
SCDS161A - MAY 2004 - REVISED OCTOBER 2004

- Wide Bandwidth (BW = 350 MHz Min)
- Low Differential Crosstalk $(X_{TALK} = -68 \text{ dB Typ})$
- Low Power Consumption (I_{CC} = 10 μ A Max)
- **Bidirectional Data Flow, With Near-Zero Propagation Delay**
- Low ON-State Resistance ($r_{on} = 5 \Omega$ Typ)
- Rail-to-Rail Switching on Data I/O Ports $(0 \text{ to } V_{CC})$
- V_{CC} Operating Range From 3 V to 3.6 V
- Ioff Supports Partial-Power-Down Mode Operation

- **Data and Control Inputs Have Undershoot Clamp Diodes**
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- **ESD Performance Tested Per JESD 22** - 2000-V Human-Body Model (A114-B, Class II)
 - 1000-V Charged-Device Model (C101)
- Suitable for Both 10 Base-T/100 Base-T Signaling

description/ordering information

The TI TS3L100 LAN switch is a 4-bit 1-of-2 multiplexer/demultiplexer with a single switch-enable (\overline{E}) input. When \overline{E} is low, the switch is enabled and the I port is connected to the Y port. When \overline{E} is high, the switch is disabled and the high-impedance state exists between the I and Y ports. The select (S) input controls the data path of the multiplexer/demultiplexer.

TA	PACKAG	ε†	ORDERABLE PART NUMBER	TOP-SIDE MARKING						
	QFN – RGY	Tape and reel	TS3L100RGYR	TK100						
		Tube TS3L100D		T001 400						
	SOIC – D	Tape and reel	TS3L100DR	TS3L100						
0°C to 70°C	SSOP (QSOP) – DBQ	Tape and reel	TS3L100DBQR	TK100						
		Tube	TS3L100PW	TK400						
	TSSOP – PW	Tape and reel	TS3L100PWR	TK100						
	TVSOP – DGV	Tape and reel	TS3L100DGVR	TK100						

ORDERING INFORMATION

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 2004, Texas Instruments Incorporated

SCDS161A - MAY 2004 - REVISED OCTOBER 2004

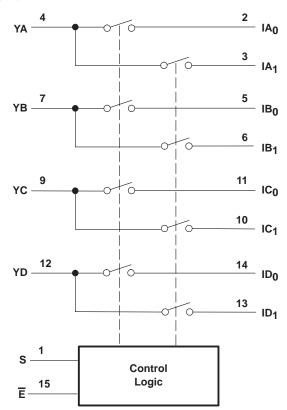
description/ordering information (continued)

This device can be used to replace mechanical relays in LAN applications. This device has low r_{on}, wide bandwidth, and low differential crosstalk, making it suitable for 10 Base-T, 100 Base-T, and various other LAN applications.

This device is fully specified for partial-power-down applications using Ioff. The Ioff feature ensures that damaging current will not backflow through the device when it is powered down. The device has isolation during power off.

To ensure the high-impedance state during power up or power down, \overline{E} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

	FUNCTION TABLE											
INP	UTS	INPUT/OUTPUT	FUNCTION									
E	S	YX	FUNCTION									
L	L	IX ₀	$YX = IX_0$									
L	Н	IX ₁	$YX = IX_1$									
Н	Х	Z	Disconnect									


E	S	YX	
L	L	IX ₀	$YX = IX_0$
L	Н	IX ₁	$YX = IX_1$
Н	Х	Z	Disconnect

DESCRIPTION
Data I/Os
Select input
Enable input
Data I/Os

PIN DESCRIPTIONS

logic diagram (positive logic)

SCDS161A – MAY 2004 – REVISED OCTOBER 2004

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC}		–0.5 V to 4.6 V
Control input voltage range, V _{IN} (see Notes 1 a		
Switch I/O voltage range, VI/O (see Notes 1, 2,		
Control input clamp current, I _{IK} (V _{IN} < 0)		–50 mA
I/O port clamp current, $I_{I/OK}$ ($V_{I/O} < 0$)		–50 mA
ON-state switch current, II/O (see Note 4)		±128 mA
Continuous current through V _{CC} or GND termi	inals	±100 mA
Package thermal impedance, θ_{JA} (see Note 5)): D package	
	DB package	
	DBQ package	
	PW package	108°C/W
Storage temperature range, T _{stg}		–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltages are with respect to ground, unless otherwise specified.

- 2. The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
- 3. VI and V_O are used to denote specific conditions for $V_{I/O}$.
- 4. II and IO are used to denote specific conditions for II/O.
- 5. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions (see Note 6)

		MIN	MAX	UNIT
VCC	Supply voltage	3	3.6	V
V_{IH}	High-level control input voltage (E, S)	2	VCC	V
VIL	Low-level control input voltage (E, S)	0	0.8	V
TA	Operating free-air temperature	0	70	°C

NOTE 6: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SCDS161A - MAY 2004 - REVISED OCTOBER 2004

PAR	AMETER	TEST CONDITIONS				TYP†	MAX	UNIT
VIK	Ē, S	V _{CC} = 3 V,	I _{IN} = -18 mA				-1.8	V
V _{hys}	Ē, S					150		mV
IIН	Ē, S	V _{CC} = 3.6 V,	$V_{IN} = V_{CC}$				±1	μA
۱ _{IL}	E, S	V _{CC} = 3.6 V,	V _{IN} = GND				±1	μA
I _{OZ} ‡		V _{CC} = 3.6 V,	$V_{O} = 0$ to 3.6 V, $V_{I} = 0$,	Switch OFF			±1	μΑ
los§		V _{CC} = 3.6 V,	$V_{O} = 0$ to 0.5 V_{CC} , $V_{I} = 0$,	Switch ON	50			mA
loff		V _{CC} = 0,	$V_{O} = 0$ to 3.6 V,	$V_{I} = 0$			15	μΑ
ICC		V _{CC} = 3.6 V,	$I_{I/O} = 0,$	Switch ON or OFF		0.1	10	μΑ
∆ICC	Ē, S	V _{CC} = 3.6 V,	One input at V _{CC} – 0.6 V,	Other inputs at V_{CC} or GND			750	μΑ
ICCD		V _{CC} = 3.6 V,	I and Y ports open,	V _{IN} input switching 50% duty cycle			0.45	mA/ MHz
CIN	Ē, S	f = 1 MHz				3		pF
~	I port		f = 1 MHz,			5		
COFF	Y port	$V_{ } = 0,$	Outputs open,	Switch OFF		10		pF
CON		$V_{I} = 0,$	f = 1 MHz, Outputs open,	Switch ON		17		pF
		N 2 V	$V_{I} = 0 V,$	I _O = 48 mA		5	7	0
ron		VCC = 3 V	V _I = 2 V,	I _O = 15 mA		10	15	Ω
∆r _{on}		V _I = 3 V,	Switch ON,	l _O = 15 mA		1		Ω

electrical characteristics over recommended operating free-air temperature range, V_{CC} = 3.3 V ± 0.3 V (unless otherwise noted)

VI, VO, II, and IO refer to I/O pins. VIN refers to the control inputs.

[†] All typical values are at V_{CC} = 3.3 V (unless otherwise noted), $T_A = 25^{\circ}C$.

[‡] For I/O ports, the parameter I_{OZ} includes the input leakage current.

§ The IOS test is applicable to only one ON channel at a time. The duration of this test is less than one second.

switching characteristics over recommended operating free-air temperature range, V_{CC} = 3.3 V ± 0.3 V, R_L = 100 Ω , C_L = 35 pF (unless otherwise noted) (see Figure 4)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	MIN	MAX	UNIT
tON	S	Y	1	7.5	ns
tOFF	S	Y	1	3.5	ns

[†] All typical values are at V_{CC} = 3.3 V (unless otherwise noted), T_A = 25°C.

dynamic characteristics over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted)

PARAMETER		TEST CONDITIONS								
X _{TALK} (Diff)	R _L = 100 Ω,	f = 10 MHz, see Figure 8,	$t_{f} = t_{f} = 2 \text{ ns}$	-55	dB					
X _{TALK}	R _L = 100 Ω,	f = 30 MHz, see Figure 6		-68	dB					
O _{IRR}	R _L = 100 Ω,	f = 30 MHz, see Figure 7		-42	dB					
BW	R _L = 100 Ω, see Fig	gure 5		350	MHz					

[†] All typical values are at V_{CC} = 3.3 V (unless otherwise noted), T_A = 25°C.

