

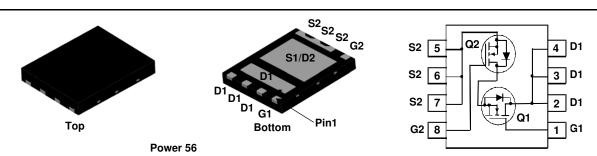
Dual N-Channel PowerTrench[®] MOSFET Q1: 30 V, 12 A, 12.0 m Ω Q2: 30 V, 22 A, 11.6 m Ω

Features

Q1: N-Channel

- Max $r_{DS(on)}$ = 12.0 m Ω at V_{GS} = 10 V, I_D = 11.5 A
- Max $r_{DS(on)}$ = 16.4 m Ω at V_{GS} = 4.5 V, I_D = 10 A

Q2: N-Channel


- Max $r_{DS(on)}$ = 11.6 m Ω at V_{GS} = 10 V, I_D = 12 A
- Max r_{DS(on)} = 17.2 mΩ at V_{GS} = 4.5 V, I_D = 9.5 A
- RoHS Compliant

General Description

This device includes two specialized N-Channel MOSFETs in a dual MLP package. The switch node has been internally connected to enable easy placement and routing of synchronous buck converters. The control MOSFET (Q1) and synchronous MOSFET (Q2) have been designed to provide optimal power efficiency.

Applications

- Computing
- Communications
- General Purpose Point of Load
- Notebook Charger

MOSFET Maximum Ratings T_A = 25°C unless otherwise noted

Symbol	Parameter		Q1	Q2	Units
V _{DS}	Drain to Source Voltage		30	30	V
V _{GS}	Gate to Source Voltage	(Note 3)	±20	±20	V
I _D	Drain Current -Continuous	T _C = 25 °C	12	22	
	-Continuous	T _A = 25 °C	11.5 ^{1a}	12 ^{1b}	Α
	-Pulsed		50	60	
E _{AS}	Single Pulse Avalanche Energy (Note		25	33	mJ
P _D	Power Dissipation for Single Operation	$T_A = 25^{\circ}C$	2.2 ^{1a}	2.5 ^{1b}	w
	Power Dissipation for Single Operation	$T_A = 25^{\circ}C$	1.0 ^{1c}	1.0 ^{1d}	vv
T _J , T _{STG}	Operating and Storage Junction Temperature Range -55 to		+150	°C	

Thermal Characteristics

R_{\thetaJA}	Thermal Resistance, Junction to Ambient		50 ^{1b}	
$R_{ ext{ heta}JA}$	Thermal Resistance, Junction to Ambient	125 ^{1c}	120 ^{1d}	°C/W
$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case	4.6	4.7	

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDMS7606	FDMS7606	Power 56	13 "	12 mm	3000 units

