

Features and Benefits

- · Four grades of magnetic materials
- · Cost effective design
- · High resistance to demagnetization
- Operation from -40°C to 125°C
- Tough environmental endurance
- · Very resistant to chipping

Molded Target Magnet

Physical Properties of Magnetic Material

Table 1.1

Characteristic	Value	Units
Tensile Strength	6500	PSI
Flexural Strength	9750	PSI
Flexural Modulus	1.3 X 10 ⁶	PSI
Continuous Service Temperature	100	°C

Magnetic Properties

Table 1.2

Characteristic	Magnalox 300	Neobond 12M	Neobond 30M	Neobond 32P	Units
Remanence (B _r)	1370	2500	4000	4300	Gauss
Coercive Force (H _c)	1180	2400	3250	2500	MGOe
Energy Product (BH _{MAX})	0.40	1.3	3.1	3.2	Oersted
Intrinsic Coercive Force (H _{ci})	2300	7500	7000	6900	Oersted
Reversible Temperature Coefficient	-0.2	-0.35	-0.4	-0.4	/°C
Specific Gravity	3.5	4.0	4.7	4.45	

Pole Counts

Alternating north and south magnetic poles are symmetrically located on the outer diameter for radial sensing.

Note: (N)orth/(S)outh markings are for illustration and do not appear on the actual product.

Available Pole Counts	64
-----------------------	----

Target Rotor Physical Outline - Molded (Mounting Style A)

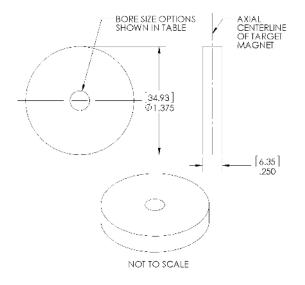
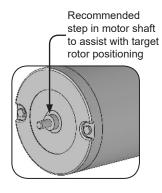


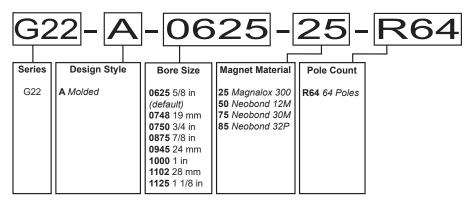
Table 2.1


Bore Size (.inch)	Motor Shaft OD Size (nominal)	NEMA Guide Shaft Tolerance	Magnet Bore MIN. (inch)	Magnet Bore MAX. (inch)
0625	5/8 in (.625")	+0.0000"/-0.0005"	.627	.629
0748	19 mm (.748")		.750	.757
0750	3/4 in (.750")		.757	.759
0875	7/8 in (.875")		.877	.879
0945	24 mm (.945")		.947	.949
1000	1 in (1.000")		1.002	1.004
1102	28 mm (1.102")		1.104	1.106
1125	1 1/8 in (1.125")		1.127	1.129

Other bore sizes available upon request. Contact sales@phoenixamerica.com.

Target Rotor Mounting Guidelines - Molded (Mounting Style A) For Slip Fit Application

- · Proper alignment of the target rotor is critical for optimal performance.
- A machined step on the motor shaft provides a quick and repeatable method for positioning the target rotor. Spacers or other fixturing should be used to properly position the rotor if no mechanical locating features are on the shaft.
- Various adhesives can be used to bond the target rotor to the motor shaft. Shaft alloys, operating environment, and shaft speed and
 acceleration should be taken into consideration when selecting an appropriate bonding agent. Loctite threadlockers and retaining
 compounds have proved effective in bonding the target rotor to the motor shaft. Loctite 263 and 2760 threadlockers and Loctite 638 and
 680 retaining compounds are good candidates. These materials have been effective in past experience; testing under actual operating
 conditions should be used to qualify any bonding material.
- For best results, the motor shaft should be clean and free of any oils, lubricants, or solvents.
- Apply adhesive around the leading edge of the shaft and inside the hole in the rotor. Use a rotating motion when assembling the magnet
 to the shaft to insure good adhesive coverage.
- The use of primers and activators can be used to improve bond strength and cure rate.
- For non-critical applications or for fast bonding for evaluation, a cyanoacrylate adhesive (super glue) can be used. Loctite 401 and 410 have proven effective for guick bonding applications.



Page 2

Tel: (888)-801-1422 Local: (260)-432-9664 Fax: (260)-432-9967 www.phoenixamerica.com sales@phoenixamerica.com © Copyright PAI 2017 Rev. 8/1/2017

Part Number Description

Example: G22-A-0625-25-R64

Tel: (888)-801-1422 Local: (260)-432-9664 Fax: (260)-432-9967