TS3L100 **QUAD SPDT WIDE-BANDWIDTH LAN SWITCH** WITH LOW ON-STATE RESISTANCE SCDS161A - MAY 2004 - REVISED OCTOBER 2004

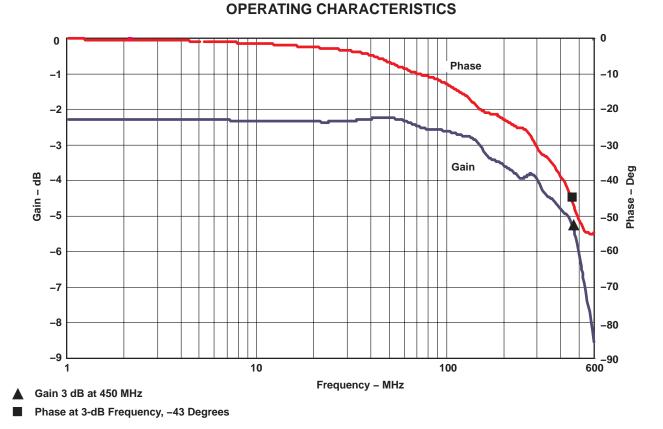


Figure 1. Gain/Phase vs Frequency

TS3L100 QUAD SPDT WIDE-BANDWIDTH LAN SWITCH WITH LOW ON-STATE RESISTANCE SCDS161A - MAY 2004 - REVISED OCTOBER 2004

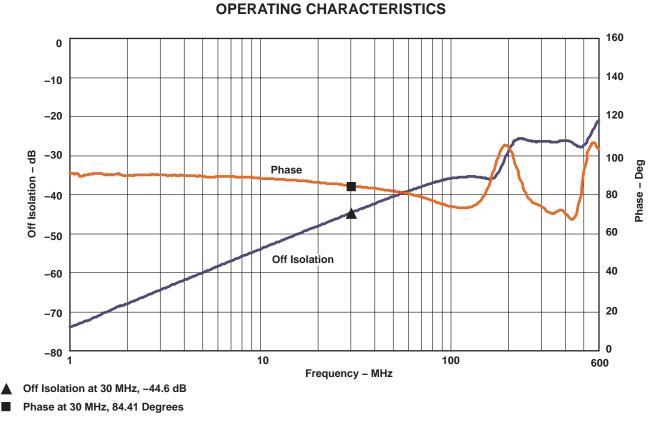


Figure 2. Off Isolation vs Frequency

SCDS161A - MAY 2004 - REVISED OCTOBER 2004

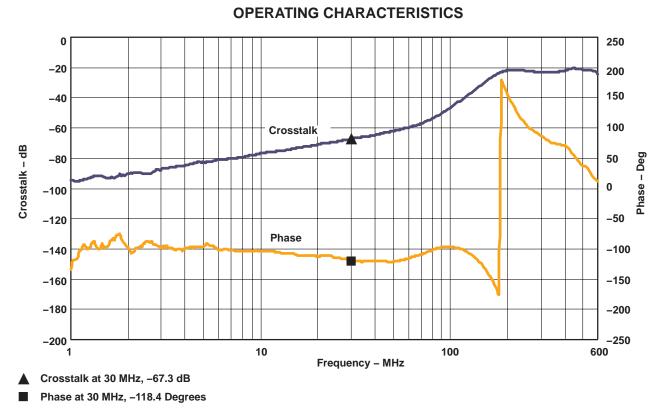
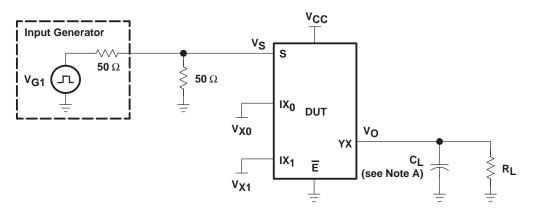
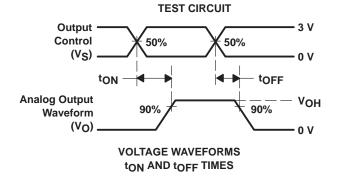



Figure 3. Crosstalk vs Frequency



SCDS161A - MAY 2004 - REVISED OCTOBER 2004

PARAMETER MEASUREMENT INFORMATION

TEST	VCC	RL	CL	V _{X0}	V _{X1}
tON	$\begin{array}{c} 3.3 \ V \pm 0.3 \ V \\ 3.3 \ V \pm 0.3 \ V \end{array}$	100 Ω 100 Ω	35 pF 35 pF	GND 3 V	3 V GND
tOFF	$\begin{array}{c} 3.3 \ V \pm 0.3 \ V \\ 3.3 \ V \pm 0.3 \ V \end{array}$	100 Ω 100 Ω	35 pF 35 pF	GND 3 V	3 V GND

NOTES: A. CL includes probe and jig capacitance.

- B. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_Q = 50 Ω , t_f \leq 2.5 ns, t_f \leq 2.5 ns.
- C. The outputs are measured one at a time, with one transition per measurement.

Figure 4. Test Circuit and Voltage Waveforms

SCDS161A - MAY 2004 - REVISED OCTOBER 2004

PARAMETER MEASUREMENT INFORMATION

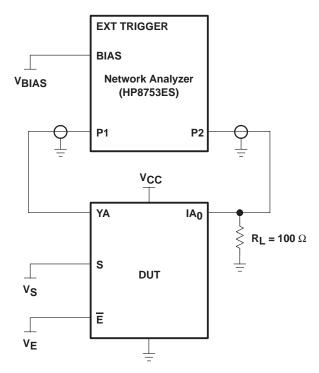
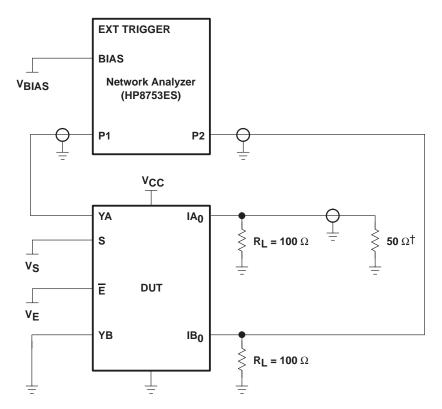


Figure 5. Test Circuit for Frequency Response (BW)


Frequency response is measured at the output of the ON channel. For example, when $V_S = 0$, $V_E = 0$, and YA is the input, the output is measured at IA₀. All unused analog I/O ports are left open.

HP8753ES setup

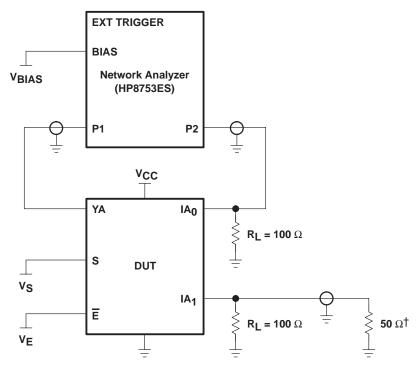
Average = 4RBW = 3 kHz $V_{BIAS} = 0.35 V$ ST = 2 sP1 = 0 dBM

PARAMETER MEASUREMENT INFORMATION

 † A 50- $\!\Omega$ termination resistor is needed for the network analyzer.

Figure 6. Test Circuit for Crosstalk (XTALK)

Crosstalk is measured at the output of the nonadjacent ON channel. For example, when $V_S = 0$, $V_E = 0$, and YA is the input, the output is measured at IB₀. All unused analog input (Y) ports are connected to GND and output (I) ports are connected to GND through 50- Ω pulldown resistors.


HP8753ES setup

Average = 4 RBW = 3 kHz $V_{BIAS} = 0.35 V$ ST = 2 s P1 = 0 dBM

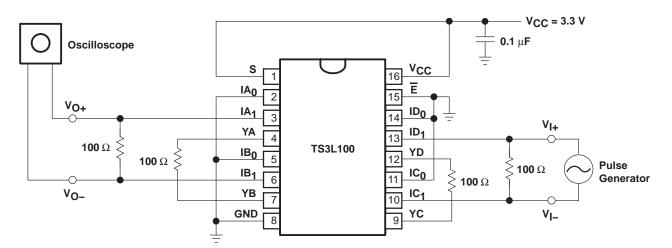
SCDS161A - MAY 2004 - REVISED OCTOBER 2004

PARAMETER MEASUREMENT INFORMATION

[†]A 50- Ω termination resistor is needed for the network analyzer.

Figure 7. Test Circuit for Off Isolation (OIRR)

OFF isolation is measured at the output of the OFF channel. For example, when $V_S = V_{CC}$, $V_E = 0$, and YA is the input, the output is measured at IA₀. All unused analog input (Y) ports are left open and output (I) ports are connected to GND through 50- Ω pulldown resistors.


HP8753ES setup

Average = 4RBW = 3 kHz $V_{BIAS} = 0.35 V$ ST = 2 s P1 = 0 dBM

SCDS161A - MAY 2004 - REVISED OCTOBER 2004

PARAMETER MEASUREMENT INFORMATION

Differential crosstalk is a measure of coupling noise between a transmit and receive pair in the LAN application. Differential crosstalk depends on the edge rate, frequency, and load. This is calculated from the equation, $X_{TALK}(Diff) db = 20 \log V_O(Diff)/V_I(Diff)$, where $V_O(Diff)$ is the differential output voltage and $V_I(Diff)$ is the differential input voltage.

PACKAGING INFORMATION

Orderable Device	Status	Package Type	•	Pins	Package	Eco Plan	Lead finish/	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	Ball material	(3)		(4/5)	
							(6)				
TS3L100DBQR	ACTIVE	SSOP	DBQ	16	2500	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	0 to 70	TK100	Samples
TS3L100DGVR	ACTIVE	TVSOP	DGV	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	TK100	Samples
TS3L100DR	ACTIVE	SOIC	D	16	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	TS3L100	Samples
TS3L100PW	ACTIVE	TSSOP	PW	16	90	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	TK100	Samples
TS3L100PWR	ACTIVE	TSSOP	PW	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	TK100	Samples
TS3L100RGYR	ACTIVE	VQFN	RGY	16	3000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	0 to 70	TK100	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

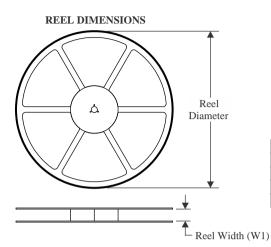
⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

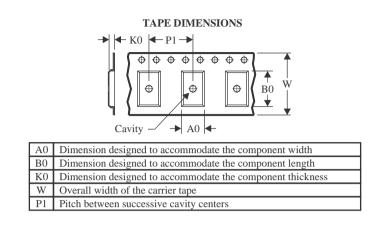
⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

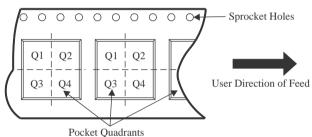
www.ti.com

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

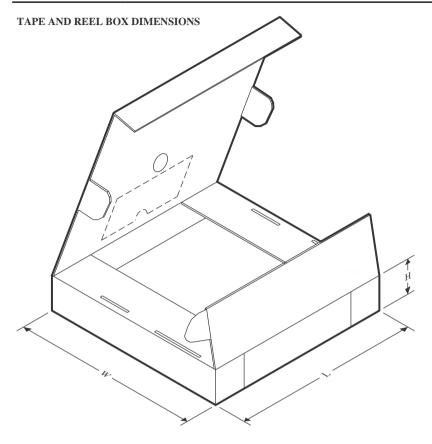


Texas


STRUMENTS

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

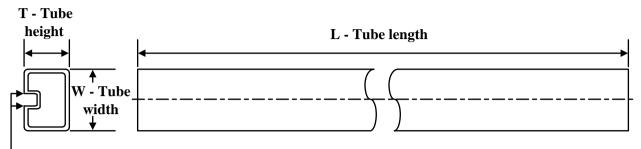

*All dimensions are nomina					<u> </u>							
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TS3L100DBQR	SSOP	DBQ	16	2500	330.0	12.5	6.4	5.2	2.1	8.0	12.0	Q1
TS3L100DGVR	TVSOP	DGV	16	2000	330.0	12.4	6.8	4.0	1.6	8.0	12.0	Q1
TS3L100DR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
TS3L100PWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
TS3L100RGYR	VQFN	RGY	16	3000	330.0	12.4	3.8	4.3	1.5	8.0	12.0	Q1