May 2014

FDMS7606 Dua
Dual N
I -Channel
PowerTrench [®]
MOSFET

Symbol	Parameter	Test Conditions	Туре	Min	Тур	Max	Units	
Off Chara	cteristics							
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = 250 \ \mu A, \ V_{GS} = 0 \ V$	Q1 Q2	30 30			V	
$\frac{\Delta BV_{DSS}}{\Delta T_J}$	Breakdown Voltage Temperature Coefficient	$I_D = 250 \ \mu A$, referenced to 25°C			16 20		mV/°C	
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 24 V, V_{GS} = 0 V$	Q1 Q2			1 1	μA	
I _{GSS}	Gate to Source Leakage Curent	$V_{GS} = 20 V, V_{DS} = 0 V$ $V_{GS} = \pm 20 V, V_{DS} = 0 V$				100 ±100	nA	
On Chara	cteristics							
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \ \mu A$	Q1 Q2	1.0 1.0	2.1 1.9	3.0 3.0	V	
$rac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = 250 \ \mu$ A, referenced to 25°C			-6 -5.5		mV/°C	
			Q1		9.2 12.6 11.8	12.0 16.4 14.7		
r _{DS(on)}	Static Drain to Source On Resistance		Q2		9.7 12.8 12.3	11.6 17.2 15.4	17.2	
9 _{FS}	Forward Transconductance	$V_{DD} = 5 V, I_D = 11.5 A$ $V_{DD} = 5 V, I_D = 12 A$	Q1 Q2		53 47		S	
Dynamic	Characteristics			L	1	1	1	
C _{iss}	Input Capacitance	Q1: V _{DS} = 15 V, V _{GS} = 0 V, f = 1 MHZ	Q1 Q2		1050 947	1400 1260	pF	
C _{oss}	Output Capacitance	Q2:	Q1 Q2		295 191	395 255	pF	
C _{rss}	Reverse Transfer Capacitance	V _{DS} = 15 V, V _{GS} = 0 V, f = 1 MHZ	Q1 Q2		32 131	50 200	pF	
R _g	Gate Resistance		Q1 Q2	0.2 0.2	1.6 1.0	4.0 2.5	Ω	
Switching	g Characteristics							
t _{d(on)}	Turn-On Delay Time	Q1	Q1 Q2		7 6	14 12	ns	
t _r	Rise Time	$V_{DD} = 15 \text{ V}, \text{ I}_{D} = 11.5 \text{ A}, \text{ R}_{\text{GEN}} = 6 \Omega$	Q1 Q2		3 3	10 10	ns	
t _{d(off)}	Turn-Off Delay Time	Q2 V _{DD} = 15 V, I _D = 12 A, R _{GEN} = 6 Ω	Q1 Q2		18 19	33 34	ns	
t _f	Fall Time	י טט – יט י, יט – יב א, ייקEN – ט גע ווקבא אין אין אין אין אין אין אין אין אין אי	Q1 Q2		3 3	10 10	ns	
Q _{g(TOT)}	Total Gate Charge	$V_{GS} = 0V$ to 10 V Q1	Q1 Q2		16 19	22 27	nC	
Q _{g(TOT)}	Total Gate Charge	$V_{GS} = 0V \text{ to } 5 \text{ V}$ $I_D = 11.5 \text{ A}$	Q1 Q2		8 10	11 15	nC	
				1	1	1	1	

Electrical Characteristics $T_J = 25^{\circ}C$ unless otherwise noted

Gate to Source Charge

Gate to Drain "Miller" Charge

 Q_{gs}

 Q_{gd}

nC

nC

Q1

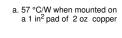
Q2

Q1

Q2

Q2 $V_{DD} = 15 V,$ $I_{D} = 12 A$ 3.2

2.6


2.0

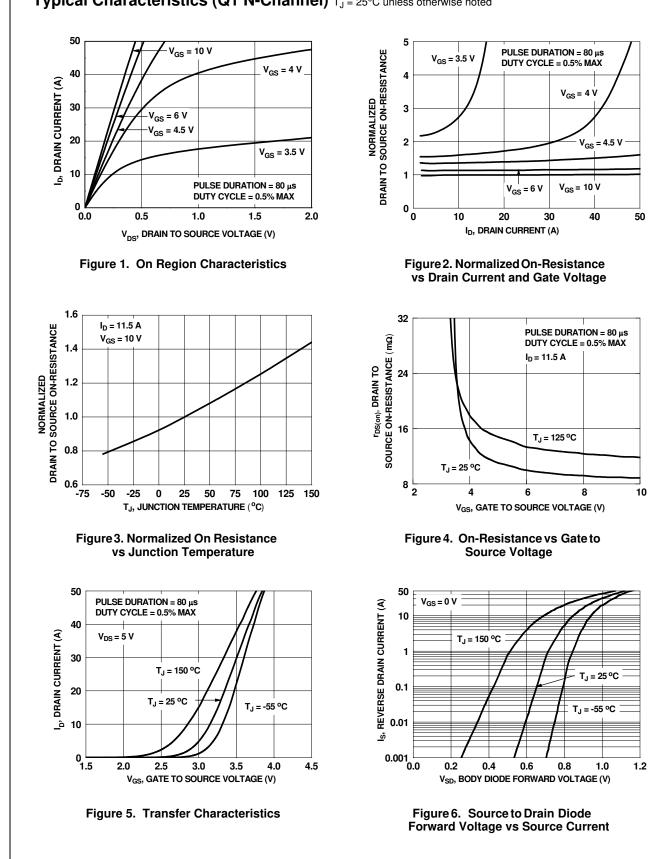
4.2

Symbol	Parameter	Test Conditions		Туре	Min	Тур	Max	Units
Drain-Sou	urce Diode Characteristics							
V _{SD}	Source-Drain Diode Forward Voltage	V _{GS} = 0 V, I _S = 2 A	(Note 2)	Q1		0.76	1.2	v
		V _{GS} = 0 V, I _S = 11.5 A	(Note 2)	Q1		0.87	1.2	
		$V_{GS} = 0 V, I_{S} = 2 A$	(Note 2)	Q2		0.75	1.2	
		$V_{GS} = 0 V, I_S = 12 A$	(Note 2)	Q2		0.85	1.2	
	David David Time	Q1		Q1		22	35	
τ _{rr} F	Reverse Recovery Time	$I_{\rm F} = 11.5$ A, di/dt = 100 A/s		Q2		18	33	ns
<u>^</u>	David David Olympic	Q2		Q1		7	13	
Q _{rr}	Reverse Recovery Charge	I _F = 12 A, di/dt = 100 A/s		Q2		6	12	nC

1.8_{0,JA} is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. $R_{0,JC}$ is guaranteed by design while R_{0CA} is determined by the user's board design.

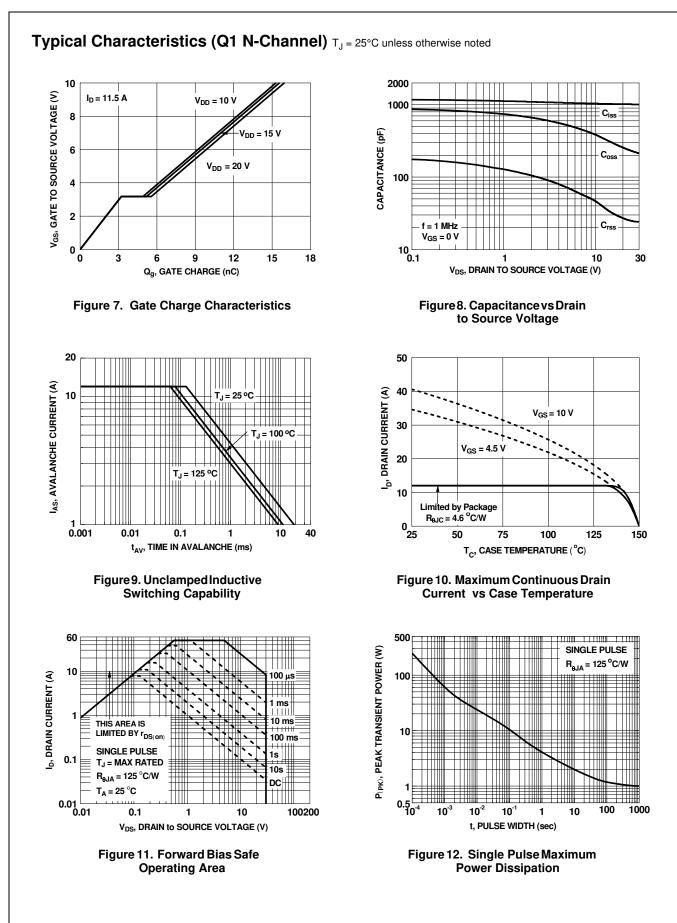
b. 50 °C/W when mounted on a 1 in² pad of 2 oz copper

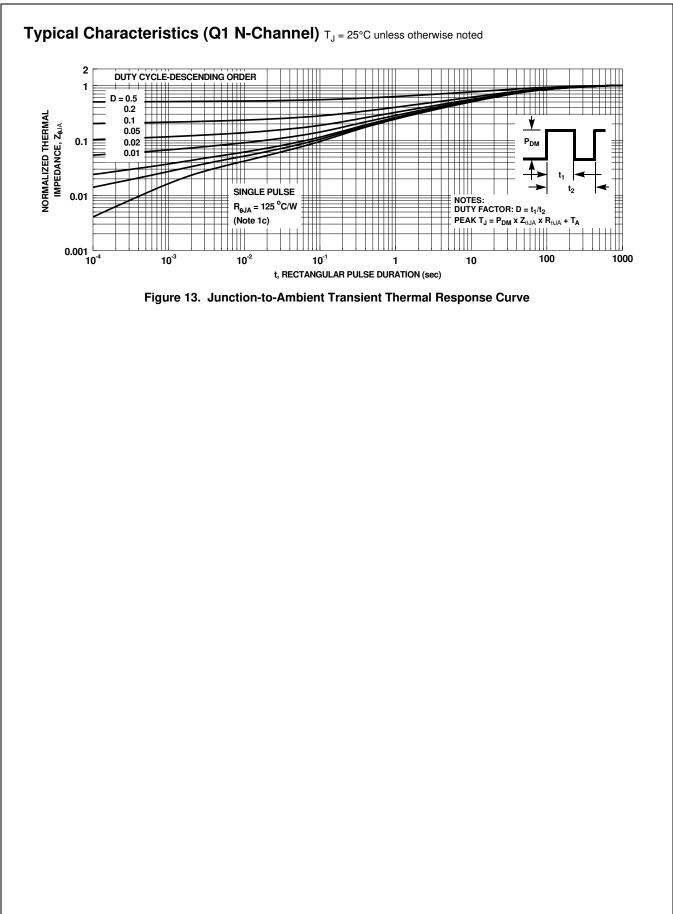
c. 125 °C/W when mounted on a minimum pad of 2 oz copper

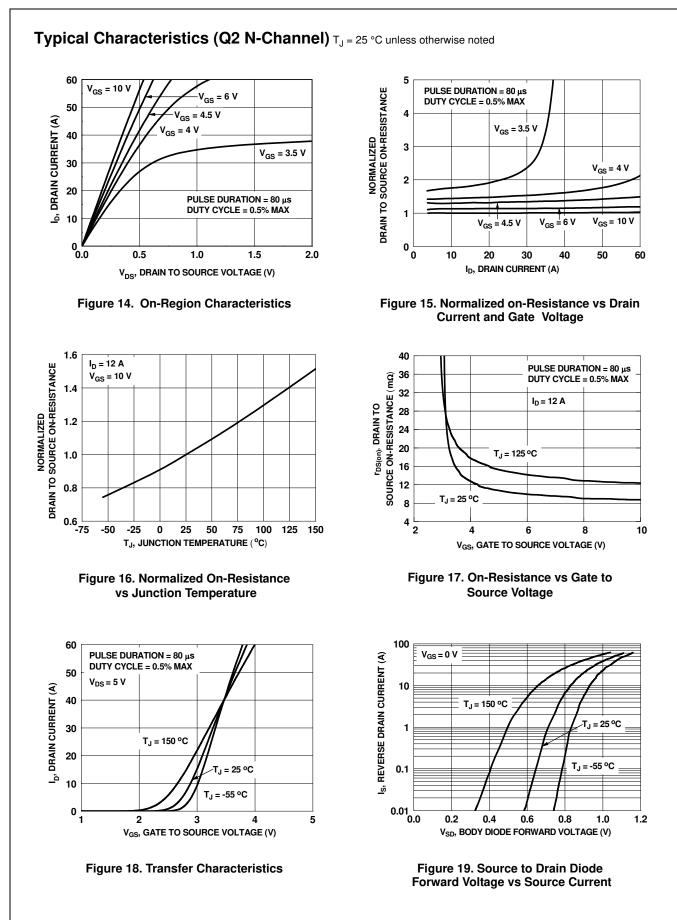

d. 120 °C/W when mounted on a minimum pad of 2 oz copper

2. Pulse Test: Pulse Width < 300 $\mu s,$ Duty cycle < 2.0%.

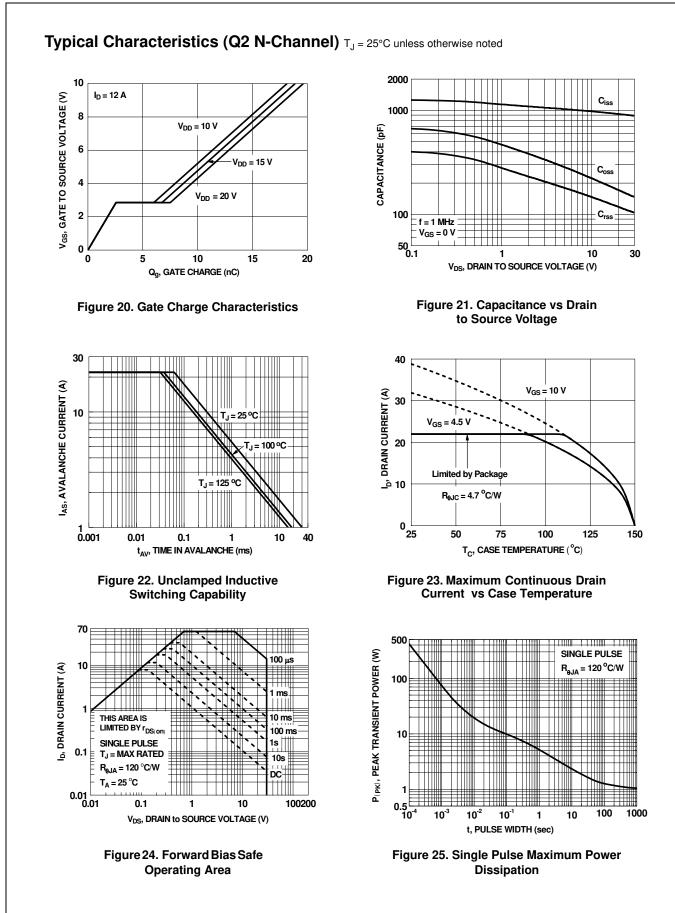
3. As an N-ch device, the negative Vgs rating is for low duty cycle pulse occurrence only. No continuous rating is implied

