www.ti.com

SN74ALVCH16373 16-BIT TRANSPARENT D-TYPE LATCH WITH 3-STATE OUTPUTS

SCES020I-JULY 1995-REVISED NOVEMBER 2005

FEATURES

- Member of the Texas Instruments Widebus™
 Family
- Operates From 1.65 V to 3.6 V
- Max t_{pd} of 3.6 ns at 3.3 V
- ±24-mA Output Drive at 3.3 V
- Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
- Latch-Up Performance Exceeds 250 mA Per JESD 17
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)

DESCRIPTION/ORDERING INFORMATION

This 16-bit transparent D-type latch is designed for 1.65-V to 3.6-V $V_{\rm CC}$ operation.

The SN74ALVCH16373 is particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers. This device can be used as two 8-bit latches or one 16-bit latch. When the latch-enable (LE) input is high, the Q outputs follow the data (D) inputs. When LE is taken low, the Q outputs are latched at the levels set up at the D inputs.

A buffered output-enable (\overline{OE}) input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or the high-impedance state. In the high-impedance state, the outputs neither load nor drive the buslines significantly. The high-impedance state and the increased drive provide the capability to drive bus lines without need for interface or pullup components. \overline{OE} does not affect internal operations of the latch. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

DGG	OR	DL	PAC	KAGE
	(TC)P \	/IEW)

1 <u>0E</u> [1 U	48	1LE
1Q1 [2	47] 1D1
1Q2 [3	46] 1D2
GND [4	45	GND
1Q3 [5	44] 1D3
1Q4 [6	43] 1D4
V _{CC} [7	42] v _{cc}
1Q5 [8	41] 1D5
1Q6 [9	40] 1D6
GND [10	39	GND
1Q7 [11	38] 1D7
1Q8 [12	37] 1D8
2Q1 [13	36	2D1
2Q2 [14	35	2D2
GND [15	34	GND
2Q3 [16	33	2D3
2Q4 [17	32	2D4
v _{cc} [18	31	□ v _{cc}
2Q5 [19	30	2D5
2Q6	1	29	2D6
GND [21	28	GND
2Q7 [1	27	2D7
2Q8	1	26	2D8
20E	24	25	2LE
	•		1

To ensure the high-impedance state during power up or power down, $\overline{\text{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

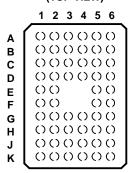
Active bus-hold circuitry holds unused or undriven inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Widebus is a trademark of Texas Instruments.

SN74ALVCH16373 16-BIT TRANSPARENT D-TYPE LATCH WITH 3-STATE OUTPUTS

SCES020I-JULY 1995-REVISED NOVEMBER 2005



ORDERING INFORMATION

T _A	PACKAGE	(1)	ORDERABLE PART NUMBER	TOP-SIDE MARKING	
	FBGA – GRD	Tape and reel	SN74ALVCH16373GRDR	VH373	
	FBGA – ZRD (Pb-free)	rape and reel	SN74ALVCH16373ZRDR	VII3/3	
		Tube	SN74ALVCH16373DL		
	SSOP - DL		SN74ALVCH16373DLR	ALVCH16373	
		Tape and reel	74ALVCH16373DLG4	ALVCH103/3	
–40°C to 85°C			74ALVCH16373DLRG4		
			SN74ALVCH16373DGGR		
	TSSOP – DGG	Tape and reel	74ALVCH16373DGGE4	ALVCH16373	
			74ALVCH16373DGGRG4		
	VFBGA – GQL	Tone and real	SN74ALVCH16373KR	\/\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	
	VFBGA – ZQL (Pb-free)	Tape and reel	74ALVCH16373ZQLR	- VH373	

⁽¹⁾ Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

GQL OR ZQL PACKAGE (TOP VIEW)

TERMINAL ASSIGNMENTS⁽¹⁾ (56-Ball GQL/ZQL Package)

	1	2	3 4		5	6
Α	1 OE	NC	NC	NC	NC	1LE
В	1Q2	1Q1	GND	GND	1D1	1D2
С	1Q4	1Q3	V _{CC}	V _{CC}	1D3	1D4
D	1Q6	1Q5	GND	GND	1D5	1D6
E	1Q8	1Q7			1D7	1D8
F	2Q1	2Q2			2D2	2D1
G	2Q3	2Q4	GND	GND	2D4	2D3
Н	2Q5	2Q6	V _{CC}	V _{CC}	2D6	2D5
J	2Q7	2Q8	GND	GND	2D8	2D7
K	2 OE	NC	NC	NC	NC	2LE

(1) NC - No internal connection

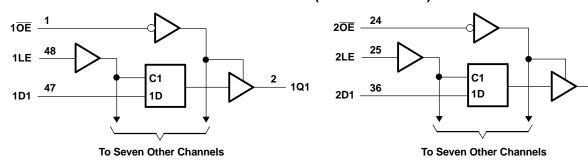
GRD OR ZRD PACKAGE (TOP VIEW)

	_	1	2	3	4	5	6	_
Α		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	_
В		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
С		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
D		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
E		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
F		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
G		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
Н		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
J		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
	\							_

TERMINAL ASSIGNMENTS⁽¹⁾ (54-Ball GRD/ZRD Package)

	1	2	3	4	5	6
Α	1Q1	NC	1 OE	1LE	NC	1D1
В	1Q3	1Q2	NC	NC	1D2	1D3
С	1Q5	1Q4	V _{CC}	V _{CC}	1D4	1D5
D	1Q7	1Q6	GND	GND	1D6	1D7
E	2Q1	1Q8	GND	GND	1D8	2D1
F	2Q3	2Q2	GND	GND	2D2	2D3
G	2Q5	2Q4	V _{CC}	V _{CC}	2D4	2D5
Н	2Q7	2Q6	NC	NC	2D6	2D7
J	2Q8	NC	2 OE	2LE	NC	2D8

(1) NC - No internal connection


13 2Q1

FUNCTION TABLE (EACH 8-BIT SECTION)

	INPUTS	OUTPUT	
OE	LE	D	Q
L	Н	Н	Н
L	Н	L	L
L	L	Χ	Q_0
Н	X	Χ	Z

LOGIC DIAGRAM (POSITIVE LOGIC)

Pin numbers shown are for the DGG and DL packages.

Absolute Maximum Ratings(1)

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT	
V_{CC}	Supply voltage range		-0.5	4.6	V	
VI	Input voltage range (2)(3)			V _{CC} + 0.5	V	
Vo	Output voltage range ⁽²⁾⁽³⁾	-0.5	V _{CC} + 0.5	V		
I _{IK}	Input clamp current	V _I < 0		-50	mA	
I _{OK}	Output clamp current	V _O < 0		-50	mA	
Io	Continuous output current		±50	mA		
	Continuous current through each V _{CC} or GND			±100	mA	
		DGG package		70		
0	Dockoro thormal impadance (4)	DL package		63		
θ_{JA}	Package thermal impedance (4)	GQL/ZQL package		42		
		GRD/ZRD package		36		
T _{stg}	Storage temperature range		-65	150	°C	

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

⁽²⁾ The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

³⁾ This value is limited to 4.6 V maximum.

⁽⁴⁾ The package thermal impedance is calculated in accordance with JESD 51-7.

SN74ALVCH16373 16-BIT TRANSPARENT D-TYPE LATCH WITH 3-STATE OUTPUTS

SCES020I-JULY 1995-REVISED NOVEMBER 2005

Recommended Operating Conditions(1)

			MIN	MAX	UNIT
V _{CC}	Supply voltage		1.65	3.6	V
		V _{CC} = 1.65 V to 1.95 V	0.65 × V _{CC}		
V_{IH}	High-level input voltage	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	1.7		V
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$	2		
		V _{CC} = 1.65 V to 1.95 V		$0.35 \times V_{CC}$	
V_{IL}	Low-level input voltage	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		0.7	V
		V _{CC} = 2.7 V to 3.6 V		0.8	
VI	Input voltage		0	V _{CC}	V
Vo	Output voltage		0	V _{CC}	V
		V _{CC} = 1.65 V	_{CC} = 1.65 V		
	High level output ourrent	$V_{CC} = 2.3 \text{ V}$		-12	mA
I _{OH}	High-level output current	$V_{CC} = 2.7 \text{ V}$		-12	ША
		$V_{CC} = 3 V$		-24	
		V _{CC} = 1.65 V		4	
	Low lovel output ourrent	V _{CC} = 2.3 V		12	
I _{OL}	Low-level output current	V _{CC} = 2.7 V	12		mA
		V _{CC} = 3 V		24	
Δt/Δν	Input transition rise or fall rate			10	ns/V
T _A	Operating free-air temperature		-40	85	°C

⁽¹⁾ All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

SCES020I-JULY 1995-REVISED NOVEMBER 2005

Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

P/	ARAMETER	TEST CONDITIONS	V _{cc}	MIN TYP(1)	MAX	UNIT		
		$I_{OH} = -100 \mu\text{A}$	1.65 V to 3.6 V	V _{CC} - 0.2				
		$I_{OH} = -4 \text{ mA}$	1.65 V	1.2				
		$I_{OH} = -6 \text{ mA}$	2.3 V	2		V		
V_{OH}			2.3 V	1.7				
		$I_{OH} = -12 \text{ mA}$	2.7 V	2.2				
			3 V	2.4				
		I _{OH} = -24 mA	3 V	2				
		I _{OL} = 100 μA	1.65 V to 3.6 V		0.2			
		I _{OL} = 4 mA	1.65 V		0.45			
.,		I _{OL} = 6 mA	2.3 V		0.4			
VOL	V _{OL}	10 1	2.3 V		0.7	V		
		I _{OL} = 12 mA	2.7 V		0.4			
		I _{OL} = 24 mA	3 V		0.55			
II		V _I = V _{CC} or GND	3.6 V		±5	μΑ		
		V _I = 0.58 V	1.65 V	25				
		V _I = 1.07 V	1.65 V	-25				
		V _I = 0.7 V	2.3 V	45		μА		
I _{I(hold)}		V _I = 1.7 V	2.3 V	-45				
		V _I = 0.8 V	3 V	75				
		V _I = 2 V	3 V	-75				
	$\begin{array}{c} I_{OL} = 6 \text{ mA} \\ \\ I_{OL} = 12 \text{ mA} \\ \\ I_{OL} = 24 \text{ mA} \\ \\ V_{I} = V_{CC} \text{ or GND} \\ \\ V_{I} = 0.58 \text{ V} \\ V_{I} = 1.07 \text{ V} \\ \\ V_{I} = 0.7 \text{ V} \\ \\ V_{I} = 0.7 \text{ V} \\ \\ V_{I} = 0.8 \text{ V} \\ \\ V_{I}$		±500					
I _{OZ}		$V_O = V_{CC}$ or GND	3.6 V		±10	μΑ		
I _{CC}		$V_I = V_{CC}$ or GND $I_O = 0$	3.6 V		40	μΑ		
ΔI_{CC}		One input at V _{CC} – 0.6 V, Other inputs at V _{CC} or GND	3 V to 3.6 V		750	μΑ		
	Control inputs	V V CND	221/	3				
Ci	Data inputs	$V_I = V_{CC}$ or GND	3.3 V	6	pF			
Co	Outputs	$V_O = V_{CC}$ or GND	3.3 V	7		pF		

Timing Requirements

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

		V _{CC} = 1.8 V MIN MAX		V_{CC} = 2.5 V \pm 0.2 V		V _{CC} = 2.7 V		V _{CC} = 3.3 V ± 0.3 V		UNIT
				MIN	MAX	MIN	MAX	MIN	MAX	
t _w	Pulse duration, LE high or low	(1)		3.3		3.3		3.3		ns
t_{su}	Setup time, data before LE \downarrow	(1)		1		1		1.1		ns
t _h	Hold time, data after LE↓	(1)		1.5		1.7		1.4		ns

⁽¹⁾ This information was not available at the time of publication.

⁽¹⁾ All typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$. (2) This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to another.

SN74ALVCH16373 16-BIT TRANSPARENT D-TYPE LATCH WITH 3-STATE OUTPUTS

SCES020I-JULY 1995-REVISED NOVEMBER 2005

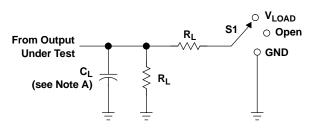
Switching Characteristics

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT) V _{CC} = 1.8 V		V _{CC} = 2.5 V ± 0.2 V		V _{CC} = 2.7 V		V _{CC} = 3.3 V ± 0.3 V		UNIT
	(INFOT)	(001701)	TYP	MIN	MAX	MIN	MAX	MIN	MAX	
	D	Q	(1)	1	4.5		4.3	1.1	3.6	20
^l pd	LE		(1)	1	4.9		4.6	1	3.9	ns
t _{en}	ŌĒ	Q	(1)	1	6		5.7	1	4.7	ns
t _{dis}	ŌĒ	Q	(1)	1.2	5.1		4.5	1.4	4.1	ns

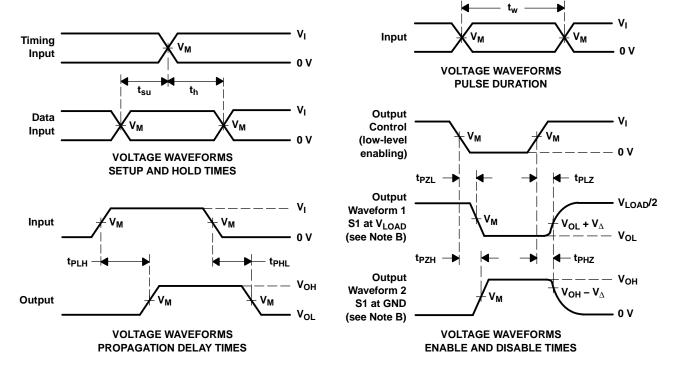
⁽¹⁾ This information was not available at the time of publication.

Operating Characteristics


 $T_A = 25^{\circ}C$

PARAMETER			TEST (CONDITIONS	V _{CC} = 1.8 V TYP	V _{CC} = 2.5 V TYP	V _{CC} = 3.3 V TYP	UNIT
0	Power dissipation	Outputs enabled	C - 50 pE	f = 10 MHz	(1)	19	22	n.E
C _{pd} capacitance	Outputs disabled	$C_L = 50 \text{ pF},$	I = IU WIMZ	(1)	4	5	pF	

⁽¹⁾ This information was not available at the time of publication.


PARAMETER MEASUREMENT INFORMATION

TEST	S1
t _{pd} t _{PLZ} /t _{PZL} t _{PHZ} /t _{PZH}	Open V _{LOAD} GND

LOAD CIRCUIT

v	IN	PUT	V	v		ь	v
V _{CC}	VI	t _r /t _f	V _M	V _{LOAD}	CL	R _L	$oldsymbol{V}_\Delta$
1.8 V	v _{cc}	≤2 ns	V _{CC} /2	2×V _{CC}	30 pF	1 k Ω	0.15 V
2.5 V \pm 0.2 V	V _{CC}	≤2 ns	V _{CC} /2	2×V _{CC}	30 pF	500 Ω	0.15 V
2.7 V	2.7 V	≤2.5 ns	1.5 V	6 V	50 pF	500 Ω	0.3 V
3.3 V \pm 0.3 V	2.7 V	≤2.5 ns	1.5 V	6 V	50 pF	500 Ω	0.3 V

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_0 = 50~\Omega$.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en}.
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .
- H. All parameters and waveforms are not applicable to all devices.

Figure 1. Load Circuit and Voltage Waveforms

10-Jun-2014

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
74ALVCH16373DGGRG4	ACTIVE	TSSOP	DGG	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	ALVCH16373	Samples
74ALVCH16373DLRG4	ACTIVE	SSOP	DL	48	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	ALVCH16373	Samples
74ALVCH16373GRDR	OBSOLETE	BGA MICROSTAR JUNIOR	GRD	54		TBD	Call TI	Call TI	-40 to 85		
74ALVCH16373ZQLR	ACTIVE	BGA MICROSTAR JUNIOR	ZQL	56	1000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	VH373	Samples
74ALVCH16373ZRDR	ACTIVE	BGA MICROSTAR JUNIOR	ZRD	54	1000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	VH373	Samples
SN74ALVCH16373DGGR	ACTIVE	TSSOP	DGG	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	ALVCH16373	Samples
SN74ALVCH16373DL	ACTIVE	SSOP	DL	48	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	ALVCH16373	Samples
SN74ALVCH16373DLR	ACTIVE	SSOP	DL	48	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	ALVCH16373	Samples
SN74ALVCH16373KR	OBSOLETE	BGA MICROSTAR JUNIOR	GQL	56		TBD	Call TI	Call TI	-40 to 85		

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

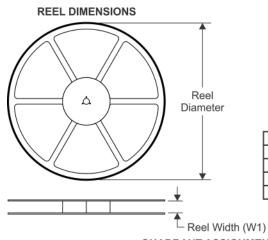
⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

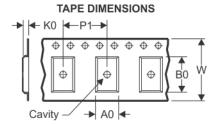
PACKAGE OPTION ADDENDUM

10-Jun-2014

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

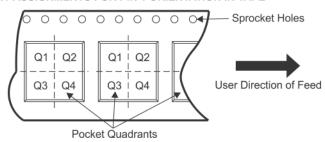
- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 11-Mar-2017


TAPE AND REEL INFORMATION

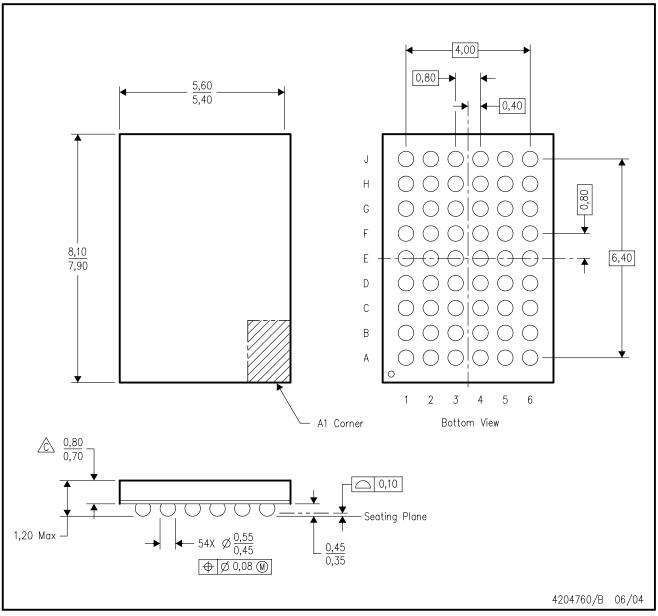
	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
D1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

All diffiensions are nominal				1								
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
74ALVCH16373ZQLR	BGA MI CROSTA R JUNI OR	ZQL	56	1000	330.0	16.4	4.8	7.3	1.5	8.0	16.0	Q1
74ALVCH16373ZRDR	BGA MI CROSTA R JUNI OR	ZRD	54	1000	330.0	16.4	5.8	8.3	1.55	8.0	16.0	Q1
SN74ALVCH16373DGGR	TSSOP	DGG	48	2000	330.0	24.4	8.6	13.0	1.8	12.0	24.0	Q1
SN74ALVCH16373DLR	SSOP	DL	48	1000	330.0	32.4	11.35	16.2	3.1	16.0	32.0	Q1

www.ti.com 11-Mar-2017

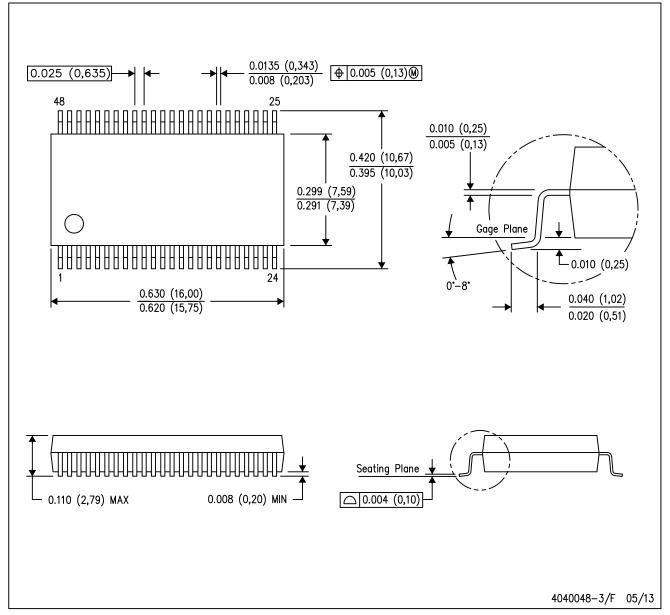


*All dimensions are nominal

7 til dilliciololio are nominal							
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
74ALVCH16373ZQLR	BGA MICROSTAR JUNIOR	ZQL	56	1000	336.6	336.6	28.6
74ALVCH16373ZRDR	BGA MICROSTAR JUNIOR	ZRD	54	1000	336.6	336.6	28.6
SN74ALVCH16373DGGR	TSSOP	DGG	48	2000	367.0	367.0	45.0
SN74ALVCH16373DLR	SSOP	DL	48	1000	367.0	367.0	55.0

ZRD (R-PBGA-N54)

PLASTIC BALL GRID ARRAY


NOTES: A. All linear dimensions are in millimeters.

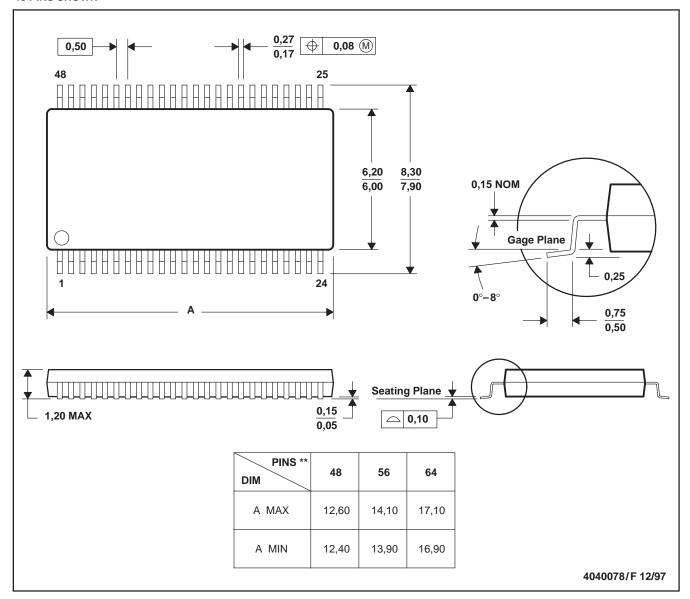
- B. This drawing is subject to change without notice.
- Falls within JEDEC MO-205 variation DD.
- D. This package is lead-free. Refer to the 54 GRD package (drawing 4204759) for tin-lead (SnPb).

DL (R-PDSO-G48)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MO-118

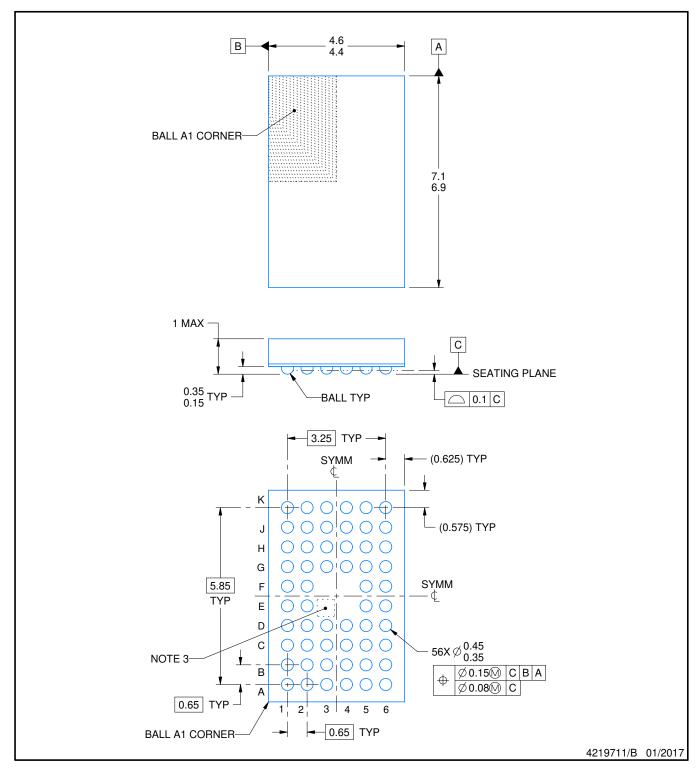

PowerPAD is a trademark of Texas Instruments.

DGG (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

48 PINS SHOWN

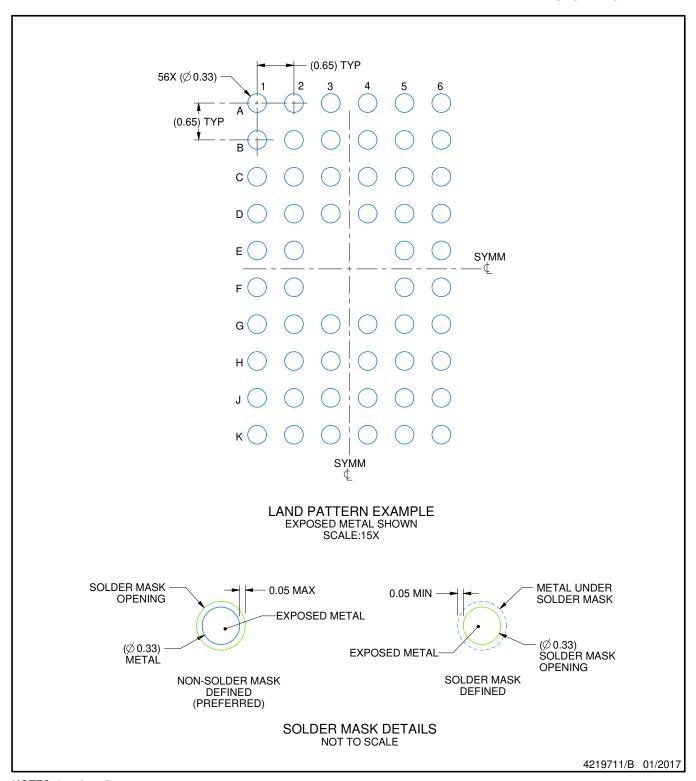
NOTES: A. All linear dimensions are in millimeters.


B. This drawing is subject to change without notice.

C. Body dimensions do not include mold protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

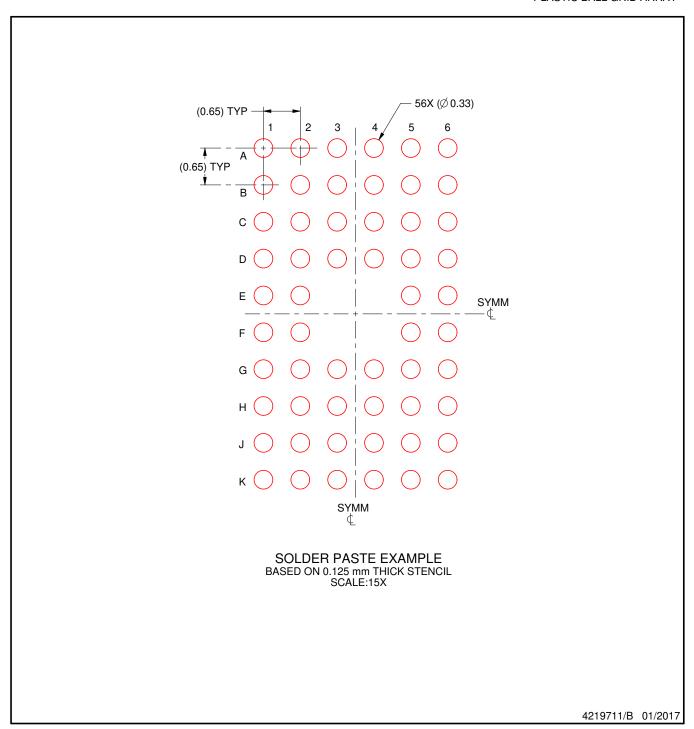
PLASTIC BALL GRID ARRAY



NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 2. This drawing is subject to change without notice.
 3. No metal in this area, indicates orientation.

PLASTIC BALL GRID ARRAY



NOTES: (continued)

4. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. For information, see Texas Instruments literature number SPRAA99 (www.ti.com/lit/spraa99).

PLASTIC BALL GRID ARRAY

NOTES: (continued)

5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.

IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated ('TI") technical, application or other design advice, services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you (individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources.

You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications (and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you will thoroughly test such applications and the functionality of such TI products as used in such applications. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your non-compliance with the terms and provisions of this Notice.

This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services. These include; without limitation, TI's standard terms for semiconductor products http://www.ti.com/sc/docs/stdterms.htm), evaluation modules, and samples (http://www.ti.com/sc/docs/sampterms.htm).

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2017, Texas Instruments Incorporated