LT3461 / LT3461A

DESCRIPTION

Demonstration circuit 627 features the LT3461 / LT3461A in a 12.0V output boost converter which operates from an input voltage of 3V to 6V. The maximum output current is 70mA when powered from a 5.0V input and 40mA when powered from a 3.3V input. A soft-start option is provided by the SHDN pin and can be configured with an on-board RC filter.

The internal schottky of the LT3461 / LT3461A reduces part count and the high switching frequency allows the use of a small SMT inductor and output capacitors. The small size of the circuit makes it ideal for space-sensitive applications.

The DC627A comes in two versions. The "-A" version uses the LT3461 and the "-B" version uses the LT3461A.

Design files for this circuit board are available. Call the LTC factory.

LT is a trademark of Linear Technology Corporation

Table 1. Performance Summary $(T_A = 25^{\circ}C)$

PARAMETER	CONDITION	DC627A-A	DC627A-B
		VALUE	VALUE
LT Part		LT3461ES6	LT3461AES6
Minimum Input Voltage		3V	3V
Maximum Input Voltage		6V	6V
Output Voltage V _{OUT}	V _{IN} = 3V to 6V	12V ±4%	12V ±4%
Maximum Output Current	V _{IN} = 3.3V	40mA	40mA
	V _{IN} = 5.0V	70mA	70mA
Typical Efficiency	V _{IN} = 3.3V, I _{OUT} = 40mA	79%	76%
	V _{IN} = 5.0V, I _{OUT} = 70mA	83%	81%
Typical Output Voltage Ripple	V _{IN} = 3.3V, I _{OUT} = 40mA	20mV _{P-P}	9mV _{P-P}
(20MHz BW)	V _{IN} = 5.0V, I _{OUT} = 70mA	28mV _{P-P}	12mV _{P-P}
Nominal Switching Frequency		1.3MHz	3.0MHz

QUICK START PROCEDURE

Demonstration circuit 627 is easy to set up to evaluate the performance of the LT3461 or LT3461A. Refer to Figure 1 for the proper measurement equipment setup and follow the procedure below:

- 1. Place jumper JP1 in the "ON" position if not already done.
- 2. With power off, connect the input power supply.
- 3. Turn on the input power source and set it to 3.3V. The output should be 12.0V ±4% at no load.
- 4. Connect the load from VOUT to GND and set to 40mA. The output should still be 12.0V ±4%.

- 5. Increase the input voltage to 5.0V and apply 70mA load and re-check regulation.
- **6.** Measure the DC input current at $V_{IN} = 5.0V$ and $I_{OUT} = 70$ mA.
 - a. For the DC627A-A, the input current should be less than 215mA.
 - b. For the DC627A-B, the input current should be less than 225mA.
- 7. Monitor the output voltage ripple. Refer to Figure 2 for the proper measurement technique.
- 8. Measure the output ripple frequency.

- a. For the DC627A-A, the frequency should be between 1.0MHz and 1.7MHz.
- b. For the DC627A-B, the frequency should be between 2.1MHz and 3.9MHz.

NOTE: If this circuit will be used in a hot plug application, then be sure to measure the inrush current. The maximum non-repetitive surge current the internal schottky can handle is 1.5A. The inrush current can be monitored by measuring the current through the inductor when V_{IN} is initially applied. Refer to the data sheet for more details.

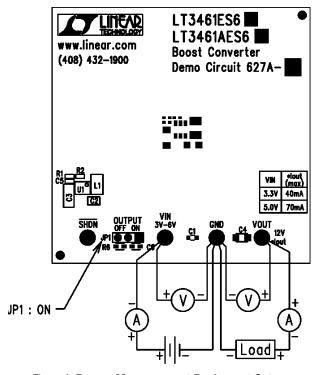


Figure 1. Proper Measurement Equipment Setup

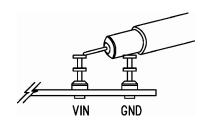
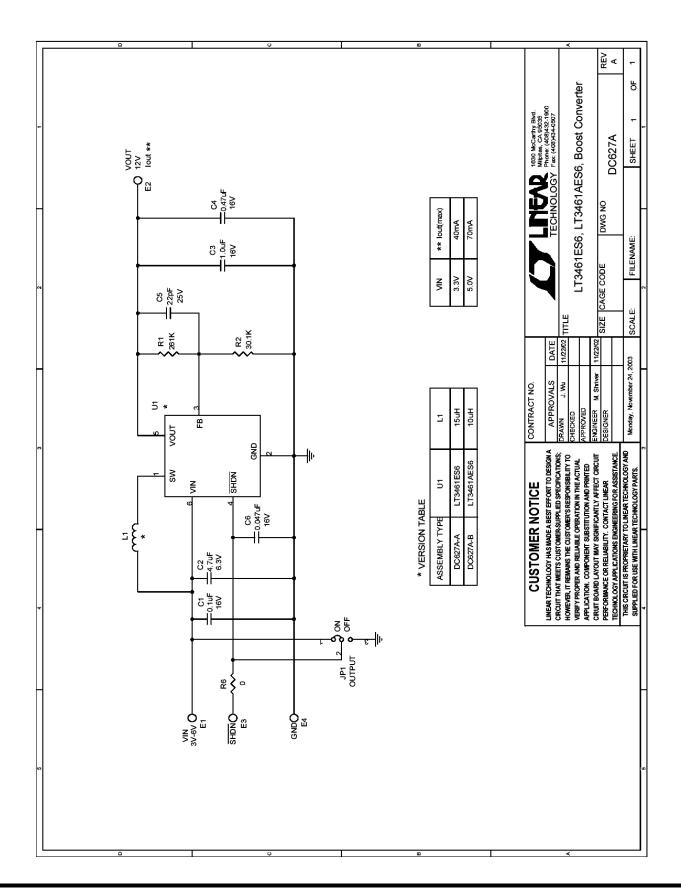



Figure 2. Measuring Input or Output Ripple

