

Vishay Siliconix

P-Channel 20 V (D-S) MOSFET

PRODUCT SUMMARY							
V _{DS} (V)	R _{DS(on)} (Ω)	I _D (A) ^e	Q _g (TYP.)				
-20	0.032 at $V_{GS} = -4.5 \text{ V}$	-16					
	0.046 at $V_{GS} = -2.5 \text{ V}$	-14.3	14.5 nC				
	0.065 at $V_{GS} = -2.0 \text{ V}$	-12	14.5110				
	0.120 at $V_{GS} = -1.8 \text{ V}$	-2.5					

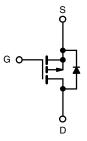
MICRO FOOT® 1.5 x 1 S S 2 D 3 4 T T Backside View Bump Side View

Marking Code: xxxx = 8499

xxx = Date / lot traceability code

Ordering Information:

Si8499DB-T2-E1 (Lead (Pb)-free and halogen-free)


FEATURES

- TrenchFET® power MOSFET
- Ultra-small 1.5 mm x 1 mm maximum outline
- Ultra-thin 0.59 mm maximum height
- Material categorization: for definitions of compliance please see www.vishav.com/doc?99912

APPLICATIONS

- Low on-resistance load switch, charger switch and battery switch for portable devices
 - Low power consumption
 - Increased battery life

P-Channel MOSFET

PARAMETER	SYMBOL	LIMIT	UNIT	
Drain-Source Voltage	V _{DS}	-20	V	
Gate-Source Voltage	V _{GS}	± 12	v	
	T _C = 25 °C		-16	
Continuous Drain Comment (T. 150 °C)	T _C = 70 °C		-13.7	
Continuous Drain Current (T _J = 150 °C)	T _A = 25 °C	I _D	-7.8 ^{a, b}	
	T _A = 70 °C		-6.3 ^{a, b}	А
Pulsed Drain Current		I _{DM}	-20	
Continuous Courses Drain Diade Current	T _C = 25 °C		-10.8	
Continuous Source-Drain Diode Current	T _A = 25 °C	I _S	-2.3 ^{a, b}	
	T _C = 25 °C		13	
Marian and Danier Dissipation	T _C = 70 °C		8.4	10/
Maximum Power Dissipation	T _A = 25 °C	P _D	2.77 ^{a, b}	— W
	T _A = 70 °C		1.77 ^{a, b}	
Operating Junction and Storage Temperature F	T _J , T _{stg}	-55 to +150	°C	
Package Reflow Conditions c	IR/Convection		260	°C

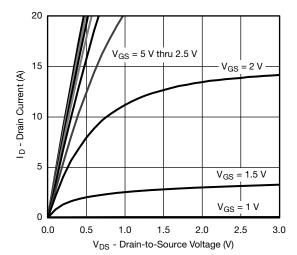
THERMAL RESISTANCE RATINGS							
PARAMETER	SYMBOL	TYPICAL	MAXIMUM	UNIT			
Maximum Junction-to-Ambient a, f	R _{thJA}	37	45	°C/W			
Maximum Junction-to-Case (Drain)	Steady State	R_{thJC}	7	9.5			

Notes

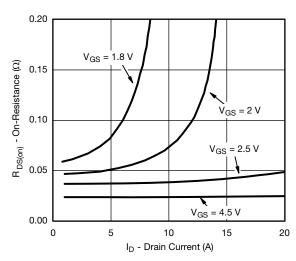
- a. Surface mounted on 1" x 1" FR4 board.
- b. t = 10 s.
- c. Refer to IPC/JEDEC® (J-STD-020), no manual or hand soldering.
- d. Case is defined as the top surface of the package.
- e. Based on $T_C = 25$ °C.
- f. Maximum under steady state conditions is 85 °C/W.

www.vishay.com

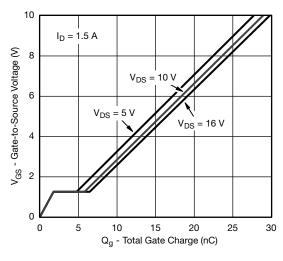
Vishay Siliconix

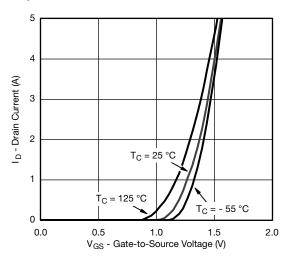

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT	
Static					l	l	
Drain-Source Breakdown Voltage	V _{DS}	$V_{GS} = 0$, $I_D = -250 \mu A$	-20	-	_	V	
V _{DS} Temperature Coefficient	$\Delta V_{DS}/T_{J}$		-	-20	-	mV/°C	
V _{GS(th)} Temperature Coefficient	$\Delta V_{GS(th)}/T_J$	I _D = -250 μA	-	2.2	_		
Gate-Source Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$	-0.5	-	-1.3	V	
Gate-Source Leakage	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 12 \text{ V}$	-	-	± 100	nA	
7 0 1 1/1 1 5 1 0 1		V _{DS} = -20 V, V _{GS} = 0 V	-	-	-1	μΑ	
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = -20 V, V _{GS} = 0 V, T _J = 70 °C	-	-	-10		
On-State Drain Current a	I _{D(on)}	$V_{DS} \le -5 \text{ V}, V_{GS} = -4.5 \text{ V}$	-5	-	-	Α	
	, ,	V _{GS} = -4.5 V, I _D = -1.5 A	-	0.026	0.032		
Duris Os and Os Olala Basislanda		$V_{GS} = -2.5 \text{ V}, I_D = -1.5 \text{ A}$	-	0.036	0.046	Ω	
Drain-Source On-State Resistance a	R _{DS(on)}	V _{GS} = -2 V, I _D = -1 A	-	0.048	0.065		
		V _{GS} = -1.8 V, I _D = -0.5 A	-	0.060	0.120	1	
Forward Transconductance ^a	9 _{fs}	V _{DS} = -10 V, I _D = -1.5 A	-	10	-	S	
Dynamic ^b						·	
Input Capacitance	C _{iss}		-	1300	-	pF	
Output Capacitance	C _{oss}	V _{DS} = -10 V, V _{GS} = 0 V, f = 1 MHz	-	250	-		
Reverse Transfer Capacitance	C _{rss}		-	200	-		
T + 10 + 0		$V_{DS} = -10 \text{ V}, V_{GS} = -5 \text{ V}, I_D = -1.5 \text{ A}$	-	20	30	nC	
Total Gate Charge	Qg		-	14.5	22		
Gate-Source Charge	Q_{gs}	$V_{DS} = -10 \text{ V}, V_{GS} = -4.5 \text{ V}, I_{D} = -1.5 \text{ A}$	-	2	-		
Gate-Drain Charge	Q_{gd}		-	4.1	-		
Gate Resistance	R_g	V _{GS} = -0.1 V, f = 1 MHz	-	7	-	Ω	
Turn-On Delay Time	t _{d(on)}		-	20	40		
Rise Time	t _r	$V_{DD} = -10 \text{ V}, R_L = 6.7 \Omega$	-	25	50	ns	
Turn-Off Delay Time	t _{d(off)}	$I_D \cong -1.5 \text{ A}, V_{GEN} = -4.5 \text{ V}, R_g = 1 \Omega$	-	50	100		
Fall Time	t _f		-	30	60		
Turn-On Delay Time	t _{d(on)}		-	7	15		
Rise Time	t _r	$V_{DD} = -10 \text{ V}, R_L = 6.7 \Omega$	-	10	20		
Turn-Off Delay Time	t _{d(off)}	$I_D \cong$ -1.5 A, V_{GEN} = -10 V, R_g = 1 Ω	-	55	110		
Fall Time	t _f		-	30	60		
Drain-Source Body Diode Characteri	stics						
Continuous Source-Drain Diode Current	I _S	T _C = 25 °C	-	-	-10.8	А	
Pulse Diode Forward Current	I _{SM}		-	-	-20		
Body Diode Voltage	V_{SD}	I _S = -1.5 A, V _{GS} = 0	-	-0.8	-1.2	V	
Body Diode Reverse Recovery Time	t _{rr}		-	40	80	ns	
Body Diode Reverse Recovery Charge	Q _{rr}] _ 1 5 A dl/dt _ 100 A/::2 T _ 05 °0	-	22	45	nC	
Reverse Recovery Fall Time	t _a	$I_F = -1.5 \text{ A}, \text{ dI/dt} = 100 \text{ A/}\mu\text{s}, T_J = 25 °\text{C}$	-	15	-		
Reverse Recovery Rise Time	t _b		-	25	-	ns	

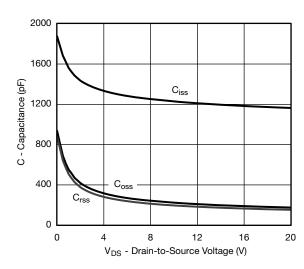
Notes

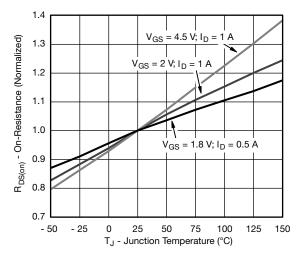

- a. Pulse test; pulse width $\leq 300~\mu s,$ duty cycle $\leq 2~\%.$
- b. Guaranteed by design, not subject to production testing.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

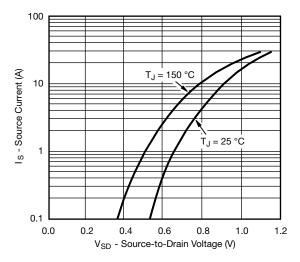



Output Characteristics

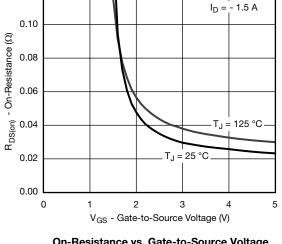

On-Resistance vs. Drain Current and Gate Voltage


Gate Charge

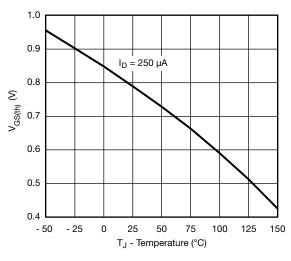
Transfer Characteristics



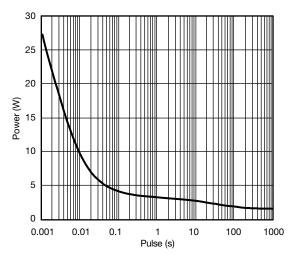
Capacitance



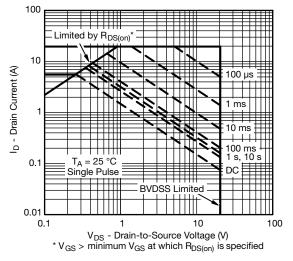
On-Resistance vs. Junction Temperature



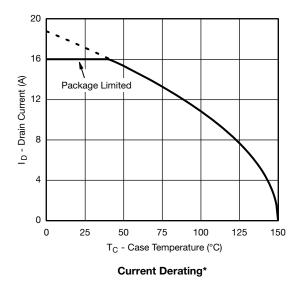
Source-Drain Diode Forward Voltage

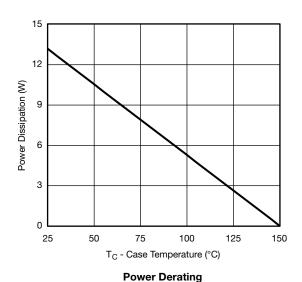


0.12

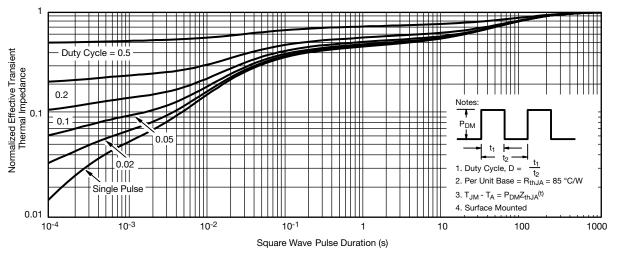

On-Resistance vs. Gate-to-Source Voltage

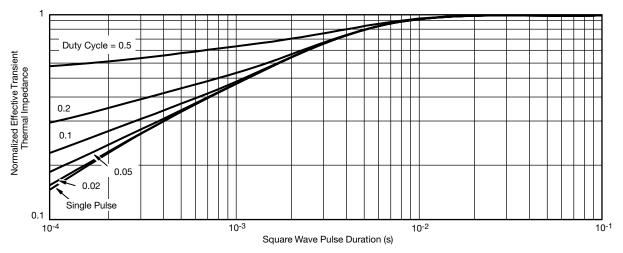
Threshold Voltage




Single Pulse Power, Junction-to-Ambient

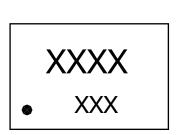
Safe Operating Area, Junction-to-Ambient



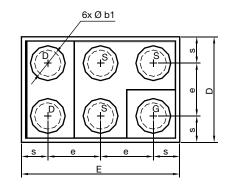


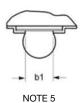
 $^{^{\}star}$ The power dissipation P_D is based on T_J (max.) = 150 °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.

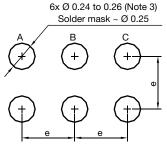
Normalized Thermal Transient Impedance, Junction-to-Ambient

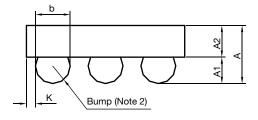


Normalized Thermal Transient Impedance, Junction-to-Case


Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?65906.




MICRO FOOT®: 6-Bump (1.5 mm x 1 mm, 0.5 mm Pitch, 0.250 mm Bump Height)


Mark on Backside of Die

Recommended Land Pattern

Notes

(unless otherwise specified)

- 1. Six (6) solder bumps are 95.5/3.8/0.7 Sn/Ag/Cu.
- 2. Backside surface is coated with a Ti/Ni/Ag layer.
- 3. Non-solder mask defined copper landing pad.
- 4. Laser marks on the silicon die back.
- 5. "b1" is the diameter of the solderable substrate surface, defined by an opening in the solder resist layer solder mask defined.
- 6. is the location of pin 1

DIM.	MILLIMETERS			INCHES			
	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	
Α	0.510	0.575	0.590	0.0201	0.0226	0.0232	
A ₁	0.220	0.250	0.280	0.0087	0.0098	0.0110	
A ₂	0.290	0.300	0.310	0.0114	0.0118	0.0122	
b	0.297	0.330	0.363	0.0116	0.0129	0.0143	
b1	0.250			0.0098			
е	0.500			0.0197			
s	0.210	0.230	0.250	0.0082	0.0090	0.0098	
D	0.920	0.960	1.000	0.0362	0.0378	0.0394	
E	1.420	1.460	1.500	0.0559	0.0575	0.0591	
K	0.028	0.065	0.102	0.0011	0.0025	0.0040	

Note

Use millimeters as the primary measurement.

ECN: T15-0140-Rev. A, 20-Apr-15

DWG: 6035

Revison: 20-Apr-15 1 Document Number: 69426

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.