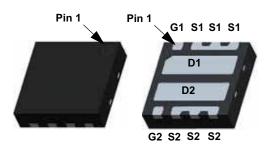


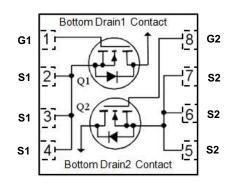



## Dual N-Channel PowerTrench MOSFET

#### **General Description**


This device includes two 40V N-Channel MOSFETs in a dual **DFN3X3** (3 mm X 3 mm MLP) package. The package is enhanced for exceptional thermal performance.

#### Features


- Max  $r_{DS(on)}$  = 20 m $\Omega$  at V<sub>GS</sub> = 10 V, I<sub>D</sub> = 7 A
- Max  $r_{DS(on)}$  = 27 m $\Omega$  at  $V_{GS}$  = 4.5 V,  $I_D$  = 6 A
- Low Inductance Packaging Shortens Rise/Fall Times
- Lower Switching Losses
- 100% Rg Tested
- Termination is Lead-free and RoHS Compliant

#### Applications

- Battery Protection
- Load Switching
- Point of Load







#### **Package Marking and Ordering Information**

| Device Marking | Device    | Package | Reel Size | Tape Width | Quantity   |
|----------------|-----------|---------|-----------|------------|------------|
| 7N40           | RMD7N40DN | DFN3X3  | 13 "      | 12 mm      | 3000 units |

#### Maximum Ratings T<sub>A</sub> = 25 °C unless otherwise noted

| Symbol                            | Parame                                            | eter                   |             | Ratings | Units |
|-----------------------------------|---------------------------------------------------|------------------------|-------------|---------|-------|
| V <sub>DS</sub>                   | Drain to Source Voltage                           |                        |             | 40      | V     |
| V <sub>GS</sub>                   | Gate to Source Voltage                            |                        |             | ±20     | V     |
| I <sub>D</sub>                    | Drain Current -Continuous                         | T <sub>C</sub> = 25 °C |             | 20      |       |
|                                   | -Continuous                                       | T <sub>A</sub> = 25 °C | (Note 1a)   | 7       | Α     |
|                                   | -Pulsed                                           |                        | (Note 4)    | 50      |       |
| E <sub>AS</sub>                   | Single Pulse Avalanche Energy                     |                        | (Note 3)    | 13      | mJ    |
| D                                 | Power Dissipation                                 | T <sub>C</sub> = 25 °C |             | 12      | w     |
| PD                                | Power Dissipation $T_A = 25 \text{ °C}$ (Note 1a) |                        |             | 1.9     | V     |
| T <sub>J</sub> , T <sub>STG</sub> | Operating and Storage Junction Tempera            |                        | -55 to +150 | °C      |       |

#### **Thermal Characteristics**

| R <sub>0JC</sub>    | Thermal Resistance, Junction to Case             | 9.7  | °C/M |
|---------------------|--------------------------------------------------|------|------|
| $R_{	ext{	heta}JA}$ | Thermal Resistance, Junction to Ambient (Note 1a | ) 65 | °C/W |

### Electrical Characteristics T<sub>J</sub> = 25 °C unless otherwise noted

| Symbol | Parameter | Test Conditions | Min | Тур | Max | Units |
|--------|-----------|-----------------|-----|-----|-----|-------|
|        |           |                 |     |     |     |       |

#### **Off Characteristics**

| BV <sub>DSS</sub>                      | Drain to Source Breakdown Voltage            | I <sub>D</sub> = 250 μA, V <sub>GS</sub> = 0 V | 40 |    |     | V     |
|----------------------------------------|----------------------------------------------|------------------------------------------------|----|----|-----|-------|
| $\frac{\Delta BV_{DSS}}{\Delta T_{J}}$ | Breakdown Voltage Temperature<br>Coefficient | $I_D$ = 250 $\mu$ A, referenced to 25 °C       |    | 23 |     | mV/°C |
| I <sub>DSS</sub>                       | Zero Gate Voltage Drain Current              | V <sub>DS</sub> = 32 V, V <sub>GS</sub> = 0 V  |    |    | 1   | μA    |
| I <sub>GSS</sub>                       | Gate to Source Leakage Current, Forward      | V <sub>GS</sub> = ±20 V, V <sub>DS</sub> = 0 V |    |    | 100 | nA    |

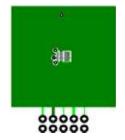
#### **On Characteristics**

| V <sub>GS(th)</sub>                                     | Gate to Source Threshold Voltage                            | $V_{GS} = V_{DS}, I_{D} = 250 \ \mu A$                                  | 1.0 | 1.8 | 3.0 | V       |
|---------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------|-----|-----|-----|---------|
| $\Delta V_{GS(th)} \Delta T_J$                          | Gate to Source Threshold Voltage<br>Temperature Coefficient | $I_D$ = 250 µA, referenced to 25 °C                                     |     | -5  |     | mV/°C   |
|                                                         |                                                             | V <sub>GS</sub> = 10 V, I <sub>D</sub> = 7 A                            |     | 16  | 20  |         |
| <b>r</b>                                                | Static Drain to Source On Resistance                        | $V_{GS} = 4.5 \text{ V}, I_D = 6 \text{ A}$                             |     | 21  | 27  | mΩ      |
| r <sub>DS(on)</sub> Static Drain to Source On Resistant |                                                             | V <sub>GS</sub> = 10 V, I <sub>D</sub> = 7 A<br>T <sub>J</sub> = 125 °C |     | 23  | 29  | - 11152 |
| 9 <sub>FS</sub>                                         | Forward Transconductance                                    | V <sub>DD</sub> = 5 V, I <sub>D</sub> = 7 A                             |     | 27  |     | S       |

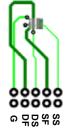
#### **Dynamic Characteristics**

| C <sub>iss</sub> | Input Capacitance            | <u> </u>                                                  |     | 513 | 720 | pF |
|------------------|------------------------------|-----------------------------------------------------------|-----|-----|-----|----|
| C <sub>oss</sub> | Output Capacitance           | V <sub>DS</sub> = 20 V, V <sub>GS</sub> = 0 V<br>f = 1MHz |     | 137 | 195 | pF |
| C <sub>rss</sub> | Reverse Transfer Capacitance | 1 = 110112                                                |     | 9.3 | 15  | pF |
| Rg               | Gate Resistance              |                                                           | 0.1 | 2.6 | 3.6 | Ω  |

#### **Switching Characteristics**


| t <sub>d(on)</sub>  | Turn-On Delay Time            |                                                                                         | 5.5 | 11  | ns |
|---------------------|-------------------------------|-----------------------------------------------------------------------------------------|-----|-----|----|
| t <sub>r</sub>      | Rise Time                     | $V_{DD}$ = 20 V, I <sub>D</sub> = 7 A<br>V <sub>GS</sub> = 10 V, R <sub>GEN</sub> = 6 Ω | 1.2 | 10  | ns |
| t <sub>d(off)</sub> | Turn-Off Delay Time           | V <sub>GS</sub> = 10 V, R <sub>GEN</sub> = 6 Ω                                          | 13  | 24  | ns |
| t <sub>f</sub>      | Fall Time                     |                                                                                         | 1.3 | 10  | ns |
| ~                   | Total Gate Charge             | V <sub>GS</sub> = 0 V to 10 V                                                           | 7.6 | 11  | nC |
| Q <sub>g(TOT)</sub> | Total Gate Charge             | $V_{GS} = 0 \text{ V to } 4.5 \text{ V} \text{ V}_{DD} = 20 \text{ V}$                  | 3.6 | 5.1 | nC |
| Q <sub>gs</sub>     | Gate to Source Charge         | I <sub>D</sub> = 7 A                                                                    | 1.5 |     | nC |
| Q <sub>gd</sub>     | Gate to Drain "Miller" Charge |                                                                                         | 1.0 |     | nC |

#### **Drain-Source Diode Characteristics**


| V <sub>SD</sub> | Source to Drain Diode Forward Voltage | V <sub>GS</sub> = 0 V, I <sub>S</sub> = 7 A (Note 2) | 0.85 | 1.3 | V  |
|-----------------|---------------------------------------|------------------------------------------------------|------|-----|----|
|                 |                                       | $V_{GS} = 0 V, I_S = 1.4 A$ (Note 2)                 | 0.75 | 1.2 | v  |
| t <sub>rr</sub> | Reverse Recovery Time                 | I <sub>F</sub> = 7 A, di/dt = 100 A/μs               | 16   | 29  | ns |
| Q <sub>rr</sub> | Reverse Recovery Charge               | $r_F = 7 A$ , divat = 100 A/µs                       | 3.9  | 10  | nC |

NOTES:

1. R<sub>0JA</sub> is determined with the device mounted on a 1 in<sup>2</sup> pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. R<sub>0JC</sub> is guaranteed by design while R<sub>0CA</sub> is determined by the user's board design.



a. 65 °C/W when mounted on a 1 in<sup>2</sup> pad of 2 oz copper



b. 155 °C/W when mounted on a minimum pad of 2 oz copper

2. Pulse Test: Pulse Width <  $300 \ \mu$ s, Duty cycle < 2.0 %. 3. E<sub>AS</sub> of 13 mJ is based on starting T<sub>J</sub> = 25 °C, L = 3 mH, I<sub>AS</sub> = 3 A, V<sub>DD</sub> = 40 V, V<sub>GS</sub> = 10 V. 100% tested at L = 0.1 mH, I<sub>AS</sub> = 11 A. 4. Pulse Id refers to Figure.11 Forward Bias Safe Operation Area.

## RATING AND CHARACTERISTICS CURVES (RMD7N40DN)

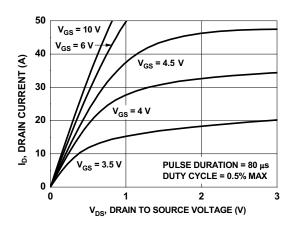
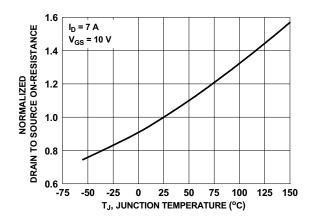
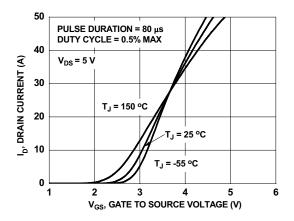





Figure 1. On-Region Characteristics









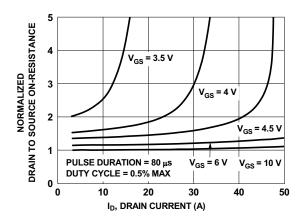



Figure 2. Normalized On-Resistance vs Drain Current and Gate Voltage

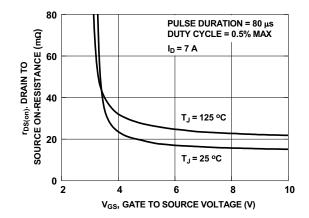



Figure 4. On-Resistance vs Gate to Source Voltage

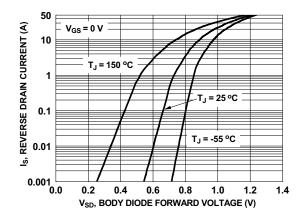
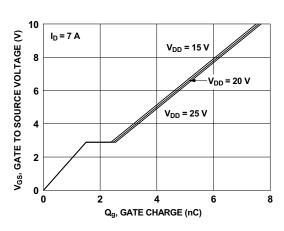
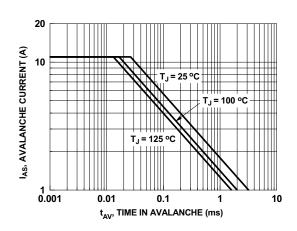




Figure 6. Source to Drain Diode Forward Voltage vs Source Current






# RATING AND CHARACTERISTICS CURVES (RMD7N40DN)

1000

Figure 7. Gate Charge Characteristics





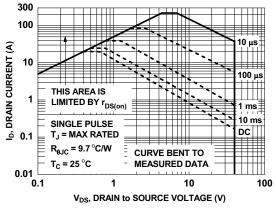



Figure 11. Forward Bias Safe Operating Area

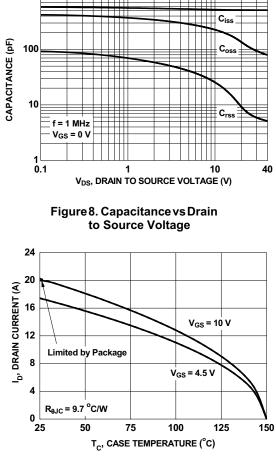



Figure 10. Maximum Continuous Drain Current vs Case Temperature

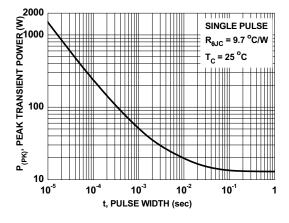
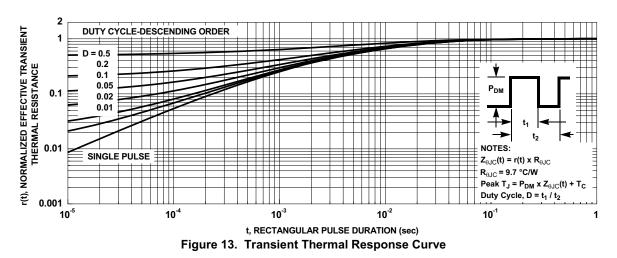
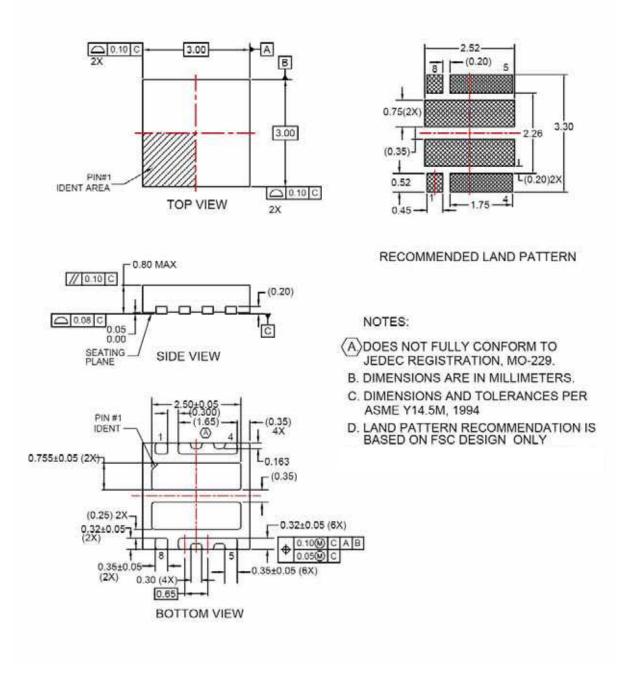



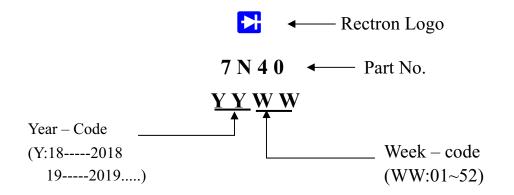

Figure 12. Single Pulse Maximum Power Dissipation






**RATING AND CHARACTERISTICS CURVES (RMD7N40DN)** 




### **Dimensional Outline and Pad Layout**







# Marking on the body





| Package       | Tube<br>(pcs/tube) | Tube<br>(pcs/inner box) | Tube<br>(pcs/cartoon) | Tape&Reel<br>(pcs/reel) | Tape&Reel<br>(pcs/inner box) | Tape&Reel<br>(pcs/cartoon) |
|---------------|--------------------|-------------------------|-----------------------|-------------------------|------------------------------|----------------------------|
| DFN           | 100                | 10,000                  | 100,000               | 2,500                   | 5,000                        | 40,000                     |
| SOP-8         | 100                | 10,000                  | 100,000               | 4,000                   | 4,000                        | 20,000                     |
| TSSOP-8       | 100                | 32,000                  | 128,000               | 3,000                   | 6,000                        | 48,000                     |
| SOT-23-3L     |                    |                         |                       | 3,000                   | 30,000                       | 120,000                    |
| SOT-23-6L     |                    |                         |                       | 3,000                   | 30,000                       | 120,000                    |
| SOT-23(6R)    |                    |                         |                       | 3,000                   | 30,000                       | 120,000                    |
| SOT-363       |                    |                         |                       | 3,000                   | 30,000                       | 120,000                    |
| SOT-523       |                    |                         |                       | 3,000                   | 30,000                       | 120,000                    |
| SOT223        |                    |                         |                       | 2,500                   | 2,500                        | 20,000                     |
| TO-220        | 50                 | 1,000                   | 5,000                 |                         |                              |                            |
| TO-220F       | 50                 | 1,000                   | 10,000                |                         |                              |                            |
| TO-247        | 30                 | 300                     | 1,200                 |                         |                              |                            |
| TO-251        | 80                 | 4,000                   | 40,000                |                         |                              |                            |
| TO-251S(4R)   | 80                 | 4,000                   | 40,000                |                         |                              |                            |
| TO-252-2L(4R) | 80                 | 4,000                   | 40,000                | 2,500                   | 2,500                        | 25,000                     |
| TO-263-2L     | 50                 | 1,000                   | 10,000                | 800                     | 800                          | 8,000                      |
| TO-3P         | 30                 | 300                     | 3,000                 |                         |                              |                            |
| TO-92         |                    |                         |                       | 1,000(袋装)               | 10,000                       | 100,000                    |



### **DISCLAIMER NOTICE**

Rectron Inc reserves the right to make changes without notice to any product specification herein, to make corrections, modifications, enhancements or other changes. Rectron Inc or anyone on its behalf assumes no responsibility or liability for any errors or inaccuracies. Data sheet specifications and its information contained are intended to provide a product description only. "Typical" parameters which may be included on RECTRON data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. Rectron Inc does not assume any liability arising out of the application or use of any product or circuit.

Rectron products are not designed, intended or authorized for use in medical, life-saving implant or other applications intended for life-sustaining or other related applications where a failure or malfunction of component or circuitry may directly or indirectly cause injury or threaten a life without expressed written approval of Rectron Inc. Customers using or selling Rectron components for use in such applications do so at their own risk and shall agree to fully indemnify Rectron Inc and its subsidiaries harmless against all claims, damages and expenditures.

