

Rochester Electronics Manufactured Components

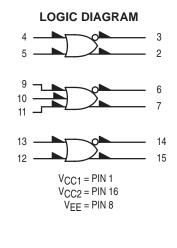
Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceed the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-35835
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)

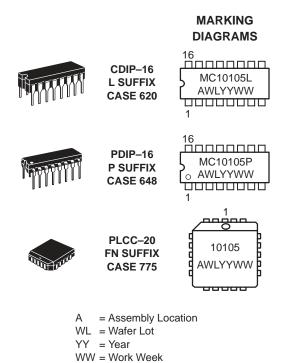
• Rochester is a critical supplier to DLA and meets all industry and DLA standards.

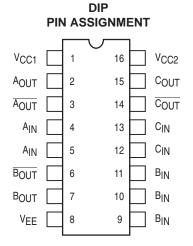

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

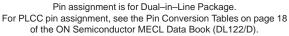
The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

Triple 2-3-2-Input OR/NOR Gate

The MC10105 is a triple 2–3–2 input OR/NOR gate.


- $P_D = 30 \text{ mW typ/gate (No Load)}$
- $t_{pd} = 2.0 \text{ ns typ}$
- t_r , $t_f = 2.0$ ns typ (20%-80%)

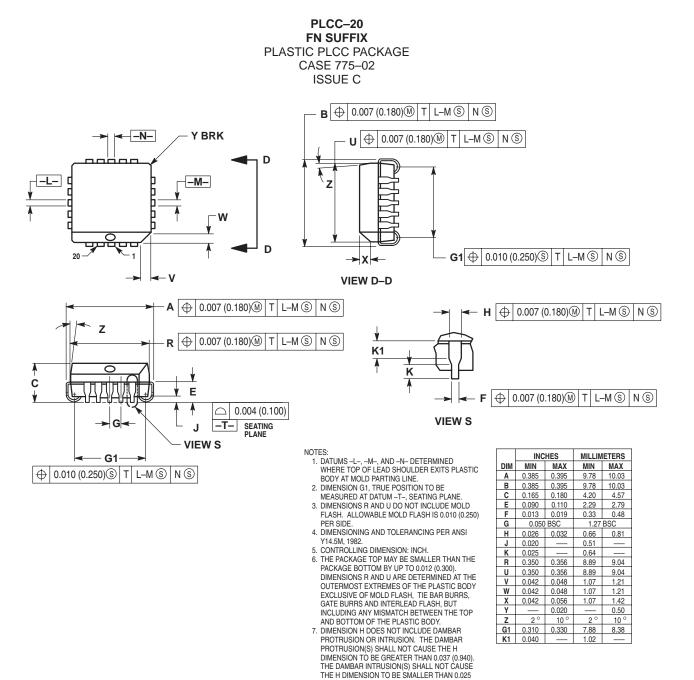

ON Semiconductor


http://onsemi.com

ORDERING INFORMATION

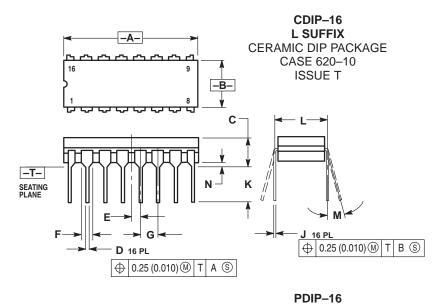
Device	Package	Shipping		
MC10105L	CDIP-16	25 Units / Rail		
MC10105P	PDIP-16	25 Units / Rail		
MC10105FN	PLCC-20	46 Units / Rail		

ELECTRICAL CHARACTERISTICS

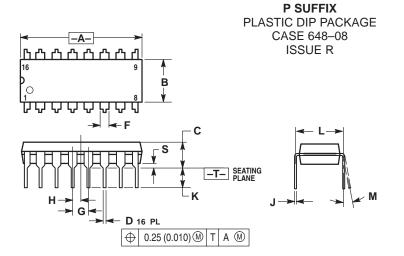

				Test Limits							
Characteristic Symbol		Pin Under	_30°C		+25°C		+85°C		1		
		Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit
Power Supply I	Drain Current	١E	8		23		17	21		23	mAdc
Input Current		l _{inH}	4		425			265		265	μAdc
		l _{inL}	4	0.5		0.5			0.3		μAdc
Output Voltage	E Logic 1	VOH	3 2	-1.060 -1.060	-0.890 -0.890	-0.960 -0.960		-0.810 -0.810	-0.890 -0.890	-0.700 -0.700	Vdc
Output Voltage	Logic 0	V _{OL}	3 2	-1.890 -1.890	-1.675 -1.675	-1.850 -1.850		-1.650 -1.650	-1.825 -1.825	-1.615 -1.615	Vdc
Threshold Volta	age Logic 1	VOHA	3 2	-1.080 -1.080		-0.980 -0.980			-0.910 -0.910		Vdc
Threshold Volta	age Logic 0	VOLA	3 2		-1.655 -1.655			-1.630 -1.630		-1.595 -1.595	Vdc
Switching Time	es (50Ω Load)										ns
Propagation De	elay	t ₄₊₃ t ₄₋₃₊ t ₄₊₂₊ t ₄₋₂	3 3 2 2	1.0 1.0 1.0 1.0	3.1 3.1 3.1 3.1	1.0 1.0 1.0 1.0	2.0 2.0 2.0 2.0	2.9 2.9 2.9 2.9	1.0 1.0 1.0 1.0	3.3 3.3 3.3 3.3	
Rise Time	(20 to 80%)	t3+ t2+	3 2	1.1 1.1	3.6 3.6	1.1 1.1	2.0 2.0	3.3 3.3	1.1 1.1	3.7 3.7	
Fall Time	(20 to 80%)	t3_ t2_	3 2	1.1 1.1	3.6 3.6	1.1 1.1	2.0 2.0	3.3 3.3	1.1 1.1	3.7 3.7	

ELECTRICAL CHARACTERISTICS (continued)

				TEST VOLTAGE VALUES (Volts)					
		@ Test Te	mperature	V _{IHmax}	VILmin	VIHAmin	VILAmax	VEE	1
			–30°C	-0.890	-1.890	-1.205	-1.500	-5.2	
			+25°C	-0.810	-1.850	-1.105	-1.475	-5.2	
			+85°C	-0.700	-1.825	-1.035	-1.440	-5.2	1
			Pin	TEST VOLTAGE APPLIED TO PINS LISTED BELOW					
Character	istic	Symbol	Under Test	V _{IHmax}	VILmin	VIHAmin	VILAmax	VEE	(VCC) Gnd
Power Supply Drain (Current	١E	8					8	1, 16
Input Current		l _{inH}	4	4				8	1, 16
		l _{inL}	4		4			8	1, 16
Output Voltage	Logic 1	VOH	3 2	4				8 8	1, 16 1, 16
Output Voltage	Logic 0	VOL	3 2	4				8 8	1, 16 1, 16
Threshold Voltage	Logic 1	VOHA	3 2			4	4	8 8	1, 16 1, 16
Threshold Voltage	Logic 0	VOLA	3 2			4	4	8 8	1, 16 1, 16
Switching Times	(50 Ω Load)					Pulse In	Pulse Out	–3.2 V	+2.0 V
Propagation Delay		t _{4+3–} t _{4–3+} t ₄₊₂₊ t _{4–2–}	3 3 2 2			4 4 4 4	3 3 2 2	8 8 8 8	1, 16 1, 16 1, 16 1, 16 1, 16
Rise Time	(20 to 80%)	t ₃₊ t ₂₊	3 2			4 4	3 2	8 8	1, 16 1, 16
Fall Time	(20 to 80%)	t3- t2-	3 2			4 4	3 2	8 8	1, 16 1, 16


Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner.

PACKAGE DIMENSIONS


(0.635).

PACKAGE DIMENSIONS

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL. 4. DIMENSION F MAY NARROW TO 0.76 (0.030) WHERE THE LEAD ENTERS THE CERAMIC BODY.

	INC	HES	MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.750	0.785	19.05	19.93	
В	0.240	0.295	6.10	7.49	
С		0.200		5.08	
D	0.015	0.020	0.39	0.50	
Е	0.050	BSC	1.27 BSC		
F	0.055	0.065	1.40	1.65	
G	0.100 BSC		2.54 BSC		
Н	0.008	0.015	0.21	0.38	
Κ	0.125	0.170	3.18	4.31	
L	0.300 BSC		7.62 BSC		
Μ	0 °	15°	0 °	15 °	
Ν	0.020	0.040	0.51	1.01	

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL. 4. DIMENSION B DOES NOT INCLUDE MOLD FLASH. 5. ROUNDED CORNERS OPTIONAL.

	INC	HES	MILLIN	ETERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.740	0.770	18.80	19.55	
В	0.250	0.270	6.35	6.85	
С	0.145	0.175	3.69	4.44	
D	0.015	0.021	0.39	0.53	
F	0.040	0.70	1.02	1.77	
G	0.100 BSC		2.54 BSC		
Н	0.050 BSC		1.27 BSC		
J	0.008	0.015	0.21	0.38	
K	0.110	0.130	2.80	3.30	
L	0.295	0.305	7.50	7.74	
М	0°	10 °	0 °	10 °	
S	0.020	0.040	0.51	1.01	

Notes

Notes

ON Semiconductor and without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

North America Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor – European Support

German Phone: (+1) 303–308–7140 (M–F 2:30pm to 5:00pm Munich Time) Email: ONlit–german@hibbertco.com

French Phone: (+1) 303–308–7141 (M–F 2:30pm to 5:00pm Toulouse Time) Email: ONlit-french@hibbertco.com

English Phone: (+1) 303–308–7142 (M–F 1:30pm to 5:00pm UK Time) Email: ONlit@hibbertco.com ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time) Toll Free from Hong Kong 800–4422–3781 Email: ONlit–asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–8549 Phone: 81–3–5740–2745 Email: r14525@onsemi.com

Fax Response Line: 303–675–2167 800–344–3810 Toll Free USA/Canada

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.