

CYPD319X-24LDXS USB Type-C Port Controller

General Description

EZ-PD[™] CYPD319X devices are Cypress' highly integrated USB Type-C port controllers that comply with the latest USB Type-C and Power Delivery (PD) standards and are targeted for automotive charger applications such as rear seat chargers, infotainment head unit chargers, and rear seat entertainment chargers. In such applications, CYPD319X devices provide additional functionalities and BOM integration advantages. CYPD319X uses Cypress' proprietary M0S8 technology with a 32-bit Arm[®] Cortex[®]-M0 processor, 64-KB flash, a complete Type-C USB-PD transceiver, all termination resistors required for a Type-C port, an integrated feedback control circuitry for voltage (VBUS) regulation, and system-level ESD protection. They are available in 24-pin QFN wettable flank packages. The inclusion of a fully programmable MCU with analog and digital peripherals allows the implementation of custom system management functions such as power throttling, load sharing, and temperature monitoring.

ADVANCE

Features

Type-C Support and USB-PD Support

- Supports USB PD3.0 Version 1.1 including Programmable Power Supply Mode
- Configurable resistors R_P and R_D
- Supports one USB Type-C port and one Type-A port

2x Legacy/Proprietary Charging Blocks

- Supports QC 4.0, Apple charging 2.4A, AFC, BC 1.2
- Integrates all required terminations on DP/DM lines

Integrated Voltage (VBUS) Regulation and Current Sense Amplifier

- Integrated shunt regulator function for VBUS control
- Constant current or constant voltage mode
- Supports current sensing for constant current control

System-Level Fault Protection

- VBUS-to-CC Short Protection
- On-chip VBUS, OVP, OCP, UVP, and SCP
- Supports OTP through integrated ADC circuit and internal temperature sensor

32-bit MCU Subsystem

- Arm Cortex-M0 CPU
- 64-KB Flash
- 8-KB SRAM

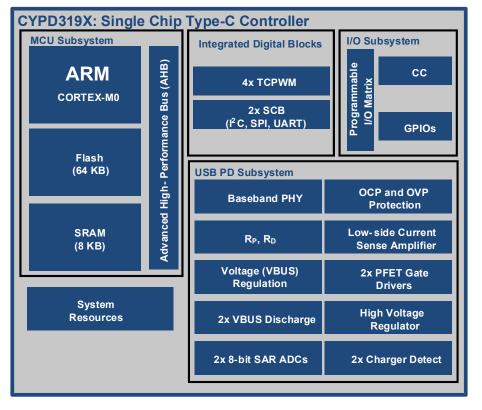
Clocks and Oscillators

Integrated oscillator eliminating the need for external clock

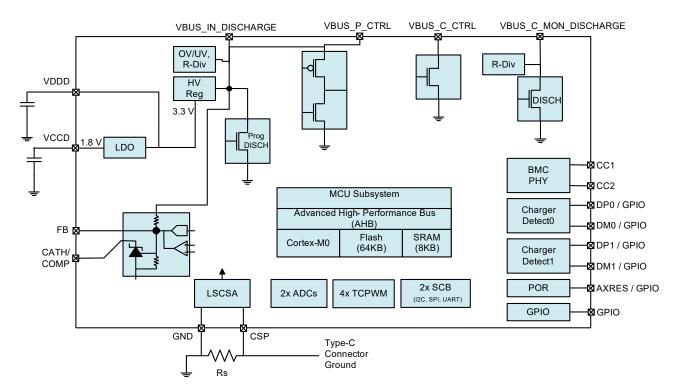
Power

■ 3.0-V to 24.5-V operation (30-V tolerant)

System-Level ESD Protection


- On CC, VBUS_C_MON_DISCHARGE, DP0, DM0, P2.2, and P2.3 pins
- ±8-kV Contact Discharge and ±15-kV Air Gap Discharge based on IEC61000-4-2 level 4C

Packages


- 24-pin QFN, wettable flank, AEC-Q100
- Supports automotive temperature range (-40 °C to +105 °C)

Logic Block Diagram

Internal Block Diagram

Contents

Functional Overview	4
MCU Subsystem	
USB-PD Subsystem (SS)	
Integrated Digital Blocks	
I/O Subsystem	
Power Systems Overview	
Pinouts	
CYPD319X Programming and Bootloading	9
Programming the Device Flash over SWD Interface	
Application Diagrams1	
Electrical Specifications1	
Absolute Maximum Ratings1	
Device-Level Specifications1	

Ordering Information	
Ordering Code Definitions	
Packaging	
Acronyms	21
Document Conventions	
Units of Measure	22
Document History Page	
Sales, Solutions, and Legal Information	
Worldwide Sales and Design Support	
Products	
PSoC® Solutions	24
Cypress Developer Community	
Technical Support	

Functional Overview

MCU Subsystem

CPU

The Cortex-M0 CPU in CYPD319X devices is part of the 32-bit MCU subsystem, which is optimized for low-power operation with extensive clock gating.

The CPU also includes a serial wire debug (SWD) interface, which is a two-wire form of JTAG. The debug configuration used for CYPD319X devices has four break-point (address) comparators and two watchpoint (data) comparators.

Flash

CYPD319X devices have a flash module with one bank of 64-KB flash, a flash accelerator, tightly coupled to the CPU to improve average access times from the flash block.

SROM

A supervisory ROM that contains boot and configuration routines is provided.

USB-PD Subsystem (SS)

The USB-PD subsystem provides the interface to the Type-C USB port. This subsystem comprises a current sense amplifier, a high-voltage regulator, overvoltage protection (OVP), overcurrent protection (OCP), and supply switch blocks. This subsystem also includes all ESD required and supported on the Type-C port.

USB-PD Physical Layer

The USB-PD Physical Layer consists of a transmitter and receiver that communicate BMC-encoded data over the CC channel based on the PD 3.0 standard. All communication is half-duplex. The Physical Layer or PHY practices collision avoidance to minimize communication errors on the channel.

The USB-PD block includes all termination resistors (R_P and R_D) and their switches as required by the USB-PD specification. R_P and R_D resistors are required to implement connection detection and plug orientation detection, and establish USB DFP/UFP roles. The R_P resistor is implemented as a current source.

According to the USB Type-C specification, Type-C controllers such as CYPD319X devices must present certain termination resistors depending on its role in its unpowered state. As a car charger, CYPD319X devices are in a DFP role (as a power source), which requires both CC lines to be open.

ADC

The ADC is a low-footprint 8-bit SAR ADC that is available for general-purpose A/D conversion applications in the device. This ADC can be accessed from all GPIOs and the DP/DM pins through an on-chip analog mux. CYPD319X devices contain two instances of the ADC.

The voltage reference for the ADCs is generated either from the VDDD supply or from internal bandgap. When sensing the GPIO pin voltage with an ADC, the pin voltage cannot exceed the VDDIO supply value.

Charger Detection

The two charger detection blocks connected to the two pairs of DP/DM pins allow CYPD319X devices in DFP mode to detect conventional battery chargers conforming to BC 1.2, and the following proprietary charger specifications: Apple, Qualcomm's QuickCharge 4.0, and Samsung AFC.

VBUS Overcurrent and Overvoltage Protection

CYPD319X devices have an integrated hardware block for VBUS OVP/OCP with configurable thresholds and response times on the Type-C port.

VBUS Short Protection

CYPD319X devices provide four VBUS short protection pins: CC1, CC2, P2.2, and P2.3. These pins are protected from accidental shorts to high-voltage VBUS. Accidental shorts may occur because the CC1 and CC2 pins are placed next to the VBUS pins in the USB Type-C connector. A Power Delivery controller without the high-voltage VBUS short protection will be damaged in the event of accidental shorts. When the protection circuit is triggered, CYPD319X devices can handle up to 17 V forever and between 17 V to 22 VDC for 1000 hours on the OVT pins. When a VBUS short event occurs on the CC pins, a temporary high-ringing voltage is observed due to the RLC elements in the USB Type-C cable. Without the CYPD319X devices connected, this ringing voltage can be twice (44 V) the maximum VBUS voltage (21.5 V). However, when CYPD319X devices are connected, they are capable of clamping temporary high-ringing voltage and protecting the CC pin using IEC ESD protection diodes.

Current Sense Amplifier (CSA)

CYPD319X devices also have an integrated current sense amplifier that is capable of detecting current in the order of 100 mA across a 5-m Ω external resistor. It also supports constant current mode of operation in charging applications.

PFET Gate Drivers on VBUS Path

CYPD319X devices have two integrated PFET gate drivers to drive external PFETs on the VBUS provider and consumer path. The VBUS_P_CTRL gate driver has an active pull-up, and thus can drive high, low, or High-Z.

The VBUS_C_CTRL gate driver can drive only low or high-Z, thus requiring an external pull-up. These pins are VBUS voltage-tolerant.

VBUS Discharge FETs

CYPD319X devices also have two integrated VBUS discharge FETs used to discharge VBUS to meet the USB-PD specification timing on a detach condition. The VBUS discharge FET on the provider side can be used to accelerate the ramp down of VBUS to the default 5 V on the secondary side.

Voltage (VBUS) Regulation

CYPD319X devices contain an integrated feedback control circuitry with analog regulation of the feedback pin to achieve the appropriate voltage on VBUS pin according to the negotiated contract with the peer device over Type-C.

Integrated Digital Blocks

Serial Communication Blocks (SCB)

CYPD319X devices have two SCBs, which can be configured to implement an I^2C , SPI, or UART interface. The hardware I^2C blocks implement full multi-master and slave interfaces capable of multimaster arbitration. In the SPI mode, the SCB blocks can be configured to act as master or slave.

In the I^2C mode, the SCB blocks are capable of operating at speeds of up to 1 Mbps (Fast-mode Plus) and have flexible buffering options to reduce interrupt overhead and latency for the CPU. These blocks also support I^2C that creates a mailbox address range in the memory of CYPD319X devices and effectively reduces I^2C communication to reading from and writing to an array in memory. In addition, the blocks support 8-deep FIFOs for receive and transmit which, by increasing the time given for the CPU to read data, greatly reduce the need for clock stretching caused by the CPU not having read the data on time.

The I²C peripherals are compatible with the I²C Standard-mode, Fast-mode, and Fast-mode Plus devices as defined in the NXP I²C-bus specification and user manual (UM10204). The I²C bus I/Os are implemented with GPIO in open-drain modes.

The I^2C port on the SCB blocks of CYPD319X devices is not completely compliant with the I^2C specification in the following aspects:

- GPIO cells for the SCB 1 I²C port are not overvoltage-tolerant and, therefore, cannot be hot-swapped or powered up independent of the rest of the I²C system.
- Fast-mode Plus has an I_{OL} specification of 20 mA at a V_{OL} of 0.4 V. The GPIO cells can sink a maximum of 8-mA I_{OL} with a V_{OL} maximum of 0.6 V.
- Fast-mode and Fast-mode Plus specify minimum fall times, which are not met with the GPIO cell; Slow strong mode can help meet this spec depending on the bus load.

Timer/Counter/PWM Block (TCPWM)

CYPD319X devices have four TCPWM blocks. Each implements a 16-bit timer, counter, pulse-width modulator (PWM), and quadrature decoder functionality. The block can be used to measure the period and pulse width of an input signal (timer), find the number of times a particular event occurs (counter), generate PWM signals, or decode quadrature signals.

I/O Subsystem

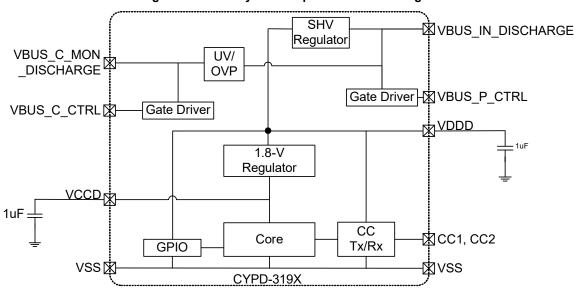
CYPD319X devices have up to 12 GPIOs some of which can be re-purposed to support SCB functions (I²C, UART, SPI). GPIO pins P0.0 and P0.1 are overvoltage-tolerant (OVT) (up to 7 V).

The GPIO block implements the following:

- Seven drive strength modes:
 - Input only
- Weak pull-up with strong pull-down
- Strong pull-up with weak pull-down
- Open drain with strong pull-down
- Open drain with strong pull-up
- □ Strong pull-up with strong pull-down
- Weak pull-up with weak pull-down
- Input threshold select (CMOS or LVTTL)
- Individual control of input and output buffer enabling/disabling in addition to the drive strength modes
- Hold mode to latch previous state (used to retain the I/O state in Deep Sleep mode)
- Selectable slew rates for dV/dt related noise control to improve EMI

During power-on and reset, I/O pins are forced to the disable state so as to not crowbar any inputs and/or cause excess turn-on current. A multiplexing network known as a high-speed I/O matrix is used to multiplex between various signals that may connect to an I/O pin.

Port pins P1.0 and P1.1 can be configured to indicate a fault for OCP/SCP/OVP/UVP conditions. Any two fault conditions can be mapped to two GPIOs, or all four faults can be OR'ed to indicate over one GPIO.


Power Systems Overview

CYPD319X devices can operate from two possible external supply sources: VBUS_IN_DISCHARGE (3.0 V-24.5 V) or VDDD (2.7 V-5.5 V). When powered through VBUS_IN_DISCHARGE, the internal regulator generates VDDD of 3.3 V for device operation. The regulated supply, VDDD, is either used directly inside some analog blocks or further regulated down to VCCD (1.8 V), which powers majority of the core using the regulators. CYPD319X devices have three

different power modes: Active, Sleep, and Deep Sleep. Transitions between these power modes are managed by the power system. When powered through the VBUS_IN_DISCHARGE pin, VDDD cannot be used to power external devices and should be connected to a 1-µF capacitor for regulator stability only. These pins are not supported as power supplies. Refer to the application diagrams for capacitor connections.

Table 1. CYPD319X Power Modes

Mode	Description
Power-On Reset (POR)	Power is valid and an internal reset source is asserted, or SleepController is sequencing the system out of reset.
ACTIVE	Power is valid and CPU is executing instructions.
SLEEP	Power is valid and CPU is not executing instructions. All logic that is not operating is clock-gated to save power.
DEEP SLEEP	Main regulator and most blocks are shut off. DeepSleep regulator powers logic, but only low-frequency clock is available.

Figure 1. Power System Requirement Block Diagram

Pinouts

Table 2. Pin Descriptions

24-Pin QFN	Pin Name	Description
1	P1.0	Port 1 pin 0: GPIO/UART_1_CTS/I2C_SDA_1 / TCPWM_line_0, Programmable SCP/OCP/OVP/UVP Fault indication
2	P1.1	Port 1 pin 1: GPIO/UART_1_RTS/I2C_SCL_1 / TCPWM_line_1, Programmable SCP/OCP/OVP/UVP Fault indication
3	VBUS_P_CTRL	Provider (PMOS) FET control (30-V tolerant) 0: Path ON 1: Path OFF
4	VBUS_C_CTRL	VBUS consumer (PMOS) FET control (30-V tolerant) 0: Path ON Z: Path OFF
5	DP1/P1.2	USB D+/Port 1 pin 2: GPIO/UART_1_TX1/AFC/QC/BC 1.2/Apple Charging/No IEC
6	DM1/P1.3	USB D-/Port 1 pin 3: GPIO/UART_1_RX1/AFC/QC/BC 1.2/Apple Charging/No IEC
7	SWD_DAT_0/P0.0	Port 0 pin 0: GPIO/OVT/I2C_SDA_0/TCPWM_line_0/UART_0_CTS
8	SWD_CLK_0/P0.1	Port 0 pin 1: GPIO/OVT/I2C_SCL_0/TCPWM_line_1/UART_0_RTS
9	AXRES/P2.0	Port 2 pin 0: GPIO/Alternate XRES/TCPWM_line_0//UART_0_TX0
10	P2.1	Port 2 pin 1: GPIO/TCPWM_line_1//UART_0_RX0
11	VBUS_C_MON_DISCH ARGE	Type-C VBUS Monitor with Internal Discharge FET
12	P2.2	Port 2 pin 2: GPIO with open drain with pull-up assist. Configurable as GPIO_20VT/I2C_SDA_1/IEC. Tolerant to temporary short to VBUS pin.
13	P2.3	Port 2 pin 3: GPIO with open drain with pull-up assist. Configurable as GPIO_20VT/I2C_SCL_1/IEC. Tolerant to temporary short to VBUS pin.
14	CC2	Communication Channel 2 with Dead-battery Rd Bonding Option/IEC. Tolerant to temporary short to VBUS pin.
15	CC1	Communication Channel 1 with Dead-battery Rd Bonding Option/IEC. Tolerant to temporary short to VBUS pin.
16	DM0/P3.1	USB D–/Port 3 pin 1: GPIO/UART_1_RX0/AFC/QC/BC 1.2/Apple Charging/IEC
17	DP0/P3.0	USB D+/Port 3 pin 0: GPIO/UART_1_TX0/AFC/QC/BC 1.2/Apple Charging/IEC
18	VBUS_IN_DISCHARGE	VBUS power IN (3.0 V–24.5 V) with internal discharge FET
19	CSP	CS+: Current sense input
20	FB	Voltage regulation feedback pin
21	CATH/COMP	Cathode of voltage regulation and compensation for other applications
22	GND	Ground
23	VDDD	Power input: 2.7 V–5.5 V
24	VCCD	1.8-V core voltage pin (not intended for use as a power source)
_	EPAD	Ground

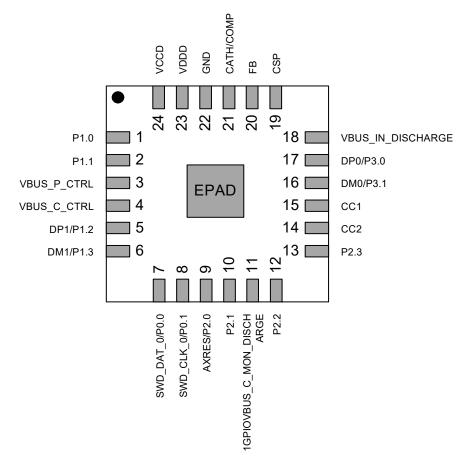


Figure 2. 24-QFN Package Pinout (Top View)

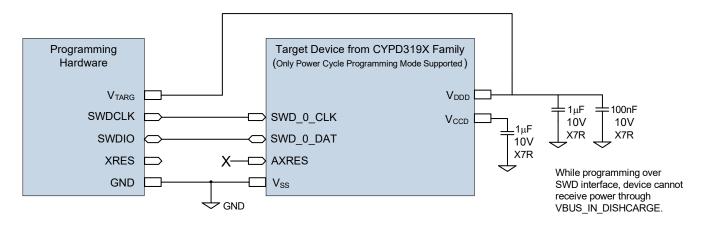
ADVANCE

CYPD319X Programming and Bootloading

There are two ways to program the application firmware into a CYPD319X device:

- Programming the device flash over the SWD Interface
- Application firmware update over the CC interface

Generally, CYPD319X devices are programmed over the SWD interface only during development or during the manufacturing process of the end product. After the end product is manufactured, the CYPD319X device's application firmware can be updated via the CC bootloader interface.

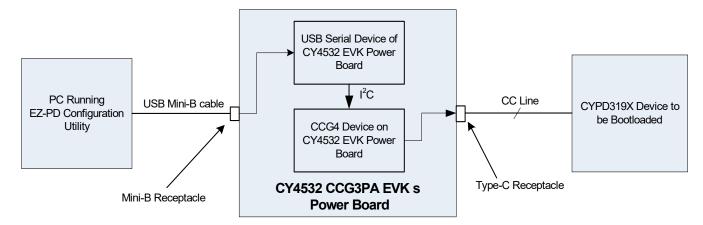

Programming the Device Flash over SWD Interface

CYPD319X devices can be programmed using the SWD interface. Cypress provides a programming kit, CY8CKIT-002 MiniProg3 Kit and PSoC Programmer Software, which can be used to program the flash as well as debug firmware. The flash is programmed by downloading the information from a hex file. This hex file is a binary file generated as an output of building the firmware project in PSoC Creator Software. Click here for more information on how to use the MiniProg3 programmer. There are many third-party programmers that support mass programming in a manufacturing environment.

As shown in the block diagram in Figure 3, the SWD_0_DAT and SWD_0_CLK pins are connected to the host programmer's SWDIO (data) and SWDCLK (clock) pins respectively. During SWD programming, CYPD319X devices must be powered by the host programmer by connecting its VTARG (power supply to the target device) to the VDDD pin of a CYPD319X device. While programming over the SWD interface, the CYPD319X device cannot receive power through VBUS IN DISCHARGE.

CYPD319X devices do not have an XRES pin. Due to that, the XRES line from the host programmer remains unconnected; therefore, programming using Reset mode is not supported. In other words, CYPD319X devices are supported by Power Cycle programming mode only because the XRES line is not used. Contact Cypress for further details on CYPD3XXX Programming Specifications.

Figure 3. Connecting the Programmer to CYPD319X Device



Application Firmware Update over CC Interface

For bootloading CYPD319X device-based applications, the CY4532 CCG3PA EVK can be used to send programming and configuration data as Cypress-specific Vendor Defined Messages (VDMs) over the CC line. To bootload the CYPD319X device, the CY4532 CCG3PA EVK's power board is connected to the system containing the CYPD319X device on one end and a Windows PC running the EZ-PD[™] Configuration Utility on the other end, as shown in Figure 4.

ADVANCE

Application Diagrams

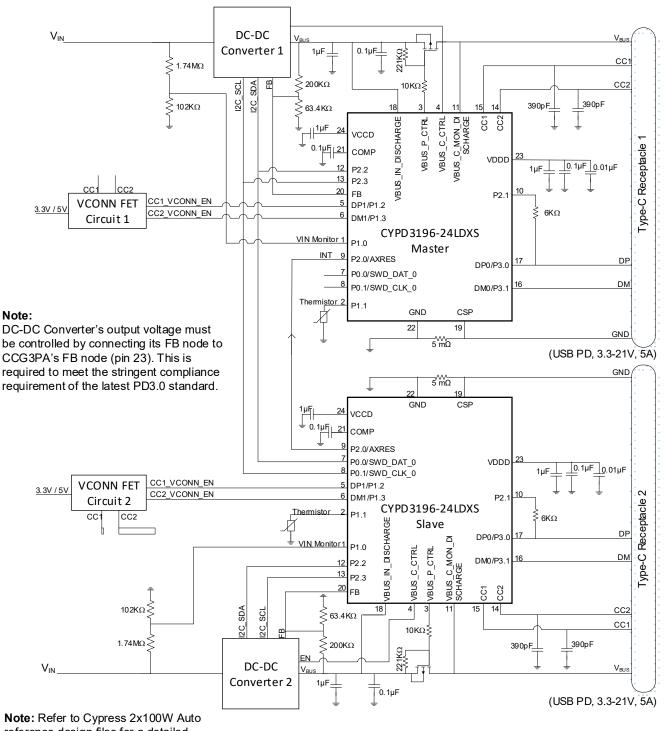


Figure 5. Dual Port USB-PD Charge Only Application Diagram Using CYPD3196-24LDXS

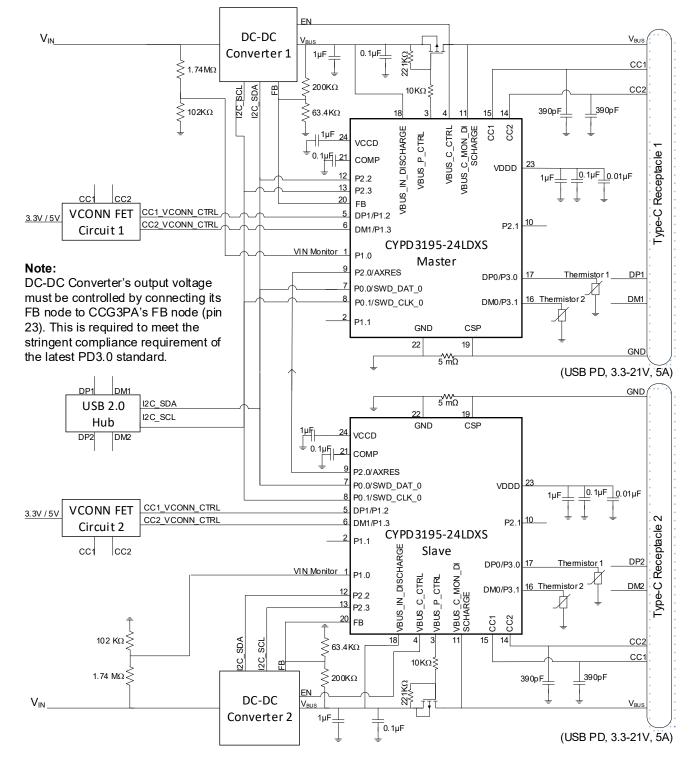

Note: Refer to Cypress 2x100W Autor reference design files for a detailed schematic and layout

Table 3. Pin Descriptions Specific to Application Diagram in Figure 5

24-Pin QFN	Pin Name	Description
1	P1.0	VIN Monitoring GPIO
2	P1.1	Thermistor
3	VBUS_P_CTRL	Provider (PMOS) FET control (30-V tolerant)
4	VBUS_C_CTRL	Enable DC-DC regulator. This is an optional connection; leave this pin floating if the DC-DC converter is always enabled.
5	DP1/P1.2	Enables CC1 VCONN FET
6	DM1/P1.3	Enables CC2 VCONN FET
7	P0.0/SWD_DAT_0	Master: Free Slave: I2C Slave SDA for Load Sharing Connect to the host programmer's SWDIO (data) for programming the CCG3PA device
8	P0.1/SWD_CLK_0	Master: Free Slave: I2C Slave SCL for Load Sharing Connect to the host programmer's SWDCLK (clock) for programming the CCG3PA
9	P2.0/AXRES	Interrupt from Slave CCG3PA to Master CCG3PA
10	P2.1	GPIO drives 3.3-V output. Connect a 6-K resistor from this pin to DP to realize Apple charging. A 6-k resistor should be used if VDDD is 3.3 V and an 18-K resistor should be used if it is 5 V.
11	VBUS_C_MON_DISC H ARGE	Type-C VBUS Monitor with Internal Discharge FET
12	P2.2/SWD_DAT_1	Master: I2C Master data for DC/DC regulator and for communicating with CCG3PA Slave for Load Sharing Slave: I2C Master data for DC/DC regulator
13	P2.3/SWD_CLK_1	Master: I2C Master clock for DC/DC regulator and for communicating with CCG3PA slave for Load Sharing Slave: I2C Master clock for DC/DC regulator
14	CC2	Communication Channel 2 or VCONN
15	CC1	Communication Channel 1 or VCONN
16	DM0/P3.1	USB D- of Type-C port. Supports BC 1.2, QC, Apple Charging and AFC.
17	DP0/P3.0	USB D+ of Type-C port. Supports BC 1.2, QC, Apple Charging and AFC
18	VBUS_IN_DISCARG E	VBUS power IN (3.0 V–24.5 V) with internal discharge FET
19	CSP	CS+: Current sense input
20	FB	Voltage regulation feedback pin. Must be connected to the feedback node of DC-DC Converter. The pull-up resistor of the resistor divider network must be 200K; the pull-down resistor must be selected such that default VBUS upon power up is 5 V.
21	COMP	Compensation capacitor must be connected to this pin for PPS constant current loop.
22	GND	Ground
23	VDDD	Power input: 2.7 V–5.5 V
24	VCCD	1.8-V core voltage pin. Connect to a 1-uF capacitor.

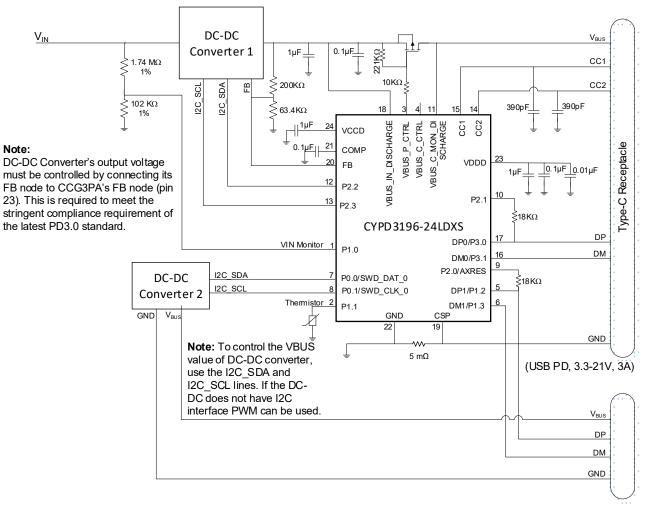

Figure 6. Dual Port USB-PD Head Unit Application Diagram Using CYPD3195-24LDXS (Power and Data Connectivity)

Table 4. Pin Descriptions Specific to Application Diagram in Figure 6

24-Pin QFN	Pin Name	Description
1	P1.0	VIN Monitoring GPIO
2	P1.1	Free
3	VBUS_P_CTRL	Provider (PMOS) FET control (30-V tolerant)
4	VBUS_C_CTRL	Enable DC-DC regulator. This is an optional connection; leave this pin floating if the DC-DC converter is always enabled.
5	DP1/P1.2	Enables CC1 VCONN FET
6	DM1/P1.3	Enables CC2 VCONN FET
7	P0.0/SWD_DAT_0	Master: I2C Slave SDA for communicating with the USB 2.0 Hub Slave: I2C Slave SDA for Load Sharing and for communicating with the USB 2.0 Hub Connect to the host programmer's SWDIO (data) for programming the CCG3PA device
8	P0.1/SWD_CLK_0	Master: I2C Slave SCL for communicating with the USB 2.0 Hub Slave: I2C Slave SCL for Load Sharing and for communicating with the USB 2.0 Hub Connect to the host programmer's SWDCLK (clock) for programming the CCG3PA
9	P2.0/AXRES	Interrupt from Slave CCG3PA to Master CCG3PA
10	P2.1	Free
11	VBUS_C_MON_DISC H ARGE	Type-C VBUS Monitor with Internal Discharge FET
12	P2.2/SWD_DAT_1	Master: I2C Master data for DC/DC regulator and for communicating with CCG3PA Slave for Load Sharing Slave: I2C Master data for DC/DC regulator
13	P2.3/SWD_CLK_1	Master: I2C Master clock for DC/DC regulator and for communicating with CCG3PA Slave for Load Sharing Slave: I2C Master clock for DC/DC regulator
14	CC2	Communication Channel 2 or VCONN
15	CC1	Communication Channel 1 or VCONN
16	DM0/P3.1	Thermistor 1
17	DP0/P3.0	Thermistor 2
18	VBUS_IN_DISCHARG E	VBUS power IN (3.0 V–24.5 V) with internal discharge FET
19	CSP	CS+: Current sense input
20	FB	Voltage regulation feedback pin. Must be connected to the feedback node of DC-DC Converter. The pull-up resistor of the resistor divider network must be 200K; the pull-down resistor must be selected such that default VBUS upon power up is 5 V.
21	COMP	Compensation capacitor must be connected to this pin for PPS constant current loop.
22	GND	Ground
23	VDDD	Power input: 2.7 V–5.5 V
24	VCCD	1.8-V core voltage pin. Connect to a 1-uF capacitor.

Figure 7. Dual Port (Type-C and Type-A) USB-PD Car Charger Application Diagram Using CYPD3196-24LDXS

(BC 1.2/QC/AFC/Apple)

Table 5. Pin Descriptions Specific to Application Diagram in Figure 7

24-Pin QFN	Pin Name	Description
1	P1.0	VIN monitoring GPIO
2	P1.1	Thermistor
3	VBUS_P_CTRL	Provider (PMOS) FET control (30-V tolerant)
4	VBUS_C_CTRL	Enable DC-DC regulator. This is an optional connection; leave this pin floating if the DC-DC converter is always enabled.
5	DP1/P1.2	USB D+ of Type-A port. Supports BC 1.2, QC, Apple Charging and AFC.
6	DM1/P1.3	USB D– of Type-A port. Supports BC 1.2, QC, Apple Charging and AFC.
7	P0.0/SWD_DAT_0	I2C Master SDA for controlling the DC/DC Converter for Type-A port
8	P0.1/SWD_CLK_0	I2C Master SCL for controlling the DC/DC Converter for Type-A port
9	P2.0/AXRES	GPIO drives 3.3-V output. Connect an 18-k resistor from this pin to DP to realize Apple charging. A 6-k resistor should be used if VDDD is 3.3 V and an 18-k resistor should be used if it is 5 V.
10	P2.1	GPIO drives 3.3-V output. Connect an 18-k resistor from this pin to DP to realize Apple charging. A 6-k resistor should be used if VDDD is 3.3 V and an 18-k resistor should be used if it is 5 V.
11	VBUS_C_MON_DIS CH ARGE	Type-C VBUS Monitor with Internal Discharge FET
12	P2.2/SWD_DAT_1	I2C Master data for DC/DC regulator
13	P2.3/SWD_CLK_1	I2C Master clock for DC/DC regulator
14	CC2	Communication Channel 2
15	CC1	Communication Channel 1
16	DM0/P3.1	USB D- of Type-C port. Supports BC 1.2, QC, Apple Charging and AFC.
17	DP0/P3.0	USB D+ of Type-C port. Supports BC 1.2, QC, Apple Charging and AFC.
18	VBUS_IN_DISCHA RGE	VBUS power IN (3.0 V–24.5 V) with internal discharge FET
19	CSP	CS+: Current sense input
20	FB	Voltage regulation feedback pin. Must be connected to the feedback node of DC-DC Converter. The pull-up resistor of the resistor divider network must be 200K; the pull-down resistor must be selected such that default VBUS upon power up is 5 V.
21	COMP	Compensation capacitor must be connected to this pin for PPS constant current loop.
22	GND	Ground
23	VDDD	Power input: 2.7 V–5.5 V
24	VCCD	1.8-V core voltage pin. Connect to a 1-uF capacitor.

Electrical Specifications

Absolute Maximum Ratings

Table 6. Absolute Maximum Ratings

Parameter	Description	Min	Тур	Max	Units	Details/Conditions
V _{BUS_MAX}	Max supply voltage relative to V _{SS} on VBUS_IN_DISCHARGE and VBUS_C_MON_DISCHARGE pins	-	_	30	V	
V _{DDD_MAX}	Max supply voltage relative to V_{SS}	-	-	6	V	
V _{CC_PIN_ABS}	Max voltage on CC1, CC2 pins and port pins P2.2 and P2.3 for applicable devices	_	_	22 ^[1]	V	Absolute max
V _{GPIO_ABS}	GPIO voltage	-0.5	Ι	V _{DDD} +0.5	V	
I _{GPIO_ABS}	Maximum current per GPIO	-25	-	25	mA	
I _{GPIO_injection}	GPIO injection current, Max for V _{IH} > V _{DDD} , and Min for V _{IL} < V _{SS}	-0.5	-	0.5	mA	Absolute max, current injected per pin
V _{GPIO_OVT_ABS}	OVT GPIO voltage	-0.5	-	6	V	Applicable to port pins P0.0 and P0.1
ESD_HBM	Electrostatic discharge human body model	2200	_	-	V	_
ESD_CDM	Electrostatic discharge charged device model	500	-	-	V	_
LU	Pin current for latch-up	-100	Ι	100	mA	_
ESD_IEC_CON	Electrostatic discharge IEC61000-4-2	8000	_	_	V	Contact discharge on CC1, CC2, VBUS, P2.2, and P2.3 pins
ESD_IEC_AIR	Electrostatic discharge IEC61000-4-2	15000	_	-	V	Air discharge for DPLUS, DMINUS, CC1, CC2, VBUS, P2.2, and P2.3 pins

Device-Level Specifications

All device-level specifications will be added in a future version of this document.

^{1.} As per USB PD specification, maximum allowed VBUS = 21.5 V.

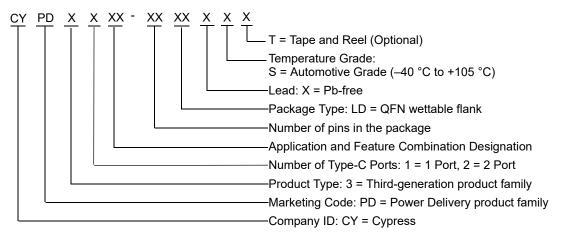

Ordering Information

 Table 7 lists the CYPD319X part numbers and features.

Table 7. CYPD319X Ordering Information

MPN	Application	Termination Resistor	Role	Bootloader	Package Type
CYPD3193-24LDXS	Rear-Seat Entertainment			I ² C Bootloader (Supports External Bill-Board)	
CYPD3194-24LDXS		R _P (Power L		CC Bootloader (Supports External Bill-Board)	24-Pin QFN
CYPD3195-24LDXS	Head Units/Infotainment		Source Only)	Bill-Board) I ² C Bootloader	
CYPD3196-24LDXS	Charge Only Ports			CC Bootloader	

Ordering Code Definitions

Packaging

Table 8. Package Characteristics

Parameter	Description	Conditions	Min	Тур	Мах	Units
T _A	Operating ambient temperature	Automotive S-Grade	-40	25	105	°C
TJ	Operating junction temperature	Automotive S-Grade	-40	25	120	°C
T _{JA}	Package θ_{JA} (24-QFN)	-	_	_	19.98	°C/W
T _{JC}	Package θ_{JC} (24-QFN)	-	_	_	4.78	°C/W

Table 9. Solder Reflow Peak Temperature

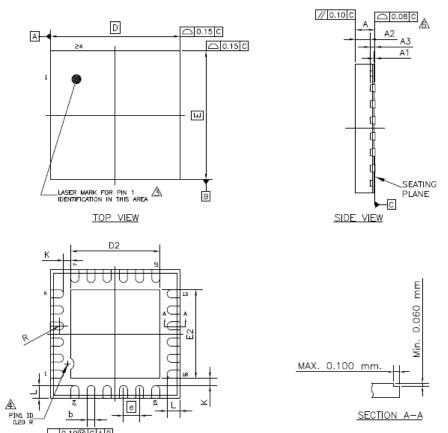

Package	Maximum Peak Temperature	Maximum Time within 5° C of Peak Temperature
24-pin QFN	260 °C	30 seconds

Table 10. Package Moisture Sensitivity Level (MSL), IPC/JEDEC J-STD-2

Package	MSL
24-pin QFN	MSL3

Figure 8. 24-pin QFN Package Outline

BOTTOM VIEW

⊕ 0.10@ C A B 0.05@ C

e

1

SYMBOL	DIMENSIONS		
STMBOL	MIN	NOM	MAX
A	-	_	0.60
A1	0.00	_	0.05
A2	-	0.400	0.425
A3	0.152 REF		
b	0.18	0.25	0.30
D	4.00 BSC		
E	4.00 BSC		
D2	2.65	2.75	2.85
E2	2.65	2.75	2.85
е	0.50 BSC		
L	0.30	0.40	0.50
к	0.225	_	-
R	0.09	_	-

NOTE:

- 1. ALL DIMENSIONS ARE IN MILLIMETERS.
- 2. DIMENSIONING & TOLERANCES CONFORM TO ASME Y14.5M. -1994.
- 3. THE PIN #1 IDENTIFIER MUST BE PLACED ON THE TOP SURFACE OF THE PACKAGE BY USING INDENTATION MARK OR OTHER FEATURE OF PACKAGE BODY.

SECTION A-A

- 4. EXACT SHAPE AND SIZE OF THIS FEATURE IS OPTIONAL.
- 5. PACKAGE WARPAGE MAX 0.08 mm.
- 6. APPLIED FOR EXPOSED PAD AND TERMINALS.
- 7. JEDEC SPECIFICATION NO. REF. : N/A.

002-23807 Rev**

Acronyms

Table 11. Acronyms Used in this Document

Acronym	Description	
ADC	analog-to-digital converter	
AES	advanced encryption standard	
API	application programming interface	
Arm [®]	advanced RISC machine, a CPU architecture	
CC	configuration channel	
CCG3	Cable Controller Generation 3	
CPU	central processing unit	
CRC	cyclic redundancy check, an error-checking protocol	
CS	current sense	
DFP	downstream facing port	
DIO	digital input/output, GPIO with only digital capabil- ities, no analog. See GPIO.	
DRP	dual role port	
EEPROM	electrically erasable programmable read-only memory	
EMCA	electronically marked cable assembly, a USB cable that includes an IC that reports cable characteristics (such as current rating) to the Type-C ports	
EMI	electromagnetic interference	
ESD	electrostatic discharge	
FS	full-speed	
GPIO	general-purpose input/output	
IC	integrated circuit	
IDE	integrated development environment	
I ² C, or IIC	Inter-Integrated Circuit, a communications protocol	
ILO	internal low-speed oscillator, see also IMO	
IMO	internal main oscillator, see also ILO	
I/O	input/output, see also GPIO	
LDO	low-dropout regulator	
LVD	low-voltage detect	
LVTTL	low-voltage transistor-transistor logic	
MCU	microcontroller unit	
NC	no connect	
NMI	nonmaskable interrupt	
NVIC	nested vectored interrupt controller	
opamp	operational amplifier	
OCP	overcurrent protection	

Acronym	Description		
OTP	over temperature protection		
OVP	overvoltage protection		
OVT	overvoltage tolerant		
PCB	printed circuit board		
PD	power delivery		
PGA	programmable gain amplifier		
PHY	physical layer		
POR	power-on reset		
PRES	precise power-on reset		
PSoC®	Programmable System-on-Chip™		
PWM	pulse-width modulator		
RAM	random-access memory		
RISC	reduced-instruction-set computing		
RMS	root-mean-square		
RTC	real-time clock		
RX	receive		
SAR	successive approximation register		
SCL	l ² C serial clock		
SCP	short circuit protection		
SDA	l ² C serial data		
S/H	sample and hold		
SHA	secure hash algorithm		
SPI	Serial Peripheral Interface, a communications protocol		
SRAM	static random access memory		
SWD	serial wire debug, a test protocol		
ТΧ	transmit		
Туре-С	a new standard with a slimmer USB connector and a reversible cable, capable of sourcing up to 100 W of power		
UART	Universal Asynchronous Transmitter Receiver, a communications protocol		
USB	Universal Serial Bus		
USBIO	USB input/output, CCG2 pins used to connect to a USB port		
UVP	undervoltage protection		
XRES	external reset I/O pin		

Table 11. Acronyms Used in this Document

Document Conventions

Units of Measure

Table 12. Units of Measure

Symbol	Unit of Measure	
°C	degrees Celsius	
Hz	hertz	
KB	1024 bytes	
kHz	kilohertz	
kΩ	kilo ohm	
Mbps	megabits per second	
MHz	megahertz	
MΩ	mega-ohm	
Msps	mega samples per second	
μA	microampere	
μF	microfarad	
μs	microsecond	
μV	microvolt	
μW	microwatt	
mA	milliampere	
ms	millisecond	
mV	millivolt	
nA	nanoampere	
ns	nanosecond	
Ω	ohm	
pF	picofarad	
ppm	parts per million	
ps	picosecond	
s	second	
sps	samples per second	
V	volt	

Document History Page

Document Title: CYPD319X-24LDXS, USB Type-C Port Controller (Advance) Document Number: 002-23856				
Revision	ECN	Orig. of Change	Submission Date	Description of Change
**	6245648	VGT	11/00/2018	New datasheet

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturers' representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Arm [®] Cortex [®] Microcontrollers	cypress.com/arm
Automotive	cypress.com/automotive
Clocks & Buffers	cypress.com/clocks
Interface	cypress.com/interface
Internet of Things	cypress.com/iot
Memory	cypress.com/memory
Microcontrollers	cypress.com/mcu
PSoC	cypress.com/psoc
Power Management ICs	cypress.com/pmic
Touch Sensing	cypress.com/touch
USB Controllers	cypress.com/usb
Wireless Connectivity	cypress.com/wireless

PSoC[®] Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU

Cypress Developer Community Community | Projects | Video | Blogs | Training | Components

Technical Support cypress.com/support

Notice regarding compliance with Universal Serial Bus specification. Cypress offers firmware and hardware solutions that are certified to comply with the Universal Serial Bus specification, USB Type-CTM Cable and Connector Specification, and other specifications of USB Implementers Forum, Inc (USB-IF). You may use Cypress or third party software tools, including sample code, to modify the firmware for Cypress USB products. Modification of such firmware could cause the firmware/hardware combination to no longer comply with the relevant USB-IF specification. You are solely responsible ensuring the compliance of any modification syou make, and you must follow the compliance requirements of USB-IF before using any USB-IF trademarks or logos in connection with any modifications you make. In addition, if Cypress modifies firmware based on your specifications, then you are responsible for ensuring compliance with any desired standard or specifications as if you had made the modification. CYPRESS IS NOT RESPONSIBLE IN THE EVENT THAT YOU MODIFY OR HAVE MODIFIED A CERTIFIED CYPRESS PRODUCT AND SUCH MODIFIED PRODUCT NO LONGER COMPLIES WITH THE RELEVANT USB-IF SPECIFICATIONS.

© Cypress Semiconductor Corporation, 2018. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely secure. Therefore, despite security measures implemented in Cypress hardware or software products, Cypress does not assume any liability arising out of any security breach, such as unauthorized access to or use of a Cypress product. In addition, the products described in these materials may contain design defects or errors known as errata which may cause the product to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or system could cause personal injury, death, or properly damage ("Unintended Uses"). A critical component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.