www.ti.com

PACKAGE MATERIALS INFORMATION

9-Aug-2022

*All dimensions are nominal

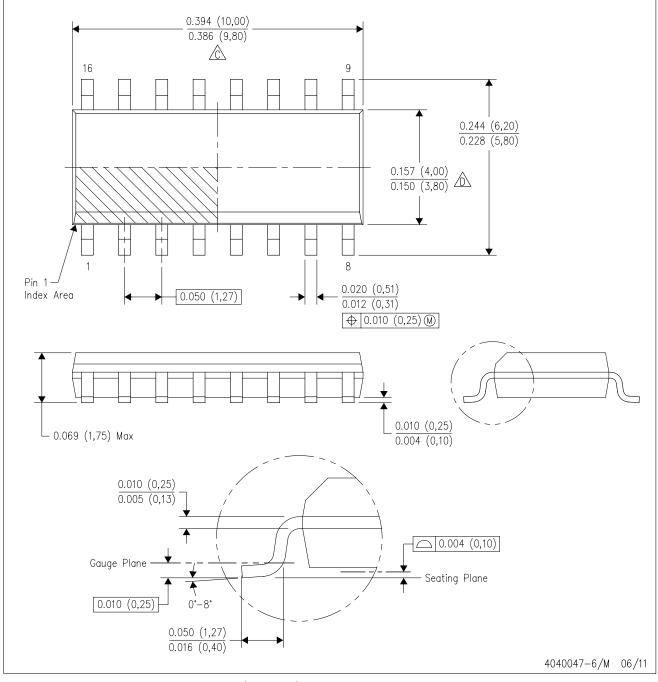

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TS3L100DBQR	SSOP	DBQ	16	2500	340.5	336.1	32.0
TS3L100DGVR	TVSOP	DGV	16	2000	356.0	356.0	35.0
TS3L100DR	SOIC	D	16	2500	340.5	336.1	32.0
TS3L100PWR	TSSOP	PW	16	2000	356.0	356.0	35.0
TS3L100RGYR	VQFN	RGY	16	3000	356.0	356.0	35.0

TEXAS INSTRUMENTS

www.ti.com

9-Aug-2022

TUBE


- B - Alignment groove width

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	Τ (μm)	B (mm)
TS3L100PW	PW	TSSOP	16	90	530	10.2	3600	3.5

D (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).

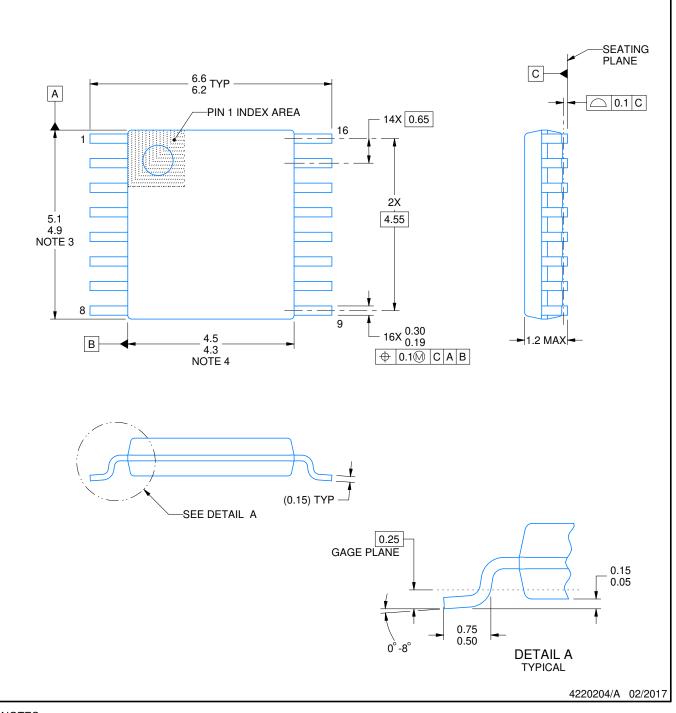
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

4211283-4/E 08/12

D (R-PDSO-G16) PLASTIC SMALL OUTLINE Stencil Openings (Note D) Example Board Layout (Note C) –16x0,55 -14x1,27 -14x1,27 16x1,50 5,40 5.40 Example Non Soldermask Defined Pad Example Pad Geometry (See Note C) 0,60 .55 Example 1. Solder Mask Opening (See Note E) -0,07 All Around

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
 E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.


PW0016A

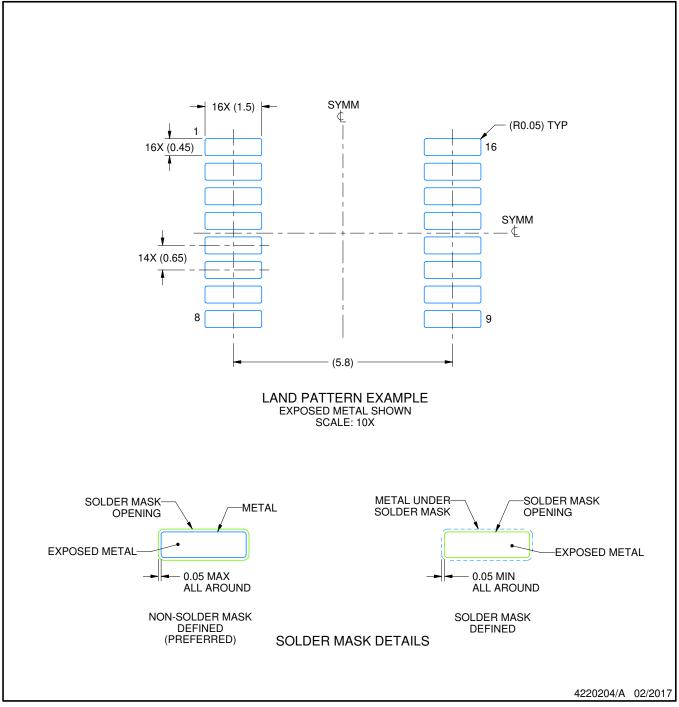
PACKAGE OUTLINE

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.



PW0016A

EXAMPLE BOARD LAYOUT

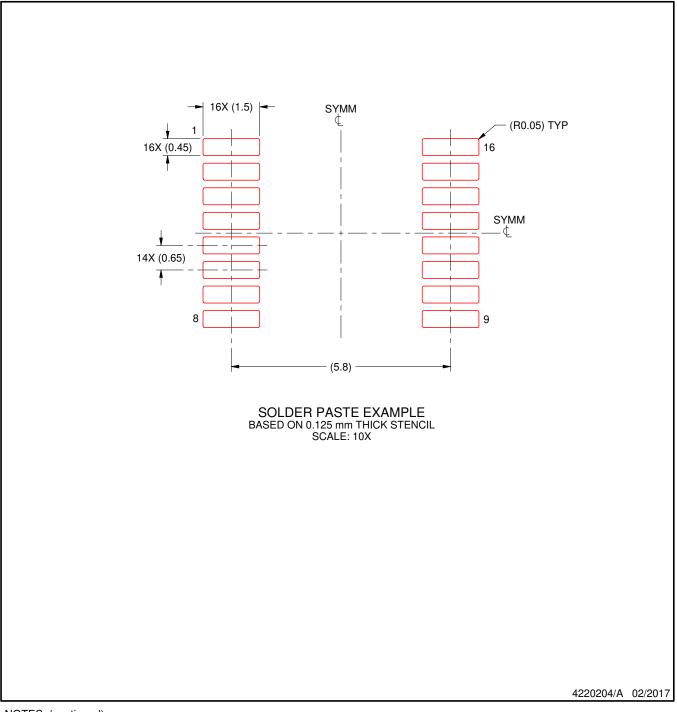
TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



PW0016A

EXAMPLE STENCIL DESIGN

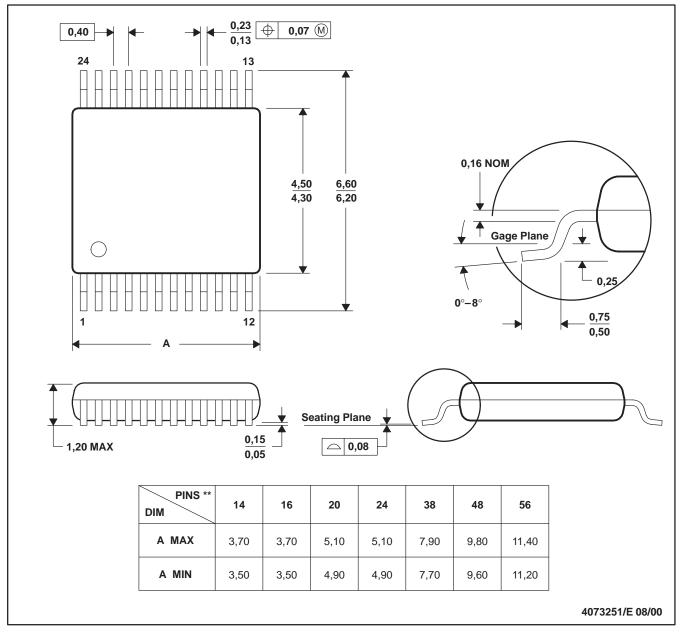
TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

9. Board assembly site may have different recommendations for stencil design.

^{8.} Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.


MECHANICAL DATA

PLASTIC SMALL-OUTLINE

MPDS006C - FEBRUARY 1996 - REVISED AUGUST 2000

DGV (R-PDSO-G**)

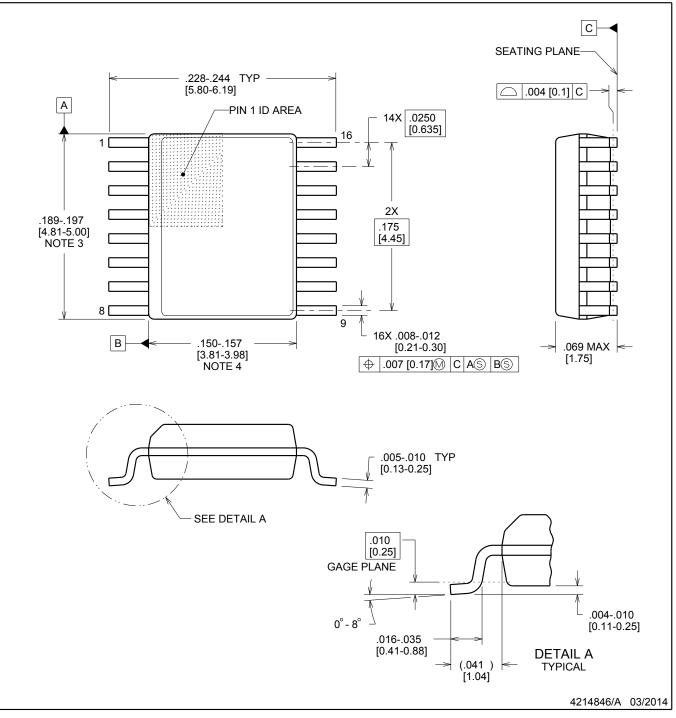
24 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.
- D. Falls within JEDEC: 24/48 Pins MO-153

14/16/20/56 Pins – MO-194


DBQ0016A

PACKAGE OUTLINE

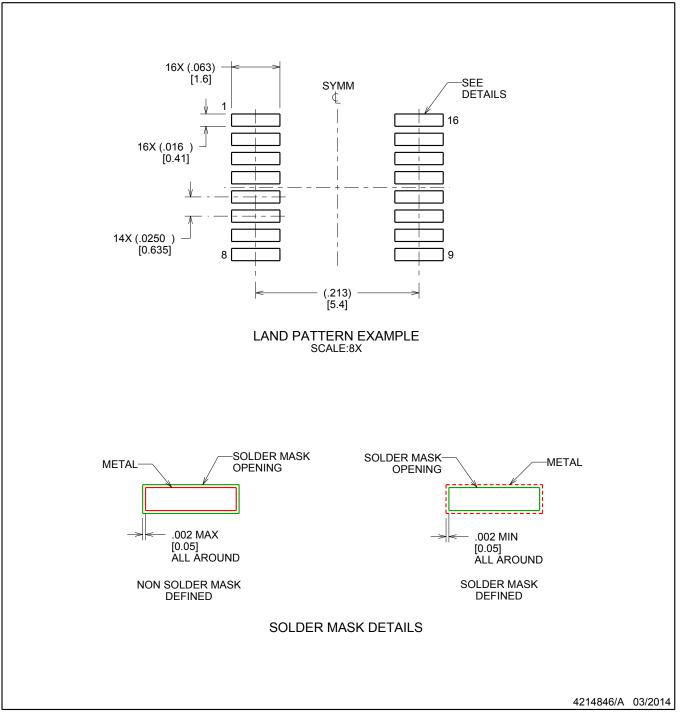
SSOP - 1.75 mm max height

SHRINK SMALL-OUTLINE PACKAGE

NOTES:

1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.

- 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 inch, per side.
- This dimension does not include interlead flash.
 Reference JEDEC registration MO-137, variation AB.



DBQ0016A

EXAMPLE BOARD LAYOUT

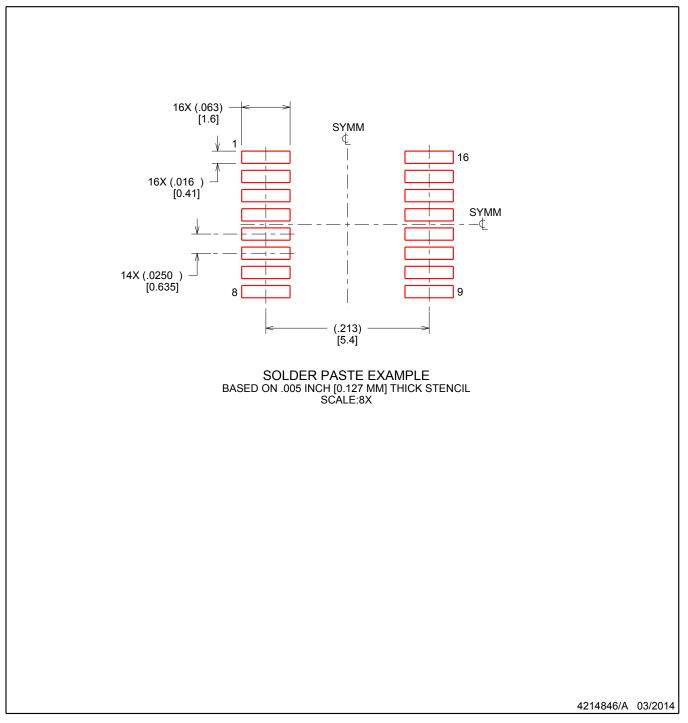
SSOP - 1.75 mm max height

SHRINK SMALL-OUTLINE PACKAGE

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

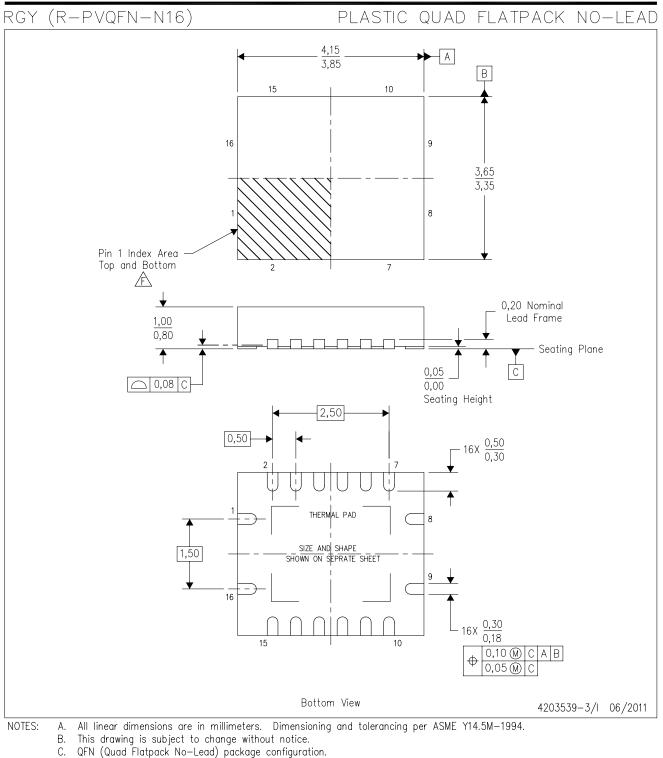


DBQ0016A

EXAMPLE STENCIL DESIGN

SSOP - 1.75 mm max height

SHRINK SMALL-OUTLINE PACKAGE


NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

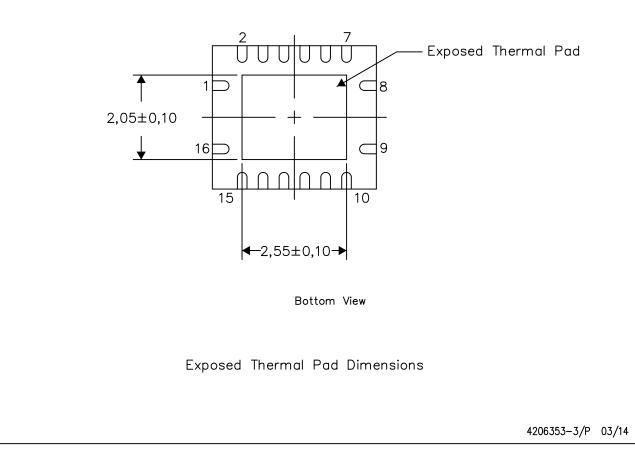
9. Board assembly site may have different recommendations for stencil design.

MECHANICAL DATA

D. The package thermal pad must be soldered to the board for thermal and mechanical performance.

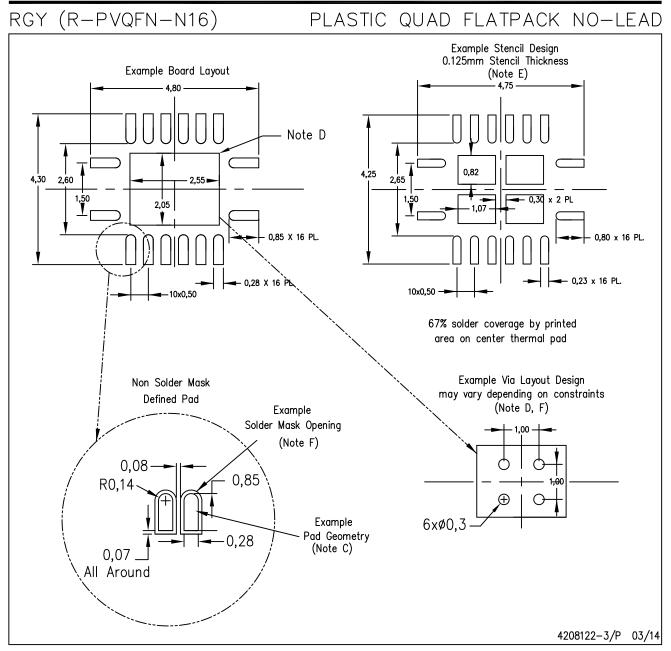
- E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
- The Pin 1 identifiers are either a molded, marked, or metal feature.
- G. Package complies to JEDEC MO-241 variation BA.

RGY (R-PVQFN-N16)


PLASTIC QUAD FLATPACK NO-LEAD

THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).


For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

NOTE: All linear dimensions are in millimeters

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.

D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat-Pack QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com http://www.ti.com.

- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- F. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated