NXP WIRELESS POWER SOLUTIONS

MAY - 2017

SECURE CONNECTIONS FOR A SMARTER WORLD

Wireless Power Standards

	Standard	Technology	Characteristics
Compatible HW base	Qi (WPC)	 Inductive coupling 80 – 200kHz 2 – 2000W 	- Dominant market share low power – up to 15W high power – up to 200W kitchen – up to 2000W resonant – free positioning
	Apple	 Inductive coupling 100 – 200kHz 2W 	Apple WatchQi subset frequency range
		 Inductive coupling 105 – 400kHz 2 – 15W 	- Qi subset frequency range
	A4WP Z	 Inductive resonant coupling 6.78MHz 2 - 50W 	 No released products (May '16) Intel, pulled out (May '16)

2 EXTERNAL USE * Merged to the AirFuel Alliance, but two incompatible technology lines (kHz vs. MHz band)

*

WPC Qi Everywhere

Mobiles	Cars	Consumer
Samsung, Google, LG, Sony, HTC, Motorola, Microsoft, Nokia,	Toyota, Ford, Audi, VW, Skoda, Honda, Hyundai, BMW, Mercedes-Benz,	Dell, Ikea, Philips, Panasonic, McDonalds, AirCharge, PowerSquare,
		<image/>

NXP Wireless Power Products on the Market

	Automotive		Consumer	
	AUDI	Q7, A4	LG	G3 Phone Tx
	HONDA	Accord, Civic, CRV	Philips	S8860 Tx
	BMW	5 Series, 7 Series	PowerSquare	Tango Dual Tx
(KIA)	KIA	K5 JK, Sportage, K7	Belkin	BOOST↑UP™ Tx
	VW	Tiguan	PHILIPS	PUWER
S	HYUNDAI	Avante, Ecqus		
	SEAT	Ateca	: belkin	
	SKODA	Superb, Octavia		

Customer Challenges

Time to market is key factor to success (big boom of Wireless Charging)

- New technology
- Know-how
- Standards compliance
- Certification

NXP Wireless Power Solutions perfectly address all this needs!

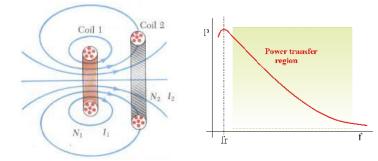
NXP is Key Contributor in WPC

Founding member of Qi Wireless Power Consortium (WPC)

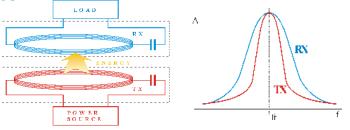
Co-chair of Specification Working Groups in WPC

NXP Qi Solutions are golden units in WPC specification

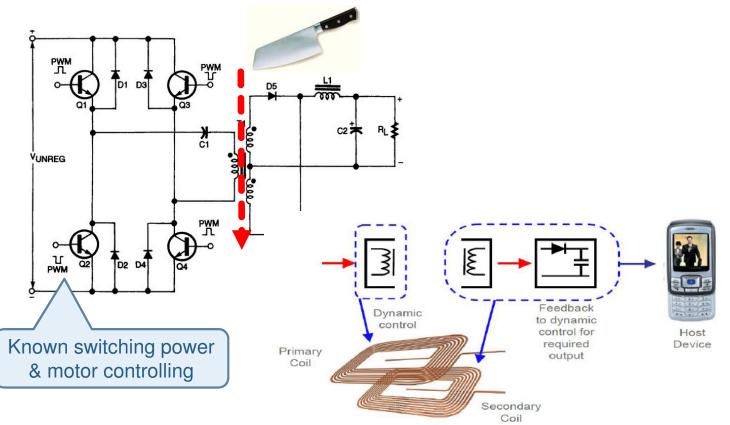
NXP Qi Solutions are part of certification interoperability test bed


NXP WIRELESS POWER PORTFOLIO

MI vs. MR


Magnetic Induction (MI)

- Transmitter coil creates a magnetic field, and receiver coil picks up the magnetic field and generates electric current


Magnetic Resonance (MR)

Both transmitter and receiver coils operate at approximately same natural frequencies

NXP MCU-based Solutions for Advanced Designs

Questions	Feasibility
 Higher cost? Harder to start up? Longer design period? 	 Flexibility to use your own favorite parts Turn-key solutions Easier for tuning for certifications Specification update without PCBA change Controllable thermal / EMI performance Function extensible Customized U/I Higher watts provided etc

Wireless Power Solutions Platform

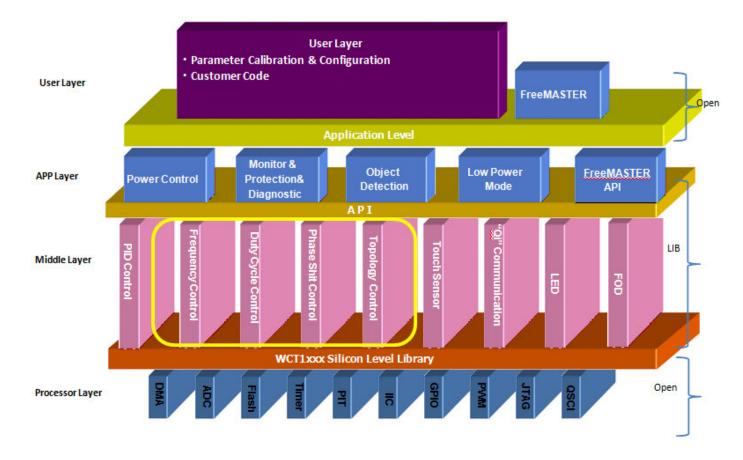
HW	Reference designOptimized BOM	
SW	 Professional Grade Qi certified library Customizable application / clean API 	
Support	 Application Expertise On-site support up to production	NXP Automotive
Certification	 WPC consortium co-chair Only available 1.2.3 certified solution 	Wireless Charging Tx Solutions Platform

Reduced Time to Market

Customers Benefits:

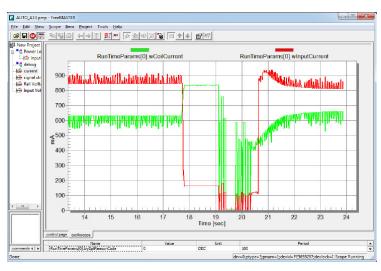
- Reduced Risk
- Reduced Development Cost

Application Flexibility


- Custom FOD
- Additional application
- · Qi disablement/enablement
- PMA disablement/enablement
- System/user interfaces definition
- Proprietary devices enablement
- Proprietary monitoring/protections
- Proprietary messages between Tx and Rx

Development Tools

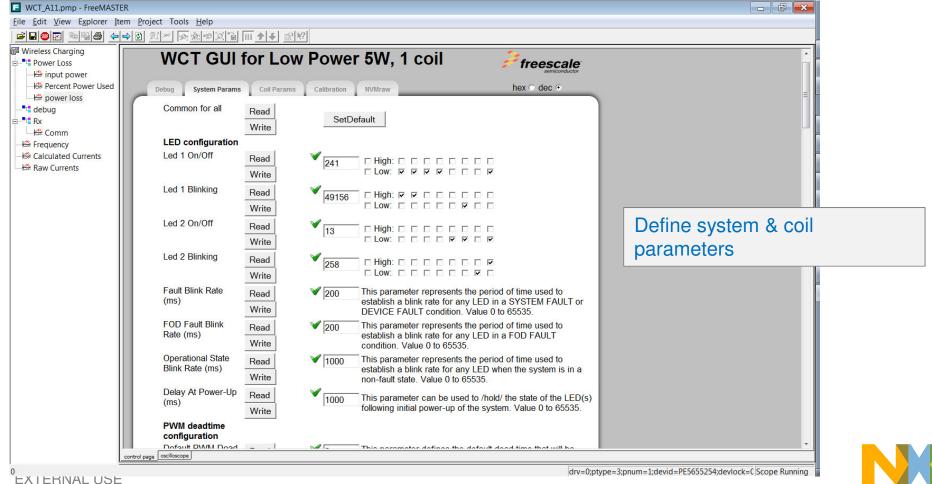
CodeWarrior


- Eclipse based IDE

FreeMASTER

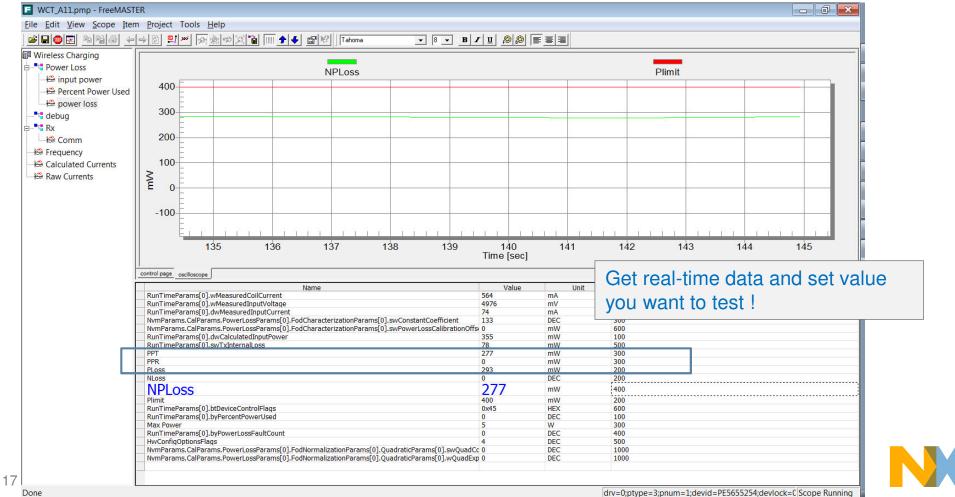
- Monitoring
- Tuning
- Calibration
- Debugging

CodeWarrior Development Studio

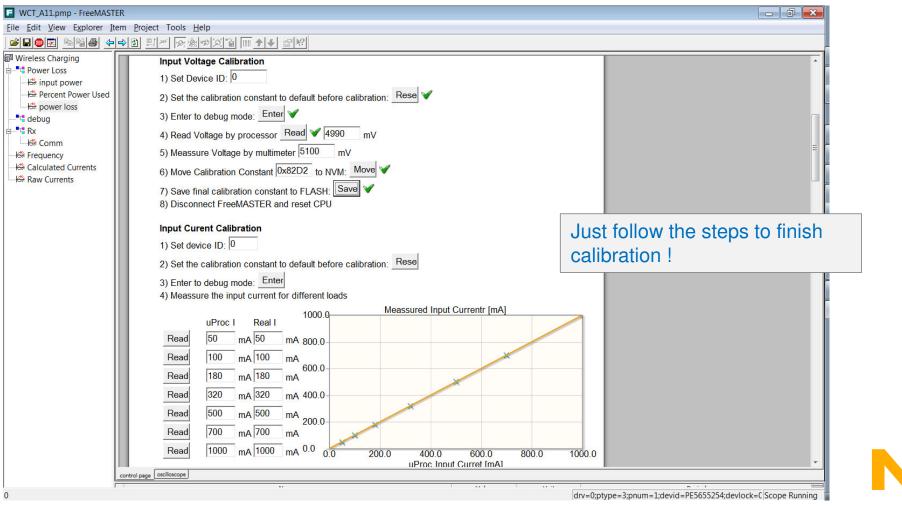


FreeMASTER for Wireless Charging

WCT A11.pmg •Real-time Design Analysis • 16 • B X U 20 20 E = = Wireless Charging Power Loss NPLoss Plimit B input power 400-- Data Visualization Is power loss 350 • debug TE Kx 300 HA Comm 250 - Data real-time acquiring 15 Frequency He Calculated Currents 200 Raw Currents £150-- UART / JTAG / CAN 100-50 Time [sec] WCT_A11.pmp FreeMASTER MeasuredCollCurrent MeasuredInputVoltage 862 mA mV mA DBC mW mW mW mW mW DBC 300 300 300 300 600 100 500 300 300 200 200 Elle Edit View Explorer Item Project Tools Help w Measured Toput Voitsee dw Measured Toput Current ms. Fewer LeosParams (0). Fed Characterization Params (0). sw Cens ms. Fewer LeosParams (0). Fed Characterization Params (0). sw Power dw Calculated Insuf Power **2월 2**월 11월 44월 의전 28월 21일 문학학 21년 **Of** Wireless Charging IndinternalLoss P- Power Loss WCT GUI for Low Power 5W, 1 coil freescale - the input power ------ Percent Power Used 326 ---- power loss Debug MUMMER mW. 400 200 600 100 300 400 -s debug IDeviceControlFlags NVM Data Flash This control writes NVM data to Flash or read NVM data Read Write Rx Rx from Elash - Comm Prevent costant Count Debug Mode Enter Exit This control Enables or Disables Debug Mode Se Frequency - Powert ossParans (0). FolkionnalizationParans (0). QuadraticParans (0). swQuadCa - Powert ossParans (0). FolkionnalizationParans (0). QuadraticParans (0), wQuadrian Calculated Currents Read In 1, Rail U In U? mV, In I 2 mA , Coil 1 2 Read mA - Raw Currents In P? mW, Tx loss ? mW, Out P? mW dry=0.ptype=3:pnum=1:devid=PE5655254:devlock=CScope Running Coil Frequency Set Off Coil Fredericy of desired Coil ID 140000 Hz **Debugging & Tuning** Coll Discharge Enables or disables Coil Discharge On Off Coil Duly Cycle Set Off Coil Duty Cycle of desired Coil ID: 50 %, Note Frequency must be set first. btDeviceCttFlags[0] Read - Parameter tuning Write HW config Read System parameters Write Input Voltage Calibration 1) Set Device ID. 0 Coil parameters 2) Set the calibration constant to default before calibration. Rese 💜 3) Enter to debug mode: Enter Calibration ex. FOD boundary 4) Read Voltage by processor Read V 5221 mV 5) Meassure Voltage by multimeter 5000 mV - Result written to Flash 6) Move Calibration Constant 31381 to NVM: Move V control page ceciloscope - Configuration file creating Value None Unit


drv=0;ptype=3;pnum=1;devid=PE5655254;devlock=C[5cope Running

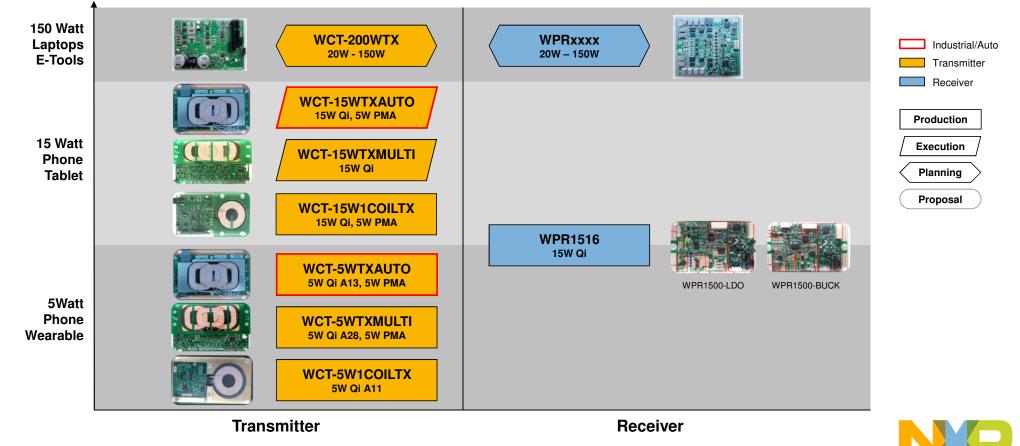
Configuration in FreeMASTER



16 E

Tuning in FreeMASTER

Calibration in FreeMASTER


18

NXP WIRELESS POWER PORTFOLIO

NXP Wireless Power Solutions Portfolio

Power / Applications

NXP BASE POWER SOLUTIONS

A11 5W Single Coil Transmitter

Target Applications:

- Wearable Charger, Mobile Charger

• Features:

- Compliant with WPC low power specifications
- On chip digital demodulation
- Resonance Shift and Power Loss FOD methods
- Dynamic input power limit
- Power transfer efficiency exceeds 75%
- <u>http://www.nxp.com/products/power-management/wireless-charging-ics/wct-5w1coiltx-single-coil-wireless-charger-reference-design:RDWCT-5W1COILTX</u>

- Availability & Certification:
 - Available for demo and evaluation now!
 - Got WPC Qi certification with WCT1000CFM

A28 5W 3 Coil Transmitter

Target Applications:

- Wearable Charger, Mobile Charger, Free positioning

• Features:

- Compliant with WPC low power specifications
- On chip digital demodulation
- Resonance Shift and Power Loss FOD methods
- Dynamic input power limit
- Power transfer efficiency exceeds 70%
- PMA v1.0 specifications
- NXP IP in WPC specifications
- <u>http://www.nxp.com/products/power-management/wireless-charging-ics/5w-multi-coil-a-type-wireless-charging-transmitter-reference-design:RDWCT-5WTXMULTI</u>

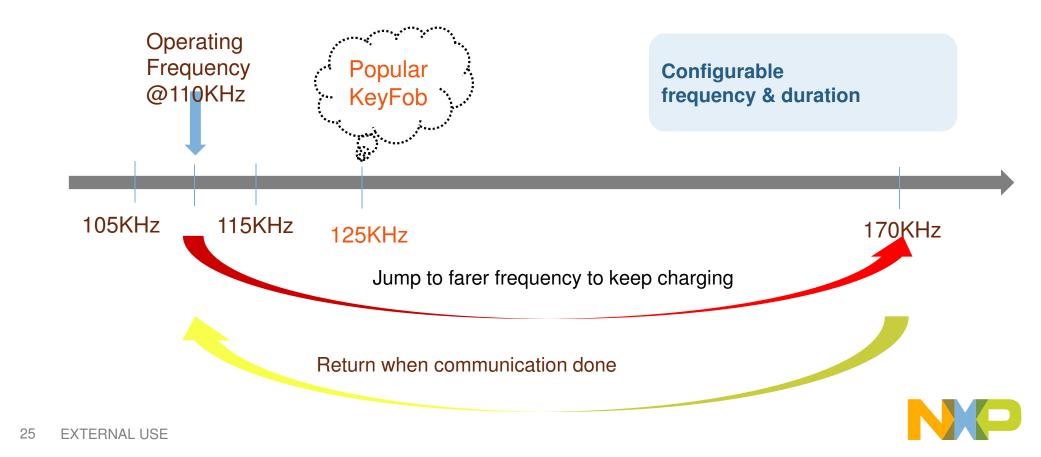
- Availability & Certification:
 - Available for demo and evaluation now!
 - Got WPC Qi certification with WCT1101CLH

A13 5W 3 Coil Automotive Transmitter

Target Applications:

- Automotive, Wearable Charger, Mobile Charger, Free positioning

• Features:


- Compliant with WPC low power specifications
- On chip digital demodulation
- CAN, NFC interfaces
- Fixed frequency PWM control (better EMC)
- Resonance Shift and Power Loss FOD methods
- Key FOB and AM band avoidance
- PMA v1.0 specifications
- AEC-Q100 grade 2 certification
- <u>http://www.nxp.com/products/power-management/wireless-charging-ics/wct-5wtxauto-multi-coil-wireless-charging-transmitter-reference-platform-for-automotive-applications:RDWCT-5WTXAUTO</u>
- 24 EXTERNAL USE

- Availability & Certification:
 - Available for demo and evaluation now!
 - Got WPC Qi certification with WCT1001AVLH

KeyFob Avoidance in A13

NXP EXTENDED POWER SOLUTIONS

15W Single Coil Transmitter

Target Applications:

- Fast Mobile Charger, Tablet Charger

• Features and Enablement:

- Compliant with WPC-Qi medium power specifications
- On-chip digital demodulation
- Back compliant with WPC low power specifications
- More than 75% transfer efficiency
- Q-Factor and Power Loss FOD methods
- Ultra-low bill-of-materials (BOM) cost
- <u>http://www.nxp.com/products/power-management/wireless-charging-ics/wct-15w1coiltx-15-watt-single-coil-wireless-charging-transmitter-reference-platform:RDWCT-15W1COILTX</u>

- Availability & Certification:
 - Available for demo and evaluation now!
 - Qi Certification on-going


15W Multi Coil Transmitter

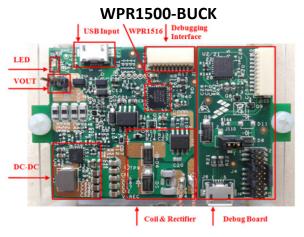
Target Applications:

- Fast Mobile Charger, Tablet Charger, Free positioning

• Features and Enablement:

- Compliant with WPC-Qi medium power specifications
- On-chip digital demodulation
- Back compliant with WPC low power specifications
- 1st WPC free positioning multiple coils medium power transmitter solution using frequency control, duty cycle control, phase shift control, and topology switch
- Q-Factor and Power Loss FOD methods


- Availability & Certification:
 - Q2'16
 - Qi Certification on-going



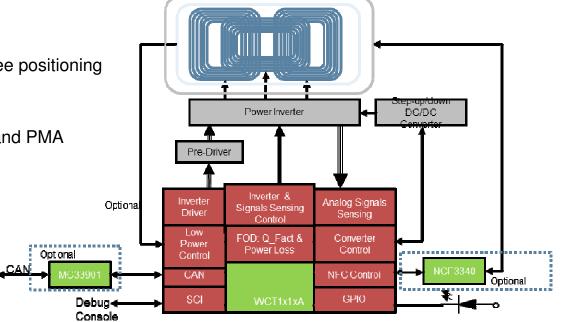
15W Receiver

Target Applications:

- Tablet Charger, Fast Mobile Charger
- Features and Enablement:
 - Compliant with latest WPC medium power specifications
 - Input power (3.5 V \sim 20 Vac peak) from the transmitter via the receiver coil
 - Power transfer efficiency exceed 74%
 - Support two-way communication, transmitter to receiver by FSK and receiver to transmitter by ASK
 - Hardware protection of rectifier voltage, output voltage and output current
 - Directly support Quick Charge 2.0 & 3.0 (Class A) & Pump Express +
 - PCB size 40 mm × 40 mm
 - Selected as WPC golden MP receiver
 - <u>http://www.nxp.com/products/power-management/wireless-charging-ics/wpr1500-buck-15w-wireless-charging-receiver:RDWPR1500-BUCK</u>
- 29 EXTERNAL USE

Availability & Certification:

- Available for demo and evaluation now!


15W Multi Coil Automotive Transmitter

Target Applications:

- Automotive, Fast Mobile Charger, Tablets Charger, Free positioning

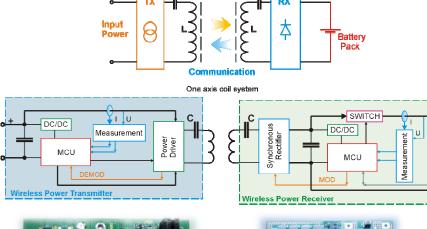
• Features and Enablement:

- Dual mode compliant, WPC-Qi medium power spec and PMA
- On-chip digital demodulation
- Back compliant with WPC low power specifications
- Q-Factor and Power Loss FOD methods
- Key FOB and AM band avoidance
- CAN interface to connect with vehicle network
- NFC enabled, NCF3340

Availability & Certification:

– Q1'17

NXP HIGH POWER SOLUTIONS

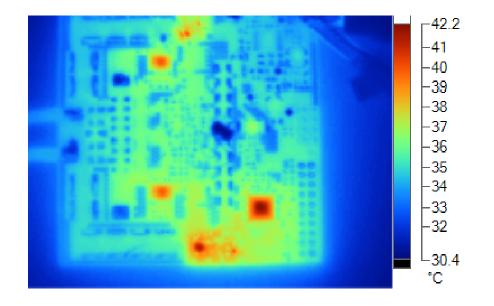

20W – 200W Single Coil System (Tx + Rx) - Developing

Target Applications:

- Laptop Charging, Power Tools Charging, Tablet Charging

Features and Enablement:

- High efficiency >90% (Best eff: 94%/110W)
- Low temperature without any heatsink (up to 42°C)
- Prepared to be compatible with Qi specs for <15W
- Transmitter supply voltage: 24 V DC / 6A;
- Working frequency from 90-110kHz;
- Distance gap between TX and RX from 5 to 14mm;
- All types of Lithium based batteries;
- Battery capacity up to ~10Ah, 3 to 6-cells in series;



Rx Thermal Operation

30min of **100W** power transfer Max temperature **42.2** ℃

Placed on rubber plate on table No heat sink

SECURE CONNECTIONS FOR A SMARTER WORLD