
June 2010
IPUG31_03.5

Block Convolutional Encoder User’s Guide

© 2010 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand
or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

IPUG31_03.5, June 2010 2 Block Convolutional Encoder User’s Guide

Chapter 1. Introduction .. 4
Quick Facts ... 4

Features .. 6

Chapter 2. Functional Description .. 7
General Description .. 7

Convolutional Encoding ... 7

Punctured Codes ... 8

Continuous and Block Encoding .. 9

Zero Flushing and Tail Biting Termination Modes.. 9

Functional Description... 9

Encoder.. 9

Puncture Unit ... 10

Input Memory ... 10

Control Unit .. 10

Interfacing to the Block Convolutional Encoder Core.. 10

Signal Descriptions ... 11

Timing Diagrams ... 12

Chapter 3. Parameter Settings .. 19
Block Convolutional Encoder Parameters... 20

Code Rate .. 20

Operation Mode ... 21

Puncture Support ... 21

Termination Mode .. 21

Block Length Options ... 21

Generator Polynomials... 21

Chapter 4. IP Core Generation... 22
Licensing the IP Core.. 22

Getting Started .. 22

IPexpress-Created Files and Top Level Directory Structure... 25

Instantiating the Core .. 26

Running Functional Simulation ... 26

Synthesizing and Implementing the Core in a Top-Level Design ... 27

Hardware Evaluation... 28

Enabling Hardware Evaluation in Diamond:... 28

Enabling Hardware Evaluation in ispLEVER:... 28

Updating/Regenerating the IP Core .. 28

Regenerating an IP Core in Diamond .. 28

Regenerating an IP Core in ispLEVER .. 29

Chapter 5. Support Resources .. 30
Lattice Technical Support.. 30

Online Forums.. 30

Telephone Support Hotline .. 30

E-mail Support ... 30

Local Support ... 30

Internet ... 30

References.. 30

LatticeEC/ECP ... 30

LatticeECP2M .. 30

LatticeECP3 ... 31

Table of Contents

Lattice Semiconductor Table of Contents

IPUG31_03.5, June 2010 3 Block Convolutional Encoder User’s Guide

LatticeSC/M.. 31

LatticeXP.. 31

LatticeXP2.. 31

Revision History .. 31

Appendix A. Resource Utilization ... 32
LatticeECP and LatticeEC FPGAs .. 32

Ordering Part Number.. 32

LatticeECP2 and LatticeECP2S FPGAs ... 33

Ordering Part Number.. 33

LatticeECP2M FPGAs... 33

Ordering Part Number.. 33

LatticeECP3 FPGAs.. 34

Ordering Part Number.. 34

LatticeXP FPGAs .. 34

Ordering Part Number.. 34

LatticeXP2 FPGAs .. 35

Ordering Part Number.. 35

LatticeSC and LatticeSCM FPGAs ... 35

Ordering Part Number.. 35

IPUG31_03.5, June 2010 4 Block Convolutional Encoder User’s Guide

Lattice’s Block Convolutional Encoder IP core is a parameterizable core for convolutional encoding of continuous or

burst input data streams. The core allows different code rates and constraint lengths and supports puncturing. It

can operate in continuous or block mode, whichever is required by the channel. In block mode, either Zero Flushing

or Tail Biting codes can be generated. All the configurable parameters, including operation mode, termination

mode, generator polynomials, code rate, and puncture pattern, can be defined by the user to suit the needs of the

application. The code rate and the puncture pattern can also be varied through the input ports dynamically, provid-

ing further flexibility for the IP usage. Lattice’s Block Convolutional Encoder IP core is compatible with many net-

working and wireless standards that use convolutional encoding.

Quick Facts

Table 1-1 through Table 1-4 give quick facts about the Block Convolutional Encoder IP core for LatticeEC™,
LatticeECP™, LatticeECP2™, LatticeECP2M™, LatticeECP3™, LatticeXP™, LatticeXP2™, LattticeSC™, and

LatticeSCM™ devices.

Table 1-1. Block Convolutional Encoder IP Core for LatticeEC/ECP/XP Devices Quick Facts

Block Convolutional Encoder IP Configuration

Puncture
Rate 2/3

Constraints 3
Block

802.16- 2004
SC PHY

Non-punc-
ture Rate 1/2
Constraints 9

Block
3GPP/

CDMA2000

Non-punc-
ture Rate 1/2
Constraints 7
Continuous

802.11a, also
DVB-S

Dynamic
puncture

Max rate 5/6
Constraints 7

Block
802.16-2004
OFDM PHY

Puncture
Rate 3/4

Constraints 7
Continuous

802.11a, also
DVB-S

Core
Requirements

FPGA Families Supported Lattice EC/ECP/XP

Minimal Device Needed LFEC1E/LFECP6E/LFXP3E

Resource
Utilization

Targeted Device LFEC20E-5F672C/LFECP20E-5F672C/LFXP20E-5F484C

LUTs 50 50 50 150 50

sysMEM EBRs 0

Registers 50 50 50 150 100

Design Tool
Support

Lattice Implementation Diamond® 1.0 or ispLEVER® 8.1

Synthesis Synopsys® Synplify® Pro for Lattice D-2009.12L-1

Simulation
Aldec® Active-HDL® 8.2 Lattice Edition

Mentor Graphics® ModelSim® SE 6.3F

Chapter 1:

Introduction

at: www.latticesemi.com/software.

Lattice Semiconductor Introduction

IPUG31_03.5, June 2010 5 Block Convolutional Encoder User’s Guide

Table 1-2. Block Convolutional Encoder IP Core for LatticeECp2/ECP2M/XP2 Devices Quick Facts

Block Convolutional Encoder IP Configuration

Puncture
Rate 2/3

Constraints 3
Block

802.16- 2004
SC PHY

Non-punc-
ture Rate 1/2
Constraints 9

Block
3GPP/

CDMA2000

Non-punc-
ture Rate 1/2
Constraints 7
Continuous

802.11a, also
DVB-S

Dynamic
puncture

Max rate 5/6
Constraints 7

Block
802.16-2004
OFDM PHY

Puncture
Rate 3/4

Constraints 7
Continuous

802.11a, also
DVB-S

Core
Requirements

FPGA Families Supported Lattice ECP2/ECP2M/XP2

Minimal Device Needed LFE2-6E/ LFE2M20E/ LFXP2-5E

Resource
Utilization

Targeted Device LFE2-50E-7F672C/LFE2M35E-7F484C/LFXP2-17E-7F484C

LUTs 50 50 50 150 50

sysMEM EBRs 0

Registers 50 50 50 150 100

Design Tool
Support

Lattice Implementation Diamond 1.0 or ispLEVER 8.1

Synthesis Synopsys Synplify Pro for Lattice D-2009.12L-1

Simulation
Aldec Active-HDL 8.2 Lattice Edition

Mentor Graphics ModelSim SE 6.3F

Table 1-3. Block Convolutional Encoder IP Core for LatticeSC/SCM Devices Quick Facts

Block Convolutional Encoder IP Configuration

Puncture
Rate 2/3

Constraints 3
Block

802.16- 2004
SC PHY

Non-punc-
ture Rate 1/2
Constraints 9

Block
3GPP/

CDMA2000

Non-punc-
ture Rate 1/2
Constraints 7
Continuous

802.11a, also
DVB-S

Dynamic
puncture

Max rate 5/6
Constraints 7

Block
802.16-2004
OFDM PHY

Puncture
Rate 3/4

Constraints 7
Continuous

802.11a, also
DVB-S

Core
Requirements

FPGA Families Supported Lattice SC/SCM

Minimal Device Needed LFSC3GA15E/ LFSCM3GA15EP1

Resource
Utilization

Targeted Device LFSC3GA25E-7F900C/ LFSCM3GA25EP1-7F900C

LUTs 50 50 50 150 50

sysMEM EBRs 0

Registers 50 50 50 150 100

Design Tool
Support

Lattice Implementation Diamond 1.0 or ispLEVER 8.1

Synthesis Synopsys Synplify Pro for Lattice D-2009.12L-1

Simulation
Aldec Active-HDL 8.2 Lattice Edition

Mentor Graphics ModelSim SE 6.3F

Lattice Semiconductor Introduction

IPUG31_03.5, June 2010 6 Block Convolutional Encoder User’s Guide

Features

• Compatible with IEEE 802.16-2004, IEEE 802.11a, 3GPP, 3GPP2 and DVB standards

• Supports both continuous and block encoding

• Variable constraint length from 3 to 9

– Supports both Zero Flushing and Tail Biting termination modes

– Supports both internal and external zero padding in Zero Flushing mode

• Supports both internal and external tail adding in Tail Biting mode

• Supports a wide range of programmable code rates (input_rate/output_rate)

• User defined generator polynomials

• Output puncturing with unrestricted, user programmable puncture patterns

• Supports dynamic puncturing mode, in which both the code rate and puncture patterns can be varied through

ports

• Punctured code rate can be programmed to k/n, where k can be from 2 to 12 and n can be from k+1 to 2k-1;

additionally, rate 1/2 is supported in dynamic puncture mode

• Handshake signals to support breaks in data stream or encoder busy conditions

Table 1-4. Block Convolutional Encoder IP Core for LatticeECP3 Devices Quick Facts

Block Convolutional Encoder IP Configuration

Puncture
Rate 2/3

Constraints 3
Block

802.16- 2004
SC PHY

Non-punc-
ture Rate 1/2
Constraints 9

Block
3GPP/

CDMA2000

Non-punc-
ture Rate 1/2
Constraints 7
Continuous

802.11a, also
DVB-S

Dynamic
puncture

Max rate 5/6
Constraints 7

Block
802.16-2004
OFDM PHY

Puncture
Rate 3/4

Constraints 7
Continuous

802.11a, also
DVB-S

Core
Requirements

FPGA Families Supported Lattice ECP3

Minimal Device Needed LFE3-95E-8FN672CES

Resource
Utilization

Targeted Device LFE3-35EA

LUTs 50 50 50 150 50

sysMEM EBRs 0

Registers 50 50 50 150 100

Design Tool
Support

Lattice Implementation Diamond 1.0 or ispLEVER 8.1

Synthesis Synopsys Synplify Pro for Lattice D-2009.12L-1

Simulation
Aldec Active-HDL 8.2 Lattice Edition

Mentor Graphics ModelSim SE 6.3F

IPUG31_03.5, June 2010 7 Block Convolutional Encoder User’s Guide

This chapter provides a functional description of the Block Convolutional Encoder IP core. Figure 2-1 shows the

interface diagram for Block Convolutional Encoder.

Figure 2-1. Block Convolutional Encoder Interface Diagram

General Description

Figure 2-2 shows a digital communication system using the Convolutional Encoder. The digital data stream (such

as voice, image or any packetized data) is first convolutionally encoded, then modulated and finally transmitted

through a channel. The noise block in Figure 2-2 represents channel noise added to the channel. The data

received from the channel at the receiver side is first demodulated and then decoded using a Viterbi decoder. The

decoded output is equivalent to the original transmitted data stream.

Figure 2-2. Digital Communication System

Convolutional Encoding

Convolutional encoding is a process of adding redundancy to a signal stream to provide error correction capability.

Figure 2-3 shows an example of 1/2 rate convolutional encoding.

dout

clk

rstn

outvalid

pbstart

rfiConvolutional

Encoder

inpvalid

ibstart

ibend

din

rfib

obstart

obend

blklen

ppset

pp0

pp1

inrate

outrate

Convolutional
Encoder

Transmitted
Data Stream

Received
Data Stream

Block Viterbi
Decoder

Modulator DemodulatorChannel

Noise

Chapter 2:

Functional Description

Lattice Semiconductor Functional Description

IPUG31_03.5, June 2010 8 Block Convolutional Encoder User’s Guide

Figure 2-3. Convolutional Encoding

In this example, each input symbol has two corresponding output symbols; hence, the encoding is called 1/2 rate

convolutional encoding. To generate the output, the encoder uses seven values of the input signal: one present and

six past. The set of past values of input data is called a “state.” The number of input data values used to generate

the code is called the constraint length. In this case, the constraint length is 7. Each set of outputs is generated by

XORing a pattern of current and shifted values of input data. The patterns used to generate the coded output value

can be expressed as binary strings called generator polynomials (GP). In this example, the generator polynomials

are 171 and 133 (in octal). The MSB of the generator polynomial corresponds to the input and the LSBs corre-

spond to the state as shown in Figure 2-3. A bit value of '1' in the generator polynomial represents a used data bit

and a value of '0' signifies an unused bit.

Punctured Codes

After convolutional encoding, some of the encoded symbols can be selectively removed before transmission. This

process, called “puncturing,” is a data compression method used to reduce the number of bits transmitted. A pair of

binary strings called a “puncture pattern” is used to make the selection of punctured symbols. A “1” in the pattern

means the corresponding symbol is kept in the output stream, while a “0” means the symbol in that position is

removed. Figure 2-4 shows an example of puncturing.

Figure 2-4. Puncturing Process

If puncturing is employed in the encoder, the decoder will have to “depuncture” the data before decoding. Depunc-

turing is usually done by inserting NULL symbols for the punctured symbols. NULL symbols are equidistant from

both '0' and '1'.

Similar to non-punctured codes, the rate of a punctured code is defined as k/n, where k is the input symbol rate and

n is the output symbol rate. The input rate and output rate can be easily recognized by looking at the number of col-

umns and the number of “1”s in the puncture pattern, respectively. As an example, the above Figure 2-4 gives a

punctured code with rate 3/4.

reg data out
data in

GP0 = 171 octal

GP1 = 133 octal

XOR

reg reg reg reg reg

i
0

i
1 i

2
i
3 i

4
i
5 i

6

a
0

b
0

a
1

a
2

a
3

a
4

a
5

a
6

b
1

b
2

b
3 b

4
b

5
b

6

a
0

b
0

b
1

a
2

a
3

b
3

b
4

1

1

0 1

1 0

a
0

b
0

a
1

a
2

a
3

a
4

a
5

a
6

b
1

b
2

b
3 b

4
b

5
b

6

a
5

Input data
After convolutional coding

Puncture pattern
superimposedPuncture pattern

Final punctured output

Lattice Semiconductor Functional Description

IPUG31_03.5, June 2010 9 Block Convolutional Encoder User’s Guide

For punctured encoding, the code rate and the puncture pattern can be defined in two ways with the Block Convo-

lution Encoder IP core. It can be either set statically using the GUI or specified dynamically through the input ports.

The former mode is referred as “fixed puncturing” and the latter as “dynamic puncturing.”

Continuous and Block Encoding

The convolutional encoding process can be applied on either a continuous stream or blocks of input data. When

the input data stream is continuous, the encoder is configured to continuous mode. On the other hand, if the input

data stream is block based (or frame based), the core is set for block encoding. The major difference between the

continuous and block encoding is the termination method that is used for block codes.

Zero Flushing and Tail Biting Termination Modes

In block encoding, the code must be terminated appropriately so that the decoding process can start from a suit-

able initial state. The IP core supports two block termination methods: Zero Flushing and Tail Biting. In Zero Flush-

ing mode, a series of zeros are added to the end of each block at the input of the convolutional encoder. In Tail

Biting mode, the last few bits of each block are used to initialize the state of the encoder, before encoding that

block.

Functional Description

A simplified architecture diagram of the Block Convolutional Encoder IP core is shown in Figure 2-5. It consists of

an encoder, a puncture unit, a control unit, and an optional input memory.

Figure 2-5. Block Convolutional Encoder Internal Architecture

Encoder

The encoder module takes input data and performs convolutional encoding. The encoder uses generator polynomi-

als configured by the user. When punctured encoding is enabled, the encoder performs 1/2 rate encoding irrespec-

tive of the encoder rate. The puncture unit uses the 1/2 rate code to generate the appropriate user-programmed

rate.

dout[]

clk
rstn

outpvalid

pdstart

rfi

inpvalid

ibstart

ibend

din

rfib

obstart

obend

Puncture
Unit

Encoder

clk

rstn

clk
rstn I

M
E
M

blklen

ppset

pp0

inrate

outrate

pp1

Control Unit

Lattice Semiconductor Functional Description

IPUG31_03.5, June 2010 10 Block Convolutional Encoder User’s Guide

The initial state of the encoder is related to the configuration settings of the IP core, as shown in Table 2-1:

Table 2-1. Initial State of the Convolutional Encoder

Both Zero Flushing and Tail Biting for block encoding can be performed either inside or outside the IP core. If the

outside mode is selected, it is the user's responsibility to append the information with the initial states. If the inside

mode is selected, the core will generate the zero padding bits after the block for Zero Flushing mode, or initialize

the state with the tail information before the block for Tail Biting mode.

Puncture Unit

This unit performs data puncturing, as previously explained. The input is a two-channel data stream and the output

is always a one-channel output. The unit is capable of performing puncturing of any code rate with a user program-

mable puncture pattern.

Input Memory

For “tail adding inside” mode, the core has to store the whole message block and use the last K-1 bits to initialize

the registers, where K is the constraint length. This is achieved by having an input memory module inside the core.

Control Unit

The control unit generates the handshake signals obstart, obend, outvalid, rfi, rfib and pbstart using

the input signals inpvalid, ibstart, ibend and the status of the encoder. In dynamic puncture mode, it con-

tains registers that latch the inrate, outrate, pp0 and pp1 when ppset signal is asserted. The control unit also

generates various control signals required by the encoder and the puncture unit for different continuous and block

encoding schemes.

Interfacing to the Block Convolutional Encoder Core

The puncturing-enabled convolutional encoder is a multi-rate system, with the output rate greater than the input

rate. The data rate mismatch between input and output can be managed by using the output signal rfi (ready for

input). The driving system should not apply an input to the encoder if the rfi output is low (if this is done, the data

will be ignored until rfi is high). When valid data is applied at the input din, input inpvalid must be asserted

high. Even if the rfi output is high, the driving system can blackout the input by pulling inpvalid low. The core will

optimize throughput by using up a portion of any user asserted blackout cycles as wait cycles (for data-rate match-

ing).

When the core works under block mode, the start and end of a block is defined either by the ibstart and ibend

signals, or by ibstart and blklen input signals. In the latter case, the core has an internal counter to generate

the ibend signal counting from the input ibstart. However, if the tail-biting termination mode is selected and the

tail-adding is implemented inside, the block length is always read from the blklen input port. This is because the

whole block of data must be stored in the core before encoding and memory has to be provided based on the block

length.

The output signal pbstart is asserted high to coincide with the start of a punctured block. This signal can be used

to synchronize the Viterbi decoder that is decoding the encoded stream.

The output control signal outvalid is high whenever the output is valid. This can be used as an enable signal to

latch the output to a memory.

Configuration Settings Initial State

Continuous encoding 0

Block encoding, Zero Flushing code, zero added inside 0

Block encoding, Zero Flushing code, zero added outside 0

Block encoding, Tail Biting code, tail added inside Last K-1 samples in the block, where K is the constraint length

Block encoding, Tail Biting code, tail added outside Undefined

Lattice Semiconductor Functional Description

IPUG31_03.5, June 2010 11 Block Convolutional Encoder User’s Guide

For block encoding, the output signal rfib is asserted high to inform the input source that the core is ready to

accept the next block of data. The output control signal obstart and obend are used to inform the output destina-

tion the start and end of each block.

For the dynamic puncturing encoder, the ppset signal is used to load the valid inrate, outrate, pp0 and pp1

values that are applied on those ports. These data have to be loaded-in at least five clock cycles before the start of

next data block, for them to be effective.

Signal Descriptions

A description of I/O interface signals is given in Table 2-2. Refer to Figure 2-1 for a top-level diagram of the IP core.

Table 2-2. Signal Descriptions

Port Bits I/O Description

clk 1 I System clock

rstn 1 I System wide asynchronous active-low reset signal.

inpvalid 1 I
Input valid signal to denote valid data being presented at the encoder input. For
Punctured encoding, it must be asserted only if the encoder output rfi is high.

din 1 I
Input data to the encoder: For Punctured encoding, it must be presented only if
the encoder output rfi is high.

ibstart 1 I
Input block start signal: This must be pulled high when the first data of a block is
applied on the input port. Also, this signal can only be asserted if the encoder out-
put rfib is high. This port is available for block encoding only.

ibend 1 I

Input block end signal: This signal must be pulled high to indicate that the last
data of a block is being applied on the input port. This port is available for block
encoding only. This signal is not available if the block length is read from port
blklen.

blklen
4 to 16

or
4 to 9

I

The length of input data block is applied at this port: The width of this port can be
selected from 4 to 16 bits for zero-flushing code, and from 4 to 9 bits for tail-biting
code. The value on this port is read only when ibstart is high. This port is avail-
able in the “Block Length Read from Port” mode only.

inrate 1-4 I
Input rate of the convolutional code for next block: This port is available for
dynamic puncture only

outrate 2-5 I
Output rate of the convolutional code for next block: This port is available for
dynamic puncture only

pp0 1-12 I
Puncture pattern 0 for next block: This port is available for dynamic puncturing
encoder only

pp1 1-12 I
Puncture pattern 1 for next block: This port is available for dynamic puncturing
encoder only

ppset 1 I
Puncture rate and puncture pattern set signal: The new input rate, output rate and
puncture patterns are set when ppset goes high. This port is available for
dynamic puncturing encoder only

outvalid 1 O
Output valid signal: This indicates that the output on dout is a valid encoded
data.

pbstart 1 O
This output signal goes high whenever the encoder outputs the first data of a
punctured block and signifies the start of a punctured block.

obstart 1 O
Output block start signal: It goes high when the first data of a block is on the dout
output port. This port is available for block encoding only.

obend 1 O
Output block end signal: It goes high when the last data of a block is on the dout
output port. This port is available for block encoding only.

rfib 1 O
Ready for next input block: This signal goes high to indicate that the core is ready
for reading the next input block. This port is available for block encoding only.

Lattice Semiconductor Functional Description

IPUG31_03.5, June 2010 12 Block Convolutional Encoder User’s Guide

Timing Diagrams

The top-level timing diagrams for different cases are given in Figure 2-6 through Figure 2-13.

Figure 2-6. Timing Diagram for a Rate 1/2 Continuous Non-punctured Encoder

Figure 2-7. Timing Diagram for a Rate 3/5 Continuous Punctured Encoder

rfi 1 O
This port is available only for punctured encoder. This signal signifies that the
encoder is ready for input. If rfi goes low, the encoder will not accept input data
in the next clock edge.

dout
2 to 8 (non-puntured)

1 (punctured)
O Output data of the encoder: The data is valid only if the output outvalid is high.

Table 2-2. Signal Descriptions (Continued)

Port Bits I/O Description

clk

dout

din d0 d1 d2 x x d3 d4 d5

inpvalid

x d7 d8 d9 x

x x x d3

x

outvalid

d0 d1 d2 x

d6

d4 d5 d7 d6 d8

clk

dout

din d0d1 d2 x x d3 d4 d5

inpvalid

x x 678 x

x d2++ d3

rfi

d4 d5

x

outvalid

pbstart

d0 d1 d2 d2+

Lattice Semiconductor Functional Description

IPUG31_03.5, June 2010 13 Block Convolutional Encoder User’s Guide

Figure 2-8. Timing diagram for a Rate 1/2 Block Non-punctured Encoder with Zero Flushing

clk

dout

din d0 d1 d2 x x d3 d4

inpvalid

x

x x d3

x

outvalid

d0 d1 d2 x d4 d5 x d6 x

ibstart

ibend

x

block 0

rfib

x d0 d1 d2 d3

block 1

obstart

obend

x

x

Lattice Semiconductor Functional Description

IPUG31_03.5, June 2010 14 Block Convolutional Encoder User’s Guide

Figure 2-9. Timing Diagram for a Rate 3/5 Block Punctured Encoder with Tail Adding Outside

clk

dout

din d0 d1 d2 x x d4 d5

inpvalid

d3

x d3 d4

x

outvalid

d0 d1 d2 d2+ d5 d5+ x d5++ x

ibstart

ibend

x

block 0

rfib

x d0 d1 d2 x

block 1

obstart

obend

d2++

x

rfi

pbstart

Lattice Semiconductor Functional Description

IPUG31_03.5, June 2010 15 Block Convolutional Encoder User’s Guide

Figure 2-10. Timing Diagram for a Rate 1/2 Block Non-punctured Encoder with Tail Adding Inside

clk

dout

din d0 d1 d2 x x d3 d4

inpvalid

x

x

x

outvalid

d0 d1 d3 d2 d4

ibstart

x

block 0 (L)

rfib

x d0 d1 d2 d3

block 1

obstart

x

ibend

obend

Lattice Semiconductor Functional Description

IPUG31_03.5, June 2010 16 Block Convolutional Encoder User’s Guide

Figure 2-11. Timing Diagram for a Dynamic Punctured Encoder with Zero Termination Outside (First Input
Block After System Reset)

clk

dout

ppset

d3+

outvalid

d1 d1+ d2

ibstart

inpvalid

rfib

obstart

d3

rfi

pbstart

x 2 x

x 3 x

x 3 x

x 2 x

d0

rstn

inrate

outrate

pp0

pp1

Lattice Semiconductor Functional Description

IPUG31_03.5, June 2010 17 Block Convolutional Encoder User’s Guide

Figure 2-12. Timing Diagram for a Dynamic Punctured Encoder with Zero Termination Outside (The ppset
Asserted After the Previous Block Coding is Finished)

clk

dout

obend

d1 d1+

outvalid

d2

ibstart

inpvalid

rfib

obstart

d0

rfi

pbstart

inrate

outrate

pp0

pp1

ppset

x 2 x

x 3 x

x 3 x

x 2 x

Min interval = 5

Lattice Semiconductor Functional Description

IPUG31_03.5, June 2010 18 Block Convolutional Encoder User’s Guide

Figure 2-13. Timing Diagram for a Dynamic Punctured Encoder with Zero Termination Outside (The ppset
Asserted Before the Previous Block Coding is Finished)

clk

dout

ppset

d3+

outvalid

d1 d1+ d2

ibstart

inpvalid

rfib

obstart

d3

rfi

pbstart

x 2 x

x 3 x

x 3 x

x 2 x

d0

inrate

outrate

pp0

pp1

obend

IPUG31_03.5, June 2010 19 Block Convolutional Encoder User’s Guide

The IPexpress™ tool is used to create IP and architectural modules in the Diamond or ispLEVER software. Refer to

“IP Core Generation” on page 22 for a description on how to generate the IP.

Table 3-1 provides the list of user configurable parameters for the Block Convolutional Encoder IP core. The

parameter settings are specified using the Block Convolutional Encoder IP core Configuration GUI in IPexpress.

The numerous PCI Express parameter options are partitioned across multiple GUI tabs as shown in this chapter.

Table 3-1. Block Convolutional Encoder Parameter Descriptions

Parameter Range Default

Code Rate

Input Rate (k)
(Maximum Input Rate(mir))

1 (non-puncture) or 2 to 12 (fixed puncture) for “Input Rate(k)”
1 to 12 (dynamic puncture) for “Maximum Input Rate(mir)”

2 for k
5 for mir

Output Rate (n)
(Maximum Output Rate (mor))

2 to 8 (non-puncture) or k+1 to 2k-1(fixed puncture) for “Output Rate(n)”
mir+1 to 2*mir-1 (dynamic puncture; mir>1) or 2 (dynamic puncture; mir=1)

for “Maximum Output Rate(mor)”

3 for n
6 for mor

Puncture Support

Punctured Encoder Enabled, Disabled Enabled

Dynamic Rate/Pattern Enabled, Disabled Disabled

Puncture Pattern (PP0, PP1) k bits for each
11 (PP0)
10 (PP1)

Operation Mode

Operation Mode Continuous, Block Block

Termination Mode

Termination Mode Zero Flushing, Tail Biting Tail Biting

Zero Padding Mode Inside, Outside Outside

Tail Adding Mode Inside, Outside Outside

Block Length Options

Block Length Read From Port Enabled. Disabled Disabled

Block Length Width
4-16 for zero-flushing termination block

or
4-9 tail-biting termination block

9

Generator Polynomials

Constraint Length (K) 3 to 9 3

GP Radix Bin, Oct, Hex Oct

GP0 k bits 7

GP1 k bits 5

GP2 k bits NA

GP3 k bits NA

GP4 k bits NA

GP5 k bits NA

GP6 k bits NA

GP7 k bits NA

Chapter 3:

Parameter Settings

Lattice Semiconductor Parameter Settings

IPUG31_03.5, June 2010 20 Block Convolutional Encoder User’s Guide

Block Convolutional Encoder Parameters

Figure 3-1 shows the contents of the Block Convolutional Encoder configuration parameters.

Figure 3-1. Block Convolutional Encoder Configuration Parameters

Code Rate

The code rate of the convolutional encoder is expressed using two values: input rate (numerator of the code rate)

and output rate (denominator of the code rate).

Input Rate (Max Input Rate)

When the the Puncture Support "Dynamic Rate/Pattern" parameter is disabled, this parameter defines the input

rate of the encoder for non-puncture and fixed puncture modes. The rate is equal to 1 for non-punctured codes and

should be between 2 and 12 for fixed punctured codes.

When "Dynamic Rate/Pattern" is enabled, this parameter specifies the Max Input Rate. It should be between 1 and

12.

Output Rate (Max Output Rate)

When the Puncture Support "Dynamic Rate/Pattern" parameter is disabled, this parameter defines the output rate

of the encoder for non-puncture and fixed puncture modes. It can be from 2 to 8 for non-punctured codes, and from

k+1 to 2k-1 for punctured codes.

When "Dynamic Rate/Pattern" is enabled, this parameter specifies the Max Output Rate. Its value should be from

mir+1 to 2*mir-1 when mir is greater than 1; and equal to 2 if mir is 1.

Lattice Semiconductor Parameter Settings

IPUG31_03.5, June 2010 21 Block Convolutional Encoder User’s Guide

Operation Mode

This parameter determines the operation mode of the core. The core works in either continuous mode or block

mode.

Puncture Support

Punctured Encoder

This parameter determines whether the IP core supports punctured (Enabled) or non-punctured (Disabled) output.

Dynamic Rate/Pattern

This parameter defines whether the core supports dynamic puncturing encoding (Enabled) or fixed puncturing

encoding (Disabled).

Puncture Pattern

This parameter allows the user to set the puncture pattern for punctured encoders. This parameter is only valid for

fixed puncturing encoding. The puncture pattern composed of PP0 and PP1 is defined by the user. The total num-

ber of 1’s in both puncture patterns must equal the output rate, and the number of bits for each puncture pattern

must equal the input rate

Termination Mode

This parameter determines the termination mode of block convolutional code. It can be Tail-biting mode or Zero-

Flushing mode. For block decoding only.

Zero Padding Mode

This parameter determines the zero padding mode. It can be supported inside or outside of the IP core. This

parameter is valid for for Block Encoding and Zero-Flushing modes only.

Tail Adding Mode

This parameter determines the tail adding mode. It can be supported inside or outside of the IP core. This parame-

ter is valid for Block Encoding and Tail-Biting modes only.

Block Length Options

Block Length Read From Port

When this parameter is enabled, the block length is read from an external port. This parameter is always enabled

when Tail Adding Mode is set to Inside. This parameter is valid for block encoding only.

Block Length Width

This parameter determines the width of the block length port. For zero-flushing mode, it can be from 4 to 16 bits.

For tail-biting mode, it can be from 4 to 9 bits. This parameter is only valid when the Block Length Read from Port is

enabled.

Generator Polynomials

GP0, GP1, GP2, GP3, GP4, GP5, GP6 and GP7 are generator polynomials. For non-puncturing encoders, the

number of generator polynomials is always equal to the output rate. For puncturing encoders, the number of gener-

ator polynomials is 2. The polynomial values can be provided in any of the three radixes: binary (“Bin”), octal

(“Oct”), or hexadecimal (“Hex”) which defined by parameter "GP Radix".

Constraint Length

This parameter defines the constraint register length. The value can be any integer from 3 to 9.

GP Radix

This parameter sets the input radix of the generator polynomials.

IPUG31_03.5, June 2010 22 Block Convolutional Encoder User’s Guide

This chapter provides information on how to generate the Block Convolutional Encoder IP core using the Diamond

or ispLEVER software IPexpress tool, and how to include the core in a top-level design.

Licensing the IP Core

An IP core- and device-specific license is required to enable full, unrestricted use of the Block Convolutional

Encoder IP core in a complete, top-level design. Instructions on how to obtain licenses for Lattice IP cores are

given at:

http://www.latticesemi.com/products/intellectualproperty/aboutip/isplevercoreonlinepurchas.cfm

Users may download and generate the Block Convolutional Encoder IP core and fully evaluate the core through

functional simulation and implementation (synthesis, map, place and route) without an IP license. The Block Con-

volutional Encoder IP core also supports Lattice’s IP hardware evaluation capability, which makes it possible to cre-

ate versions of the IP core that operate in hardware for a limited time (approximately four hours) without requiring

an IP license. See “Hardware Evaluation” on page 28 for further details. However, a license is required to enable

timing simulation, to open the design in the Diamond or ispLEVER EPIC tool, and to generate bitstreams that do

not include the hardware evaluation timeout limitation.

Getting Started

The Block Convolutional Encoder IP core is available for download from the Lattice’s IP server using the IPexpress

tool. The IP files are automatically installed using ispUPDATE technology in any customer-specified directory. After

the IP core has been installed, the IP core will be available in the IPexpress GUI dialog box shown in Figure 4-1.

The Diamond or ispLEVER IPexpress tool GUI dialog box for the Block Convolutional Encoder IP core is shown in

Figure 4-1. To generate a specific IP core configuration the user specifies:

• Project Path – Path to the directory where the generated IP files will be loaded.

• File Name – “username” designation given to the generated IP core and corresponding folders and files.

• (Diamond) Module Output – Verilog or VHDL.

• (ispLEVER) Design Entry Type – Verilog HDL or VHDL.

• Device Family – Device family to which IP is to be targeted (e.g. LatticeSCM, Lattice ECP2M, LatticeECP3,

etc.). Only families that support the particular IP core are listed.

• Part Name – Specific targeted part within the selected device family.

Chapter 4:

IP Core Generation

http://www.latticesemi.com/products/intellectualproperty/aboutip/isplevercoreonlinepurchas.cfm

Lattice Semiconductor IP Core Generation

IPUG31_03.5, June 2010 23 Block Convolutional Encoder User’s Guide

Figure 4-1. The IPexpress Tool Dialog Box (Diamond Version)

Note that if the IPexpress tool is called from within an existing project, Project Path, Module Output (Design Entry in

ispLEVER), Device Family and Part Name default to the specified project parameters. Refer to the IPexpress tool

online help for further information.

To create a custom configuration, the user clicks the Customize button in the IPexpress tool dialog box to display

the Block Convolutional Encoder IP core Configuration GUI, as shown in Figure 4-2. From this dialog box, the user

can select the IP parameter options specific to their application. Refer to “Parameter Settings” on page 19for more

information on the Block Convolutional Encoder IP core parameter settings.

Lattice Semiconductor IP Core Generation

IPUG31_03.5, June 2010 24 Block Convolutional Encoder User’s Guide

Figure 4-2. The IPexpress Tool Dialog Box - Configuration GUI (Diamond Version)

Lattice Semiconductor IP Core Generation

IPUG31_03.5, June 2010 25 Block Convolutional Encoder User’s Guide

IPexpress-Created Files and Top Level Directory Structure

When the user clicks the Generate button in the IP Configuration dialog box, the IP core and supporting files are

generated in the specified “Project Path” directory. The directory structure of the generated files is shown in

Figure 4-3.

Figure 4-3. LatticeECP3 Block Convolutional Encoder IP core Directory Structure

Lattice Semiconductor IP Core Generation

IPUG31_03.5, June 2010 26 Block Convolutional Encoder User’s Guide

Table 4-1 provides a list of key files and directories created by the IPexpress tool and how they are used. The IPex-

press tool creates several files that are used throughout the design cycle. The names of most of the created files

are customized to the user’s module name specified in the IPexpress tool.

Instantiating the Core

The generated Convolutional Encoder IP core package includes black-box (<username>_bb.v) and instance

(<user-name>_inst.v) templates that can be used to instantiate the core in a top-level design. An example RTL top-

level reference source file that can be used as an instantiation template for the IP core is provided in

\<project_dir>\blk_ce_eval\<username>\src\rtl\top. Users may also use this top-level reference as

the starting template for the top-level for their complete design.

Running Functional Simulation

Simulation support for the Convolutional Encoder IP core is provided for Aldec Active-HDL (Verilog and VHDL) sim-

ulator, Mentor Graphics ModelSim simulator. The functional simulation includes a configuration-specific behavioral

model of the Convolutional Encoder IP core. The test bench sources stimulus to the core, and monitors output from

the core. The generated IP core package includes the configuration-specific behavior model (<username>_beh.v)

for functional simulation in the “Project Path” root directory. The simulation scripts supporting ModelSim evaluation

simulation is provided in \<project_dir>\blk_ce_eval\<username>\sim\modelsim\scripts. The sim-

ulation script supporting Aldec evaluation simulation is provided in
\<project_dir>\blk_ce_eval\<username>\sim\aldec\scripts. Both ModelSim and Aldec simulation

is supported via test bench files provided in
\<project_dir>\blk_ce_eval\testbench. Models required for simulation are provided in the corresponding

\models folder. Users may run the Aldec evaluation simulation by doing the following:

1. Open Active-HDL.

2. Under the Tools tab, select Execute Macro.

3. Browse to folder \<project_dir>\blk_ce_eval\<username>\sim\aldec\scripts and execute one

of the "do" scripts shown.

Users may run the ModelSim evaluation simulation by doing the following:

1. Open ModelSim.

Table 4-1. File List

File Description

<username>_inst.v This file provides an instance template for the IP.

<username>.v This file provides a wrapper for the Convolutional Encoder core for simulation.

<username>_beh.v This file provides a behavioral simulation model for the Convolutional Encoder core.

<username>_bb.v This file provides the synthesis black box for the user’s synthesis.

<username>.ngo The ngo files provide the synthesized IP core.

<username>.lpc This file contains the IPexpress tool options used to recreate or modify the core in the IPex-
press tool.

<username>.ipx The IPX file holds references to all of the elements of an IP or Module after it is generated
from the IPexpress tool (Diamond version only). The file is used to bring in the appropriate
files during the design implementation and analysis. It is also used to re-load parameter set-
tings into the IP/Module generation GUI when an IP/Module is being re-generated.

<username>_generate.tcl Created when GUI “Generate” button is pushed, invokes generation, may be run from com-
mand line.

<username>_generate.log IPexpress scripts log file.

<username>_gen.log IPexpress IP generation log file

Lattice Semiconductor IP Core Generation

IPUG31_03.5, June 2010 27 Block Convolutional Encoder User’s Guide

2. Under the File tab, select Change Directory and choose the folder
<project_dir>\blk_ce_eval\<username>\sim\modelsim\scripts.

3. Under the Tools tab, select Execute Macro and execute the ModelSim “do” script shown.

Note: When the simulation completes, a pop-up window will appear asking “Are you sure you want to finish?”
Answer No to analyze the results. Answering Yes closes ModelSim.

Synthesizing and Implementing the Core in a Top-Level Design

The Convolutional Encoder IP core itself is synthesized and provided in NGO format when the core is generated

through IPexpress. You may combine the core in your own top-level design by instantiating the core in your top-

level file as described in “Instantiating the Core” on page 26 and then synthesizing the entire design with either

Synplify or Precision RTL Synthesis.

The following text describes the evaluation implementation flow for Windows platforms. The flow for Linux and

UNIX platforms is described in the Readme file included with the IP core.

The top-level file <userame>_top.v is provided in
\<project_dir>\blk_ce_eval\<username>\src\rtl\top. Push-button implementation of the reference

design is supported via the project file <username>.ldf (Diamond) or .syn (ispLEVER) located in

\<project_dir>\blk_ce_eval\<username>\impl\(synplify or precision).

To use this project file in Diamond:

1. Choose File > Open > Project.

2. Browse to
\<project_dir>\blk_ce_eval\<username>\impl\synplify (or precision) in the Open Project

dialog box.

3. Select and open <username>_.ldf. At this point, all of the files needed to support top-level synthesis and imple-

mentation will be imported to the project.

4. Select the Process tab in the left-hand GUI window.

5. Implement the complete design via the standard Diamond GUI flow.

To use this project file in ispLEVER:

1. Choose File > Open Project.

2. Browse to
\<project_dir>\blk_ce_eval\<username>\impl\synplify (or precision) in the Open Project

dialog box.

3. Select and open <username>.syn. At this point, all of the files needed to support top-level synthesis and imple-

mentation will be imported to the project.

4. Select the device top-level entry in the left-hand GUI window.

5. Implement the complete design via the standard ispLEVER GUI flow.

Lattice Semiconductor IP Core Generation

IPUG31_03.5, June 2010 28 Block Convolutional Encoder User’s Guide

Hardware Evaluation

The Convolutional Encoder IP core supports Lattice’s IP hardware evaluation capability, which makes it possible to

create versions of the IP core that operate in hardware for a limited period of time (approximately four hours) with-

out requiring the purchase of an IP license. It may also be used to evaluate the core in hardware in user-defined

designs.

Enabling Hardware Evaluation in Diamond:

Choose Project > Active Strategy > Translate Design Settings. The hardware evaluation capability may be

enabled/disabled in the Strategy dialog box. It is enabled by default.

Enabling Hardware Evaluation in ispLEVER:

In the Processes for Current Source pane, right-click the Build Database process and choose Properties from the

dropdown menu. The hardware evaluation capability may be enabled/disabled in the Properties dialog box. It is

enabled by default.

Updating/Regenerating the IP Core

By regenerating an IP core with the IPexpress tool, you can modify any of its settings including device type, design

entry method, and any of the options specific to the IP core. Regenerating can be done to modify an existing IP

core or to create a new but similar one.

Regenerating an IP Core in Diamond

To regenerate an IP core in Diamond:

1. In IPexpress, click the Regenerate button.

2. In the Regenerate view of IPexpress, choose the IPX source file of the module or IP you wish to regenerate.

3. IPexpress shows the current settings for the module or IP in the Source box. Make your new settings in the Tar-

get box.

4. If you want to generate a new set of files in a new location, set the new location in the IPX Target File box. The

base of the file name will be the base of all the new file names. The IPX Target File must end with an .ipx exten-

sion.

5. Click Regenerate. The module’s dialog box opens showing the current option settings.

6. In the dialog box, choose the desired options. To get information about the options, click Help. Also, check the

About tab in IPexpress for links to technical notes and user guides. IP may come with additional information. As

the options change, the schematic diagram of the module changes to show the I/O and the device resources

the module will need.

7. To import the module into your project, if it’s not already there, select Import IPX to Diamond Project (not

available in stand-alone mode).

8. Click Generate.

9. Check the Generate Log tab to check for warnings and error messages.

10.Click Close.

The IPexpress package file (.ipx) supported by Diamond holds references to all of the elements of the generated IP

core required to support simulation, synthesis and implementation. The IP core may be included in a user's design

by importing the .ipx file to the associated Diamond project. To change the option settings of a module or IP that is

already in a design project, double-click the module’s .ipx file in the File List view. This opens IPexpress and the

module’s dialog box showing the current option settings. Then go to step 6 above.

Lattice Semiconductor IP Core Generation

IPUG31_03.5, June 2010 29 Block Convolutional Encoder User’s Guide

Regenerating an IP Core in ispLEVER

To regenerate an IP core in ispLEVER:

1. In the IPexpress tool, choose Tools > Regenerate IP/Module.

2. In the Select a Parameter File dialog box, choose the Lattice Parameter Configuration (.lpc) file of the IP core

you wish to regenerate, and click Open.

3. The Select Target Core Version, Design Entry, and Device dialog box shows the current settings for the IP core

in the Source Value box. Make your new settings in the Target Value box.

4. If you want to generate a new set of files in a new location, set the location in the LPC Target File box. The base

of the .lpc file name will be the base of all the new file names. The LPC Target File must end with an .lpc exten-

sion.

5. Click Next. The IP core’s dialog box opens showing the current option settings.

6. In the dialog box, choose desired options. To get information about the options, click Help. Also, check the

About tab in the IPexpress tool for links to technical notes and user guides. The IP core might come with addi-

tional information. As the options change, the schematic diagram of the IP core changes to show the I/O and

the device resources the IP core will need.

7. Click Generate.

8. Click the Generate Log tab to check for warnings and error messages.

IPUG31_03.5, June 2010 30 Block Convolutional Encoder User’s Guide

This chapter contains information about Lattice Technical Support, additional references, and document revision

history.

Lattice Technical Support

There are a number of ways to receive technical support.

Online Forums

The first place to look is Lattice Forums (http://www.latticesemi.com/support/forums.cfm). Lattice Forums contain a

wealth of knowledge and are actively monitored by Lattice Applications Engineers.

Telephone Support Hotline

Receive direct technical support for all Lattice products by calling Lattice Applications from 5:30 a.m. to 6 p.m.

Pacific Time.

• For USA & Canada: 1-800-LATTICE (528-8423)

• For other locations: +1 503 268 8001

In Asia, call Lattice Applications from 8:30 a.m. to 5:30 p.m. Beijing Time (CST), +0800 UTC. Chinese and English

language only.

• For Asia: +86 21 52989090

E-mail Support

• techsupport@latticesemi.com

• techsupport-asia@latticesemi.com

Local Support

Contact your nearest Lattice Sales Office.

Internet

www.latticesemi.com

References

• IEEE Std 802.16-2004 IEEE Standard for Local and metropolitan area networks Part 16: Air Interface for Fixed

Broadband Wireless Access Systems

• 3GPP TS 25.212 V4.2.0 (2001-09)

• 3GPP2 C.S0002-A Version 5.0 Date: July 13, 2001

• IEEE Standard for Information Technology Part 11: Wireless LAN Medium Access Control (MAC) and Physical

Layer (PHY) Specifications

LatticeEC/ECP

• HB1000, LatticeEC/ECP Family Handbook

LatticeECP2M

• HB1003, LatticeECP2M Family Handbook

Chapter 5:

Support Resources

www.latticesemi.com/dynamic/view_document.cfm?document_id=21733
http://www.latticesemi.com/support/forums.cfm
www.latticesemi.com
http://www.latticesemi.com/lit/docs/handbooks/HB1000.pdf

Lattice Semiconductor Support Resources

IPUG31_03.5, June 2010 31 Block Convolutional Encoder User’s Guide

LatticeECP3

• HB1009, LatticeECP3 Family Handbook

LatticeSC/M

• DS1004, LatticeSC/M Family Data Sheet

LatticeXP

• HB1001, LatticeXP Family Handbook

LatticeXP2

• DS1009, Lattice XP2 Datasheet

Revision History

Date
Document

Version
IP

Version Change Summary

— — 2.0 Previous Lattice releases.

June 2006 03.1 3.0
Added support for LatticeECP2, LatticeSC and LatticeXP FPGA fami-
lies.

December 2006 03.2 3.1 Updated appendices. Added support for LatticeECP2M FPGA family.

June 2007 03.3 3.2 Updated appendices. Added support for LatticeXP2 FPGA family.

May 2009 03.4 3.3
Added LatticeECP2S, LatticeECP2MS and LatticeECP3 FPGA sup-
port.

Added VHDL flow support.

Added Precision RTL Synthesis and Aldec Active-HDL tools support

Added Linux/Solaris Platform support.

Updated GSR usage.

June 2010 03.5 3.4 Added support for Diamond software.

Divided document into chapters. Added table of contents.

Added Quick Facts table in Chapter 1, “Introduction.”

Added new content in Chapter 3, “Parameter Settings.”

Added new content in Chapter 4, “IP Core Generation.”

www.latticesemi.com/dynamic/view_document.cfm?document_id=32001
www.latticesemi.com/dynamic/view_document.cfm?document_id=32001
http://www.latticesemi.com/documents/TN1114.pdf
http://www.latticesemi.com/documents/DS1004.pdf
http://www.latticesemi.com/lit/docs/handbooks/HB1001.pdf
http://www.latticesemi.com/documents/DS1009.pdf

IPUG31_03.5, June 2010 32 Block Convolutional Encoder User’s Guide

This appendix gives resource utilization information for Lattice FPGAs using the Block Convolutional Encoder IP

core.

IPexpress is the Lattice IP configuration utility, and is included as a standard feature of the Diamond and ispLEVER

design tools. Details regarding the usage of IPexpress can be found in the IPexpress and Diamond or ispLEVER

help system. For more information on the Diamond or ispLEVER design tools, visit the Lattice web site at: www.lat-

ticesemi.com/software.

LatticeECP and LatticeEC FPGAs

Table A-1 shows the resource utilization for the Block Convolutional Encoder IP core implemented in a LatticeEC/P

FPGA. Table A-2 lists the parameter settings for the IP core configurations shown in Table A-1.

Table A-1. Performance and Resource Utilization1

Ordering Part Number

The Ordering Part Number (OPN) for the Convolutional Encoder core targeting LatticeECP/EC devices is CONV-

BLK-E2-U3.

IPexpress
User-Configurable Mode Slices LUTs Registers

sysMEM™
EBRs I/Os fMAX (MHz)

Config1 44 42 48 0 13 404

Config2 24 25 34 0 12 372

Config3 9 6 16 0 7 563

Config4 119 143 131 0 30 278

Config5 43 46 53 0 8 397

1. Performance and utilization data are generated targeting an LFEC/P20E-5F672C device using Lattice Diamond 1.0 and Synplify Pro D-

2009.12L-1 software. Performance may vary when using a different software version or targeting a different device density or speed grade

within the LatticeECP/EC family.

Table A-2. Parameter Settings of the Evaluation

Configuration Config1 (default) Config2 Config3 Config4 Config5

OPN
CONV-ENCO-E2-

N1
CONV-ENCO-E2-

N1
CONV-ENCO-E2-

N1
CONV-ENCO-E2-

N1
N/A

Description

K=3,
Rate 2/3,

Punc, (802.16-
2004 SC PHY)

K=9,
SDD,

Rate 1/2,
Non-punc, (3GPP/

CDMA2000)

K=7,
Rate 1/2,
Non-punc,

(802.11a, also
DVB-S)

Xilinx data sheet I

K=7
Dynamic Puncture

(802.16-2004
OFDM PHY)

K=7,
Rate 3/4, Punc,

(802.11a,
also DVB-S)

Xilinx data sheet II

Input Rate 2 1 1 — 3

Output Rate 3 2 2 — 4

 Max Input Rate — — — 5 —

 Max Output Rate — — — 6 —

Operation Mode Block Block Continuous Block Continuous

Termination Mode Tail Biting Zero Flushing — Zero Flushing —

Zero Padding mode - Inside — Outside —

Tail Adding mode Outside — — — —

Block Length Options — — — — —

Punctured Encoder Yes No No Yes Yes

Appendix A:

Resource Utilization

http://www.latticesemi.com/products/designsoftware/index.cfm
http://www.latticesemi.com/products/designsoftware/index.cfm

Lattice Semiconductor Resource Utilization

IPUG31_03.5, June 2010 33 Block Convolutional Encoder User’s Guide

LatticeECP2 and LatticeECP2S FPGAs

Table A-3 shows the resource utilization for the Block Convolutional Encoder IP core implemented in a

LatticeECP2/S FPGA. Table A-2 lists the parameter settings for the IP core configurations shown in Table A-3.

Table A-3. Performance and Resource Utilization1

Ordering Part Number

The Ordering Part Number (OPN) for the Convolutional Encoder core targeting LatticeECP2/S devices is CONV-

BLK-P2-U3.

LatticeECP2M FPGAs

Table A-4 shows the resource utilization for the Block Convolutional Encoder IP core implemented in a

LatticeEC2M FPGA. Table A-2 lists the parameter settings for the IP core configurations shown in Table A-4.

Table A-4. Performance and Resource Utilization1

Ordering Part Number

The Ordering Part Number (OPN) for the Convolutional Encoder core targeting LatticeECP2M/S devices is CONV-

BLK-PM-U3.

Dynamic Rate/Pattern No — — Yes No

Puncture Pattern PP0=11 PP1=10 — — — PP0=101 PP1=110

Constraint Length 3 9 7 7 7

Generator Polynomials GP0=78 GP1=58
GP0=5618
GP1=7538

GP0=1718
GP1=1338

GP0=1718
GP1=1338

GP0=1718
GP1=1338

IPexpress
User-Configurable Mode Slices LUTs Registers

sysMEM
EBRs I/Os fMAX (MHz)

Config1 44 42 48 0 13 404

Config2 24 25 34 0 12 372

Config3 9 6 16 0 7 563

Config4 119 143 131 0 30 278

Config5 43 46 53 0 8 397

1. Performance and utilization data are generated targeting an LFE2-50E-7F672C device using Lattice Diamond 1.0 and Synplify Pro D-

2009.12L-1 software. Performance may vary when using a different software version or targeting a different device density or speed grade

within the LatticeECP2/ECP2S family.

IPexpress
User-Configurable Mode Slices LUTs Registers

sysMEM
EBRs I/Os fMAX (MHz)

Config1 45 44 48 0 13 466

Config2 25 25 34 0 12 509

Config3 9 6 16 0 7 883

Config4 116 141 131 0 30 352

Config5 43 47 53 0 8 504

1. Performance and utilization data are generated targeting an LFE2M/S35E-7F484C device using Lattice Diamond 1.0 and Synplify Pro D-

2009.12L-1 software. Performance may vary when using a different software version or targeting a different device density or speed grade

within the LatticeECP2M family.

Table A-2. Parameter Settings of the Evaluation

Configuration Config1 (default) Config2 Config3 Config4 Config5

Lattice Semiconductor Resource Utilization

IPUG31_03.5, June 2010 34 Block Convolutional Encoder User’s Guide

LatticeECP3 FPGAs

Table A-5 shows the resource utilization for the Block Convolutional Encoder IP core implemented in a LatticeECP3

FPGA. Table A-2 lists the parameter settings for the IP core configurations shown in Table A-5.

Table A-5. Performance and Resource Utilization1

Ordering Part Number

The Ordering Part Number (OPN) for the Convolutional Encoder core targeting LatticeECP3 devices is CONV-

BLK-E3-U3.

LatticeXP FPGAs

Table A-6 shows the resource utilization for the Block Convolutional Encoder IP core implemented in a LatticeXP

FPGA. Table A-2 lists the parameter settings for the IP core configurations shown in Table A-6.

Table A-6. Performance and Resource Utilization1

Ordering Part Number

The Ordering Part Number (OPN) for the Convolutional Encoder core targeting LatticeXP devices is CONV-BLK-

XM-U3.

IPexpress
User-Configurable Mode Slices LUTs Registers

sysMEM
EBRs I/Os fMAX (MHz)

Config1 41 44 48 0 13 482

Config2 24 25 34 0 12 500

Config3 9 6 16 0 7 500

Config4 108 136 131 0 30 346

Config5 40 45 53 0 8 435

1. Performance and utilization data are generated targeting an LFE3-95E-8FN672CES device using Lattice Diamond 1.0 and Synplify Pro D-

2009.12L-1 software. Performance may vary when using a different software version or targeting a different device density or speed grade

within the LatticeECP3 family.

IPexpress
User-Configurable Mode Slices LUTs Registers

sysMEM
EBRs I/Os fMAX (MHz)

Config1 44 42 48 0 13 327

Config2 24 25 34 0 12 361

Config3 9 6 16 0 7 589

Config4 115 127 131 0 30 250

Config5 40 46 53 0 8 363

1. Performance and utilization data are generated targeting an LFXP20E-5F484C device using Lattice Diamond 1.0 and Synplify Pro D-

2009.12L-1 software. Performance may vary when using a different software version or targeting a different device density or speed grade

within the LatticeXP family.

Lattice Semiconductor Resource Utilization

IPUG31_03.5, June 2010 35 Block Convolutional Encoder User’s Guide

LatticeXP2 FPGAs

Table A-7 shows the resource utilization for the Block Convolutional Encoder IP core implemented in a LatticeXP2

FPGA. Table A-2 lists the parameter settings for the IP core configurations shown in Table A-7.

Table A-7. Performance and Resource Utilization1

Ordering Part Number

The Ordering Part Number (OPN) for the Convolutional Encoder core targeting LatticeXP2 devices is CONV-BLK-

X2-U3.

LatticeSC and LatticeSCM FPGAs

Table A-8 shows the resource utilization for the Block Convolutional Encoder IP core implemented in a LatticeSC/M

FPGA. Table A-2 lists the parameter settings for the IP core configurations shown in Table A-8.

Table A-8. Performance and Resource Utilization1

Ordering Part Number

The Ordering Part Number (OPN) for the Convolutional Encoder core targeting LatticeSC/M devices is CONV-BLK-

SC-U3.

IPexpress
User-Configurable Mode Slices LUTs Registers

sysMEM
EBRs I/Os fMAX (MHz)

Config1 45 44 48 0 13 481

Config2 25 25 34 0 12 491

Config3 9 6 16 0 7 647

Config4 116 141 131 0 30 298

Config5 43 47 53 0 8 495

1. Performance and utilization data are generated targeting an LFXP2-17E-7F484C device using Lattice Diamond 1.0 and Synplify Pro D-

2009.12L-1 software. Performance may vary when using a different software version or targeting a different device density or speed grade

within the LatticeXP2 family.

IPexpress
User-Configurable Mode Slices LUTs Registers

sysMEM
EBRs I/Os fMAX (MHz)

Config1 41 42 48 0 13 400

Config2 24 24 34 0 12 400

Config3 9 6 16 0 7 400

Config4 115 146 131 0 30 392

Config5 40 44 53 0 8 400

1. Performance and utilization data are generated targeting an LFSC/M3GA25E-7F900C device using Lattice Diamond 1.0 and Synplify Pro

D-2009.12L-1 software. Performance may vary when using a different software version or targeting a different device density or speed

grade within the LatticeSC/SCM family.

	Block Convolutional Encoder User’s Guide
	Table of Contents
	Ch1-Introduction
	Quick Facts
	Features

	Ch2-Functional Description
	General Description
	Convolutional Encoding
	Punctured Codes
	Continuous and Block Encoding
	Zero Flushing and Tail Biting Termination Modes

	Functional Description
	Encoder
	Puncture Unit
	Input Memory
	Control Unit

	Interfacing to the Block Convolutional Encoder Core
	Signal Descriptions
	Timing Diagrams

	Ch3-Parameter Settings
	Block Convolutional Encoder Parameters
	Code Rate
	Input Rate (Max Input Rate)
	Output Rate (Max Output Rate)

	Operation Mode
	Puncture Support
	Punctured Encoder
	Dynamic Rate/Pattern
	Puncture Pattern

	Termination Mode
	Zero Padding Mode
	Tail Adding Mode

	Block Length Options
	Block Length Read From Port
	Block Length Width

	Generator Polynomials
	Constraint Length
	GP Radix

	Ch4-IP Core Generation
	Licensing the IP Core
	Getting Started
	IPexpress-Created Files and Top Level Directory Structure
	Instantiating the Core
	Running Functional Simulation
	Synthesizing and Implementing the Core in a Top-Level Design
	Hardware Evaluation
	Enabling Hardware Evaluation in Diamond:
	Enabling Hardware Evaluation in ispLEVER:

	Updating/Regenerating the IP Core
	Regenerating an IP Core in Diamond
	Regenerating an IP Core in ispLEVER

	Ch5-Support Resources
	Lattice Technical Support
	Online Forums
	Telephone Support Hotline
	E-mail Support
	Local Support
	Internet

	References
	LatticeEC/ECP
	LatticeECP2M
	LatticeECP3
	LatticeSC/M
	LatticeXP
	LatticeXP2

	Revision History

	AppA-Resource Utilization
	LatticeECP and LatticeEC FPGAs
	Ordering Part Number

	LatticeECP2 and LatticeECP2S FPGAs
	Ordering Part Number

	LatticeECP2M FPGAs
	Ordering Part Number

	LatticeECP3 FPGAs
	Ordering Part Number

	LatticeXP FPGAs
	Ordering Part Number

	LatticeXP2 FPGAs
	Ordering Part Number

	LatticeSC and LatticeSCM FPGAs
	Ordering Part Number

