MOSFET – Power, Single P-Channel, SOT-23 -20 V, -2.7 A

Features

- Leading -20 V Trench for Low R_{DS(on)}
- -1.8 V Rated for Low Voltage Gate Drive
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

• Power Load Switch

MAXIMUM RATINGS (T_J = 25°C unless otherwise stated)

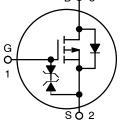
Parame	Symbol	Value	Unit		
Drain-to-Source Voltage	V _{DSS}	-20	V		
Gate-to-Source Voltage			V _{GS}	±8	V
Continuous Drain	Steady State	T _A = 25°C	I _D	-2.5	Α
Current (Note 1)	State	T _A = 85°C		-1.8	
	t ≤ 10 s	T _A = 25°C		-2.7	
Power Dissipation (Note 1)	Steady State	T _A = 25°C	P _D	0.72	W
	t ≤ 10 s			0.81	
Continuous Drain	Steady State	T _A = 25°C	I _D	-1.9	Α
Current (Note 2)	State	T _A = 85°C		-1.4	
Power Dissipation (Note 2)		T _A = 25°C	P _D	0.42	W
Pulsed Drain Current	t _p =	10 μs	I _{DM}	-10	Α
ESD HBM, JESD22-A114	V _{ESD}	1000	V		
Operating Junction and Sto	T _J , T _{STG}	–55 to 150	°C		
Source Current (Body Dioc	I _S	-1.1	Α		
Lead Temperature for Sold (1/8 in from case for 10 s)	ering Purp	oses	TL	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Max	Unit
Junction-to-Ambient - Steady State (Note 1)	$R_{\theta JA}$	175	°C/W
Junction-to-Ambient – t ≤ 10 s (Note 1)	$R_{\theta JA}$	155	
Junction-to-Ambient - Steady State (Note 2)	$R_{\theta JA}$	301	

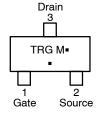
- 1. Surface-mounted on FR4 board using 1 in sq. pad size (Cu area = 727 mm sq., 1 oz).
- Surface-mounted on FR4 board using minimum pad size (Cu area = 3.8 mm sq., 1 oz).
- 3. ESD Rating: HBM Class 1C



ON Semiconductor®

www.onsemi.com

V _{(BR)DSS}	V _{(BR)DSS} R _{DS(on)} Max	
	77 mΩ @ -4.5 V	
-20 V	105 mΩ @ -2.5 V	-2.7 A
	160 mΩ @ -1.8 V	


P-Channel MOSFET

MARKING DIAGRAM & PIN ASSIGNMENT

SOT-23 CASE 318 STYLE 21

TRG = Specific Device Code

M = Date Code*

= Pb-Free Package

(Note: Microdot may be in either location)

*Date Code orientation may vary depending upon manufacturing location.

ORDERING INFORMATION

Device	Package	Shipping [†]
NTR3A085PZT1G	SOT-23 (Pb-Free)	3000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Parameter	Symbol	Test Cond	ition	Min	Тур	Max	Unit
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = -250 \mu\text{A}$		-20			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J	I _D = -250 μA, ref to 25°C			22		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V,	T _J = 25°C			-1	μΑ
		$V_{DS} = -20 \text{ V}$	T _J = 125°C			-100	μΑ
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _{GS}	_S = ±8 V			±10	μΑ
ON CHARACTERISTICS (Note 4)	•				•	•	•
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D =$	250 μA	-0.4		-1.0	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				3.0		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = -4.5 V	I _D = -1.6 A		54	77	mΩ
		V _{GS} = -2.5 V	I _D = -1.3 A		67	105	1
		V _{GS} = -1.8 V	$I_D = -0.9 A$		87	160	
		V _{GS} = -1.5 V	$I_D = -0.3 A$		110		
Forward Transconductance	9FS	$V_{DS} = -5 \text{ V}, I_D = -2.3 \text{ A}$			12		S
CHARGES AND CAPACITANCES	•				•	•	
Input Capacitance	C _{iss}	V _{GS} = 0 V, f = 1.0 MHz, V _{DS} = -10 V			586		pF
Output Capacitance	C _{oss}				81		1
Reverse Transfer Capacitance	C _{rss}				72		
Total Gate Charge	Q _{G(TOT)}				6.9		nC
Threshold Gate Charge	Q _{G(TH)}	$V_{GS} = -4.5 \text{ V}, V_{DS} = -10 \text{ V},$ $I_{D} = -1.6 \text{ A}$			0.5		1
Gate-to-Source Charge	Q _{GS}				0.8		1
Gate-to-Drain Charge	Q_{GD}				1.6		
SWITCHING CHARACTERISTICS (Note	= 5)				•	•	
Turn-On Delay Time	t _{d(on)}				6.8		ns
Rise Time	t _r	VGS = -4.5 V. VD	s = -10 V.		11		1
Turn-Off Delay Time	t _{d(off)}	$V_{GS} = -4.5 \text{ V}, V_{D}$ $I_{D} = -1.6 \text{ A}, R_{G}$	$_{3}=6.0~\Omega$		32		1
Fall Time	t _f				23		1
DRAIN-SOURCE DIODE CHARACTER	ISTICS				•	•	
Forward Diode Voltage	V _{SD}	V _{GS} = 0 V, I _S = -1.1 A	T _J = 25°C		-0.7	-1.2	V
			T _J = 125°C		-0.6		1
Reverse Recovery Time	t _{RR}		•		11		ns
Charge Time	ta	V _{GS} = 0 V, dI _{SD} /dt	= 100 A/us.		6.0		1
Discharge Time	t _b	l _S = -1.6 A			5.0		1
Reverse Recovery Charge	Q _{RR}				3.6	1	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