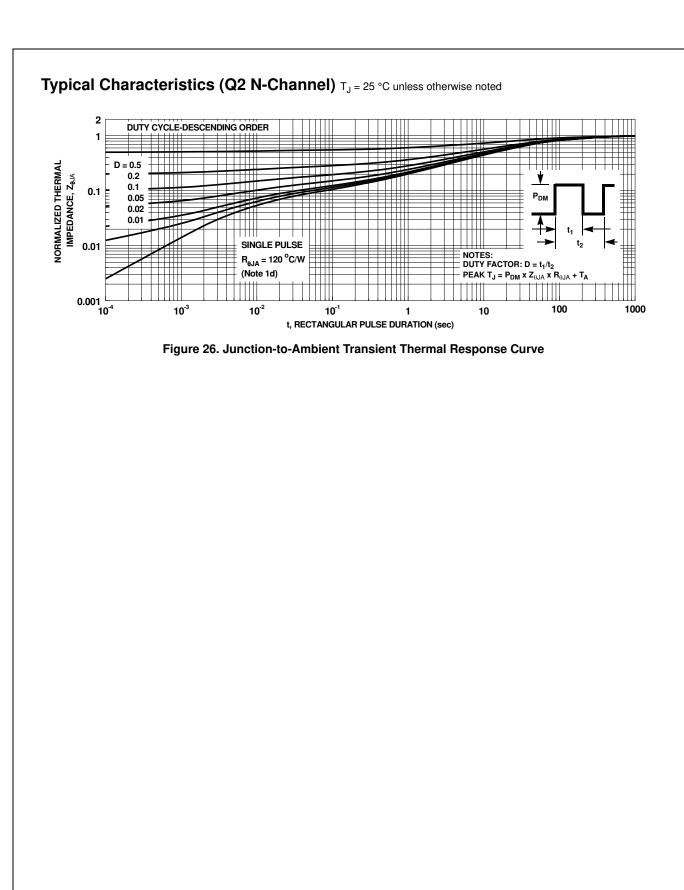

4. Q1: E_{AS} of 25 mJ is based on starting T_J = 25 °C, L = 0.3 mH, I_{AS} = 13 A, V_{DD} = 27 V, V_{GS} = 10 V.

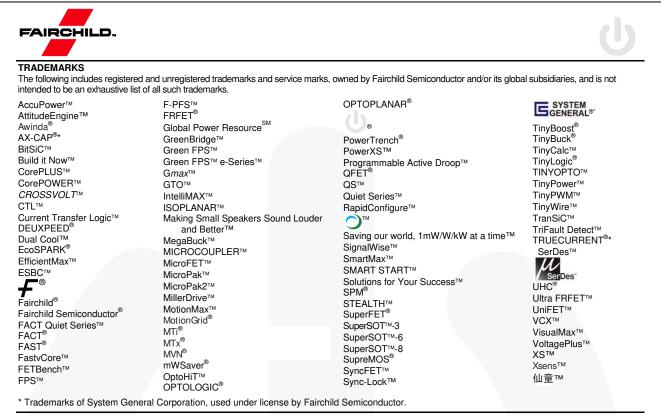

Q2: E_{AS} of 33 mJ is based on starting T_{J} = 25 °C, L = 0.3 mH, I_{AS} = 15 A, V_{DD} = 27 V, V_{GS} = 10 V.



Typical Characteristics (Q1 N-Channel) T_J = 25°C unless otherwise noted







DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT <u>HTTP://WWW.FAIRCHILDSEMI.COM</u>. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition			
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.			
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.			
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.			
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.			
		Rev. 173			