

Is Now Part of



# **ON Semiconductor**®

# To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (\_), the underscore (\_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (\_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at <a href="https://www.onsemi.com">www.onsemi.com</a>. Please email any questions regarding the system integration to <a href="https://www.onsemi.com">Fairchild\_questions@onsemi.com</a>.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized applications, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an ad experson



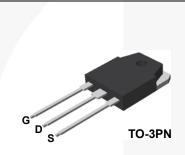
June 2014

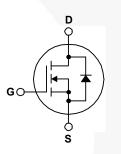


### **FQA140N10**

## **N-Channel QFET® MOSFET**

100 V, 140 A, 10 m $\Omega$ 


#### Description


This N-Channel enhancement mode power MOSFET is • 140 A, 100 V,  $R_{DS(on)}$  = 10 m $\Omega$  (Max.) @ V<sub>GS</sub> = 10 V, produced using Fairchild Semiconductor's proprietary planar stripe and DMOS technology. This advanced MOSFET technology has been especially tailored to reduce on-state • Low Gate Charge (Typ. 220 nC) resistance, and to provide superior switching performance and • Low Crss (Typ. 470 pF) high avalanche energy strength. These devices are suitable for switched mode power supplies, audio amplifier, DC motor • 100% Avalanche Tested control, and variable switching power applications.

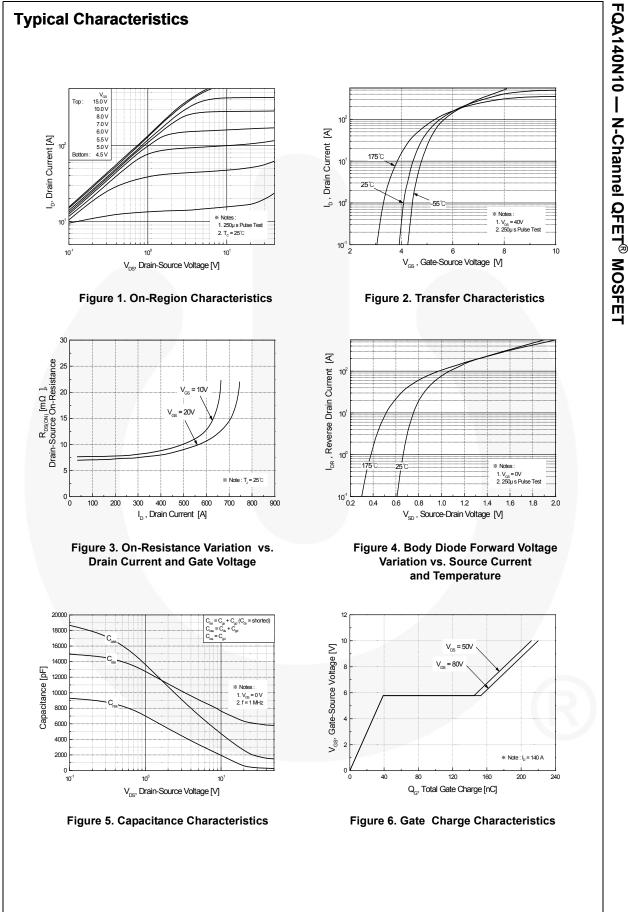
#### Features

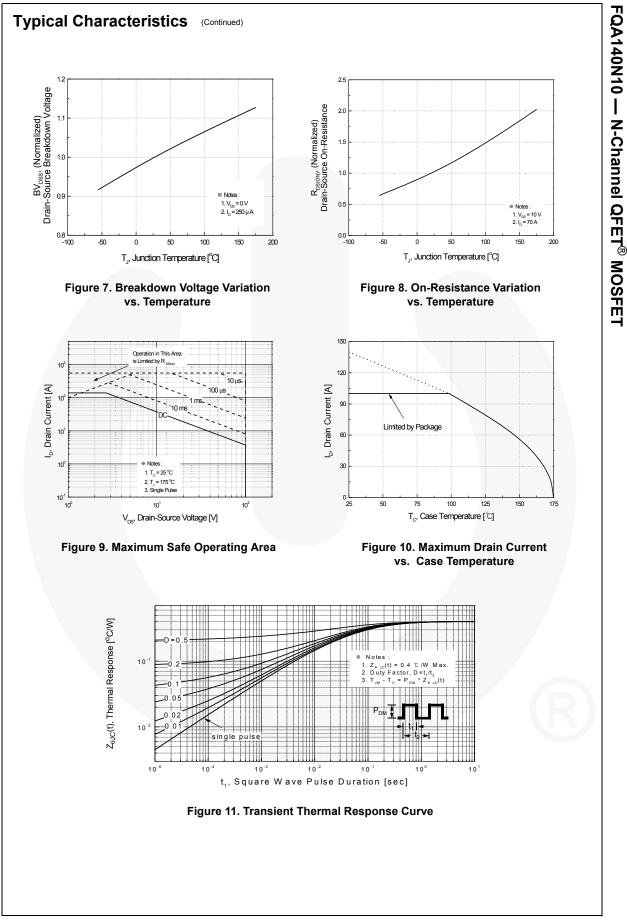
- I<sub>D</sub> = 70 A

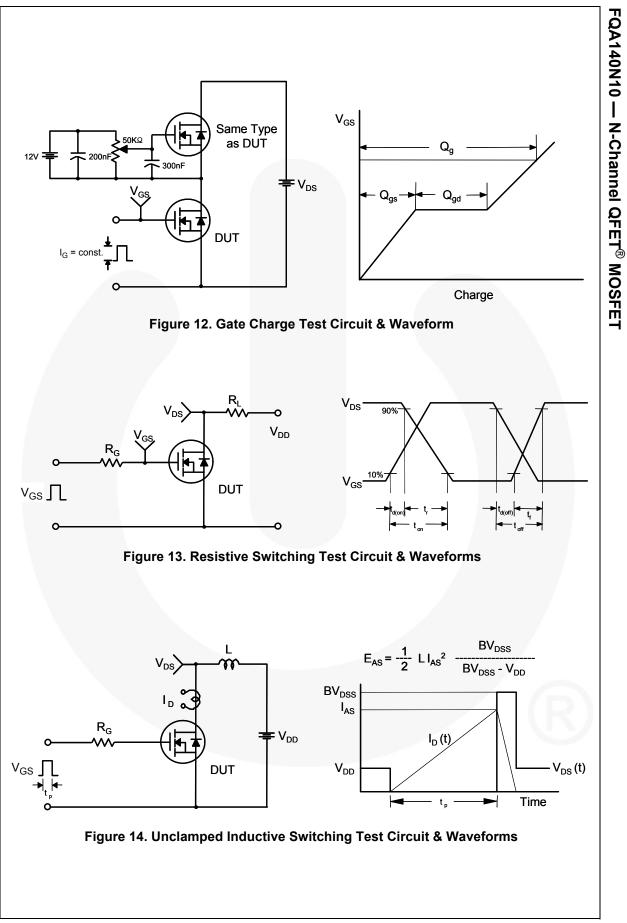
- 175°C Maximum Junction Temperature Rating

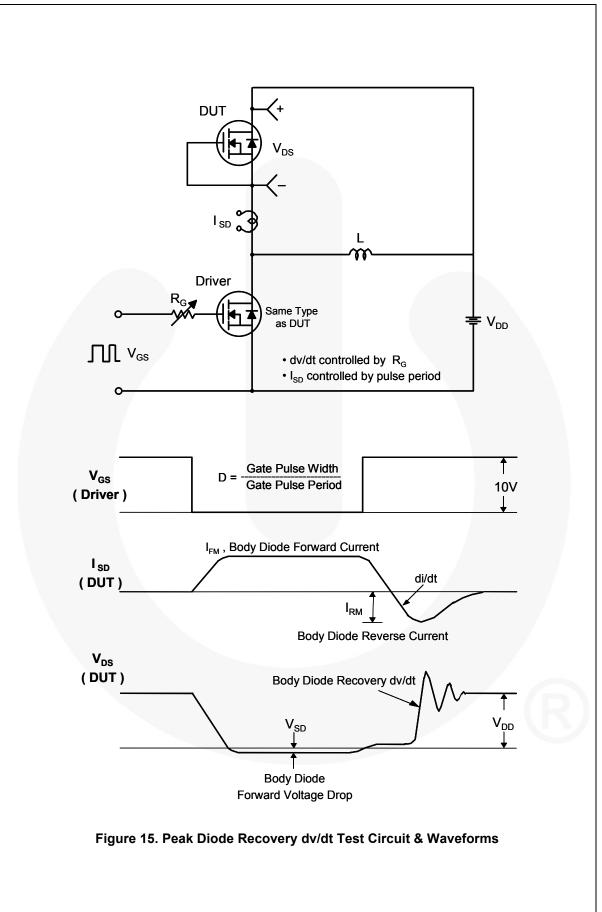


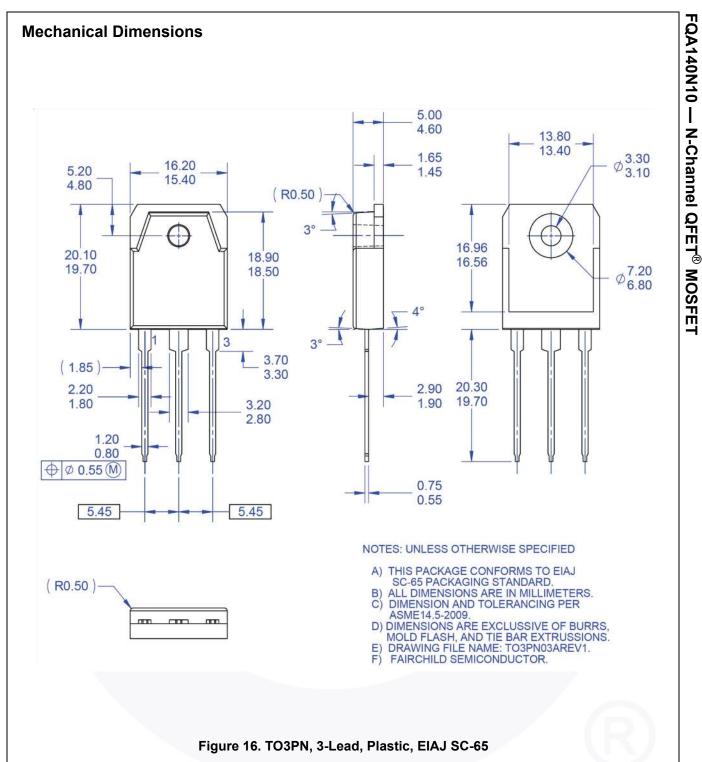



#### Absolute Maximum Ratings T<sub>c</sub> = 25°C unless otherwise noted.


| Symbol                            | Parameter                                                                     | FQA140N10   | Unit |
|-----------------------------------|-------------------------------------------------------------------------------|-------------|------|
| V <sub>DSS</sub>                  | Drain-Source Voltage                                                          | 100         | V    |
| I <sub>D</sub>                    | Drain Current - Continuous (T <sub>C</sub> = 25°C)                            | 140         | A    |
|                                   | - Continuous (T <sub>C</sub> = 100°C)                                         | 99          | A    |
| I <sub>DM</sub>                   | Drain Current - Pulsed (Note 1)                                               | 560         | A    |
| V <sub>GSS</sub>                  | Gate-Source Voltage                                                           | ± 25        | V    |
| E <sub>AS</sub>                   | Single Pulsed Avalanche Energy (Note 2)                                       | 1500        | mJ   |
| AR                                | Avalanche Current (Note 1)                                                    | 140         | А    |
| E <sub>AR</sub>                   | Repetitive Avalanche Energy (Note 1)                                          | 37.5        | mJ   |
| dv/dt                             | Peak Diode Recovery dv/dt (Note 3)                                            | 6.5         | V/ns |
| PD                                | Power Dissipation ( $T_C = 25^{\circ}C$ )                                     | 375         | W    |
|                                   | - Derate above 25°C                                                           | 2.5         | W/°C |
| T <sub>J</sub> , T <sub>STG</sub> | Operating and Storage Temperature Range                                       | -55 to +175 | °C   |
| TL                                | Maximum lead temperature for soldering purposes,1/8" from case for 5 seconds. | 300         | °C   |


#### **Thermal Characteristics**


| Symbol                | Parameter                                     | FQA140N10 | Unit |  |
|-----------------------|-----------------------------------------------|-----------|------|--|
| $R_{	ext{	heta}JC}$   | Thermal Resistance, Junction-to-Case, Max.    | 0.4       | °C/W |  |
| $R_{	extsf{	heta}JA}$ | Thermal Resistance, Junction-to-Ambient, Max. | 40        | °C/W |  |


| EOA?                                                                                                                                                                                                                                                   | Number                                                                                                                                                  | Top Mark                                                                                                                                                                                                           | Pack                                                         | kage Packing Method                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | od Ree               | l Size                       | Tape Wi                                           | idth C                                                            | Quantity                                             |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------|---------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------|--|
| TQA                                                                                                                                                                                                                                                    | 140N10                                                                                                                                                  | FQA140N10                                                                                                                                                                                                          | TO-                                                          | 3PN                                                                          | Tube N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | I/A                          | N/A                                               | 3                                                                 | 30 units                                             |  |
| lectri                                                                                                                                                                                                                                                 | cal Cha                                                                                                                                                 | racteristics                                                                                                                                                                                                       | To = 25°C                                                    | Cunless off                                                                  | erwise noted.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |                              |                                                   |                                                                   |                                                      |  |
| Symbol                                                                                                                                                                                                                                                 |                                                                                                                                                         | Parameter                                                                                                                                                                                                          |                                                              |                                                                              | Test Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                    | Min.                         | Тур.                                              | Max.                                                              | Unit                                                 |  |
|                                                                                                                                                                                                                                                        | aracterist                                                                                                                                              | ico                                                                                                                                                                                                                |                                                              |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |                              |                                                   |                                                                   |                                                      |  |
| BV <sub>DSS</sub>                                                                                                                                                                                                                                      | Drain-Source Breakdown Voltage                                                                                                                          |                                                                                                                                                                                                                    |                                                              | Voc =                                                                        | 0 V, I <sub>D</sub> = 250 μA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      | 100                          |                                                   |                                                                   | V                                                    |  |
| $\Delta BV_{DSS}$                                                                                                                                                                                                                                      | Breakdown Voltage Temperature                                                                                                                           |                                                                                                                                                                                                                    |                                                              |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100                  |                              |                                                   | v                                                                 |                                                      |  |
| $/ \Delta T_J$                                                                                                                                                                                                                                         | Coefficient                                                                                                                                             |                                                                                                                                                                                                                    | $I_D$ = 250 µA, Referenced to 25°C                           |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      | 0.08                         |                                                   | V/°C                                                              |                                                      |  |
