

PCA6408A

Low-voltage, 8-bit I²C-bus and SMBus I/O expander with interrupt output, reset, and configuration registers

Rev. 1 — 27 September 2012

Product data sheet

1. General description

The PCA6408A is an 8-bit general purpose I/O expander that provides remote I/O expansion for most microcontroller families via the I²C-bus interface.

NXP I/O expanders provide a simple solution when additional I/Os are needed while keeping interconnections to a minimum, for example, in battery-powered mobile applications for interfacing to sensors, push buttons, keypad, etc. In addition to providing a flexible set of GPIOs, it simplifies interconnection of a processor running at one voltage level to I/O devices operating at a different (usually higher) voltage level. The PCA6408A has built-in level shifting feature that makes these devices extremely flexible in mixed signal environments where communication between incompatible I/O voltages is required. Its wide $V_{\rm DD}$ range of 1.65 V to 5.5 V on the dual power rail allows seamless communications with next-generation low voltage microprocessors and microcontrollers on the interface side (SDA/SCL) and peripherals at a higher voltage on the port side.

There are two supply voltages for PCA6408A: $V_{DD(I2C\text{-}bus)}$ and $V_{DD(P)}$. $V_{DD(I2C\text{-}bus)}$ provides the supply voltage for the interface at the master side (for example, a microcontroller) and the $V_{DD(P)}$ provides the supply for core circuits and Port P. The bidirectional voltage level translation in the PCA6408A is provided through $V_{DD(I2C\text{-}bus)}$. $V_{DD(I2C\text{-}bus)}$ should be connected to the V_{DD} of the external SCL/SDA lines. This indicates the V_{DD} level of the $I^2C\text{-}bus$ to the PCA6408A. The voltage level on Port P of the PCA6408A is determined by the $V_{DD(P)}$.

The PCA6408A consists of one 8-bit Configuration (input or output selection), Input, Output, and Polarity Inversion (active HIGH) register. At power-on, the I/Os are configured as inputs. However, the system master can enable the I/Os as either inputs or outputs by writing to the I/O configuration bits. The data for each input or output is kept in the corresponding Input or Output register. The polarity of the Input port register can be inverted with the Polarity Inversion register, saving interrupts.

The system master can reset the PCA6408A in the event of a time-out or other improper operation by asserting a LOW in the RESET input. The power-on reset puts the registers in their default state and initializes the I²C-bus/SMBus state machine. The RESET pin causes the same reset/initialization to occur without de-powering the part.

The PCA6408A open-drain interrupt ($\overline{\text{INT}}$) output is activated when any input state differs from its corresponding Input port register state and is used to indicate to the system master that an input state has changed.

INT can be connected to the interrupt input of a microcontroller. By sending an interrupt signal on this line, the remote I/O can inform the microcontroller if there is incoming data on its ports without having to communicate via the I²C-bus. Thus, the PCA6408A can remain a simple slave device.

Low-voltage, 8-bit I²C-bus and SMBus I/O expander

The device Port P outputs have 25 mA sink capabilities for directly driving LEDs while consuming low device current.

One hardware pin (ADDR) can be used to program and vary the fixed I²C-bus address and allow up to two devices to share the same I²C-bus or SMBus.

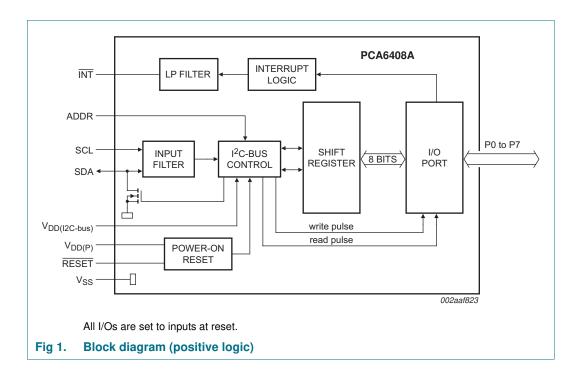
2. Features and benefits

- I²C-bus to parallel port expander
- Operating power supply voltage range of 1.65 V to 5.5 V
- Allows bidirectional voltage-level translation and GPIO expansion between:
 - ◆ 1.8 V SCL/SDA and 1.8 V, 2.5 V, 3.3 V or 5 V Port P
 - 2.5 V SCL/SDA and 1.8 V, 2.5 V, 3.3 V or 5 V Port P
 - ◆ 3.3 V SCL/SDA and 1.8 V, 2.5 V, 3.3 V or 5 V Port P
 - 5 V SCL/SDA and 1.8 V, 2.5 V, 3.3 V or 5 V Port P
- Low standby current consumption of 1 μA
- Schmitt-trigger action allows slow input transition and better switching noise immunity at the SCL and SDA inputs
 - ♦ V_{hvs} = 0.18 V (typical) at 1.8 V
 - ♦ V_{hvs} = 0.25 V (typical) at 2.5 V
 - ◆ V_{hvs} = 0.33 V (typical) at 3.3 V
 - ♦ V_{hys} = 0.5 V (typical) at 5 V
- 5 V tolerant I/O ports
- Active LOW reset input (RESET)
- Open-drain active LOW interrupt output (INT)
- 400 kHz Fast-mode I²C-bus
- Input/Output Configuration register
- Polarity Inversion register
- Internal power-on reset
- Power-up with all channels configured as inputs
- No glitch on power-up
- Noise filter on SCL/SDA inputs
- Latched outputs with 25 mA drive maximum capability for directly driving LEDs
- Latch-up performance exceeds 100 mA per JESD 78, Class II
- ESD protection exceeds JESD 22
 - 2000 V Human-Body Model (A114-A)
 - ◆ 1000 V Charged-Device Model (C101)
- Packages offered: HVQFN16, TSSOP16, XQFN16

Low-voltage, 8-bit I²C-bus and SMBus I/O expander

3. Ordering information

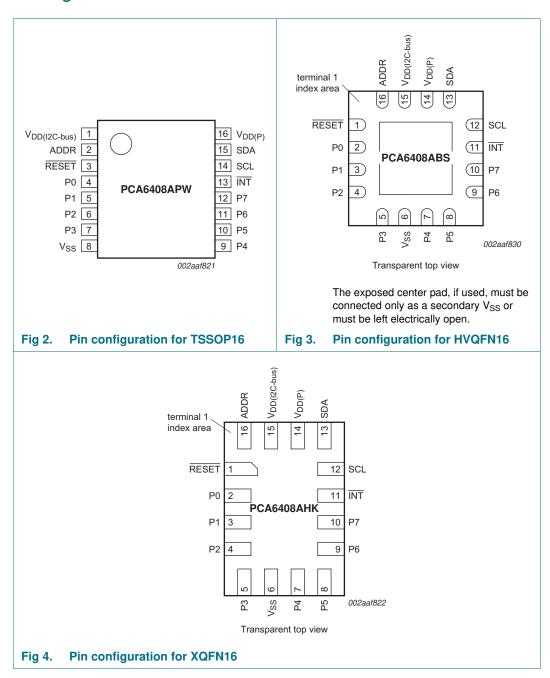
Table 1. Ordering information


Type number	Topside	Package	Package						
	mark	Name	Description	Version					
PCA6408ABS	P8A	HVQFN16	plastic thermal enhanced very thin quad flat package; no leads; 16 terminals; body $3\times3\times0.85$ mm	SOT758-1					
PCA6408APW	PA6408A	TSSOP16	plastic thin shrink small outline package; 16 leads; body width 4.4 mm	SOT403-1					
PCA6408AHK	P8	XQFN16	plastic, extremely thin quad flat package; no leads; 16 terminals; body 1.80 \times 2.60 \times 0.50 mm	SOT1161-1					

3.1 Ordering options

Table 2. Ordering options

Type number	Orderable part number	Package	Packing method	Minimum order quantity	Temperature
PCA6408ABS	PCA6408ABSHP	HVQFN16	Reel pack, SMD, 13-inch, Turned	6000	$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}$
PCA6408APW	PCA6408APW,118	TSSOP16	Reel pack, SMD, 13-inch	2500	$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}$
PCA6408AHK	PCA6408AHKX	XQFN16	Reel pack, SMD	4000	$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}$


4. Block diagram

Low-voltage, 8-bit I²C-bus and SMBus I/O expander

5. Pinning information

5.1 Pinning

Low-voltage, 8-bit I²C-bus and SMBus I/O expander

5.2 Pin description

Table 3. Pin description

Symbol	Pin			Description
	TSSOP16	HVQFN16	XQFN16	
$V_{\text{DD(I2C-bus)}}$	1	15	15	Supply voltage of I^2C -bus. Connect directly to the V_{DD} of the external I^2C master. Provides voltage-level translation.
ADDR	2	16	16	Address input. Connect directly to $V_{\text{DD}(P)}$ or ground.
RESET	3	1	1	Active LOW reset input. Connect to $V_{\text{DD}(12\text{C-bus})}$ through a pull-up resistor if no active connection is used.
P0[1]	4	2	2	Port P input/output 0.
P1[1]	5	3	3	Port P input/output 1.
P2[1]	6	4	4	Port P input/output 2.
P3[1]	7	5	5	Port P input/output 3.
V_{SS}	8	6	6	Ground.
P4[1]	9	7	7	Port P input/output 4.
P5[1]	10	8	8	Port P input/output 5.
P6[1]	11	9	9	Port P input/output 6.
P7 <mark>11</mark>	12	10	10	Port P input/output 7.
INT	13	11	11	Interrupt output. Connect to $V_{\text{DD(I2C-bus)}}$ through a pull-up resistor.
SCL	14	12	12	Serial clock bus. Connect to $V_{\text{DD(I2C-bus)}}$ through a pull-up resistor.
SDA	15	13	13	Serial data bus. Connect to $V_{\text{DD(I2C-bus)}}$ through a pull-up resistor.
$V_{\text{DD(P)}}$	16	14	14	Supply voltage of PCA6408A for Port P.

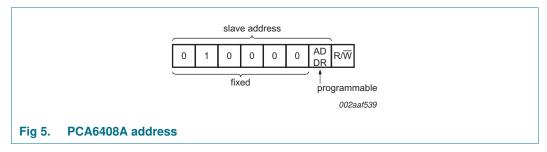
^[1] All I/O are configured as input at power-on.

Low-voltage, 8-bit I²C-bus and SMBus I/O expander

6. Voltage translation

 $\underline{\text{Table 4}}$ shows how to set up V_{DD} levels for the necessary voltage translation between the I^2C -bus and the PCA6408A.

Table 4. Voltage translation


V _{DD(I2C-bus)} (SDA and SCL of I ² C master)	V _{DD(P)} (Port P)
1.8 V	1.8 V
1.8 V	2.5 V
1.8 V	3.3 V
1.8 V	5 V
2.5 V	1.8 V
2.5 V	2.5 V
2.5 V	3.3 V
2.5 V	5 V
3.3 V	1.8 V
3.3 V	2.5 V
3.3 V	3.3 V
3.3 V	5 V
5 V	1.8 V
5 V	2.5 V
5 V	3.3 V
5 V	5 V

7. Functional description

Refer to Figure 1 "Block diagram (positive logic)".

7.1 Device address

The address of the PCA6408A is shown in Figure 5.

ADDR is the hardware address package pin and is held to either HIGH (logic 1) or LOW (logic 0) to assign one of the two possible slave addresses. The last bit of the slave address defines the operation (read or write) to be performed. A HIGH (logic 1) selects a read operation, while a LOW (logic 0) selects a write operation.

Low-voltage, 8-bit I²C-bus and SMBus I/O expander

7.2 Interface definition

Table 5. Interface definition

Byte		Bit								
	7 (MSB)	6	5	4	3	2	1	0 (LSB)		
I ² C-bus slave address	L	Н	L	L	L	L	ADDR	R/\overline{W}		
I/O data bus	P7	P6	P5	P4	P3	P2	P1	P0		

7.3 Pointer register and command byte

Following the successful acknowledgement of the address byte, the bus master sends a command byte, which is stored in the Pointer register in the PCA6408A. Two bits of this data byte state the operation (read or write) and the internal registers (Input, Output, Polarity Inversion, or Configuration) that will be affected. This register is write only.

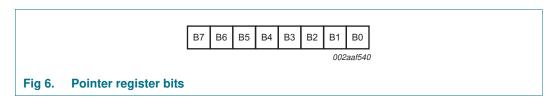


Table 6. Command byte

		Poin	ter re	•				Command byte	Register	Protocol	Power-up
B7	B6	B5	B4	В3	B2	B1	B0	(hexadecimal)			default
0	0	0	0	0	0	0	0	00h	Input port	read byte	xxxx xxxx[1]
0	0	0	0	0	0	0	1	01h	Output port	read/write byte	1111 1111
0	0	0	0	0	0	1	0	02h	Polarity Inversion	read/write byte	0000 0000
0	0	0	0	0	0	1	1	03h	Configuration	read/write byte	1111 1111

^[1] Undefined.

Low-voltage, 8-bit I²C-bus and SMBus I/O expander

7.4 Register descriptions

7.4.1 Input port register (00h)

The Input port register (register 0) reflects the incoming logic levels of the pins, regardless of whether the pin is defined as an input or an output by the Configuration register. The Input port register is read only; writes to this register have no effect. The default value 'X' is determined by the externally applied logic level. An Input port register read operation is performed as described in Section 8.2 "Read commands".

Table 7. Input port register (address 00h)

Bit	7	6	5	4	3	2	1	0
Symbol	17	16	15	14	13	12	l1	10
Default	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ

7.4.2 Output port register (01h)

The Output port register (register 1) shows the outgoing logic levels of the pins defined as outputs by the Configuration register. Bit values in these registers have no effect on pins defined as inputs. In turn, reads from this register reflect the value that was written to this register, **not** the actual pin value.

Table 8. Output port register (address 01h)

Bit	7	6	5	4	3	2	1	0
Symbol	07	O6	O5	O4	О3	O2	O1	00
Default	1	1	1	1	1	1	1	1

7.4.3 Polarity inversion register (02h)

The Polarity inversion register (register 2) allows polarity inversion of pins defined as inputs by the Configuration register. If a bit in this register is set (written with '1'), the corresponding port pin's polarity is inverted. If a bit in this register is cleared (written with a '0'), the corresponding port pin's original polarity is retained.

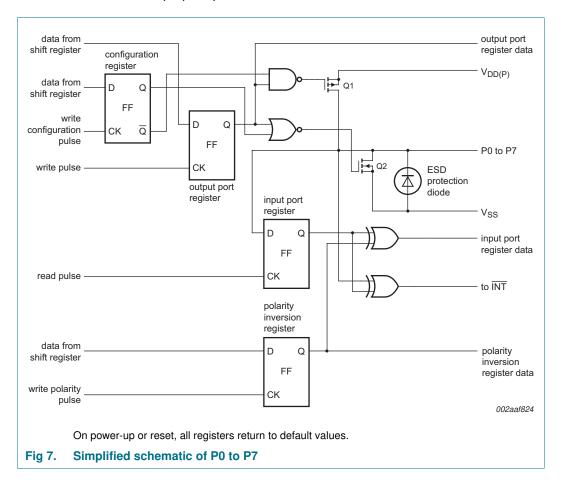
 Table 9.
 Register 2: Polarity inversion register (address 02h)

Bit	7	6	5	4	3	2	1	0
Symbol	N7	N6	N5	N4	N3	N2	N1	N0
Default	0	0	0	0	0	0	0	0

7.4.4 Configuration register (03h)

The Configuration register (register 3) configures the direction of the I/O pins. If a bit in this register is set to 1, the corresponding port pin is enabled as a high-impedance input. If a bit in this register is cleared to 0, the corresponding port pin is enabled as an output.

Table 10. Register 3: Configuration register (address 03h)


Bit	7	6	5	4	3	2	1	0
Symbol	C7	C6	C5	C4	C3	C2	C1	C0
Default	1	1	1	1	1	1	1	1

Low-voltage, 8-bit I²C-bus and SMBus I/O expander

7.5 I/O port

When an I/O is configured as an input, FETs Q1 and Q2 are off, which creates a high-impedance input. The input voltage may be raised above V_{DD} to a maximum of 5.5 V.

If the I/O is configured as an output, Q1 or Q2 is enabled, depending on the state of the Output port register. In this case, there are low-impedance paths between the I/O pin and either $V_{DD(P)}$ or V_{SS} . The external voltage applied to this I/O pin should not exceed the recommended levels for proper operation.

Low-voltage, 8-bit I²C-bus and SMBus I/O expander

7.6 Power-on reset

When power (from 0 V) is applied to $V_{DD(P)}$, an internal power-on reset holds the PCA6408A in a reset condition until $V_{DD(P)}$ has reached V_{POR} . At that time, the reset condition is released and the PCA6408A registers and I²C-bus/SMBus state machine initialize to their default states. After that, $V_{DD(P)}$ must be lowered to below V_{PORF} and back up to the operating voltage for a power-reset cycle. See Section 9.2 "Power-on reset requirements".

7.7 Reset input (RESET)

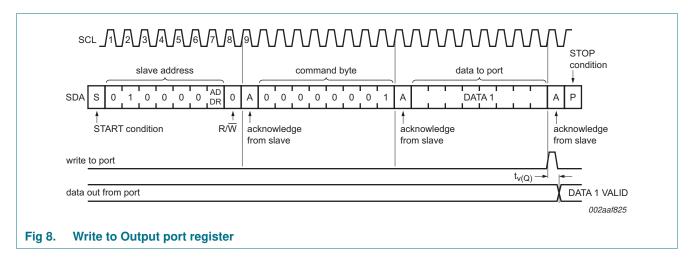
The $\overline{\text{RESET}}$ input can be asserted to initialize the system while keeping the $V_{DD(P)}$ at its operating level. A reset can be accomplished by holding the $\overline{\text{RESET}}$ pin LOW for a minimum of $t_{w(rst)}$. The PCA6408A registers and I^2C -bus/SMBus state machine are changed to their default state once $\overline{\text{RESET}}$ is LOW (0). When $\overline{\text{RESET}}$ is HIGH (1), the I/O levels at the P port can be changed externally or through the master. This input requires a pull-up resistor to $V_{DD(I2C\text{-bus})}$ if no active connection is used.

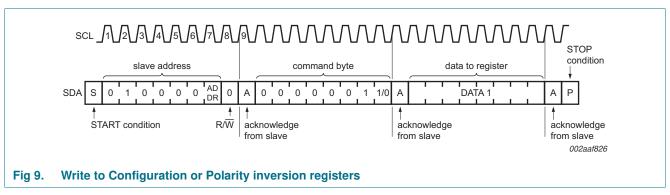
7.8 Interrupt output (INT)

An interrupt is generated by any rising or falling edge of the port inputs in the Input mode. After time $t_{v(INT)}$, the signal INT is valid. Resetting the interrupt circuit is achieved when data on the port is changed to the original setting or when data is read from the port that generated the interrupt (see Figure 11). Resetting occurs in the Read mode at the acknowledge (ACK) or not acknowledge (NACK) bit after the rising edge of the SCL signal. Interrupts that occur during the ACK or NACK clock pulse can be lost (or be very short) due to the resetting of the interrupt during this pulse. Each change of the I/Os after resetting is detected and is transmitted as \overline{INT} .

A pin configured as an output cannot cause an interrupt. Changing an I/O from an output to an input may cause a false interrupt to occur, if the state of the pin does not match the contents of the Input port register.

The $\overline{\text{INT}}$ output has an open-drain structure and requires a pull-up resistor to $V_{DD(P)}$ or $V_{DD(I2C\text{-}bus)}$ depending on the application. $\overline{\text{INT}}$ should be connected to the voltage source of the device that requires the interrupt information.

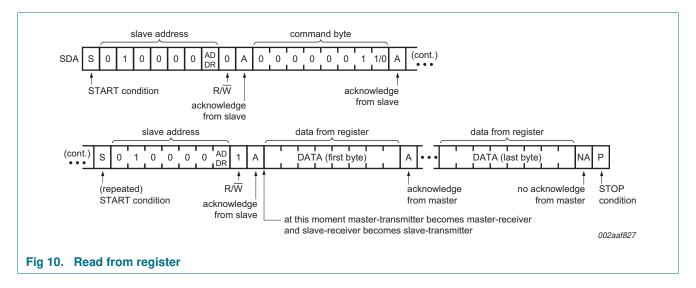

Low-voltage, 8-bit I²C-bus and SMBus I/O expander

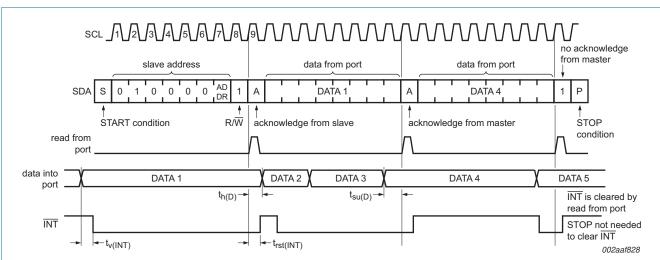

8. Bus transactions

The PCA6408A is an I²C-bus slave device. Data is exchanged between the master and PCA6408A through write and read commands using I²C-bus. The two communication lines are a serial data line (SDA) and a serial clock line (SCL). Both lines must be connected to a positive supply via a pull-up resistor when connected to the output stages of a device. Data transfer may be initiated only when the bus is not busy.

8.1 Write commands

Data is transmitted to the PCA6408A by sending the device address and setting the Least Significant Bit (LSB) to a logic 0 (see <u>Figure 5</u> for device address). The command byte is sent after the address and determines which register receives the data that follows the command byte. There is no limitation on the number of data bytes sent in one write transmission.


Low-voltage, 8-bit I²C-bus and SMBus I/O expander


8.2 Read commands

To read data from the PCA6408A, the bus master must first send the PCA6408A address with the least significant bit set to a logic 0 (see <u>Figure 5</u> for device address). The command byte is sent after the address and determines which register is to be accessed.

After a restart the device address is sent again, but this time the LSB is set to a logic 1. Data from the register defined by the command byte then is sent by the PCA6408A (see Figure 10 and Figure 11).

Data is clocked into the register on the rising edge of the ACK clock pulse. There is no limit on the number of data bytes received in one read transmission, but on the final byte received the bus master must not acknowledge the data.

Transfer of data can be stopped at any time by a STOP condition. When this occurs, data present at the latest acknowledge phase is valid (output mode). It is assumed that the command byte has previously been programmed with 00h (read Input port register).

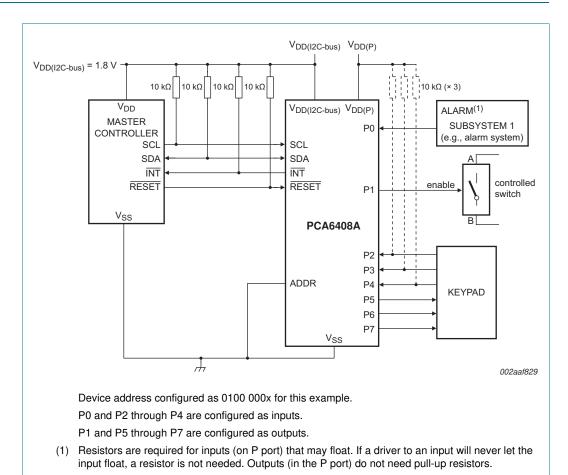
This figure eliminates the command byte transfer, a restart, and slave address call between the initial slave address call and actual data transfer from P port (see Figure 10).

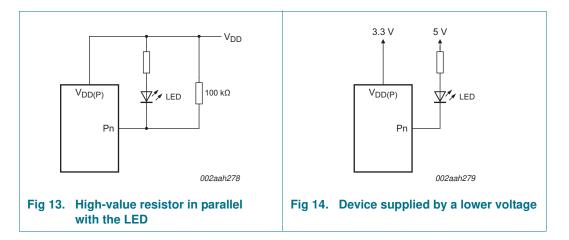
Fig 11. Read Input port register

PCA6408A

Low-voltage, 8-bit I²C-bus and SMBus I/O expander

9. Application design-in information

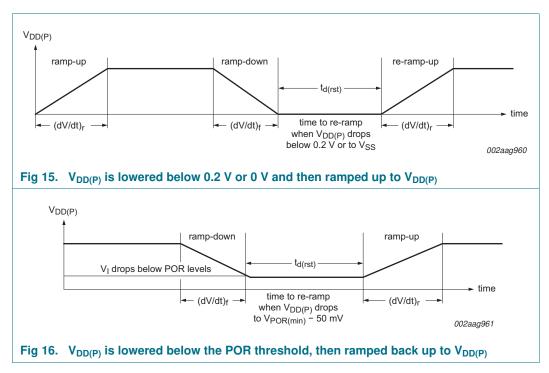



Fig 12. Typical application

9.1 Minimizing I_{DD} when I/Os control LEDs

When the I/Os are used to control LEDs, normally they are connected to $V_{DD(P)}$ through a resistor as shown in Figure 12. The LED acts as a diode, so when the LED is off, the I/O V_I is about 1.2 V less than $V_{DD(P)}$. The ΔI_{DD} parameter in Table 15 "Static characteristics" shows how $I_{DD(P)}$ increases as V_I becomes lower than $V_{DD(P)}$. Designs that must minimize current consumption, such as battery power applications, should consider maintaining the I/O pins greater than or equal to $V_{DD(P)}$ when the LED is off.

<u>Figure 13</u> shows a high-value resistor in parallel with the LED. <u>Figure 14</u> shows $V_{DD(P)}$ less than the LED supply voltage by at least 1.2 V. Both of these methods maintain the I/O V_I at or above $V_{DD(P)}$ and prevent additional supply current consumption when the LED is off.


Low-voltage, 8-bit I²C-bus and SMBus I/O expander

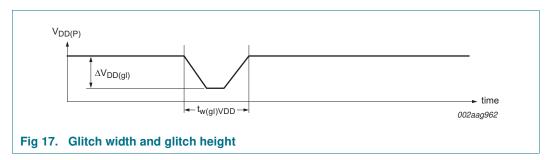
9.2 Power-on reset requirements

In the event of a glitch or data corruption, PCA6408A can be reset to its default conditions by using the power-on reset feature. Power-on reset requires that the device go through a power cycle to be completely reset. This reset also happens when the device is powered on for the first time in an application.

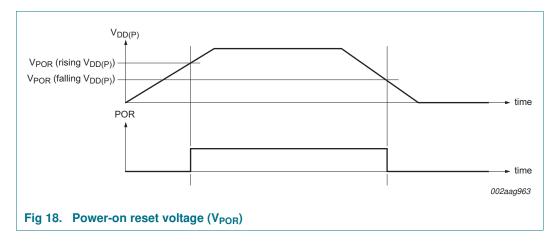
The two types of power-on reset are shown in Figure 15 and Figure 16.

<u>Table 11</u> specifies the performance of the power-on reset feature for PCA6408A for both types of power-on reset.

Low-voltage, 8-bit I²C-bus and SMBus I/O expander


Table 11. Recommended supply sequencing and ramp rates

 T_{amb} = 25 °C (unless otherwise noted). Not tested; specified by design.


Symbol	Parameter	Condition	Min	Тур	Max	Unit
$(dV/dt)_f$	fall rate of change of voltage	Figure 15	0.1	-	2000	ms
$(dV/dt)_r$	rise rate of change of voltage	Figure 15	0.1	-	2000	ms
$t_{\text{d(rst)}} \\$	reset delay time	Figure 15; re-ramp time when $V_{DD(P)}$ drops to V_{SS}	1	-	-	μS
		$\frac{\text{Figure 16}}{\text{V}_{DD(P)}} \text{ drops to V}_{POR(min)} - 50 \text{ mV}$	1	-	-	μS
$\Delta V_{DD(gl)}$	glitch supply voltage difference	Figure 17	<u>[1]</u> -	-	1.0	V
$t_{w(gl)VDD}$	supply voltage glitch pulse width	Figure 17	<u>[2]</u> _	-	10	μS
V _{POR(trip)}	power-on reset trip voltage	falling $V_{DD(P)}$	0.7	-	-	V
		rising V _{DD(P)}	-	-	1.4	V

^[1] Level that V_{DD(P)} can glitch down to with a ramp rate of 0.4 μs/V, but not cause a functional disruption when t_{wol)VDD} < 1 μs.

Glitches in the power supply can also affect the power-on reset performance of this device. The glitch width $(t_{W(gl)VDD})$ and glitch height $(\Delta V_{DD(gl)})$ are dependent on each other. The bypass capacitance, source impedance, and device impedance are factors that affect power-on reset performance. Figure 17 and Table 11 provide more information on how to measure these specifications.

 V_{POR} is critical to the power-on reset. V_{POR} is the voltage level at which the reset condition is released and all the registers and the I²C-bus/SMBus state machine are initialized to their default states. The value of V_{POR} differs based on the $V_{DD(P)}$ being lowered to or from 0 V. Figure 18 and Table 11 provide more details on this specification.

PCA6408A

^[2] Glitch width that will not cause a functional disruption when $\Delta V_{DD(gl)} = 0.5 \times V_{DD(P)}$.

Low-voltage, 8-bit I²C-bus and SMBus I/O expander

10. Limiting values

Table 12. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
$V_{\text{DD(I2C-bus)}}$	I ² C-bus supply voltage		-0.5	+6.5	V
$V_{DD(P)}$	supply voltage port P		-0.5	+6.5	V
VI	input voltage		<u>[1]</u> –0.5	+6.5	V
Vo	output voltage		<u>[1]</u> –0.5	+6.5	V
I _{IK}	input clamping current	ADDR, RESET, SCL; V _I < 0 V	-	±20	mA
I _{OK}	output clamping current	INT; V _O < 0 V	-	±20	mA
I _{IOK}	input/output clamping current	P port; $V_O < 0 \text{ V or } V_O > V_{DD(P)}$	-	±20	mA
		SDA; $V_O < 0$ V or $V_O > V_{DD(I2C-bus)}$	-	±20	mA
I _{OL}	LOW-level output current	continuous; P port; $V_O = 0 V \text{ to } V_{DD(P)}$	-	50	mA
		continuous; SDA, \overline{INT} ; $V_O = 0 \text{ V to } V_{DD(I2C-bus)}$	-	25	mA
I _{OH}	HIGH-level output current	continuous; P port; $V_O = 0 V \text{ to } V_{DD(P)}$	-	25	mA
I_{DD}	supply current	continuous through V _{SS}	-	200	mA
$I_{DD(P)}$	supply current port P	continuous through V _{DD(P)}	-	160	mA
I _{DD(I2C-bus)}	I ² C-bus supply current	continuous through V _{DD(I2C-bus)}	-	10	mA
T _{stg}	storage temperature		-65	+150	°C
$T_{j(max)}$	maximum junction temperature		-	125	°C

^[1] The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

11. Recommended operating conditions

Table 13. Operating conditions

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						
$\begin{array}{c} V_{DD(P)} & \text{supply voltage port P} \\ V_{IH} & HIGH-level input voltage \\ \hline V_{ID} & DOR, P7 \text{ to P0} \\ \hline V_{IL} & LOW-level input voltage \\ \hline IOH & HIGH-level output current \\ \hline IOH & LOW-level output current \\ \hline IOH & DOR, P7 \text{ to P0} \\ \hline IOH & DOR,$	Symbol	Parameter	Conditions	Min	Max	Unit
$\begin{array}{c} V_{IH} \\ V_{IH} \\ \end{array} \\ \begin{array}{c} HIGH\text{-level input voltage} \\ \end{array} \\ \begin{array}{c} SCL, SDA, \overline{RESET} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0.7 \times V_{DD(I2C\text{-bus})} \\ 0.7 \times V_{DD(I2C\text{-bus})} \\ \end{array} \\ \begin{array}{c} 5.5 \\ \end{array} \\ V \\ \end{array} \\ V_{IL} \\ \end{array} \\ \begin{array}{c} V_{IL} \\ V_{IL} \\ \end{array} \\ \begin{array}{c} LOW\text{-level input voltage} \\ \end{array} \\ \begin{array}{c} SCL, SDA, \overline{RESET} \\ \end{array} \\ \begin{array}{c} -0.5 \\ \end{array} \\ \begin{array}{c} -0.5 \\ \end{array} \\ \begin{array}{c} 0.3 \times V_{DD(I2C\text{-bus})} \\ \end{array} \\ V \\ \end{array} \\ \begin{array}{c} V \\ \end{array} \\ \begin{array}{c} I_{OH} \\ I_{OH} \\ \end{array} \\ \begin{array}{c} HIGH\text{-level output current} \\ \end{array} \\ \begin{array}{c} P7 \text{ to P0} \\ \end{array} \\ \begin{array}{c} - \\ \end{array} \\ \begin{array}{c} - \\ \end{array} \\ \begin{array}{c} - \\ \end{array} \\ \begin{array}{c} 0.7 \times V_{DD(I2C\text{-bus})} \\ \end{array} \\ \begin{array}{c} V \\ \end{array} \\ \end{array} \\ \begin{array}{c} V \\ \end{array} \\ \begin{array}{c} I_{OH} \\ I_{OH} \\ \end{array} \\ \begin{array}{c} P7 \text{ to P0} \\ \end{array} \\ \begin{array}{c} - \\ \end{array} \\ \begin{array}{c} - \\ \end{array} \\ \begin{array}{c} - \\ \end{array} \\ \end{array} \\ \begin{array}{c} 25 \\ \end{array} \\ \begin{array}{c} MA \\ \end{array} \\ \end{array}$	V _{DD(I2C-bus)}	I ² C-bus supply voltage		1.65	5.5	V
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$V_{DD(P)}$	supply voltage port P		1.65	5.5	V
$\begin{array}{c} V_{IL} \\ V_{IL} \\ \end{array} \begin{array}{c} LOW\text{-level input voltage} \\ \end{array} \begin{array}{c} SCL, SDA, \overline{RESET} \\ \end{array} \begin{array}{c} -0.5 \\ \end{array} \begin{array}{c} 0.3 \times V_{DD(I2C\text{-bus})} \\ \end{array} \begin{array}{c} V \\ \end{array} \\ \end{array} \\ \begin{array}{c} I_{OH} \\ I_{OL} \\ \end{array} \begin{array}{c} HIGH\text{-level output current} \\ \end{array} \begin{array}{c} P7 \text{ to P0} \\ \end{array} \begin{array}{c} -0.5 \\ \end{array} \begin{array}{c} 0.3 \times V_{DD(P)} \\ \end{array} \begin{array}{c} V \\ \end{array} \\ \end{array} \\ \begin{array}{c} DOR \\ \end{array} \\ \end{array} \\ \begin{array}{c} P7 \text{ to P0} \\ \end{array} \begin{array}{c} -0.5 \\ \end{array} \begin{array}{c} 0.3 \times V_{DD(P)} \\ \end{array} \begin{array}{c} V \\ \end{array} \\ \end{array} \\ \begin{array}{c} DOR \\ \end{array} \begin{array}{c} DOR \\ \end{array} \begin{array}{c} DOR \\ \end{array} \\ \begin{array}{c} D$	V_{IH}	HIGH-level input voltage	SCL, SDA, \overline{RESET}	$0.7 \times V_{DD(I2C\text{-}bus)}$	5.5	V
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			ADDR, P7 to P0	$0.7 \times V_{DD(P)}$	5.5	V
I _{OH} HIGH-level output current P7 to P0 - 10 mA I _{OL} LOW-level output current P7 to P0 - 25 mA	V_{IL}	LOW-level input voltage	SCL, SDA, \overline{RESET}	-0.5	$0.3 \times V_{DD(I2C\text{-bus})}$	V
I _{OL} LOW-level output current P7 to P0 - 25 mA			ADDR, P7 to P0	-0.5	$0.3 \times V_{DD(P)}$	V
	I _{OH}	HIGH-level output current	P7 to P0	-	10	mA
T _{amb} ambient temperature operating in free air -40 +85 °C	I _{OL}	LOW-level output current	P7 to P0	-	25	mA
	T _{amb}	ambient temperature	operating in free air	-40	+85	°C

Low-voltage, 8-bit I²C-bus and SMBus I/O expander

12. Thermal characteristics

Table 14. Thermal characteristics

Symbol	Parameter	Conditions	Max	Unit
$Z_{th(j-a)}$	transient thermal impedance from junction to ambient	TSSOP16 package	<u>[1]</u> 108	K/W
		HVQFN16 package	<u>[1]</u> 53	K/W
		XQFN16 package	<u>11</u> 184	K/W

^[1] The package thermal impedance is calculated in accordance with JESD 51-7.

13. Static characteristics

Table 15. Static characteristics

 T_{amb} = -40 °C to +85 °C; $V_{DD(I2C-bus)}$ = 1.65 V to 5.5 V; unless otherwise specified.

Symbol	Parameter	Conditions		Min	Typ[1]	Max	Unit
V_{IK}	input clamping voltage	$I_1 = -18 \text{ mA}$		-1.2	-	-	V
V_{POR}	power-on reset voltage	$V_I = V_{DD(P)}$ or V_{SS} ; $I_O = 0$ mA		-	1.1	1.4	V
V_{OH}	HIGH-level output	P port					
	voltage	$I_{OH} = -8 \text{ mA}; V_{DD(P)} = 1.65 \text{ V}$	[2]	1.2	-	-	V
		$I_{OH} = -10 \text{ mA}; V_{DD(P)} = 1.65 \text{ V}$	[2]	1.1	-	-	V
		$I_{OH} = -8 \text{ mA}; V_{DD(P)} = 2.3 \text{ V}$	[2]	1.8	-	-	V
		$I_{OH} = -10 \text{ mA}; V_{DD(P)} = 2.3 \text{ V}$	[2]	1.7	-	-	V
		$I_{OH} = -8 \text{ mA}; V_{DD(P)} = 3.0 \text{ V}$	[2]	2.6	-	-	V
		$I_{OH} = -10 \text{ mA}; V_{DD(P)} = 3.0 \text{ V}$	[2]	2.5	-	-	V
		$I_{OH} = -8 \text{ mA}; V_{DD(P)} = 4.5 \text{ V}$	[2]	4.1	-	-	V
		$I_{OH} = -10 \text{ mA}; V_{DD(P)} = 4.5 \text{ V}$	[2]	4.0	-	-	V
V_{OL}	LOW-level	P port; I _{OL} = 8 mA					
	output voltage	$V_{DD(P)} = 1.65 \text{ V}$	[2]	-	-	0.45	V
		$V_{DD(P)} = 2.3 \text{ V}$	[2]	-	-	0.25	V
		$V_{DD(P)} = 3 V$	[2]	-	-	0.25	V
		$V_{DD(P)} = 4.5 \text{ V}$	[2]	-	-	0.2	V
I _{OL}	LOW-level	$V_{OL} = 0.4 \text{ V}; V_{DD(P)} = 1.65 \text{ V} \text{ to } 5.5 \text{ V}$					
	output current	SDA	[3]	3	-	-	mA
		ĪNT	[3]	3	15 <u>[4]</u>	-	mA
		P port					
		$V_{OL} = 0.5 \text{ V}; V_{DD(P)} = 1.65 \text{ V}$	[3]	8	10	-	mA
		$V_{OL} = 0.7 \text{ V}; V_{DD(P)} = 1.65 \text{ V}$	[3]	10	13	-	mA
		$V_{OL} = 0.5 \text{ V}; V_{DD(P)} = 2.3 \text{ V}$	[3]	8	10	-	mA
		$V_{OL} = 0.7 \text{ V}; V_{DD(P)} = 2.3 \text{ V}$	[3]	10	13	-	mA
		$V_{OL} = 0.5 \text{ V}; V_{DD(P)} = 3.0 \text{ V}$	[3]	8	14	-	mA
		$V_{OL} = 0.7 \text{ V}; V_{DD(P)} = 3.0 \text{ V}$	[3]	10	19	-	mA
		$V_{OL} = 0.5 \text{ V}; V_{DD(P)} = 4.5 \text{ V}$	[3]	8	17	-	mA
		$V_{OL} = 0.7 \text{ V}; V_{DD(P)} = 4.5 \text{ V}$	[3]	10	24	-	mA