4. Pulse Test: pulse width ≤ 300 ms, duty cycle ≤ 2%.

5. Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

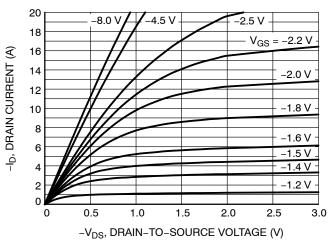


Figure 1. On-Region Characteristics

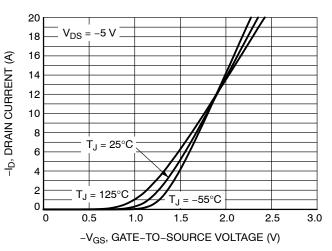


Figure 2. Transfer Characteristics

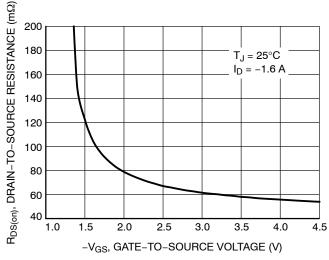


Figure 3. On-Resistance vs. Gate-to-Source Voltage

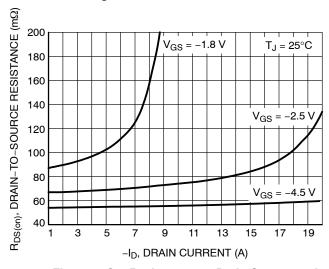


Figure 4. On-Resistance vs. Drain Current and Gate Voltage

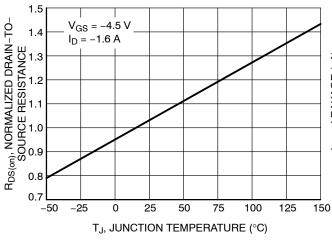


Figure 5. On–Resistance Variation with Temperature

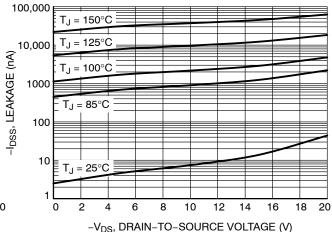


Figure 6. Drain-to-Source Leakage Current vs. Voltage

TYPICAL CHARACTERISTICS

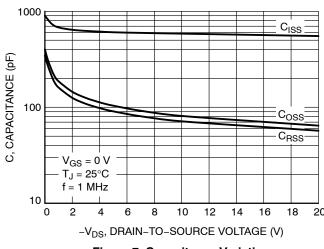


Figure 7. Capacitance Variation

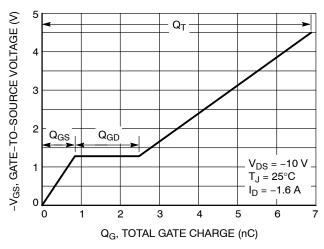


Figure 8. Gate-to-Source vs. Total Charge

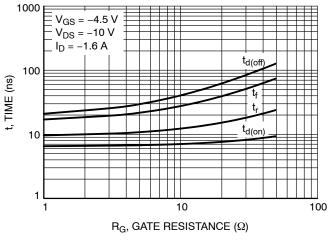


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

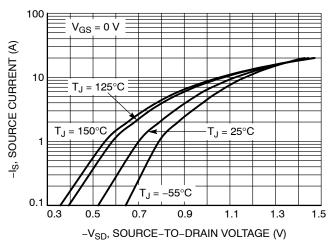


Figure 10. Diode Forward Voltage vs. Current

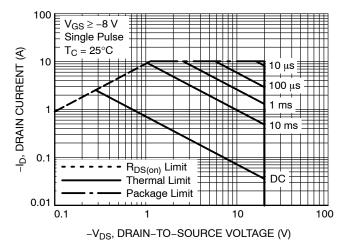


Figure 11. Maximum Rated Forward Biased Safe Operating Area

TYPICAL CHARACTERISTICS

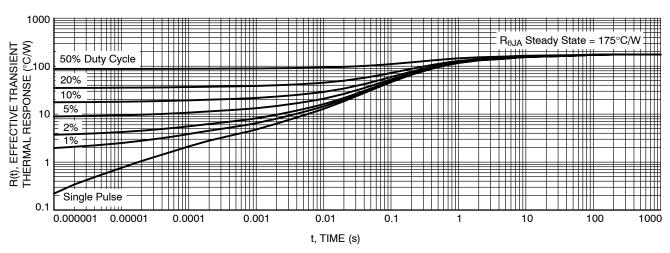
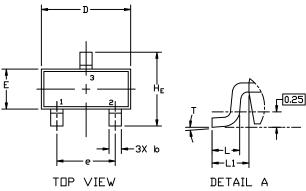
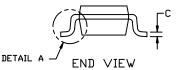


Figure 12. Thermal Impedance (Junction-to-Ambient)




SOT-23 (TO-236) CASE 318 ISSUE AT

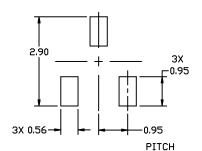
DATE 01 MAR 2023

NOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M,1994.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF THE BASE MATERIAL.
- 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

	MILLIM	ETERS			INCHES	
DIM	MIN.	N□M.	MAX.	MIN.	N□M.	MAX.
Α	0.89	1.00	1.11	0.035	0.039	0.044
A1	0.01	0.06	0.10	0.000	0.002	0.004
b	0.37	0.44	0.50	0.015	0.017	0.020
С	0.08	0.14	0.20	0.003	0.006	0.008
D	2.80	2.90	3.04	0.110	0.114	0.120
Ε	1.20	1.30	1.40	0.047	0.051	0.055
e	1.78	1.90	2.04	0.070	0.075	0.080
L	0.30	0.43	0.55	0.012	0.017	0.022
L1	0.35	0.54	0.69	0.014	0.021	0.027
HE	2.10	2.40	2.64	0.083	0.094	0.104
Т	0*		10°	0*		10°

GENERIC MARKING DIAGRAM*



XXX = Specific Device Code

M = Date Code

■ = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

RECOMMENDED MOUNTING FOOTPRINT

For additional information on our Pb-Free strategy and soldering details, please download the DN Semiconductor Soldering and Mounting Techniques Reference Manual, SDLDERRM/D.

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42226B	Electronic versions are uncontrolled except when accessed directly from the Document Repr Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SOT-23 (TO-236)		PAGE 1 OF 2

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS

SOT-23 (TO-236) CASE 318 ISSUE AT

DATE 01 MAR 2023

STYLE 1 THRU 5: CANCELLED	STYLE 6: PIN 1. BASE 2. EMITTER 3. COLLECTOR	STYLE 7: PIN 1. EMITTER 2. BASE 3. COLLECTOR	STYLE 8: PIN 1. ANODE 2. NO CONNECTION 3. CATHODE	1	
STYLE 9: PIN 1. ANODE 2. ANODE 3. CATHODE	STYLE 10: PIN 1. DRAIN 2. SOURCE 3. GATE	STYLE 11: PIN 1. ANODE 2. CATHODE 3. CATHODE-ANODE	STYLE 12: PIN 1. CATHODE 2. CATHODE 3. ANODE	STYLE 13: PIN 1. SOURCE 2. DRAIN 3. GATE	STYLE 14: PIN 1. CATHODE 2. GATE 3. ANODE
STYLE 15: PIN 1. GATE 2. CATHODE 3. ANODE	STYLE 16: PIN 1. ANODE 2. CATHODE 3. CATHODE	STYLE 17: PIN 1. NO CONNECTION 2. ANODE 3. CATHODE	STYLE 18: PIN 1. NO CONNECTION 2. CATHODE 3. ANODE	STYLE 19: I PIN 1. CATHODE 2. ANODE 3. CATHODE-ANODE	STYLE 20: PIN 1. CATHODE 2. ANODE 3. GATE
STYLE 21: PIN 1. GATE 2. SOURCE 3. DRAIN	STYLE 22: PIN 1. RETURN 2. OUTPUT 3. INPUT	STYLE 23: PIN 1. ANODE 2. ANODE 3. CATHODE	STYLE 24: PIN 1. GATE 2. DRAIN 3. SOURCE	STYLE 25: PIN 1. ANODE 2. CATHODE 3. GATE	STYLE 26: PIN 1. CATHODE 2. ANODE 3. NO CONNECTION
STYLE 27: PIN 1. CATHODE 2. CATHODE 3. CATHODE	STYLE 28: PIN 1. ANODE 2. ANODE 3. ANODE				

DOCUMENT NUMBER:	98ASB42226B	Electronic versions are uncontrolled except when accessed directly from the Document Reposi Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SOT-23 (TO-236)		PAGE 2 OF 2

onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales