
© Parallax, Inc. � PWMPAL (#28020) � 02/2005 Page 1

599 Menlo Drive, Suite 100
Rocklin, California 95765, USA
Office: (916) 624-8333
Fax: (916) 624-8003

General: info@parallax.com
Technical: support@parallax.com
Web Site: www.parallax.com
Educational: www.stampsinclass.com

PWMPAL (#28020)

PWM Generation, Control, and Background Counting

Introduction

The PWMPAL is an intelligent peripheral that adds up to four PWM output channels and up to four
control/counter input channels to the 24-pin versions of the BASIC Stamp® microcontroller. PWM
channels can be configured to operate under software control, or under hardware control through the

corresponding counter input channel. In addition to PWM waveform generation, the PWMPAL has four
16-bit counters that operate at all times, even when the counter pin is used for hardware PWM control.
Communication with the PWMPAL is handled through a bi-directional serial connection on pin P0 of the
microntroller module. The Parallax AppMod communications protocol is used, allowing baud rates of

9600, 19,200 and 38,400 baud.

Examples of PWMPAL Uses:

� Servo or DC motor control for robotics and animatronics

� AC waveform (square wave) generation for bi-color LEDs and sensors

� Background counting for process control, robotic motion monitoring, etc.

Packing List

Verify that your PWMPAL kit is complete in accordance with the list below:

� PWMPAL "Smart Socket" module

� Documentation

Note: PWMPAL demonstration software files may be downloaded from www.parallax.com.

Features

� Up to four simultaneous PWM outputs

� Independent control of each PWM output high-time, low-time, and phase

� Generate frequencies from 0.3 Hz to 20 kHz; duty cycle independent *

� Outputs may operate under software or hardware control

� Up to four 16-bit counters

� Auto-baud detection (9600, 19.2K, 38.4K) for Host-to-PWMPAL communications

� Requires no PCB "real estate" � mounts underneath microcontroller module

* Duty cycle independence is not available for the entire range of output frequencies

© Parallax, Inc. � PWMPAL (#28020) � 02/2005 Page 2

Connections

Since the PWMPAL mounts directly beneath a 24-pin microcontroller module, the connections are
automatic. Before installing the PWMPAL, you should perform the following steps:

1. Clear the current BASIC Stamp microcontroller program to ensure that all pins are set to inputs.
The simplest program to do this contains just one statement:

END

2. Disconnect power from the BASIC Stamp microcontroller circuit.
3. Remove the BASIC Stamp microcontroller from its socket.

4. Install the PWMPAL in the 24-pin socket, noting the position of pin 1 (marked with dot).
5. Install the BASIC Stamp microcontroller in the PWMPAL socket.
6. Reconnect power to the circuit and program the BASIC Stamp microcontroller as desired.

The table below lists the PWMPAL / BASIC Stamp pin sharing connections:

As noted in the table above, the only pin dedicated to the PWMPAL is P0. This pin serves as the serial
link between the PWMPAL and host microcontroller. The PWMPAL pins connected to pins P8 � P11 are

always configured as inputs, so there is no conflict and the host may use P8 � P11 as inputs or outputs
as the program requires. For pins P12 � P15 the programmer must use caution to prevent conflict
between the host and the PWMPAL.

Note: The PWMPAL module has current-limiting resistors on its motor output lines to prevent a conflict
from damaging either the PWMPAL or the host microcontroller. Still, the programmer should exercise
caution. When any of the PWMPAL motor control outputs are enabled the associated host pin(s) should
be set to input mode.

How It Works

Using a small coprocessor, the PWMPAL receives serial commands from the host microcontroller, then

configures and controls the PWMPAL I/O pins as directed. The PWMPAL "motor" control outputs will be a
TTL level square wave. The frequency and period of this waveform is determined by control values sent
to the PWMPAL from the host. Figure 1 shows the PWM output waveform.

Pin PWMPAL Function Dedicated

P0 Serial link between BASIC Stamp / PWMPAL Yes

P8 Counter 1 input / Motor 1 HW control No

P9 Counter 2 input / Motor 2 HW control No

P10 Counter 3 input / Motor 3 HW control No

P11 Counter 4 input / Motor 4 HW control No

P12 Motor 1 output No

P13 Motor 2 output No

P14 Motor 3 output No

P15 Motor 4 output No

© Parallax, Inc. � PWMPAL (#28020) � 02/2005 Page 3

Figure 1 � PWM Output

The PWMPAL gives the program control of the on- and off-time values, hence giving control of the output
frequency and duty cycle. In the PWMPAL, the on and off times are specified with 16-bit values in units

of 25 microseconds (0.000025 seconds). Using the formula:

Frequency = 1 / Period

the minimum and maximum output frequencies of the PWMPAL can be calculated. Given the minimum
and maximum values for on- and off-time:

Frequency (max) = 1 / ((1 x 0.000025) + (1 x 0.000025)) 1 / 0.00005 = 20,000 Hz

Frequency (min) = 1 / ((65535 x 0.000025) + (65535 x 0.000025)) 1 / 3.27675 = 0.30518 Hz

Duty Cycle describes the relationship between the on-time and the total period in terms of percent. With

full control of the on- and off-time values, the programmer can set the frequency and duty cycle as
required. If, for example, the desired PWM output was 1000 Hz with duty cycle of 40%, the following
steps would be used to calculate the on-time and off-time values:

1. Determine the waveform period (1 / Frequency):

1 / 1000 = 0.001

2. Determine the PWMPAL units in the period:

0.001 / 0.000025 = 40

3. For the on-time, multiply the total period units by the desired duty cycle:

40 x 0.4 = 16

4. For the off-time, subtract the on-time units from the total period units:

40 � 16 = 24

See the following sections for specifics on sending PWM on- and off-time values to the PWMPAL.

© Parallax, Inc. � PWMPAL (#28020) � 02/2005 Page 4

PWMPAL Commands

All PWMPAL commands (except ID, see below) follow the Parallax AppMod serial protocol and will begin
with the string:

"!PWM"

The "!" is used for synchronization and baud rate detection; the "PWM" identifies the device type. What

follows will generally be a command letter and unit identifier.

"ID" Request PWMPAL ID String

Use: SEROUT 0, baud, ["!ID]

SERIN 0, baud, [STR version\3]

baud variable or constant value for 9600, 19.2K, or 38.4K baud (host-dependent value)
version 3-byte array to hold version string

The "!ID" command requests the PWMPAL ID string (three ASCII characters). Note that this command
does not follow the standard AppMod protocol by specifying the device type in the command string, so it
should NOT be used on the same serial connection as other AppMod devices.

"Mn" Set PWM Motor Timing Control Values

Use: SEROUT 0, baud, ["!PWMMx", tOn.BYTE0, tOn.BYTE1, tOff.BYTE0, tOff.BYTE1]

baud variable or constant value for 9600, 19.2K, or 38.4K baud
n "1" to "4" � specifying the PWMPAL output channel (P12 � P15)

tOn variable or constant for on-time; in 25 microsecond units
tOff variable or constant for off-time; in 25 microsecond units

The "Mn" command sets the on- and off-time values for a specified PWM channel. Note that the 16-bit
on- and off-time values must be transmitted as bytes, low-byte first.

Example (Baudmode value for BS2 microcontroller):

 SEROUT 0, 6, ["!PWMM1", 2, 0, 6, 0]

The example above configures PWM channel 1 (P12) to have an output frequency of 5000 Hz with a duty
cycle of 25%.

It is important to note that setting the on- and off-time values does not enable the PWM output channel
if it was previously disabled. This is handled separately through the Set Status command (see below).

Finally, there is a special-case use of the "Mn" command: "M0". For example:

 SEROUT 0, 6, ["!PWMM0"]

The purpose of this command is to disable all PWM output channels; returning all to a Hi-Z state.

© Parallax, Inc. � PWMPAL (#28020) � 02/2005 Page 5

"SS" Set Motor Control/Status Byte

Use: SEROUT 0, baud, ["!PWMSS", status]

baud variable or constant value for 9600, 19.2K, or 38.4K baud
status variable or constant value; PWMPAL status bits (see table below)

The "SS" command sets the control/status byte to the PWMPAL. The purpose of this byte is to enable or
disable PWMPAL channel outputs and to set the type of control (software or hardware). The low nibble

of the control/status byte holds the control bits; the upper nibble holds the output PWM channel enable
bits.

Control/Status Byte Definitions:

Bit Purpose When 0 When 1

0 M1 Control Software control Hardware control (P8)

1 M2 Control Software control Hardware control (P9)

2 M3 Control Software control Hardware control (P10)

3 M4 Control Software control Hardware control (P11)

4 M1 Status Disabled Enabled *

5 M2 Status Disabled Enabled *

6 M3 Status Disabled Enabled *

7 M4 Status Disabled Enabled *

* When a PWM channel is enabled and set for hardware control, the associated hardware control input
pin must be high before the PWM output will be active.

Example:

 SEROUT 0, 6, ["!PWMSS", %00010000]

The example above enables PWM output channel 1 (P12). The PWM output will begin immediately with

the frequency and duty cycle as set with the "Mn" command. To change the output to hardware control,
send the following:

 SEROUT 0, 6, ["!PWMSS", %00010001]

Now the PWM output channel 1 (P12) will only be active when control channel 1 (P8) is high.

"GS" Get Motor Control/Status Byte

Use: SEROUT 0, baud, ["!PWMGS"]

baud variable or constant value for 9600, 19.2K, or 38.4K baud

The "GS" command will cause the PWMPAL to return the current control/status byte. After sending this

command the BASIC Stamp must use SERIN to retrieve the control/status byte.

Example:

 SEROUT 0, 6, ["!PWMGS"]
 SERIN 0, 6, [status]

© Parallax, Inc. � PWMPAL (#28020) � 02/2005 Page 6

"SP" Set Counter Enable/Motor Phase Byte

Use: SEROUT 0, baud, ["!PWMSP", phase]

baud variable or constant value for 9600, 19.2K, or 38.4K baud
phase variable or constant value; PWMPAL counter/phase bits

The "SP" command transmits the counter/phase byte to the PWMPAL. The purpose of this byte is to
enable or disable PWMPAL counter channels and to set the phase of the PWM channels. (start low or

start high). The lower nibble the counter/phase byte holds the counter enable bits; the upper nibble
holds the output PWM channel phase bits.

Counter/Phase Byte Bit Definitions:

Bit Purpose When 0 When 1

0 C1 Control Disabled Enabled *

1 C2 Control Disabled Enabled *

2 C3 Control Disabled Enabled *

3 C4 Control Disabled Enabled *

4 M1 Phase Output starts low Output starts high

5 M2 Phase Output starts low Output starts high

6 M3 Phase Output starts low Output starts high

7 M4 Phase Output starts low Output starts high

* Counters inputs may also be used as motor control inputs. In this application, the PWMPAL will count
the number of times the PWM output was enabled (input = High).

Example:

 SEROUT 0, 6, ["!PWMM3", $4D, $01, $4D, $01] ' 60 Hz, 50% DC
 SEROUT 0, 6, ["!PWMM4", $4D, $01, $4D, $01] ' 60 Hz, 50% DC
 SEROUT 0, 6, ["!PWMSP", %10000001] ' set phase, counter 1 enabled
 SEROUT 0, 6, ["!PWMSS", %11000000] ' enable PWM outputs

This example sets PWM channels 3 (P14) and 4 (P15) to a 60 Hz, 50% duty-cycle output of opposite
phase (P14 is high when P15 is low and vice-versa). Counter channel 1 is also enabled (line 3 of the
code). Finally, the outputs are enabled under software control.

"GP" Get Counter Enable/Motor Phase Byte

Use: SEROUT 0, baud, ["!PWMGP"]

baud variable or constant value for 9600, 19.2K or 38.4K baud

The "GP" command will cause the PWMPAL to return the current counter enable/motor phase byte. After
sending this command the BASIC Stamp must use SERIN to retrieve the counter/phase byte.

Example:

 SEROUT 0, 6, ["!PWMGP"]
 SERIN 0, 6, [phase]

© Parallax, Inc. � PWMPAL (#28020) � 02/2005 Page 7

"Cn" Get Counter Value

Use: SEROUT 0, baud, ["!PWMCn"]

baud variable or constant value for 9600, 19.2K, or 38.4K baud
n "1" to "4" � specifying the PWMPAL counter channel (P8 � P11)

The "Cn" command will cause the PWMPAL to return the current value of the specified counter channel.
After sending this command the BASIC Stamp must use SERIN to retrieve the counter data.

Example:

 SEROUT 0, 6, ["!PWMC1"] ' get counter 1
 SERIN 0, 6, [cntr1.LOWBYTE, cntr1.HIGHBYTE] ' receive value

By using "C0" the value of all counters will be returned. The SERIN function must be setup to receive

eight bytes when "C0" is used.

"Xn" Clear Counter Value

Use: SEROUT 0, baud, ["!PWMXn"]

baud variable or constant value for 9600, 19.2K, or 38.4K baud
n "1" to "4" � specifying the PWMPAL counter channel (P8 � P11)

The "Xn" command will cause the PWMPAL to clear (reset to zero) the specified counter channel value.

Example:

 SEROUT 0, 6, ["!PWMX1"] ' clear counter 1

By using "X0" the value of all counters will be reset to zero.

Programming the PWMPAL

The examples that follow will demonstrate how easy the PWMPAL is to program. The programmer must

keep in mind, however, that using BASIC Stamp microcontroller pins P12 � P15 as outputs should be
done with extreme caution as there could be a conflict with the PWMPAL that leads to unpredictable
results. Design your code carefully so that PWMPAL outputs do not conflict with host outputs on these
pins.

© Parallax, Inc. � PWMPAL (#28020) � 02/2005 Page 8

Example 1 � PWMPAL Programming Template

For advanced programs a template is often useful to keep organized and prevent errors. This template
file contains useful constant and variable values for programs that utilize the PWMPAL. Conditional
compilation defintions allow this program to work properly with all BS2-family modules.

' ===
'
' File....... PWMPAL_Template.BS2
' Purpose.... Template for PWMPAL Programs
' Author..... Parallax
' E-mail..... support@parallax.com
' Started....
' Updated.... 09 FEB 2005
'
' {$STAMP BS2}
' {$PBASIC 2.5}
'
' ===

' -----[Program Description]---

' -----[Revision History]--

' -----[I/O Definitions]---

PpPin PIN 0 ' PWMPAL Serial I/O

' -----[Constants]---

#SELECT $STAMP
 #CASE BS2, BS2E, BS2PE
 T9600 CON 84
 T19K2 CON 32
 T38K4 CON 6
 #CASE BS2SX, BS2P
 T9600 CON 240
 T19K2 CON 110
 T38K4 CON 45
#ENDSELECT

PpBaud CON T38K

' -----[Variables]---

chan VAR Nib ' channel number
status VAR Byte ' control/status
phase VAR Byte ' counters/phase

onTime VAR Word ' work variable
offTime VAR Word ' work variable
counter VAR Word ' work variable

© Parallax, Inc. � PWMPAL (#28020) � 02/2005 Page 9

m1Ctrl VAR status.BIT0 ' status bits
m2Ctrl VAR status.BIT1
m3Ctrl VAR status.BIT2
m4Ctrl VAR status.BIT3
m1Enable VAR status.BIT4
m2Enable VAR status.BIT5
m3Enable VAR status.BIT6
m4Enable VAR status.BIT7

c1Enable VAR phase.BIT0 ' phase bits
c2Enable VAR phase.BIT1
c3Enable VAR phase.BIT2
c4Enable VAR phase.BIT3
m1Phase VAR phase.BIT4
m2Phase VAR phase.BIT5
m3Phase VAR phase.BIT6
m4Phase VAR phase.BIT7

' -----[EEPROM Data]---

' -----[Initialization]--

Setup:

' -----[Program Code]--

Main:

 END

' -----[Subroutines]---

© Parallax, Inc. � PWMPAL (#28020) � 02/2005 Page 10

Example 2 � PWM Output with Hardware Control

This example uses an active-high pushbutton circuit to control a DC motor connected to the PWM
channel specified by the MotorNum constant. When the switch is pressed, the motor speed will ramp
from 25% (minimum speed to get test motor moving) to 100% (full speed). When the switch is released
the motor will stop � without having to send a new speed value to the PWM channel. This program

shows how the BASIC Stamp microcontroller can monitor and use the control inputs.

' ===
'
' File....... PWMPAL_Simple_Motor.BS2
' Purpose.... Simple DC motor control � with hardware input control
' Author..... Parallax
' E-mail..... support@parallax.com
' Started....
' Updated.... 09 FEB 2005
'
' {$STAMP BS2}
' {$PBASIC 2.5}
'
' ===

' -----[Program Description]---

' Demonstrates simple DC motor control with the PWMPAL.

' NOTE: Do NOT connect a DC motor directly to the PWMPAL / micro. You
' must use a buffer (transistor, MOSFET, etc.) to switch the current
' required by the motor.

' -----[I/O Definitions]---

PpPin PIN 0 ' PWMPAL Serial I/O
SpdCtrl PIN 8 ' speed button

© Parallax, Inc. � PWMPAL (#28020) � 02/2005 Page 11

' -----[Constants]---

MotorNum CON 1 ' PWMPAL motor output

#SELECT $STAMP
 #CASE BS2, BS2E, BS2PE
 T9600 CON 84
 T19K2 CON 32
 T38K4 CON 6
 #CASE BS2SX, BS2P
 T9600 CON 240
 T19K2 CON 110
 T38K4 CON 45
#ENDSELECT

PpBaud CON T38K

Yes CON 1
MinSpeed CON 25 ' minimum DC to spin motor

' -----[Variables]---

speed VAR Byte ' speed, 0% to 100%
status VAR Byte ' motor control status

onTime VAR Word ' PWM timing
offTime VAR Word

' -----[Program Code]--

Main:
 DO
 IF (SpdCtrl = Yes) THEN ' button pressed
 IF (speed < 100) THEN ' can we speed up?
 speed = speed + 1 MIN MinSpeed ' increase speed
 GOSUB Set_Speed ' update PWMPAL
 ENDIF
 ELSE
 speed = 0
 ENDIF
 DEBUG HOME, "Speed = ", DEC speed, CLREOL ' show current speed
 PAUSE 100 ' speed ramp delay
 LOOP

' -----[Subroutines]---

Set_Speed:
 IF (speed = 100) THEN
 onTime = $FFFF ' full on for 100%
 offTime = $0001
 ELSE
 onTime = speed ' set duty cycle
 offTime = 100 - speed
 ENDIF

© Parallax, Inc. � PWMPAL (#28020) � 02/2005 Page 12

 SEROUT PpPin, PpBaud, ["!PWMM", (48 + MotorNum),
 onTime.BYTE0, onTime.BYTE1,
 offTime.BYTE0, offTime.BYTE1]

 status.HIGHNIB = %0001 << (MotorNum - 1) ' set enable bit
 status.LOWNIB = %0001 << (MotorNum - 1) ' set control bit
 SEROUT PpPin, PpBaud, ["!PWMSS", status]

 RETURN

© Parallax, Inc. � PWMPAL (#28020) � 02/2005 Page 13

Example 3 � TTL "AC" Waveform Generation

This example converts a bi-color (green / red) LED to a tri-color (green / yellow / red) LED by modulating
the LED with an AC waveform such that the switch back-and-forth between red and green makes the LED
appear yellow. The LED should be connected so that the green side lights when PWM channel 3 (P14) is
high.

Notice that due to the differences between relative [perceived] brightness of the green and red LEDs, the
AC waveform is set such that the duty cycle favors the green LED.

' ===
'
' File....... PWMPAL_TriColor_LED.BS2
' Purpose.... Tri-Color LED control with the PWMPAL
' Author..... Parallax
' E-mail..... support@parallax.com
' Started....
' Updated.... 09 FEB 2005
'
' {$STAMP BS2}
' {$PBASIC 2.5}
'
' ===

' -----[I/O Definitions]---

PpPin PIN 0 ' PWMPAL Serial I/O

' -----[Constants]---

#SELECT $STAMP
 #CASE BS2, BS2E, BS2PE
 T9600 CON 84
 T19K2 CON 32
 T38K4 CON 6
 #CASE BS2SX, BS2P
 T9600 CON 240
 T19K2 CON 110
 T38K4 CON 45
#ENDSELECT

PpBaud CON T38K

' -----[Variables]---

© Parallax, Inc. � PWMPAL (#28020) � 02/2005 Page 14

state VAR Nib ' LED state

' -----[Program Code]--

Main:
 DO
 FOR state = 0 TO 3
 ON state GOSUB Led_Off, Led_Green, Led_Yellow, Led_Red
 DEBUG HOME, DEC state, " : "
 SELECT state
 CASE 0 : DEBUG "Off", CLREOL
 CASE 1 : DEBUG "Green", CLREOL
 CASE 2 : DEBUG "Yellow", CLREOL
 CASE 3 : DEBUG "Red", CLREOL
 ENDSELECT
 PAUSE 1000
 NEXT
 LOOP

 END

' -----[Subroutines]---

Led_Off:
 SEROUT PpPin, PpBaud, ["!PWMM0"]
 RETURN

Led_Green:
 SEROUT PpPin, PpBaud, ["!PWMM3", $FF, $FF, $01, $00]
 SEROUT PpPin, PpBaud, ["!PWMM4", $01, $00, $FF, $FF]
 SEROUT PpPin, PpBaud, ["!PWMSP", %01000000]
 SEROUT PpPin, PpBaud, ["!PWMSS", %11000000]
 RETURN

Led_Yellow:
 SEROUT PpPin, PpBaud, ["!PWMM3", $12, $00, $04, $00]
 SEROUT PpPin, PpBaud, ["!PWMM4", $04, $00, $12, $00]
 SEROUT PpPin, PpBaud, ["!PWMSP", %01000000]
 SEROUT PpPin, PpBaud, ["!PWMSS", %11000000]
 RETURN

Led_Red:
 SEROUT PpPin, PpBaud, ["!PWMM3", $01, $00, $FF, $FF]
 SEROUT PpPin, PpBaud, ["!PWMM4", $FF, $FF, $01, $00]
 SEROUT PpPin, PpBaud, ["!PWMSP", %10000000]
 SEROUT PpPin, PpBaud, ["!PWMSS", %11000000]
 RETURN

© Parallax, Inc. � PWMPAL (#28020) � 02/2005 Page 15

Example 4 � Event Counting

This program demonstrates event counting while the BASIC Stamp is busy doing other things. PWM
channel 1 is configured for 100 Hz under hardware control (when P8 is high). The PWM output (P12) is
routed to the counter input pin for channel 2 (P9). When the program runs the control events (P8) and
the PWM cycles will be counted and displayed onscreen.

' ===
'
' File....... PWMPAL_Counter.BS2
' Purpose.... Background Counter Demonstration
' Author..... Parallax
' E-mail..... support@parallax.com
' Started....
' Updated.... 09 FEB 2005
'
' {$STAMP BS2}
' {$PBASIC 2.5}
'
' ===

' -----[Program Description]---

' Activate PWM output when P8 is high -- count control input (counter 1)
' and the PWM pulses (counter 2)

' -----[I/O Definitions]---

PpPin PIN 0 ' PWMPAL Serial I/O

' -----[Constants]---

#SELECT $STAMP
 #CASE BS2, BS2E, BS2PE
 T9600 CON 84
 T19K2 CON 32
 T38K4 CON 6
 #CASE BS2SX, BS2P
 T9600 CON 240
 T19K2 CON 110

© Parallax, Inc. � PWMPAL (#28020) � 02/2005 Page 16

 T38K4 CON 45
#ENDSELECT

PpBaud CON T38K

' -----[Variables]---

cntr1 VAR Word ' counter for P8 (switch)
cntr2 VAR Word ' counter for P9 (PWM in)

' -----[Initialization]--

Setup:
 SEROUT PpPin, PpBaud, ["!PWMM1", $90, $01, $90, $01]
 SEROUT PpPin, PpBaud, ["!PWMSS", %00010001]
 SEROUT PpPin, PpBaud, ["!PWMSP", %00000011]
 SEROUT PpPin, PpBaud, ["!PWMX0"]

 DEBUG CLS,
 "Counter 1 : ", CR,
 "Counter 2 : "

' -----[Program Code]--

Main:
 DO
 ' get counter values
 SEROUT PpPin, PpBaud, ["!PWMC1"]
 SERIN PpPin, PpBaud, [cntr1.BYTE0, cntr1.BYTE1]
 SEROUT PpPin, PpBaud, ["!PWMC2"]
 SERIN PpPin, PpBaud, [cntr2.BYTE0, cntr2.BYTE1]

 ' show counter values
 DEBUG CRSRXY, 12, 0, DEC cntr1, CLREOL,
 CRSRXY, 12, 1, DEC cntr2, CLREOL

 PAUSE 1000 ' loop delay - Stamp busy
 LOOP

 END

Other Examples

Be sure to check the Parallax web site for the latest updates to PWMPAL application notes and example
programs.