Low-voltage, 8-bit I²C-bus and SMBus I/O expander

Table 15. Static characteristics ... continued

 T_{amb} = -40 °C to +85 °C; $V_{DD(I2C-bus)}$ = 1.65 V to 5.5 V; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Typ[1]	Max	Unit
l _l	input current	$V_{DD(P)} = 1.65 \text{ V to } 5.5 \text{ V}$				
		SCL, SDA, \overline{RESET} ; $V_I = V_{DD(I2C-bus)}$ or V_{SS}	-	-	±1	μΑ
		ADDR; $V_I = V_{DD(P)}$ or V_{SS}	-	-	±1	μΑ
I _{IH}	HIGH-level input current	P port; $V_1 = V_{DD(P)}$; $V_{DD(P)} = 1.65 \text{ V}$ to 5.5 V	-	-	1	μΑ
I _{IL}	LOW-level input current	P port; $V_1 = V_{SS}$; $V_{DD(P)} = 1.65 \text{ V}$ to 5.5 V	-	-	1	μА
I _{DD}	supply current	$\begin{split} &I_{DD(I2C\text{-}bus)} + I_{DD(P)};\\ &SDA, P \text{ port, } ADDR, \overline{RESET};\\ &V_{I} \text{ on } SDA \text{ and } \overline{RESET} = V_{DD(I2C\text{-}bus)} \text{ or } V_{SS};\\ &V_{I} \text{ on } P \text{ port } \text{and } ADDR = V_{DD(P)};\\ &I_{O} = 0 \text{ mA}; I/O = \text{inputs}; f_{SCL} = 400 \text{ kHz} \end{split}$				
		$V_{DD(P)} = 3.6 \text{ V to } 5.5 \text{ V}$	-	10	25	μΑ
		$V_{DD(P)} = 2.3 \text{ V to } 3.6 \text{ V}$	-	6.5	15	μΑ
		$V_{DD(P)} = 1.65 \text{ V to } 2.3 \text{ V}$	-	4	9	μΑ
		$\begin{split} &I_{DD(I2C\text{-}bus)} + I_{DD(P)};\\ &SCL,SDA,Pport,ADDR,\overline{RESET};\\ &V_{I}onSCL,SDAand\overline{RESET} = V_{DD(I2C\text{-}bus)}orV_{SS};\\ &V_{I}onPportandADDR = V_{DD(P)};\\ &I_{O}=0mA;I/O=inputs;f_{SCL}=0kHz \end{split}$				
		$V_{DD(P)} = 3.6 \text{ V to } 5.5 \text{ V}$	-	1.5	7	μΑ
		$V_{DD(P)} = 2.3 \text{ V to } 3.6 \text{ V}$	-	1	3.2	μΑ
		$V_{DD(P)} = 1.65 \text{ V to } 2.3 \text{ V}$	-	0.5	1.7	μΑ
		Active mode; $I_{DD(I2C-bus)} + I_{DD(P)}$; P port, ADDR, RESET; V_I on RESET = $V_{DD(I2C-bus)}$; V_I on P port and ADDR = $V_{DD(P)}$; $I_O = 0$ mA; $I/O = inputs$; $f_{SCL} = 400$ kHz, continuous register read				
		$V_{DD(P)} = 3.6 \text{ V to } 5.5 \text{ V}$	-	60	125	μΑ
		$V_{DD(P)} = 2.3 \text{ V to } 3.6 \text{ V}$	-	40	75	μΑ
		$V_{DD(P)} = 1.65 \text{ V to } 2.3 \text{ V}$	-	20	45	μΑ
$\Delta l_{ m DD}$	additional quiescent supply current	SCL, SDA, $\overline{\text{RESET}}$; one input at $V_{\text{DD}(\text{I2C-bus})} - 0.6 \text{ V}$, other inputs at $V_{\text{DD}(\text{I2C-bus})}$ or V_{SS} ; $V_{\text{DD}(P)} = 1.65 \text{ V}$ to 5.5 V	-	-	25	μА
		P port, ADDR; one input at $V_{DD(P)} - 0.6 \text{ V}$, other inputs at $V_{DD(P)}$ or V_{SS} ; $V_{DD(P)} = 1.65 \text{ V}$ to 5.5 V	-	-	80	μА
Ci	input capacitance	$V_{I} = V_{DD(I2C-bus)}$ or V_{SS} ; $V_{DD(P)} = 1.65 \text{ V}$ to 5.5 V	-	6	7	pF
C _{io}	input/output capacitance	$V_{I/O} = V_{DD(I2C-bus)}$ or V_{SS} ; $V_{DD(P)} = 1.65 \text{ V}$ to 5.5 V	-	7	8	рF
010		((.)				•

^[1] For I_{DD} , all typical values are at nominal supply voltage (1.8 V, 2.5 V, 3.3 V, 3.6 V or 5 V V_{DD}) and T_{amb} = 25 °C. Except for I_{DD} , the typical values are at $V_{DD(P)}$ = $V_{DD(|2C-bus)}$ = 3.3 V and T_{amb} = 25 °C.

PCA6408

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2012. All rights reserved.

^[2] The total current sourced by all I/Os must be limited to 80 mA.

^[3] Each I/O must be externally limited to a maximum of 25 mA, for a device total of 200 mA.

^[4] Typical value for T_{amb} = 25 °C. V_{OL} = 0.4 V and V_{DD} = 3.3 V. Typical value for V_{DD} < 2.5 V, V_{OL} = 0.6 V.

Low-voltage, 8-bit I²C-bus and SMBus I/O expander

13.1 Typical characteristics

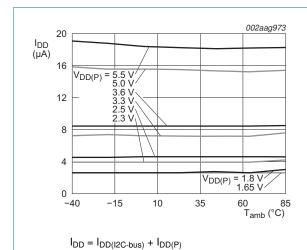
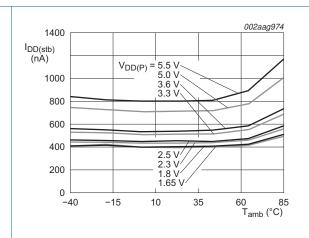
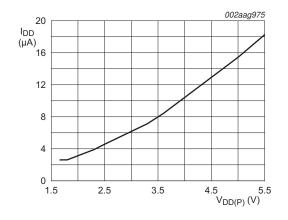
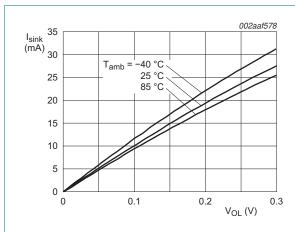
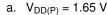


Fig 19. Supply current versus ambient temperature


Fig 20. Standby supply current versus ambient temperature



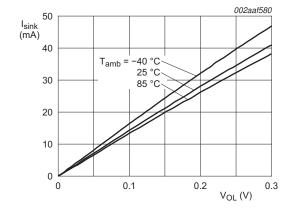
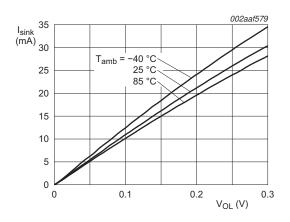
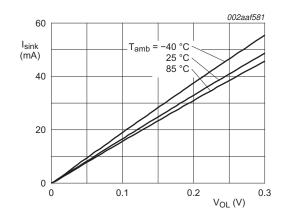

 $T_{amb} = 25 \, ^{\circ}\text{C}$ $I_{DD} = I_{DD(I2C\text{-}bus)} + I_{DD(P)}$

Fig 21. Supply current versus supply voltage

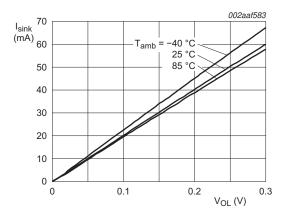
Low-voltage, 8-bit I²C-bus and SMBus I/O expander



c. $V_{DD(P)} = 2.5 \text{ V}$

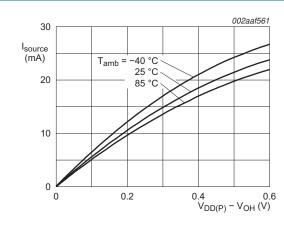


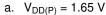
e. $V_{DD(P)} = 5.0 \text{ V}$

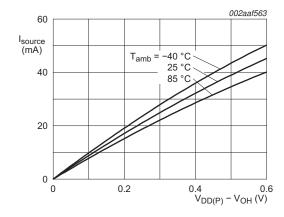

Fig 22. I/O sink current versus LOW-level output voltage

b. $V_{DD(P)} = 1.8 \text{ V}$

d. $V_{DD(P)} = 3.3 \text{ V}$



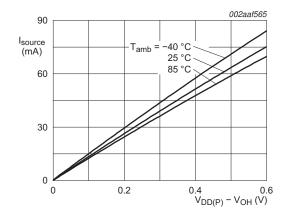
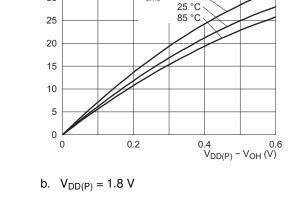

f. $V_{DD(P)} = 5.5 \text{ V}$

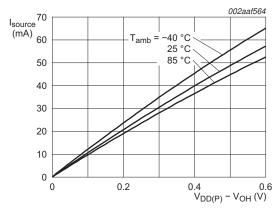

I_{source} 35 (mA) 30

Low-voltage, 8-bit I²C-bus and SMBus I/O expander

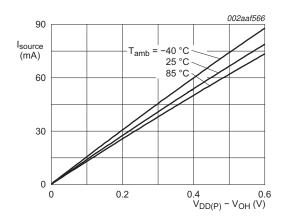
002aaf562

c. $V_{DD(P)} = 2.5 \text{ V}$

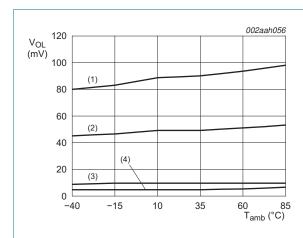

Fig 23. I/O source current versus HIGH-level output voltage

e. $V_{DD(P)} = 5.0 \text{ V}$



 $T_{amb} =$

-40 °C



d. $V_{DD(P)} = 3.3 \text{ V}$

f. $V_{DD(P)} = 5.5 \text{ V}$

Low-voltage, 8-bit I²C-bus and SMBus I/O expander

- (1) $V_{DD(P)} = 1.8 \text{ V}$; $I_{sink} = 10 \text{ mA}$
- (2) $V_{DD(P)} = 5 \text{ V}; I_{sink} = 10 \text{ mA}$
- (3) $V_{DD(P)} = 1.8 \text{ V}; I_{sink} = 1 \text{ mA}$
- (4) $V_{DD(P)} = 5 \text{ V}; I_{sink} = 1 \text{ mA}$

Fig 24. LOW-level output voltage versus temperature

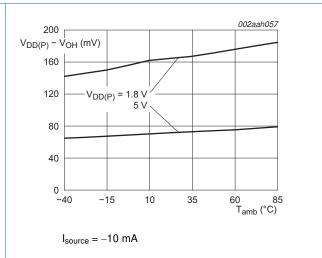


Fig 25. I/O high voltage versus temperature

Low-voltage, 8-bit I²C-bus and SMBus I/O expander

14. Dynamic characteristics

Table 16. I²C-bus interface timing requirements

Over recommended operating free air temperature range, unless otherwise specified. See Figure 26.

Symbol	Parameter	Conditions		d-mode bus	Fast-mo I ² C-bus		Unit
			Min	Max	Min	Max	
f _{SCL}	SCL clock frequency		0	100	0	400	kHz
t _{HIGH}	HIGH period of the SCL clock		4	-	0.6	-	μS
t_{LOW}	LOW period of the SCL clock		4.7	-	1.3	-	μS
t _{SP}	pulse width of spikes that must be suppressed by the input filter		0	50	0	50	ns
t _{SU;DAT}	data set-up time		250	-	100	-	ns
$t_{\text{HD};\text{DAT}}$	data hold time		0	-	0	-	ns
t _r	rise time of both SDA and SCL signals		-	1000	20	300	ns
t _f	fall time of both SDA and SCL signals		-	300	$20\times\\ (V_{DD}/5.5\;V)$	300	ns
t _{BUF}	bus free time between a STOP and START condition		4.7	-	1.3	-	μS
t _{SU;STA}	set-up time for a repeated START condition		4.7	-	0.6	-	μS
t _{HD;STA}	hold time (repeated) START condition		4	-	0.6	-	μS
t _{SU;STO}	set-up time for STOP condition		4	-	0.6	-	μS
t _{VD;DAT}	data valid time	SCL LOW to SDA output valid	-	3.45	-	0.9	μS
t _{VD;ACK}	data valid acknowledge time	ACK signal from SCL LOW to SDA (out) LOW	-	3.45	-	0.9	μS

Table 17. Reset timing requirements

Over recommended operating free air temperature range, unless otherwise specified. See Figure 29.

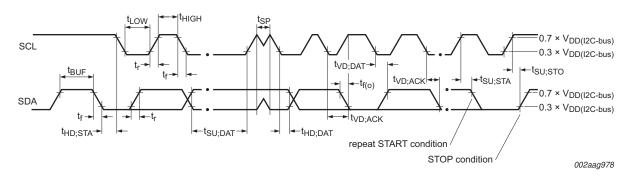
	, ,	,	<i>o</i> ,		,				
Symbol	Parameter Con		Parameter Conditions			d-mode bus			
					Min	Max	Min	Max	
$t_{w(rst)}$	reset pulse width				30	-	30	-	ns
t _{rec(rst)}	reset recovery time				200	-	200	-	ns
t _{rst}	reset time				600	-	600	-	ns

Low-voltage, 8-bit I²C-bus and SMBus I/O expander

Table 18. Switching characteristics

Over recommended operating free air temperature range; $C_L \le 100 \text{ pF}$; unless otherwise specified. See <u>Figure 28</u>.

Symbol	Parameter	Conditions		rd-mode ·bus	Fast- I ² C-	Unit	
			Min	Max	Min	Max	
$t_{v(INT)}$	valid time on pin INT	from P port to INT	-	1	-	1	μS
$t_{rst(INT)}$	reset time on pin INT	from SCL to INT	-	1	-	1	μS
$t_{v(Q)}$	data output valid time	from SCL to P port	-	400	-	400	ns
$t_{su(D)}$	data input set-up time	from P port to SCL	0	-	0	-	ns
t _{h(D)}	data input hold time	from P port to SCL	300	-	300	-	ns


15. Parameter measurement information

a. SDA load configuration

	4	 — two bytes for re	ead Inpu	t port regis	ter ⁽¹⁾	 	-
STOP START condition (P) (S)	Address Bit 7 (MSB)	Address Bit 1	R/W Bit 0 (LSB)	ACK (A)	Data Bit 7 (MSB)	Data Bit 0 (LSB)	STOP condition (P)

b. Transaction format

c. Voltage waveforms

 C_L includes probe and jig capacitance. $t_{f(o)}$ is measured with C_L of 10 pF or 400 pF.

All inputs are supplied by generators having the following characteristics: PRR \leq 10 MHz; Z_0 = 50 Ω ; $t_r/t_f \leq$ 30 ns.

All parameters and waveforms are not applicable to all devices.

Byte $1 = I^2C$ -bus address; Byte 2 = Input register port data.

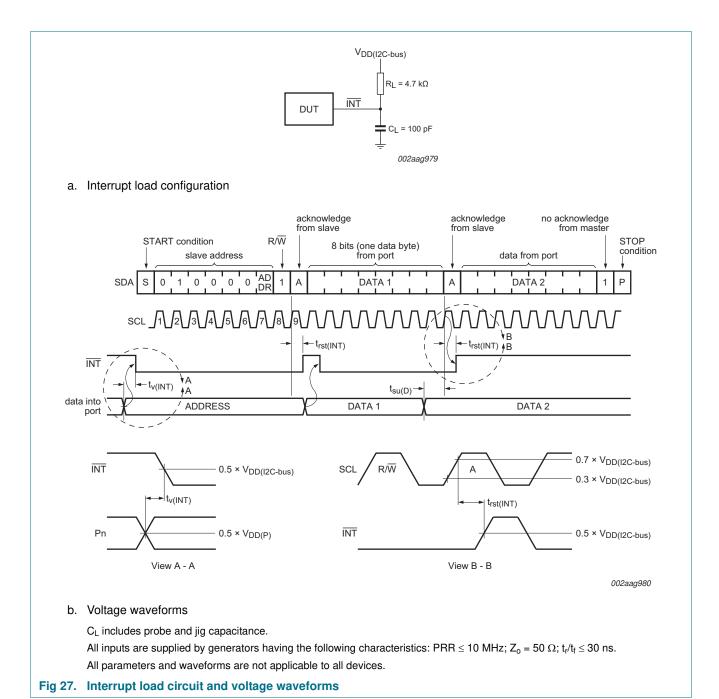
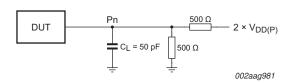
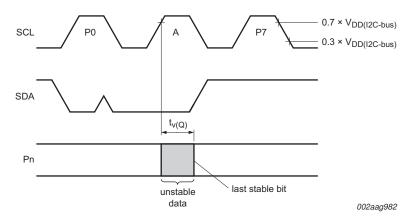
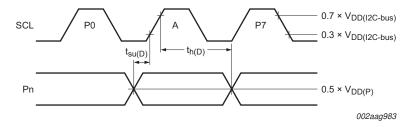

(1) See <u>Figure 11</u>.

Fig 26. I²C-bus interface load circuit and voltage waveforms


PCA6408A

002aag952


Low-voltage, 8-bit I²C-bus and SMBus I/O expander


Low-voltage, 8-bit I²C-bus and SMBus I/O expander

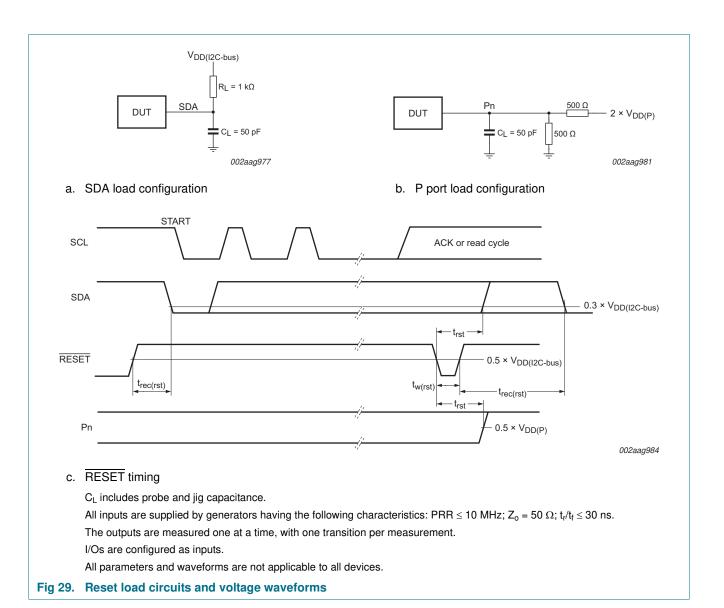
a. P port load configuration

b. Write mode $(R/\overline{W} = 0)$

c. Read mode $(R/\overline{W} = 1)$

 C_L includes probe and jig capacitance.

 $t_{v(Q)}$ is measured from $0.7 \times V_{DD}$ on SCL to 50 % I/O (Pn) output.

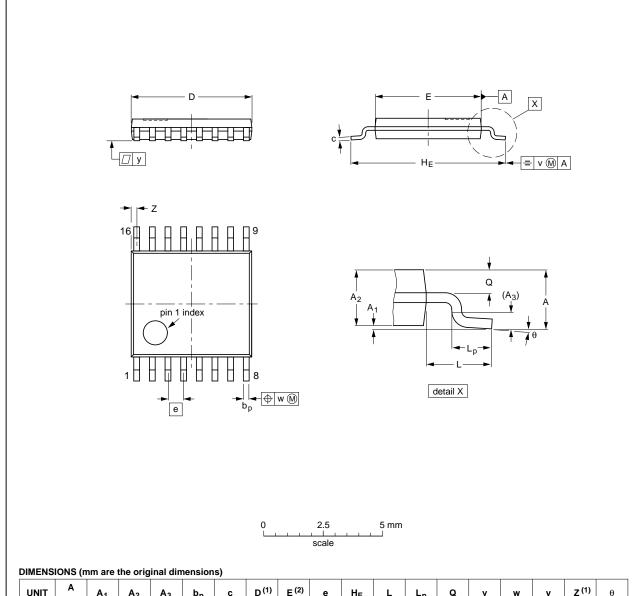

All inputs are supplied by generators having the following characteristics: PRR \leq 10 MHz; Z_0 = 50 Ω ; $t_r/t_f \leq$ 30 ns.

The outputs are measured one at a time, with one transition per measurement.

All parameters and waveforms are not applicable to all devices.

Fig 28. P port load circuit and voltage waveforms

Low-voltage, 8-bit I²C-bus and SMBus I/O expander



Low-voltage, 8-bit I²C-bus and SMBus I/O expander

16. Package outline

TSSOP16: plastic thin shrink small outline package; 16 leads; body width 4.4 mm

SOT403-1

						-,												
UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E (2)	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
mm	1.1	0.15 0.05	0.95 0.80	0.25	0.30 0.19	0.2 0.1	5.1 4.9	4.5 4.3	0.65	6.6 6.2	1	0.75 0.50	0.4 0.3	0.2	0.13	0.1	0.40 0.06	8° 0°

Notes

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE		IVEI EIV	ENCES		EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE
SOT403-1		MO-153				99-12-27 03-02-18
		IEC IEC	IEC JEDEC	IEC JEDEC JEHA	JEDEC JEHA	IEC JEDEC JEHA

Fig 30. Package outline SOT403-1 (TSSOP16)

PCA6408

Low-voltage, 8-bit I²C-bus and SMBus I/O expander

HVQFN16: plastic thermal enhanced very thin quad flat package; no leads; 16 terminals; body 3 x 3 x 0.85 mm

SOT758-1

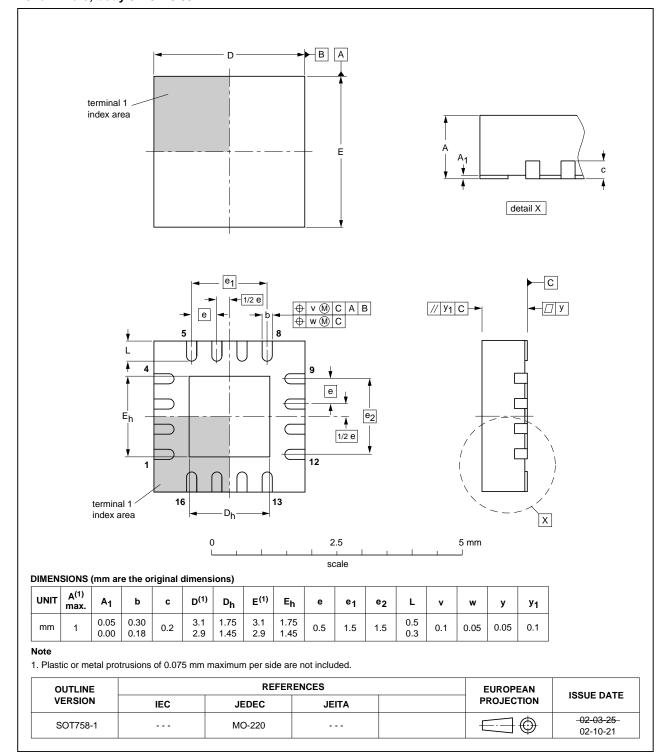


Fig 31. Package outline SOT758-1 (HVQFN16)

PCA6408A All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2012. All rights reserved.

Low-voltage, 8-bit I²C-bus and SMBus I/O expander

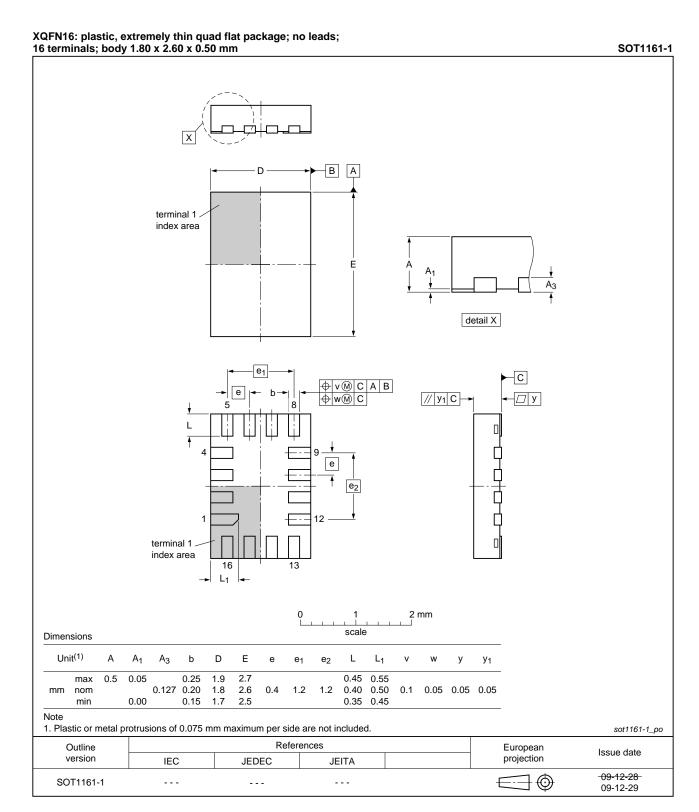


Fig 32. Package outline SOT1161-1 (XQFN16)

PCA6408A All informa

Low-voltage, 8-bit I²C-bus and SMBus I/O expander

17. Soldering of SMD packages

This text provides a very brief insight into a complex technology. A more in-depth account of soldering ICs can be found in Application Note *AN10365 "Surface mount reflow soldering description"*.

17.1 Introduction to soldering

Soldering is one of the most common methods through which packages are attached to Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both the mechanical and the electrical connection. There is no single soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high densities that come with increased miniaturization.

17.2 Wave and reflow soldering

Wave soldering is a joining technology in which the joints are made by solder coming from a standing wave of liquid solder. The wave soldering process is suitable for the following:

- · Through-hole components
- · Leaded or leadless SMDs, which are glued to the surface of the printed circuit board

Not all SMDs can be wave soldered. Packages with solder balls, and some leadless packages which have solder lands underneath the body, cannot be wave soldered. Also, leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered, due to an increased probability of bridging.

The reflow soldering process involves applying solder paste to a board, followed by component placement and exposure to a temperature profile. Leaded packages, packages with solder balls, and leadless packages are all reflow solderable.

Key characteristics in both wave and reflow soldering are:

- · Board specifications, including the board finish, solder masks and vias
- · Package footprints, including solder thieves and orientation
- · The moisture sensitivity level of the packages
- · Package placement
- · Inspection and repair
- Lead-free soldering versus SnPb soldering

17.3 Wave soldering

Key characteristics in wave soldering are:

- Process issues, such as application of adhesive and flux, clinching of leads, board transport, the solder wave parameters, and the time during which components are exposed to the wave
- · Solder bath specifications, including temperature and impurities

PCA6408A

Low-voltage, 8-bit I²C-bus and SMBus I/O expander

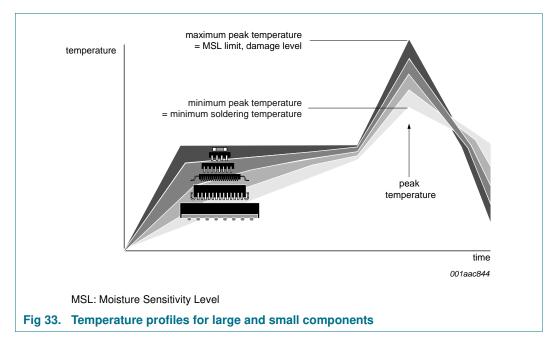
17.4 Reflow soldering

Key characteristics in reflow soldering are:

- Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to higher minimum peak temperatures (see <u>Figure 33</u>) than a SnPb process, thus reducing the process window
- Solder paste printing issues including smearing, release, and adjusting the process window for a mix of large and small components on one board
- Reflow temperature profile; this profile includes preheat, reflow (in which the board is heated to the peak temperature) and cooling down. It is imperative that the peak temperature is high enough for the solder to make reliable solder joints (a solder paste characteristic). In addition, the peak temperature must be low enough that the packages and/or boards are not damaged. The peak temperature of the package depends on package thickness and volume and is classified in accordance with Table 19 and 20

Table 19. SnPb eutectic process (from J-STD-020C)

Package thickness (mm)	Package reflow temperature (°C	;)
	Volume (mm ³)	
	< 350	≥ 350
< 2.5	235	220
≥ 2.5	220	220


Table 20. Lead-free process (from J-STD-020C)

Package thickness (mm)	Package reflow tem	perature (°C)						
	Volume (mm ³)	Volume (mm ³)						
	< 350	> 2000						
< 1.6	260	260	260					
1.6 to 2.5	260	250	245					
> 2.5	250 245 245							

Moisture sensitivity precautions, as indicated on the packing, must be respected at all times.

Studies have shown that small packages reach higher temperatures during reflow soldering, see Figure 33.

Low-voltage, 8-bit I²C-bus and SMBus I/O expander

For further information on temperature profiles, refer to Application Note *AN10365* "Surface mount reflow soldering description".

Low-voltage, 8-bit I²C-bus and SMBus I/O expander

18. Soldering: PCB footprints

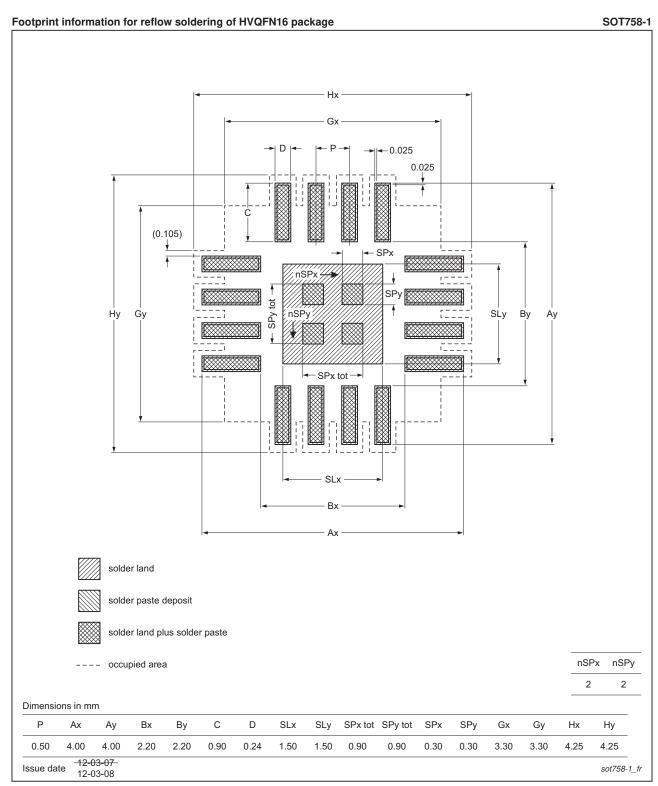


Fig 34. PCB footprint for SOT758-1 (HVQFN16); reflow soldering

PCA6408A All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2012. All rights reserved.

Low-voltage, 8-bit I²C-bus and SMBus I/O expander

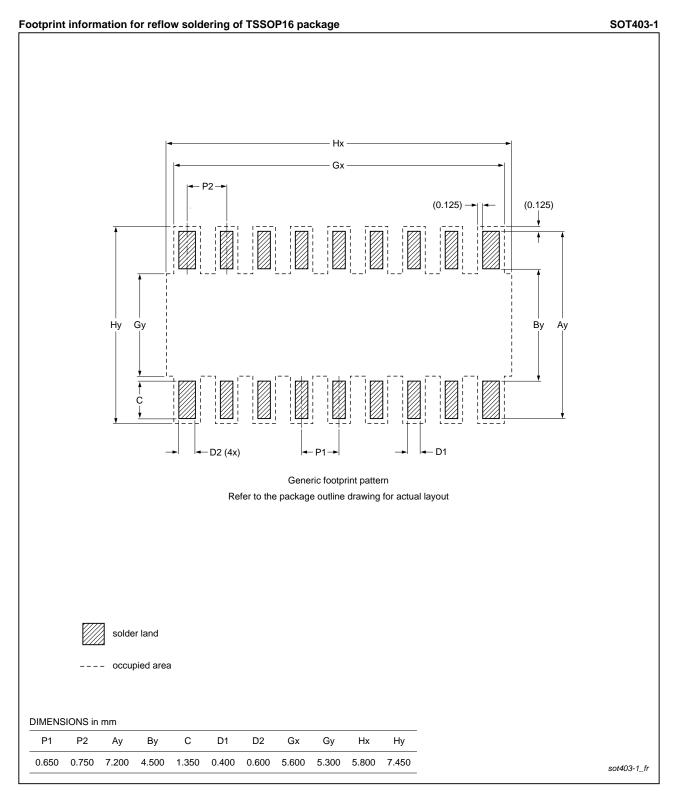


Fig 35. PCB footprint for SOT403-1 (TSSOP16); reflow soldering

Low-voltage, 8-bit I²C-bus and SMBus I/O expander

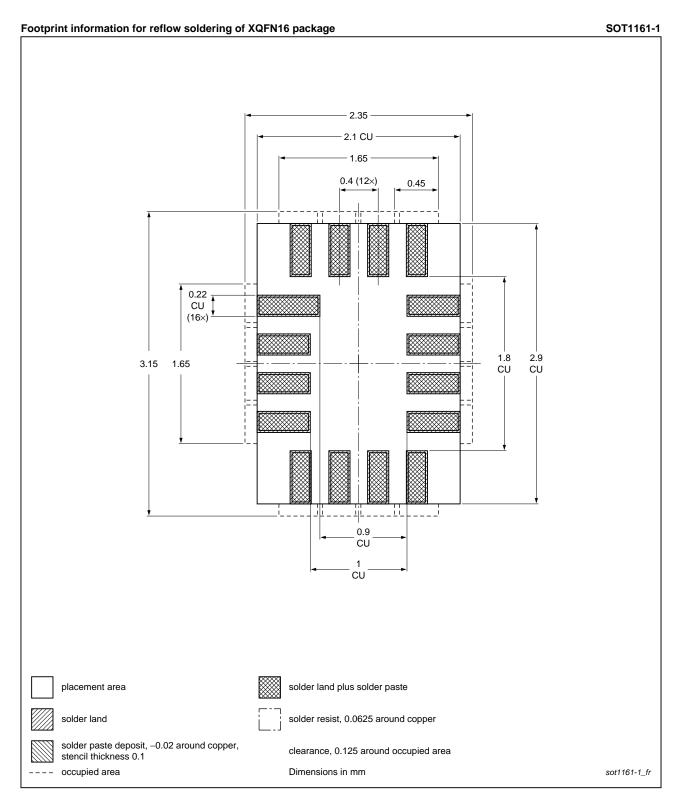


Fig 36. PCB footprint for SOT1161-1 (XQFN16); reflow soldering

Low-voltage, 8-bit I²C-bus and SMBus I/O expander

19. Abbreviations

Table 21. Abbreviations

Acronym	Description
ESD	ElectroStatic Discharge
FET	Field-Effect Transistor
GPIO	General Purpose Input/Output
I ² C-bus	Inter-Integrated Circuit bus
I/O	Input/Output
LED	Light-Emitting Diode
LSB	Least Significant Bit
MSB	Most Significant Bit
PCB	Printed-Circuit Board
POR	Power-On Reset
SMBus	System Management Bus

20. Revision history

Table 22. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
PCA6408A v.1	20120927	Product data sheet	-	-

Low-voltage, 8-bit I²C-bus and SMBus I/O expander

21. Legal information

21.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

21.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

21.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

PCA6408A

Low-voltage, 8-bit I²C-bus and SMBus I/O expander

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's

own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

21.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

I²C-bus — logo is a trademark of NXP B.V.

22. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

PCA6408A NXP Semiconductors

21

22 23

Low-voltage, 8-bit I²C-bus and SMBus I/O expander

23. Contents

1	General description	. 1
2	Features and benefits	. 2
3	Ordering information	. 3
3.1	Ordering options	. 3
4	Block diagram	. 3
5	Pinning information	. 4
5.1	Pinning	
5.2	Pin description	. 5
6	Voltage translation	
7	Functional description	. 6
7.1	Device address	
7.2	Interface definition	
7.3 7.4	Pointer register and command byte	
7.4 7.4.1	Input port register (00h)	
7.4.2	Output port register (001h)	
7.4.3	Polarity inversion register (02h)	
7.4.4	Configuration register (03h)	. 8
7.5	I/O port	
7.6	Power-on reset	
7.7 7.8	Reset input (RESET)	
-	,	
8 8.1	Bus transactions	11
8.2	Read commands	
9	Application design-in information	13
9.1	Minimizing I _{DD} when I/Os control LEDs	13
9.2	Power-on reset requirements	14
10	Limiting values	16
11	Recommended operating conditions	16
12	Thermal characteristics	17
13	Static characteristics	17
13.1	Typical characteristics	19
14	Dynamic characteristics	23
15	Parameter measurement information	24
16	Package outline	28
17	Soldering of SMD packages	
17.1	Introduction to soldering	31
17.2	Wave and reflow soldering	31
17.3	Wave soldering	31
17.4	Reflow soldering	32
18	Soldering: PCB footprints	34
19	Abbreviations	37
20	Revision history	37

21	Legal information	38
21.1	Data sheet status	38
21.2	Definitions	38
21.3	Disclaimers	38
21.4	Trademarks	39
22	Contact information	39
22	Contonto	40

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2012.

All rights reserved.