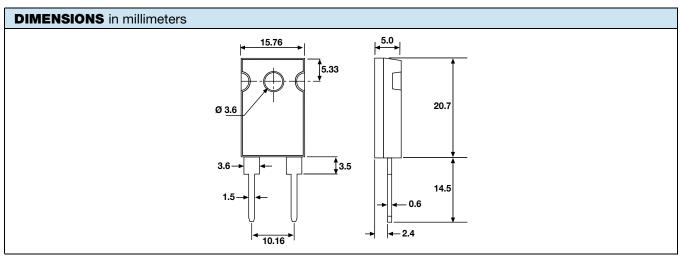


Vishay Sfernice

Power Resistor Thick Film Technology

FEATURES

 100 W at 25 °C case temperature heatsink mounted



- Direct mounting ceramic on heatsink
- Broad resistance range: 0.8 Ω to 4 k Ω
- Non inductive
- TO-247 package: compact and easy to mount
- Higher pulse absorption, up to 52 J/0.1 s
- AEC-Q200 qualified
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

LTO 100 H is the extension of LTO 100. This unique design is able to absorb 40 % more energy than standard LTO.

Note

Tolerances unless stated: ± 0.3 mm

STANDARD ELECTRICAL SPECIFICATIONS							
MODEL	SIZE	RESISTANCE RANGE Ω	RATED POWER P _{25 °C} W	LIMITING ELEMENT VOLTAGE U _L V	TOLERANCE ± %	TEMPERATURE COEFFICIENT ± ppm/°C	CRITICAL RESISTANCE
LTO 100 H	TO-247	0.8 to 4K	100	500	2, 5, 10	200, 350	2.5K

MECHANICAL SPECIFICATIONS				
Mechanical Protection	Molded			
Resistive Element	Thick film			
Substrate	Alumina			
Connections	Tinned copper			
Weight	4 g max.			
Mounting Torque	1 Nm			

ENVIRONMENTAL SPECIFICATIONS			
Temperature Range	-55 °C to +175 °C		
Climatic Category	55 / 175 / 56		
Flammability	IEC 60695-11-5 Application time: t_a = 10 s Burning duration: t_b < 30 s		

TECHNICAL SPECIFICATIONS				
Dissipation and Associated	Onto a heatsink			
Power Rating and Thermal Resistance of the Component	100 W at +25 °C (case temp.) R _{TH (j - c)} : 1.5 °C/W Free air: 3.5 W at +25 °C			
Temperature Coefficient	See Performance table ± 200 ppm/°C			
Dielectric Strength MIL STD 202	3000 V _{RMS} - 1 min 10 mA max.			
Insulation Resistance	$\geq 10^4 \text{M}\Omega$			
Inductance	≤ 0.1 µH			

Revision: 24-Nov-2021 1 Document Number: 50081

Vishay Sfernice

PERFORMANCE				
TESTS	CONDITIONS	REQUIREMENTS		
Momentary Overload	EN 60115-1 1.5 Pr/5 s <i>U</i> _S < 1.5 <i>U</i> _L	± (0.5 % + 0.005 Ω)		
Load Life	EN 60115-1 1000 h Pr at +25 °C	\pm (1 % + 0.005 $\Omega)$		
High Temperature Exposure	AEC-Q200 rev. D conditions: MIL-STD-202 method 108 1000 h, +175 °C, unpowered	± (0.25 % + 0.005 Ω)		
Temperature Cycling	AEC-Q200 rev. D conditions: JESD22 method JA-104 1000 cycles, -55 °C to +125 °C dwell time -15 min	± (1 % + 0.005 Ω)		
Biased Humidity	AEC-Q200 rev. D conditions: MIL-STD-202 method 103 1000 h, 85 °C, 85 % RH	± (1 % +0.005 Ω)		
Operational Life	AEC-Q200 rev. D conditions: MIL-STD-202 method 108 2000 h, 90/30, powered, +125 °C	± (1 % +0.005 Ω)		
ESD Human Body Model	AEC-Q200 rev. D conditions: AEC-Q200-002 25 kV _{AD}	$\pm~(0.5~\%~+0.005~\Omega)$		
Vibration	AEC-Q200 rev. D conditions: MIL-STD-202 method 204 5 g's for 20 min, 12 cycles test from 10 Hz to 2000 Hz	± (0.5 % +0.005 Ω)		
Mechanical Shock	AEC-Q200 rev. D conditions: MIL-STD-202 method 213 100 g's, 6 ms, 3.75 m/s 3 shocks/direction	± (0.5 % +0.005 Ω)		
Terminal Strength	AEC-Q200 rev. D conditions: AEC-Q200-006 2 kgf, 60 s	± (0.25 % +0.01 Ω)		

SPECIAL FEATURES					
Resistance Values	≥ 0.8	> 20			
Tolerances	± 2 % at ± 10 %				
Typical Temperature Coefficient (-55 °C to +175 °C)	± 350 ppm/°C	± 200 ppm/°C			

CHOICE OF THE HEATSINK

The user must choose according to the working conditions of the component (power, room temperature). Maximum working temperature must not exceed 175 °C. The dissipated power is simply calculated by the following ratio:

$$P \; = \; \frac{\Delta T}{[\,R_{TH \; (j \; - \; c)}\,] + [\,R_{TH \; (c \; - \; h)}\,] + [\,R_{TH \; (h \; - \; a)}\,]}^{\ \ \, (1)}$$

P: Expressed in W

 ΔT : Difference between maximum working temperature and room temperature

R_{TH (j - c)}: Thermal resistance value measured between resistive layer and outer side of the resistor. It is the thermal resistance of the component.

R_{TH (c - h)}: Thermal resistance value measured between outer side of the resistor and upper side of the heatsink. This is the thermal resistance of the interface (grease, thermal pad), and the quality of the fastening device.

R_{TH (h - a)}: Thermal resistance of the heatsink.

Example:

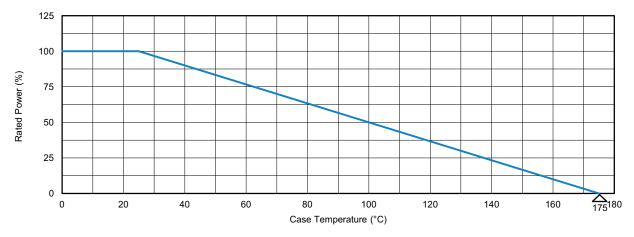
R_{TH (c - h)} + R_{TH (h - a)} for LTO 100 H power rating 10 W at ambient temperature +25 °C

Thermal resistance R_{TH (j - c)}: 1.5 °C/W Considering equation ⁽¹⁾ we have:

$$\begin{array}{l} \Delta T = 175~^{\circ}C - 25~^{\circ}C = 150~^{\circ}C \\ R_{TH~(j~-c)} + R_{TH~(c~-h)} + R_{TH~(h~-a)} = \frac{\Delta T}{P} = \frac{150}{10} = 15~^{\circ}C/W \\ R_{TH~(c~-h)} + R_{TH~(h~-a)} = 15~^{\circ}C/W - 1.5~^{\circ}C/W = 13.5~^{\circ}C/W \end{array}$$

with a thermal grease $R_{TH\ (c-h)}=1\ ^{\circ}C/W$, we need a heatsink with $R_{TH\ (h-a)}=12.5\ ^{\circ}C/W$.

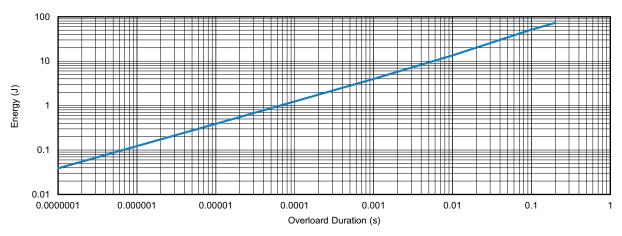
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishav.com/doc?91000

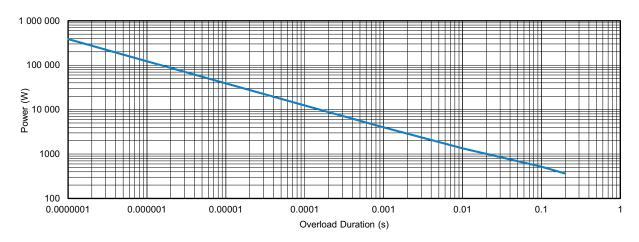


Vishay Sfernice

POWER RATING

The temperature of the case should be maintained within the limits specified.


To improve the thermal conductivity, surfaces in contact should be coated with a silicone grease and the torque applied on the screw for tightening should be around 1 Nm.

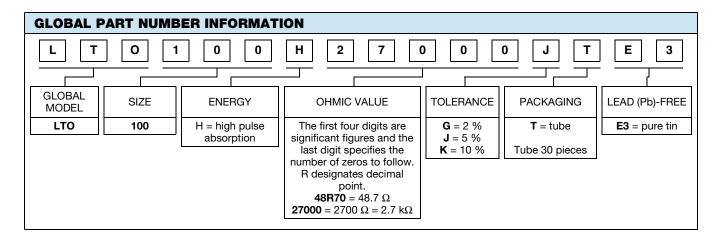

OVERLOADS

In any case the applied voltage must be lower than the maximum overload voltage of 750 V. The values indicated on the graph below are applicable to resistors in air or mounted onto a heatsink.

ENERGY CURVE

POWER CURVE

LTO 100 H


Vishay Sfernice

PACKAGING	
Tube of 30 units	

MARKING

Model, style, resistance value (in Ω), tolerance (in %), manufacturing date, Vishay Sfernice trademark.

ORDERING INFORMATION							
LTO	100	Н	2.7 k Ω	± 5 %	xxx	TU30	e3
MODEL	STYLE	ENERGY	RESISTANCE VALUE	TOLERANCE	CUSTOM DESIGN	PACKAGING	LEAD (Pb)-FREE
				± 2 % ± 5 % ± 10 %	Optional on request: special TCR, shape etc.		

