General Description

The MAX4649 is a dual-supply, single-pole/doublethrow (SPDT) analog switch. On-resistance is 45 Ω max and flat (7 Ω max) over the specified signal range. The MAX4649 can handle Rail-to-Rail[®] analog signals, and conducts analog or digital signals equally well in either direction. This switch operates from a single +9V to +36V supply, or from ±4.5V to ±20V dual supplies. The primary application areas are in the switching and routing of signals in telecommunications and test equipment.

The MAX4649 features a switch transition time of 130ns max at $+25^{\circ}$ C, and a guaranteed break-before-make switching time of 5ns. Off-leakage current is only 2nA max at $+25^{\circ}$ C.

The MAX4649 is available in a tiny 8-pin SOT23 package.

PBX, PABX Systems

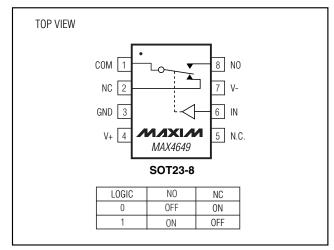
Test Equipment

Audio Systems Redundant Systems Relay Replacement PC Multimedia Boards

DSL

Avionics

Communication Systems


Applications

Features

- Low On-Resistance 45Ω max ±15V Supplies
- 5Ω max Ron Match Between Channels
- Guaranteed R_{ON} Flatness Over Specified Signal Range (7Ω max)
- ♦ V_L Logic Supply Not Required
- ♦ Rail-to-Rail Signal Handling
- ♦ +9V to +36V Single Supply Operation
- ±4.5V to ±20V Dual Supply Operation
- Low Crosstalk: -92dB at 1MHz
- High Off-Isolation: -92dB at 1MHz
- TTL/CMOS-Compatible Control Inputs

Ordering InformationPARTTEMP.
RANGEPIN-
PACKAGETOP
MARKMAX4649EKA-T-40°C to +85°C8-SOT23AAIE

Pin Configuration

Rail-to-Rail is a registered trademark of Nippon Motorola, Inc.

_ Maxim Integrated Products 1

For price, delivery, and to place orders, please contact Maxim Distribution at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

ABSOLUTE MAXIMUM RATINGS

(Voltages referenced to GND.)

V+	-0.3V to +44.0V
V	-44.0V to +0.3V
V+ to V	0.3V to +44.0V
All Other Pins (Note 1)	(V 0.3V) to (V+ + 0.3V)
Continuous Current into any Terminal	±10mA
Continuous Current (COM, NO, NC)	±30mA
Peak Current (COM, NO, NC)	
(pulsed at 1ms, 10% duty cycle)	±60mA

Continuous Power Dissipation ($T_A = +70^{\circ}C$)	
8-Pin SOT23 (derate 8.9mW/°C above +70°C)7	14mW
Operating Temperature Range	
MAX4649EKA40°C to -	+85°C
Storage Temperature Range65°C to +	150°C
Junction Temperature+	150°C
Lead Temperature (soldering, 10s)+3	300°C

Note 1: Signals on NO, NC, COM, or IN exceeding V+ or V- are clamped by internal diodes. Limit forward-diode current to maximum current rating.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—Dual ±15V Supplies

(V+ = +15V, V- = -15V, V_{IH} = 2.4V, V_{IL} = 0.8V, T_A = T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at T_A = +25°C.) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	ТҮР	MAX	UNITS
ANALOG SWITCH							
Analog Signal Range	V _{NO} , V _{NC} , V _{COM}			V-		V+	V
On-Resistance	Ron	$I_{COM} = 1 mA; V_{NO} or$	+25°C		33	45	Ω
On-nesistance	HON	$V_{NC} = \pm 10V$	T _{MIN} to T _{MAX}			60	
On-Resistance Matching Between	ΔR_{ON}	$I_{COM} = 1mA; V_{NO} \text{ or}$	+25°C		0.6	5	Ω
Channels	ZH UN	$V_{NC} = \pm 10V$	T _{MIN} to T _{MAX}			6	52
On-Resistance Flatness	R _{FLAT}	I _{COM} = 1mA; V _{NO} or	+25°C		1.5	7	Ω
(Note 4)	(ON)	$V_{NC} = +5V, 0, -5V$	T _{MIN} to T _{MAX}			10	
NO or NC Off-Leakage	I _{NO(OFF)} or	$V_{COM} = -14V, +14V;$ $V_{NO} \text{ or } V_{NC} = +14V,$	+25°C	-2	0.01	2	nA
Current	INC(OFF)	-14V	T_{MIN} to T_{MAX}	-10		10	
COM On-Leakage	1	$V_{COM} = +14V, -14V;$ $V_{NO} \text{ or } V_{NC} = +14V, -14V;$ -14V or floating	+25°C	-4		4	-
Current ICOM(O	ICOM(ON)		$T_{\mbox{MIN}}$ to $T_{\mbox{MAX}}$	-20		20	nA
DIGITAL I/O	1		1				•
Input Logic High Voltage	VIH			2.4			V
Input Logic Low Voltage	VIL					0.8	V
Input Leakage	l _{IN}	$V_{IN} = 0 \text{ or } +5V$		-1		1	μΑ

ELECTRICAL CHARACTERISTICS—Dual ±15V Supplies (continued)

(V+ = +15V, V- = -15V, V_{IH} = 2.4V, V_{IL} = 0.8V, T_A = T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at T_A = +25°C.) (Notes 2, 3)

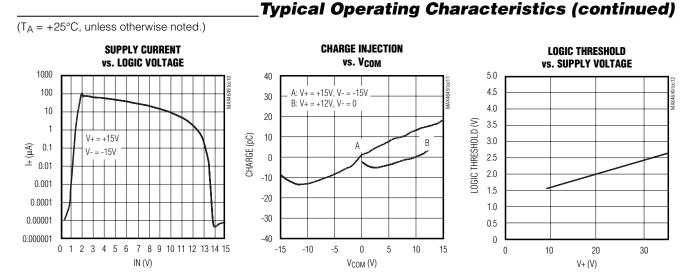
PARAMETER	SYMBOL	CONDITIONS	TA	MIN	ТҮР	MAX	UNITS
DYNAMIC CHARACTERISTICS	6						
Transition Time	t TRANS	$ \begin{array}{l} V_{NO} \text{ or } V_{NC} = \pm 10V; \\ R_L = 1k\Omega; \\ C_L = 35 pF; \ \text{Figure } 2 \end{array} $	+25°C		90	130	ns
	THANS		$T_{\mbox{MIN}}$ to $T_{\mbox{MAX}}$			170	
Break-Before-Make Delay	tD	$V_{NO} \text{ or } V_{NC} = \pm 10V;$ $R_{L} = 300\Omega;$	+25°C	5	10		ns
Dieak-Deloie-Make Delay	ιD	$C_L = 35pF;$ Figure 3	$T_{\mbox{MIN}}$ to $T_{\mbox{MAX}}$	2			115
Charge Injection	Q	V _{GEN} = 0; R _{GEN} = 0; C _L = 1nF; Figure 4			2		рС
Off-Isolation	V _{ISO}	$ f = 1 MHz, R_L = 50\Omega, C_L = 5pF, V_{COM} = 1 V_{RMS}; Figure 5 $			92		dB
Crosstalk		f = 1MHz, R _L = 50 Ω , C _L = 5pF; Figure 6			92		
Total Harmonic Distortion	THD	f = 20Hz to 20kHz, R _L = 600 Ω , 5V _{RMS}			0.015		%
V_{NO} or V_{NC} Off-Capacitance	C _{NO(OFF)} , C _{NC(OFF)}	f = 1MHz; Figure 7			6		pF
COM On-Capacitance	CCOM(ON)	f = 1MHz; Figure 8			17		pF
POWER SUPPLY							
Power-Supply Range				±4.5		±20	V
Positive Supply Current I+	V _{IN} = 5V	+25°C		38	75		
		v IIV — 3 v	T _{MIN} to T _{MAX}			100	
	IT	V _{IN} = 0 or V+	+25°C		0.01	1	μΑ
			T _{MIN} to T _{MAX}			10	
Negative Supply Current	-	$V_{IN} = 0 \text{ or } 5V$	+25°C		0.01	1	μA
regarite cappiy current			T _{MIN} to T _{MAX}			10	μ

ELECTRICAL CHARACTERISTICS—Single +12V Supply

 $(V + = +12V, V - = 0, V_{IH} = 2.4V, V_{IL} = 0.8V, T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at $T_A = +25^{\circ}C$.) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	ТҮР	MAX	UNITS
ANALOG SWITCH	1						
Analog Signal Range	V _{NO} , V _{NC} , V _{COM}			0		V+	V
On-Resistance	Ron	$I_{COM} = 1mA; V_{NO}$	+25°C		68	90	Ω
On-nesistance	HON	or $V_{NC} = +10V$	$T_{\mbox{MIN}}$ to $T_{\mbox{MAX}}$			115	52
On-Resistance Matching Between	ΔR _{ON}	I _{COM} = 1mA; V _{NO}	+25°C		0.7	6	Ω
Channels		or $V_{NC} = +10V$	T_{MIN} to T_{MAX}			7	
On-Resistance Flatness		$I_{COM} = 1mA; V_{NO}$	+25°C		9	17	Ω
(Note 4)	RFLAT (ON)	or V _{NC} = +2V, +6V, +10V	$T_{\mbox{MIN}}$ to $T_{\mbox{MAX}}$			23	52
DYNAMIC							
Transition Time	t trans	$V_{NO} \text{ or } V_{NC} = 0, \\ 10V \text{ or } 10V, 0; \\ R_L = 1k\Omega; \\ C_L = 35pF; \\ Figure 2$	+25°C		116	165	ns
			$T_{\mbox{MIN}}$ to $T_{\mbox{MAX}}$			200	
	tD	$V_{NO} \text{ or } V_{NC} =$ +10V; RL = 300 Ω ; CL = 35pF; Figure 3	+25°C	1	36		50
Break-Before-Make Delay			$T_{\mbox{MIN}}$ to $T_{\mbox{MAX}}$	1			ns
Charge Injection	Q	$V_{GEN} = 0; R_{GEN} = 0;$ $C_L = 1nF; Figure 4$	+25°C		1		рС
POWER SUPPLY							
Power Supply Range				9		36	V
	l+	V _{IN} = +5V	+25°C		22	40	
Positive Supply Current			$T_{\mbox{MIN}}$ to $T_{\mbox{MAX}}$			50	μΑ
		V _{IN} = 0 or V+	+25°C		0.01	1	
			T _{MIN} to T _{MAX}			10	

Note 2: The algebraic convention is used in this data sheet; the most negative value is shown in the minimum column.


Note 3: All parts are 100% tested at +25°C. Limits across the full temperature range are guaranteed by design and correlation.

Note 4: Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal range.

ON-RESISTANCE vs. VCOM **ON-RESISTANCE vs. V**COM **ON-RESISTANCE vs. V**COM (DUAL SUPPLIES) (SINGLE SUPPLY) AND TEMPERATURE 90 100 50 A: V+ = +8V, V- = -8V B: V+ = +10V, V- = -10V V+ = +9V 90 45 80 C: V+ = +12V, V- = -12V 80 D: V+ = +15V, V- = -15V 40 $T_A = +85^{\circ}C$ 70 E: V+ = +20V, V- = -20V $V_{+} = +12V$ 70 35 $R_{ON}\left(\Omega\right)$ $T_A = +25^{\circ}C$ G 60 $R_{ON}(\Omega)$ 60 30 Ron В $V_{+} = +18V$ 50 С 50 25 D $V_{+} = +24V$ $T_A = -40^{\circ}C$ 40 - V+ = +30V 40 20 $V_{+} = +15V$ 30 30 15 V- = -15V $V_{+} = +36V$ 20 20 10 10 10 -20 -10 0 10 20 0 20 30 40 -15 -10 -5 0 5 15 V_{COM} (V) V_{COM} (V) V_{COM} (V) **ON-RESISTANCE vs. V**COM **ON-LEAKAGE CURRENT OFF-LEAKAGE CURRENT** AND TEMPERATURE vs. TEMPERATURE vs. TEMPERATURE 100 10 1 V + = +15VV + = +12V $V_{+} = +15V$ V- = -15V 90 V- = 0 V- = -15V 1 $V_{COM} = \pm 10V$ $V_{COM} = \pm 10V_{-}$ 0.1 80 $V_{NC} \text{ OR } V_{NO} = \pm 10V$ =+85°C TΑ OFF-LEAKAGE (nA) 0.1 LEAKAGE (nA) $R_{ON}(\Omega)$ 70 $T_A = +25^{\circ}C$ 0.01 DUAL SUPPLIES 0.01 60 Ś DUAL SUPPLIES 0.001 50 $T_A = -40^{\circ}C$ 0.001 0.0001 40 30 0.00001 0.0001 -40 -20 0 20 40 60 80 -40 -20 20 60 80 0 5 10 15 0 40 TEMPERATURE (°C) TEMPERATURE (°C) V_{COM} (V) TOTAL HARMONIC DISTORTION SUPPLY CURRENT vs. FREQUENCY vs. TEMPERATURE FREQUENCY RESPONSE 0 100 100 V + = +15V-10 V+ = +15V 90 ON-RESPONSE V- = -15V 10 -20 V- = -15V 80 5V_{RMS} SIGNAL IN = 5V-30 600Ω SOURCE 70 1 -40 (%) AND LOAD LOSS (dB) DISTORTION l+ (μA) 60 -50 OFF-ISOLATION 0.1 $|_{+}$ -60 50 CROSSTAL SIGNAL DISTORTION -70 0.01 40 -80 MEASUREMENT LIMITS 30 -90 0.001 20 -100 -110 0.0001 10 0.1 10 100 1000 10 100 1k 10k 100k -40 -15 10 35 60 85 1 TEMPERATURE (°C) FREQUENCY (MHz) FREQUENCY (Hz)

 $(T_A = +25^{\circ}C, \text{ unless otherwise noted.})$

Pin Description

PIN	NAME	FUNCTION
1	СОМ	Analog Switch Common
2	NC	Normally Closed Switch Terminal. NC is connected to COM when IN is low.
3	GND	Ground
4	V+	Positive Supply Voltage Input
5	N.C.	No Connection
6	IN	Digital Control Input
7	V-	Negative Supply Voltage Input
8	NO	Normally Open Switch Terminal. NO is connected to COM when IN is high.

Detailed Description

The MAX4649 is a high-voltage, single-pole/doublethrow (SPDT) analog switch that operates from dual ± 4.5 V to ± 20 V supplies or from a single ± 9 V to ± 36 V supply. The MAX4649 has one normally closed (NC) switch and one normally open (NO) switch. CMOS switch construction allows bidirectional processing of rail-to-rail analog signals.

The MAX4649 has break-before-make switching. The transition time for switching from one input to the other is typically 90ns. The off-leakage is typically less than 10pA, and on-leakage is typically less than 20pA.

Applications Information

Overvoltage Protection

Proper power-supply sequencing is recommended for all CMOS devices. Do not exceed the absolute maximum ratings, because stresses beyond the listed ratings can cause permanent damage to the devices. Always sequence V+ on first, then V-, followed by the logic inputs, NO_, or COM. If power-supply sequencing is not possible, add two small signal diodes (D1, D2) in series with supply pins (Figure 1). Adding diodes reduces the analog signal range to one diode drop below V+ and one diode drop above V-, but does not affect the device's low switch resistance and low

leakage characteristics. Device operation is unchanged, and the difference between V+ and V- should not exceed 44V. These protection diodes are not recommended when using a single supply.

Off-Isolation at High Frequencies

In 50 Ω systems, the high-frequency on-response of these parts extends from DC to above 300MHz, with a typical loss of -3.6dB. When the switch is turned off,

however, it behaves like a capacitor, and off-isolation decreases with increasing frequency. This effect is more pronounced with higher source and load impedances. Above 5MHz, circuit board layout becomes critical. The graphs shown in the *Typical Operating Characteristics* were taken using a 50 Ω source and load connected with BNC connectors.

Test Circuits/Timing Diagrams

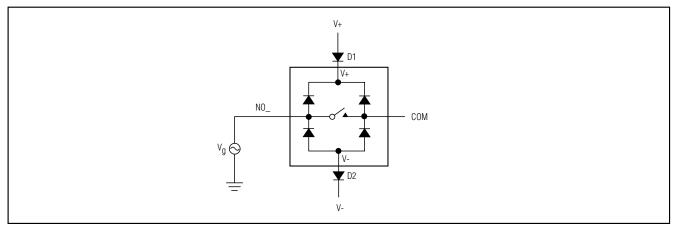


Figure 1. Overvoltage Protection

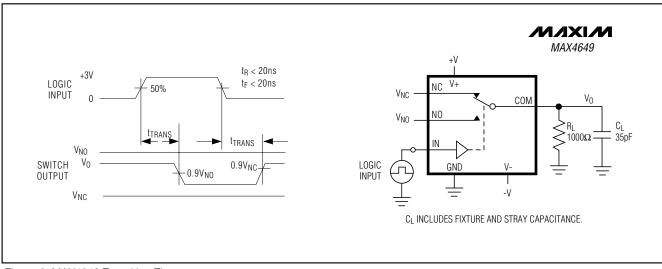


Figure 2. MAX4649 Transition Time

M/IXI/N

7

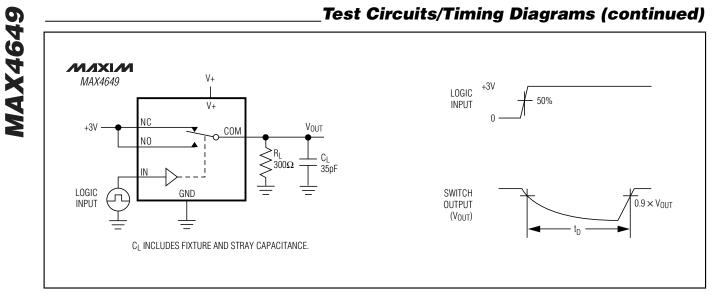


Figure 3. MAX4649 Break-Before-Make Test Circuit

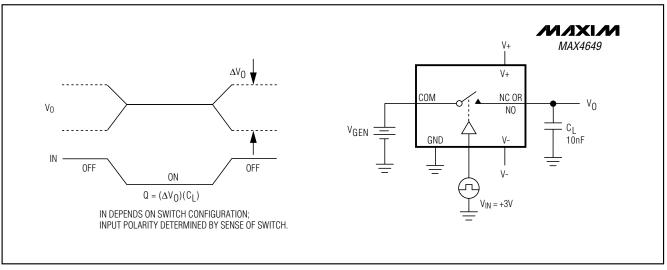
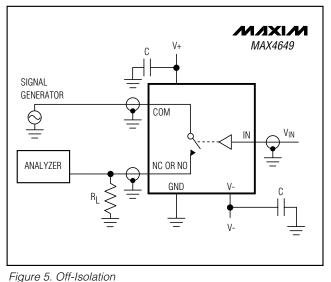



Figure 4. Charge Injection

$\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & \\ &$

Test Circuits/Timing Diagrams (continued)

Figure 7. Channel-Off Capacitance

SIGNAL GENERATOR V_{IN} $V_$

Figure 6. Crosstalk Between Switches

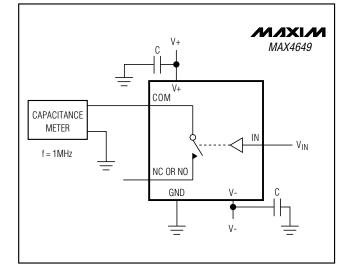
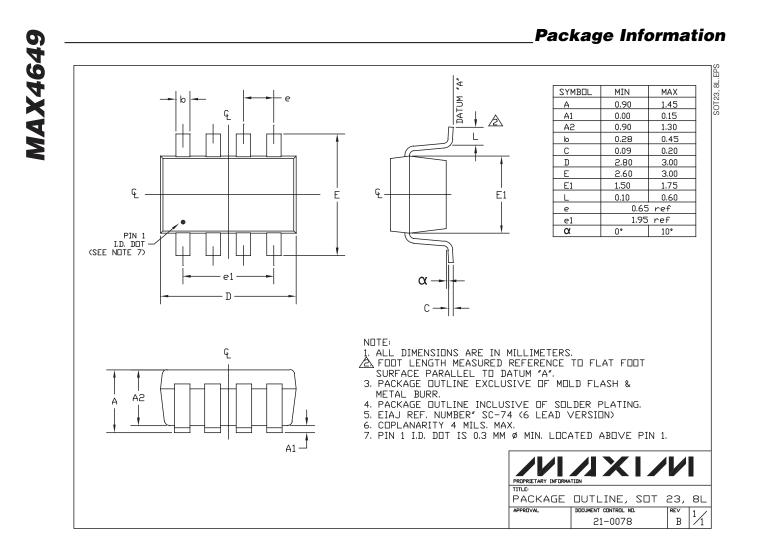



Figure 8. COM On-Capacitance

Chip Information

TRANSISTOR COUNT: 33 PROCESS TECHNOLOGY: CMOS

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

_____Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

© 2001 Maxim Integrated Products

Printed USA

MAXIM is a registered trademark of Maxim Integrated Products.