| I <sub>DSS</sub>                                                                                                                                                                                                                                       | Zoro Coto                                                                                                                                               | Zoro Cato Voltago Drain Current                                                                                                                                                                                    |                                                              | V <sub>DS</sub> = 80 V, V <sub>GS</sub> = 0 V                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |                              |                                                   | 1                                                                 | μA                                                   |  |
|                                                                                                                                                                                                                                                        | Zero Gate Voltage Drain Current                                                                                                                         |                                                                                                                                                                                                                    | $V_{DS} = 64 \text{ V}, \text{ T}_{C} = 150^{\circ}\text{C}$ |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |                              | 10                                                | μA                                                                |                                                      |  |
| I <sub>GSSF</sub>                                                                                                                                                                                                                                      | Gate-Body                                                                                                                                               | y Leakage Current, Fo                                                                                                                                                                                              | orward                                                       | V <sub>GS</sub> = 2                                                          | 25 V, V <sub>DS</sub> = 0 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |                              | -                                                 | 100                                                               | nA                                                   |  |
| I <sub>GSSR</sub>                                                                                                                                                                                                                                      | Gate-Bod                                                                                                                                                | y Leakage Current, Re                                                                                                                                                                                              | everse                                                       | V <sub>GS</sub> = ·                                                          | 25 V, V <sub>DS</sub> = 0 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |                              |                                                   | -100                                                              | nA                                                   |  |
| On Cha                                                                                                                                                                                                                                                 | racterist                                                                                                                                               | ics                                                                                                                                                                                                                |                                                              |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |                              |                                                   |                                                                   |                                                      |  |
| V <sub>GS(th)</sub>                                                                                                                                                                                                                                    | 1                                                                                                                                                       | eshold Voltage                                                                                                                                                                                                     | -                                                            | V <sub>DS</sub> = V                                                          | / <sub>GS</sub> , I <sub>D</sub> = 250 μA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      | 2.0                          |                                                   | 4.0                                                               | V                                                    |  |
| R <sub>DS(on)</sub>                                                                                                                                                                                                                                    | Static Dra<br>On-Resist                                                                                                                                 |                                                                                                                                                                                                                    |                                                              | V <sub>GS</sub> =                                                            | 10 V, I <sub>D</sub> = 70 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |                              | 0.008                                             | 0.01                                                              | Ω                                                    |  |
| 9 <sub>FS</sub>                                                                                                                                                                                                                                        | Forward T                                                                                                                                               | ransconductance                                                                                                                                                                                                    | -                                                            | V <sub>DS</sub> = 3                                                          | 30 V, I <sub>D</sub> = 70 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |                              | 80                                                |                                                                   | S                                                    |  |
| C <sub>iss</sub><br>C <sub>oss</sub>                                                                                                                                                                                                                   |                                                                                                                                                         | apacitance                                                                                                                                                                                                         |                                                              | V <sub>DS</sub> = 2<br>f = 1.0                                               | 25 V, V <sub>GS</sub> = 0 V,<br>MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |                              | 6100<br>2000<br>420                               | 7900<br>2600<br>550                                               | pF<br>pF                                             |  |
| C <sub>rss</sub>                                                                                                                                                                                                                                       | Reverse T                                                                                                                                               | Transfer Capacitance                                                                                                                                                                                               |                                                              |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |                              |                                                   |                                                                   | pi                                                   |  |
| C <sub>rss</sub>                                                                                                                                                                                                                                       | 1                                                                                                                                                       |                                                                                                                                                                                                                    |                                                              |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |                              |                                                   |                                                                   | p                                                    |  |
| c <sub>rss</sub><br>Switchi                                                                                                                                                                                                                            | ing Chara                                                                                                                                               | acteristics                                                                                                                                                                                                        |                                                              |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      | 1                            | 75                                                |                                                                   |                                                      |  |
| C <sub>rss</sub><br>Switchi<br>t <sub>d(on)</sub>                                                                                                                                                                                                      | i <b>ng Chara</b><br>Turn-On D                                                                                                                          | acteristics<br>Delay Time                                                                                                                                                                                          |                                                              |                                                                              | 40 V, I <sub>D</sub> = 140 A,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |                              | 75                                                | 160                                                               | ns                                                   |  |
| C <sub>rss</sub><br>Switchi<br>t <sub>d(on)</sub><br>t <sub>r</sub>                                                                                                                                                                                    | i <b>ng Chara</b><br>Turn-On E<br>Turn-On F                                                                                                             | acteristics<br>Delay Time<br>Rise Time                                                                                                                                                                             |                                                              | V <sub>DD</sub> = 4<br>R <sub>G</sub> = 2                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |                              | 940                                               | 160<br>1890                                                       | ns                                                   |  |
| C <sub>rss</sub><br>Switchi<br>t <sub>d(on)</sub><br>t <sub>r</sub><br>t <sub>d(off)</sub>                                                                                                                                                             | i <b>ng Chara</b><br>Turn-On E<br>Turn-On F<br>Turn-Off E                                                                                               | acteristics<br>Delay Time<br>Rise Time<br>Delay Time                                                                                                                                                               |                                                              |                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (Note 4)             |                              | 940<br>350                                        | 160<br>1890<br>710                                                | ns<br>ns<br>ns                                       |  |
| C <sub>rss</sub><br>Switchi<br>t <sub>d(on)</sub><br>t <sub>r</sub><br>t <sub>d(off)</sub><br>t <sub>f</sub>                                                                                                                                           | i <b>ng Chara</b><br>Turn-On E<br>Turn-On F<br>Turn-Off E<br>Turn-Off F                                                                                 | acteristics<br>Delay Time<br>Rise Time<br>Delay Time<br>Fall Time                                                                                                                                                  |                                                              | R <sub>G</sub> = 2                                                           | 5Ω                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (Note 4)             |                              | 940<br>350<br>360                                 | 160<br>1890<br>710<br>730                                         | ns<br>ns<br>ns<br>ns                                 |  |
