AtlasScientific Environmental Robotics

3/8" Flow Meter

Reads	Total flow	and flow rate	
Range		1 – 15 LPM	
Accuracy		+/- 2%	
Connector		Tinned leads	
Thread	3,	/8″ Male NPT	
Max pressur	e	200 PSI	
Temperature range °C -20 – 80 °C			
Max viscosit	У	81 SSU	
Cable lengtl	n •	-1meter (3 ft)	
Voltage	3	.3V – 24 VDC	
Life expecta	ncy	~10 years	

V 3.2

Wiring

🕂 WARNING 🙏

REVERSING THE POLARITY WILL DESTROY FLOW METER.

Lead Color

Function

ED

Brown

BLACK

VCC 3.3V – 24V PULSE GND

Current consumption no load 8mA Max current consumption 25mA

VCC and PULSE must be connected together with a 10K Pull up resistor.

Microcontroller

Specifications

Each rotation	454 μL
Max pressure	200 PSI
Max viscosity	81 SSU
Cable length	86 cm
Weight	101.5 grams
Food Safe	Yes
Gasoline Safe	Yes
Diesel Safe	Yes
Kerosene Safe	Yes

NSF/ANSI 61 Compliant

Atlas Scientific LLC, hereby certifies that,

3/8" Flow Meter Part # Sen-206F

Complies with NSF/ANSI Standard 61

Delin NSF-61 Compliant

Noryl NSF-61 Compliant

Nylon NSF-61 Compliant

Operating principle

Pre-filter requirements

least **80 microns** must be used. Without the use of a pre-filter, the turbine blades can

Laminar flow

Laminar flow can be thought of as the opposite of turbulent flow. In order for the flow meter to work properly, the liquid entering the flow meter should have a streamlined laminar flow. Achieving laminar flow is not hard to do; simply allow for 20cm (8") of straight pipe just before the liquid enters the flow meter.

Turbulent fluid entering the flow meter can cause inaccuracies in flow rate monitoring.

Laminar flow

Turbulent flow

Liquid exiting the flow meter

Liquid should not be permitted to simply fall out of the flow meter. This would let air enter the flow meter and lead to inaccurate readings.

K-factor

Each rotation of the turbine within this flow meter represents a volume of liquid passing through the meter.

.....

