gas Detection Circuit

### **Gas Detection Circuit**

Figure 5 shows a gas detection circuit using the MAX40018.

The first op amp generates a constant voltage at the sensor reference electrode (RE). The op amp's ultra-low input bias current of 1pA is ideal for this stage. The second op amp converts the sensor output current into a voltage

output. The output voltage  $V_{OUT}$  = VREF2 - I<sub>SENSE</sub> x R3. I<sub>SENSE</sub> can be positive or negative, depending on the type of the sensor.

The MAX40018's dual op amps, ultra-low current consumption, and ultra-low input bias current minimizes the power requirement of the gas detection circuit, while providing high accuracy and low system cost.

# **Ordering Information**

| PART NUMBER  | TEMP RANGE      | PIN-PACKAGE | PACKAGE CODE | TOP MARK |
|--------------|-----------------|-------------|--------------|----------|
| MAX40018ANA+ | -40°C to +125°C | WLP-8       | N80B1+1      | AAK      |
| MAX40018ATA+ | -40°C to +125°C | TDFN        | T833+2       | BAA      |

<sup>+</sup>Denotes a lead(Pb)-free/RoHS-compliant package.

T = Denotes tape-and-reel.

## MAX40018

# Dual nanoPower Op Amps in Tiny WLP and TDFN Packages

# **Revision History**

| REVISION<br>NUMBER | REVISION DATE | DESCRIPTION                                   | PAGES<br>CHANGED |
|--------------------|---------------|-----------------------------------------------|------------------|
| 0                  | 12/17         | Initial release                               | _                |
| 1                  | 4/18          | Updated Ordering Information table            | 12               |
| 2                  | 10/19         | Updated Pin Configuration and Pin Description | 7, 8             |
| 3                  | 11/19         | Updated Electrical Characteristics table      |                  |

For pricing, delivery, and ordering information, please visit Maxim Integrated's online storefront at https://www.maximintegrated.com/en/storefront/storefront.html.

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.