| C <sub>rss</sub><br><b>Switch</b> i<br>t <sub>d(on)</sub><br>t <sub>r</sub><br>t <sub>d(off)</sub><br>t <sub>f</sub><br>Q <sub>g</sub>                                                                                                                 | ing Chara<br>Turn-On E<br>Turn-On F<br>Turn-Off E<br>Turn-Off F<br>Total Gate                                                                           | acteristics<br>Delay Time<br>Rise Time<br>Delay Time<br>Fall Time<br>e Charge                                                                                                                                      |                                                              | R <sub>G</sub> = 2                                                           | 5 Ω<br>64 V, I <sub>D</sub> = 140 A,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (Note 4)             |                              | 940<br>350<br>360<br>220                          | 160<br>1890<br>710                                                | ns<br>ns<br>ns<br>nC                                 |  |
| $\frac{C_{rss}}{Switch}$ $\frac{t_{d(on)}}{t_r}$ $\frac{t_{d(off)}}{t_f}$ $\frac{t_f}{Q_g}$ $Q_{gs}$                                                                                                                                                   | ing Chara<br>Turn-On E<br>Turn-On F<br>Turn-Off E<br>Turn-Off F<br>Total Gate                                                                           | acteristics<br>Delay Time<br>Rise Time<br>Delay Time<br>Fall Time<br>to Charge<br>rice Charge                                                                                                                      |                                                              | R <sub>G</sub> = 2                                                           | 5 Ω<br>64 V, I <sub>D</sub> = 140 A,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (Note 4)<br>(Note 4) | <br><br><br>                 | 940<br>350<br>360                                 | 160<br>1890<br>710<br>730                                         | ns<br>ns<br>ns<br>ns                                 |  |
| $\frac{C_{rss}}{Switch}$ $\frac{t_{d(on)}}{t_r}$ $\frac{t_{d(off)}}{t_f}$ $Q_g$                                                                                                                                                                        | ing Chara<br>Turn-On E<br>Turn-On F<br>Turn-Off E<br>Turn-Off F<br>Total Gate<br>Gate-Sou                                                               | acteristics<br>Delay Time<br>Rise Time<br>Delay Time<br>Fall Time<br>to Charge<br>rice Charge                                                                                                                      |                                                              | R <sub>G</sub> = 2                                                           | 5 Ω<br>64 V, I <sub>D</sub> = 140 A,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | . ,                  | <br><br><br>                 | 940<br>350<br>360<br>220<br>39                    | 160<br>1890<br>710<br>730<br>285<br>                              | ns<br>ns<br>ns<br>nC<br>nC                           |  |
| $\frac{C_{rss}}{Switchi}$ $\frac{Switchi}{t_{d(on)}}$ $\frac{t_{d(off)}}{t_{f}}$ $\frac{d_{d(off)}}{Q_{g}}$ $\frac{Q_{gg}}{Q_{gg}}$ $Drain-S$                                                                                                          | ing Chara<br>Turn-On E<br>Turn-On F<br>Turn-Off E<br>Turn-Off F<br>Total Gate<br>Gate-Sou<br>Gate-Drai                                                  | acteristics<br>Delay Time<br>Rise Time<br>Delay Time<br>Fall Time<br>to Charge<br>rice Charge                                                                                                                      | tics ar                                                      | $R_{G} = 2$<br>$V_{DS} = 0$<br>$V_{GS} = 1$                                  | 5 Ω<br>64 V, I <sub>D</sub> = 140 A,<br>10 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (Note 4)             | <br><br><br>                 | 940<br>350<br>360<br>220<br>39                    | 160<br>1890<br>710<br>730<br>285<br>                              | ns<br>ns<br>ns<br>nC<br>nC                           |  |
| $\frac{C_{rss}}{Switchi}$ $\frac{Switchi}{t_{d(on)}}$ $\frac{t_r}{t_f}$ $\frac{Q_g}{Q_{gs}}$ $\frac{Q_{gg}}{Q_{gd}}$ $Drain-S$                                                                                                                         | ing Chara<br>Turn-On E<br>Turn-Off E<br>Turn-Off F<br>Total Gate<br>Gate-Sou<br>Gate-Drai                                                               | acteristics<br>Delay Time<br>Rise Time<br>Delay Time<br>all Time<br>e Charge<br>rce Charge<br>n Charge<br>n Charge                                                                                                 | urce Dio                                                     | $R_{G} = 2$ $V_{DS} = 0$ $V_{GS} = 0$ $M_{GS} = 0$ $M_{GS} = 0$              | 5 Ω<br>64 V, I <sub>D</sub> = 140 A,<br>10 V<br>imum Rating<br>ard Current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (Note 4)             | <br><br><br>                 | 940<br>350<br>360<br>220<br>39                    | 160<br>1890<br>710<br>730<br>285<br>                              | ns<br>ns<br>ns<br>nC<br>nC                           |  |
| $\frac{C_{rss}}{Switchi}$ $\frac{Switchi}{t_{d(on)}}$ $\frac{t_r}{t_f}$ $Q_g$ $Q_{gg}$ $Q_{gg}$ $Drain-S$ $I_{SM}$                                                                                                                                     | ing Chara<br>Turn-On E<br>Turn-On F<br>Turn-Off E<br>Turn-Off F<br>Total Gate<br>Gate-Sou<br>Gate-Drai<br>Source Di<br>Maximum<br>Maximum               | acteristics<br>Delay Time<br>Rise Time<br>Delay Time<br>Fall Time<br>e Charge<br>rce Charge<br>n Charge<br>n Charge<br><b>code Characteris</b><br>Continuous Drain-Source                                          | urce Dio<br>Diode F                                          | $R_G = 2$<br>$V_{DS} = 0$<br>$V_{GS} = 1$<br>de Forw<br>forward (            | 5 Ω<br>A = 140  A, B = 140  A | (Note 4)             |                              | 940<br>350<br>360<br>220<br>39<br>114             | 160<br>1890<br>710<br>730<br>285<br><br><br><br>140<br>560        | ns<br>ns<br>ns<br>nC<br>nC<br>nC<br>A<br>A           |  |
| C <sub>rss</sub><br><b>Switch</b> i<br>t <sub>d(on)</sub><br>t <sub>r</sub><br>t <sub>d(off)</sub><br>t <sub>f</sub><br>Q <sub>g</sub><br>Q <sub>gg</sub><br>Q <sub>gd</sub><br><b>Drain-S</b><br>I <sub>S</sub><br>I <sub>SM</sub><br>V <sub>SD</sub> | ing Chara<br>Turn-On E<br>Turn-On F<br>Turn-Off E<br>Turn-Off F<br>Total Gate<br>Gate-Sou<br>Gate-Drai<br>Source Di<br>Maximum<br>Maximum<br>Drain-Sou  | acteristics<br>Delay Time<br>Rise Time<br>Delay Time<br>Fall Time<br>Charge<br>rce Charge<br>n Charge<br>n Charge<br><b>ode Characteris</b><br>Continuous Drain-So<br>Pulsed Drain-Source<br>rrce Diode Forward Vo | urce Dio<br>Diode F                                          | $R_{G} = 2$ $V_{DS} = 0$ $V_{GS} = 0$ $M = 0$ $V_{GS} = 0$ $V_{GS} = 0$      | 5 Ω<br>$A V, I_D = 140 A,$<br>10 V<br><b>imum Rating</b><br>ard Current<br>Current<br>D V, I_S = 140 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (Note 4)             |                              | 940<br>350<br>360<br>220<br>39<br>114<br><br><br> | 160<br>1890<br>710<br>730<br>285<br><br><br><br>140<br>560<br>1.5 | ns<br>ns<br>ns<br>nC<br>nC<br>nC<br>A<br>A<br>A<br>V |  |
| $\frac{C_{rss}}{Switchi}$ $\frac{Switchi}{t_{d(on)}}$ $\frac{t_r}{t_f}$ $\frac{Q_g}{Q_{gs}}$ $\frac{Q_{gg}}{Q_{gd}}$ $Drain-S$                                                                                                                         | ing Chara<br>Turn-On F<br>Turn-Off E<br>Turn-Off F<br>Total Gate<br>Gate-Sour<br>Gate-Drai<br>Source Di<br>Maximum<br>Maximum<br>Drain-Sou<br>Reverse F | acteristics<br>Delay Time<br>Rise Time<br>Delay Time<br>Fall Time<br>e Charge<br>rce Charge<br>n Charge<br>n Charge<br><b>code Characteris</b><br>Continuous Drain-Source                                          | urce Dio<br>Diode F                                          | $R_{G} = 2$ $V_{DS} = 0$ $V_{GS} = 0$ $V_{GS} = 0$ $V_{GS} = 0$ $V_{GS} = 0$ | 5 Ω<br>A = 140  A, B = 140  A | (Note 4)             | <br><br><br><br><br><br><br> | 940<br>350<br>360<br>220<br>39<br>114             | 160<br>1890<br>710<br>730<br>285<br><br><br><br>140<br>560        | ns<br>ns<br>ns<br>nC<br>nC<br>nC<br>A<br>A           |  |











Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:

http://www.fairchildsemi.com/package/packageDetails.html?id=PN\_TT3PN-003



ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

#### PUBLICATION ORDERING INFORMATION

#### LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC