# Low Phase-Noise Two-Channel Clock Fanout Buffer

The NB3RL02 is a low-skew, low jitter 1:2 clock fan-out buffer, ideal for use in portable end-equipment, such as mobile phones. With integrated LDO and output control circuitry.

The MCLK\_IN pin has an AC coupling capacitor and will directly accept a square or sine wave clock input, such as a temperature compensated crystal oscillator (TCXO). The minimum acceptable input amplitude of the sine wave is 300 mV peak–to–peak.

The two clock outputs are enabled by control inputs CLK\_REQ1 and CLK\_REQ2.

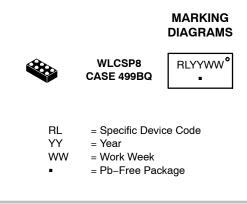
The NB3RL02 has an integrated Low–Drop–Out (LDO) voltage regulator which accepts input voltages from 2.3 V to 5.5 V and outputs 1.8 V at  $I_{out} = 50$  mA. This 1.8 V supply is externally available to provide regulated power to peripheral devices, such as a TCXO.

The adaptive clock output buffers offer controlled slew-rate over a wide capacitive loading range which minimizes EMI emissions, maintains signal integrity, and minimizes ringing caused by signal reflections on the clock distribution lines.

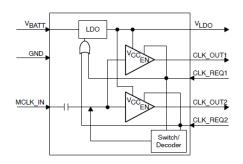
The NB3RL02 is offered in a 0.4 mm pitch wafer-level-chip-scale (WLCS) package and is optimized for very low standby current consumption.

## Features

- Low Additive Noise:
  - ◆ -149 dBc/Hz at 10 kHz Offset Phase Noise
  - 0.37 ps (rms) Output Jitter
- Limited Output Slew Rate for EMI Reduction (1 ns to 5 ns/Rise/Fall Time for 10-50 pF Loads)
- Regulated 1.8 V Output Supply Available for External Clock Source, ie. TCX0
- Operation to 80 MHz
- Ultra-Small Package:
- 8-ball: 0.4 mm Pitch WLCS
- ESD Performance Exceeds JESD 22
  - 2000 V Human-Body Model (A114-A)
  - 200 V Machine Model (A115-A)
  - 1000 V Charged-Device Model (JESD22-C101-A Level III)
- These are Pb–Free Devices

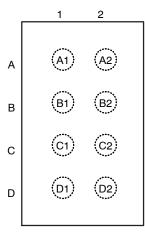

## Applications

- Cellular Phones
- Global Positioning Systems (GPS)




# **ON Semiconductor®**

www.onsemi.com




## LOGIC DIAGRAM



## **ORDERING INFORMATION**

See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.



(Package – Flip Chip) Die Pads Face Down on PCB

Figure 1. Pinout (Top View)

#### Table 1. PIN DESCRIPTION

| Ball No. | Name     | I/O | Description                                |
|----------|----------|-----|--------------------------------------------|
| A1       | VBATT    | I   | Input to internal LDO                      |
| A2       | CLK_OUT1 | 0   | Clock output 1                             |
| B1       | VLDO     | 0   | 1.8 V supply for NB3RL02 and external TCXO |
| B2       | CLK_REQ1 | I   | Clock request from peripheral 1            |
| C1       | MCLK_IN  | I   | Master clock input                         |
| C2       | CLK_REQ2 | I   | Clock request from peripheral 2            |
| D1       | GND      | -   | Ground                                     |
| D2       | CLK_OUT2 | 0   | Clock output 2                             |

## Table 2. FUNCTION TABLE

|          | Inputs   |         |          | Outputs  |       |
|----------|----------|---------|----------|----------|-------|
| CLK_REQ1 | CLK_REQ2 | MCLK_IN | CLK_OUT1 | CLK_OUT2 | VLDO  |
| L        | L        | Х       | L        | L        | 0 V   |
| L        | Н        | CLK     | L        | CLK      | 1.8 V |
| н        | L        | CLK     | CLK      | L        | 1.8 V |
| Н        | Н        | CLK     | CLK      | CLK      | 1.8 V |

#### **Table 3. ABSOLUTE MAXIMUM RATINGS**

| Symbol            | Parameter                                                                  | Condition                                                               | Min  | Max                     | Unit |
|-------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------|------|-------------------------|------|
| V <sub>BATT</sub> | V <sub>BATT</sub> Voltage Range (Note 1)                                   |                                                                         | -0.3 | 7                       | V    |
|                   | Voltage range (Note 2)                                                     | CLK_REQ_1/2, MCLK_IN                                                    | -0.3 | V <sub>BATT</sub> + 0.3 | V    |
|                   |                                                                            | V <sub>LDO</sub> , CLK_OUT_1/2<br>(Note 1)                              | -0.3 | V <sub>BATT</sub> + 0.3 |      |
| Ι <sub>ΙΚ</sub>   | Input clamp current at V <sub>BATT</sub> , CLK_REQ_1/2, and MCLK_IN        | V <sub>1</sub> < 0                                                      |      | -50                     | mA   |
| Ι <sub>Ο</sub>    | Continuous output current                                                  | CLK_OUT1/2                                                              |      | ±20                     | mA   |
|                   | Continuous current through GND, V <sub>BATT</sub> , V <sub>L</sub> -<br>DO | Continuous current through<br>GND, V <sub>BATT</sub> , V <sub>LDO</sub> |      | ±50                     | mA   |
|                   | ESD Rating                                                                 | Human-Body Model                                                        |      | 2000                    | V    |
|                   |                                                                            | Charged-Device Model                                                    |      | 1000                    |      |
|                   |                                                                            | Machine Model                                                           |      | 200                     |      |
| ТJ                | Operating virtual junction temperature                                     |                                                                         | -40  | 150                     | °C   |
| T <sub>A</sub>    | Operating ambient temperature range                                        |                                                                         | -40  | 85                      | °C   |
| T <sub>stg</sub>  | Storage temperature range                                                  |                                                                         | -55  | 150                     | °C   |

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functional-ity should not be assumed, damage may occur and reliability may be affected. 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. All voltage values are with respect to network ground terminal.

#### Table 4. RECOMMENDED OPERATING CONDITIONS (Note 3)

| Symbol            | Parameter                             |                     |     | Max  | Unit |
|-------------------|---------------------------------------|---------------------|-----|------|------|
| V <sub>BATT</sub> | Input voltage                         | V <sub>BATT</sub>   | 2.3 | 5.5  | V    |
| VI                | Input voltage Amplitude               | MCLK_IN, CLK_REQ1/2 | 0   | 1.89 | V    |
| V <sub>O</sub>    | Output voltage                        | CLK_OUT1/2          | 0   | 1.8  | V    |
| V <sub>IH</sub>   | High-level input voltage              | CLK_REQ1/2          | 1.3 | 1.89 | V    |
| V <sub>IL</sub>   | Low-level input voltage               | CLK_REQ1/2          | 0   | 0.5  | V    |
| I <sub>OH</sub>   | High-level output current, DC current |                     |     |      | mA   |
| I <sub>OL</sub>   | Low-level output current, DC current  |                     |     | 8    | mA   |

3. All unused inputs of the device must be held at  $V_{CC}$  or GND to ensure proper device operation.

# Table 5. ELECTRICAL CHARACTERISTICS (T<sub>A</sub> = $-40^{\circ}C$ to $+85^{\circ}C$ )

| Symbol               | Parameter                    | Test Condi                                                                        | tions                                          | Min  | Тур | Max  | Unit |
|----------------------|------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------|------|-----|------|------|
| LDO                  |                              |                                                                                   |                                                |      |     |      |      |
| V <sub>OUT</sub>     | LDO output voltage           | l <sub>OUT</sub> = 50                                                             | mA                                             | 1.71 | 1.8 | 1.89 | V    |
| C <sub>LDO</sub>     | External load capacitance    |                                                                                   |                                                | 1    |     | 10   | μF   |
| I <sub>OUT(SC)</sub> | Short circuit output current | R <sub>L</sub> = 0 9                                                              | Ω                                              |      | 100 |      | mA   |
| I <sub>OUT(PK)</sub> | Peak output current          | V <sub>BATT</sub> = 2.3 V, V <sub>LDO</sub>                                       | $V_{BATT}$ = 2.3 V, $V_{LDO}$ = $V_{OUT}$ – 5% |      | 55  | 100  | mA   |
| PSR                  | Power supply rejection       | V <sub>BATT</sub> = 2.3V,<br>I <sub>OUT</sub> = 2 mA                              | f <sub>IN</sub> = 217 Hz<br>and 1 kHz          | 60   |     |      | dB   |
|                      |                              |                                                                                   | f <sub>IN</sub> = 3.25 MHz                     | 40   |     |      |      |
| t <sub>su</sub>      | LDO start-up time            | $V_{BATT}$ = 2.3 V , $C_{LDO}$ = 1 $\mu\text{F},$ CLK_REQ_n to $V_{LDO}$ = 1.71 V |                                                |      | 0.2 |      | ms   |
|                      |                              | $V_{BATT}$ = 5.5 V , $C_{LDO}$ = 1<br>to $V_{LDO}$ = 1                            | 0 μF, CLK_REQ_n<br>.71 V                       |      |     | 1    | ms   |

#### POWER CONSUMPTION

| I <sub>SB</sub>  | Standby current                      | Device in standby (all VCLK_REQ_n = 0 V)                                       | 0.2        | 1  | μΑ |
|------------------|--------------------------------------|--------------------------------------------------------------------------------|------------|----|----|
| I <sub>CCS</sub> | Static current consumption           | Device active but not switching,<br>V <sub>CLK_REQn</sub> = H                  | 0.4        | 1  | mA |
| I <sub>OB</sub>  | Output buffer average<br>current     | $f_{IN}$ = 26 MHz, $C_{LOAD}$ = 50 pF<br>$f_{IN}$ = 52 MHz, $C_{LOAD}$ = 50 pF | 4.2<br>6.0 |    | mA |
| C <sub>PD</sub>  | Output power dissipation capacitance | f <sub>IN</sub> = 26 MHz                                                       |            | 44 | pF |

## MCLK\_IN INPUT

| I <sub>I</sub>  | MCLK_IN, CLK_REQ_1/2<br>leakage current | $V_{I} = V_{LDO}$ or GND |   |       | 1  | μΑ  |
|-----------------|-----------------------------------------|--------------------------|---|-------|----|-----|
| Cl              | MCLK_IN capacitance                     | f <sub>IN</sub> = 26 MHz |   | 3.75  |    | pF  |
| RI              | MCLK_IN impedance                       | f <sub>IN</sub> = 26 MHz |   | 5     |    | kΩ  |
| f <sub>IN</sub> | MCLK_IN frequency range                 |                          | 9 | 26/52 | 80 | MHz |

#### MCLK\_IN LVCMOS SOURCE

|                 | Phase noise                            | $f_{IN} = 26 \text{ MHz}/52 \text{ MHz},$                                                             | 1 kHz offset                                   |          | -140/-133    |          | dBc/Hz      |
|-----------------|----------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------|----------|--------------|----------|-------------|
|                 |                                        | tr/tf ≤ 1 ns                                                                                          | 10 kHz offset                                  |          | -149/-144    |          |             |
|                 |                                        |                                                                                                       | 100 kHz offset                                 |          | -153/-146    |          |             |
|                 |                                        |                                                                                                       | 1 MHz offset                                   |          | -151/-151    |          |             |
|                 | Additive jitter                        | f <sub>IN</sub> = 26 MHz, V <sub>F</sub><br>f <sub>IN</sub> = 52 MHz, V <sub>F</sub><br>BW = 10 kHz - | <sub>P</sub> = 0.8 V,                          |          | 0.37<br>0.24 |          | ps<br>(rms) |
| t <sub>DL</sub> | MCLK_IN to CLK_OUT_n propagation delay |                                                                                                       |                                                |          | 10           |          | ns          |
| DCL             | Output duty cycle                      | f <sub>IN</sub> = 26 MHz, D0<br>f <sub>IN</sub> = 52 MHz, D0                                          | C <sub>IN</sub> = 50%<br>C <sub>IN</sub> = 50% | 45<br>45 | 50<br>50     | 55<br>55 | %           |

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.

## Table 5. ELECTRICAL CHARACTERISTICS ( $T_A = -40^{\circ}C$ to +85°C)

| Symbol          | Parameter                                      | Test Condi                                                                                              | tions                                                                    | Min      | Тур          | Max      | Unit        |
|-----------------|------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------|--------------|----------|-------------|
| MCLK_IN S       | SINUSOIDAL SOURCE                              |                                                                                                         |                                                                          |          |              |          |             |
| V <sub>MA</sub> | Input amplitude                                |                                                                                                         |                                                                          | 0.3      |              | 1.8      | V           |
|                 | Phase noise                                    | $f_{IN} = 26 \text{ Mhz/52 MHz},$                                                                       | 1 kHz offset                                                             |          | -138/-137    |          | dBc/Hz      |
|                 |                                                | V <sub>MA</sub> = 1.8 V <sub>PP</sub>                                                                   | 10 kHz offset                                                            |          | -146/-147    |          |             |
|                 |                                                |                                                                                                         | 100 kHz offset                                                           |          | -151/-149    |          |             |
|                 |                                                |                                                                                                         | 1 MHz offset                                                             |          | -149/-154    |          |             |
|                 |                                                | $f_{IN} = 26 \text{ Mhz/52 MHz},$                                                                       | 1 kHz offset                                                             |          | -138/-135    |          |             |
|                 |                                                | V <sub>MA</sub> = 0.8 V <sub>PP</sub>                                                                   | 10 kHz offset                                                            |          | -146/-144    |          |             |
|                 |                                                |                                                                                                         | 100 kHz offset                                                           |          | -150/-145    |          |             |
|                 |                                                |                                                                                                         | 1 MHz offset                                                             |          | -148/-149    |          |             |
|                 | Additive jitter                                | f <sub>IN</sub> = 26 MHz, V <sub>MA</sub><br>f <sub>IN</sub> = 52 MHz, V <sub>MA</sub><br>BW = 10 kHz - | <sub>λ</sub> = 1.8 V <sub>PP</sub> ,                                     |          | 0.37<br>0.16 |          | ps<br>(rms) |
| t <sub>DS</sub> | MCLK_IN to<br>CLK_OUT_1/2<br>propagation delay |                                                                                                         |                                                                          |          | 12           |          | ns          |
| DC              | Output duty cycle                              | $f_{IN} = 26 \text{ MHz}, V_{MZ}$<br>$f_{IN} = 52 \text{ MHz}, V_{MZ}$                                  | <sub>A</sub> > 1.8 V <sub>PP</sub><br><sub>A</sub> > 1.8 V <sub>PP</sub> | 45<br>45 | 50<br>50     | 55<br>55 | %           |

## CLK\_OUT\_N OUTPUTS

| t <sub>r</sub>  | 20% to 80% rise time      | $C_L = 10 \text{ pF} \text{ to } 50 \text{ pF}$                 | 1    | 5    | ns |
|-----------------|---------------------------|-----------------------------------------------------------------|------|------|----|
| t <sub>f</sub>  | 20% to 80% fall time      | $C_L = 10 \text{ pF} \text{ to } 50 \text{ pF}$                 | 1    | 5    | ns |
| t <sub>sk</sub> | Channel-to-channel skew   | $C_L$ = 10 pF to 50 pF, ( $C_{L1}$ = $C_{L2}$ )<br>up to 52 MHz | -0.5 | 0.5  | ns |
| V <sub>OH</sub> | High-level output voltage | $I_{OH}$ = -100 µA, reference to $V_{LDO}$                      | -0.1 |      | V  |
|                 |                           | I <sub>OH</sub> = -8 mA                                         | 1.2  |      |    |
| V <sub>OL</sub> | Low-level output voltage  | l <sub>OL</sub> = 20 μA                                         |      | 0.2  | V  |
|                 |                           | I <sub>OL</sub> = 8 mA                                          |      | 0.55 |    |

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.

#### APPLICATION INFORMATION

#### **Typical Application**

A typical mobile application for the NB3RL02 is shown in Figure 2. An external low noise TCXO clock source is powered by the NB3RL02's 1.8 V regulated LDO and is buffered to drive a mobile GPS receiver and WLAN transceiver. Each peripheral can independently request an active clock by asserting a clock request line (CLK\_REQ1 or CLK REQ2).

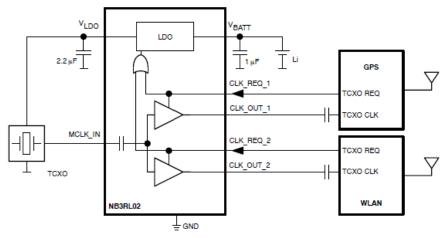



Figure 2. Mobile Application

When both clock request lines are logic LOW, the NB3RL02 enters a current-saving shutdown mode. In this mode, the LDO output goes to 0 V and turns off the TCXO. Also, the unpowered CLK\_OUT1 and CLK\_OUT2 outputs are pulled to GND.

When the NB3RL02 receives a HIGH from either peripheral CLK\_REQn, the 1.8 V LDO output is enabled and will power the TCXO. The output of the TCXO can be a square wave, sine wave, or clipped sine wave and is converted to a buffered square wave.

#### Input Clock to Output Square Wave Generator

Figure 3 shows the MCLK\_IN input having an internal AC coupling capacitor. This allows either a square or sine wave signal to be directly connected from a TCXO. Therefore, an external series capacitor is not required.

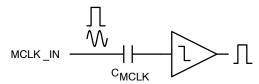



Figure 3. Input Stage

The clock frequency band of the NB3RL02 is 9 MHz to 80 MHz with all performance metrics specified at 26 Mhz and 52 MHz.

Typical input sinusoidal signal amplitude is  $0.8 V_{PP}$  for specified performance, but amplitudes as low as  $0.3 V_{PP}$  are acceptable, but with reduced phase noise and jitter performance.

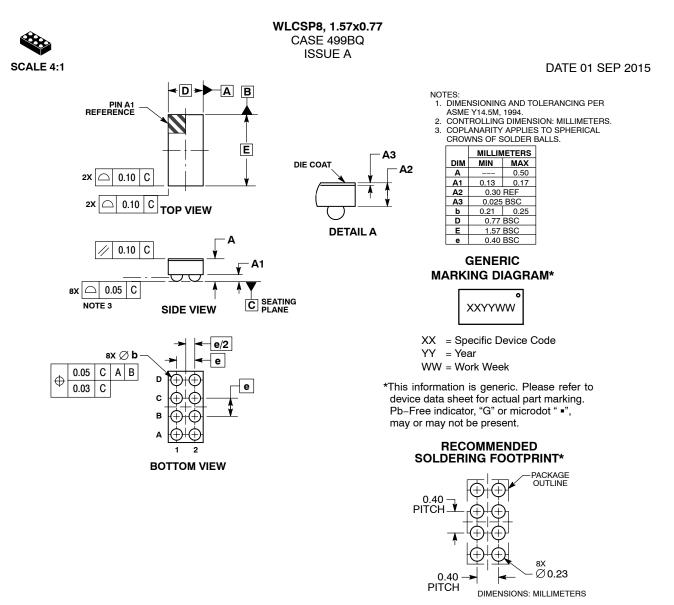
#### CLK\_OUT1 and CLK\_OUT2 Outputs

The CLK\_OUT1 and CLK\_OUT2 outputs drive 1.8 V LVCMOS levels with rise/fall times within 1 ns to 5 ns with load capacitors between 10 pF and 50 pF. These relatively slow edge rates will minimize EMI radiation into the system. When not requested, each output is set to Low to avoid false clocking of the load device.

## LDO

The integrated low noise 1.8 V LDO provides power internal to the NB3RL02 as well as a power source for an external clock such as a TCX0. The input range of the LDO allows the device to be powered directly from a single cell Li battery. The LDO is enabled when either of the CLK REQn signals is High.

When disabled, the device turns off the LDO and enters a low power shutdown mode consuming less than 1  $\mu$ A from the battery.


The LDO requires an output decoupling capacitor in the range of  $1 \ \mu\text{F}$  to  $10 \ \mu\text{F}$  for compensation and high frequency PSR. An input bypass capacitor of  $1 \ \mu\text{F}$  or larger is recommended.

#### **ORDERING INFORMATION**

| Device       | Temperature Range | Package             | Shipping <sup>†</sup> |
|--------------|-------------------|---------------------|-----------------------|
| NB3RL02FCT2G | −40°C to 85°C     | WLCSP8<br>(Pb-Free) | 3000 / Tape & Reel    |

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.





\*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

| DOCUMENT NUMBER:                                                                  | 98AON56424E                                                                                 | Electronic versions are uncontrolled except when accessed directly from the Document Repositor<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.                                                                                                                             |                                                       |  |  |  |  |
|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--|--|--|--|
| DESCRIPTION: WLCSP8, 1.57X0.77 PAGE 1 OF                                          |                                                                                             |                                                                                                                                                                                                                                                                                                               |                                                       |  |  |  |  |
| ON Semiconductor reserves the right<br>the suitability of its products for any pa | to make changes without further notice to an<br>articular purpose, nor does ON Semiconducto | stries, LLC dba ON Semiconductor or its subsidiaries in the United States<br>y products herein. ON Semiconductor makes no warranty, representation<br>r assume any liability arising out of the application or use of any product or<br>icidental damages. ON Semiconductor does not convey any license under | or guarantee regarding<br>r circuit, and specifically |  |  |  |  |

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

#### ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales