

LMO78 0.5 Series

Wide Input Non-Isolated & Regulated, Single Positive/Negative Output

Switching Regulator

Ffficiency up to 93%

Operating temperature range: -40°C ~ +85°C

Short circuit protection (SCP)

Open frame SIP packageUltra low no-load power consumption

The LMO78_0.5A series is a high efficiency switching regulator and ideal substitute for the LM78xx series three-terminal linear regulators. The product is featured with high efficiency, low loss, short circuit protection and no heat sink is required. This series is widely used in industrial control, instrumentation, and electric power applications.

Common specifications			
Short circuit protection:	Continuous, automatic recovery		
No-load input current:	0.2mA TYP, 1.5mA MAX		
Reverse Polarity Input:	Forbidden		
Input Filter:	Capacitor Filter		
Temperature rise at full load:	25°C MAX, 15°C TYP		
Cooling:	Free air convection		
Operation temperature range:	-40°C~+85°C Power derating above 71°C		
Storage temperature range:	-55°C ~+125°C		
Pin welding resistance temperature:	260°C MAX, 1.5mm from case for 10 sec		
Operating case temperature:	100°C		
Storage humidity range:	< 95%RH		
Package material:	Plastic [UL94-V0]		
MTBF:	>2,000,000 hours +25°C MIL-HDBK-217F		
Weight:	1g		

±4 ±3 ±0.4 ±0.6	% %
	%
±0.6	
	%
75	mVp- p
170	°C
850	KHz
250	mV
2	ms
0.03	%/°C
	170 850 250

^{*} Test ripple and noise by "parallel cable" method. With the load lower than 10%, maximum ripple and noise will be 150mVp-p.

Note:

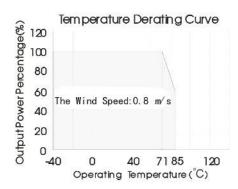
- 1. The max. capacitive load should be tested within the input voltage range and under full load conditions;
- 2. Without any special statement, all indexes are only specific to positive output application;
- Unless otherwise specified, data in this datasheet should be tested under the conditions of Ta=25°C, humidity<75% when inputting nominal voltage and outputting rated load;
- All index testing methods in this datasheet are based on our Company's corporate standards;
- 5. The performance indexes of the product models listed in this manual are as above, but some indexes of non-standard model products will exceed the above-mentioned requirements, and please directly contact with our technician for specific information;
- 6. Specifications subject to change without prior notice.

Model selection:

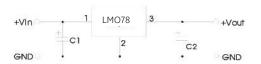
Output specifications

LMO78_yy-pp

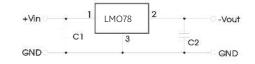
LM=Series; S=case; ##=Vout; pp=output current

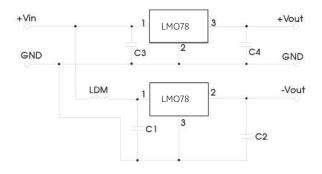

LMO78 05-0.5

LM= Series; S= SIP Case; ##= 5Vout; pp=0.5A


EMC sp	EMC specifications					
EMI	CE	CISPR22/EN55022	CLASS B	(External circuit refer to EMC recommended circuit, 2) or EMC module application circuit)		
EMI	RE	CISPR22/EN55022	CLASS B	(External circuit refer to EMC recommended circuit, 2) or EMC module application circuit)		
EMS	ESD	IEC/EN61000-4-2	Contact ±4KV	perf. Criteria B		
EMS	RS	IEC/EN61000-4-3	10V/m	perf. Criteria A		
EMS	EFT	IEC/EN61000-4-4	±1KV	perf. Criteria B (External circuit refer to EMC recommended circuit, ①)		
EMS	CS	IEC/EN61000-4-6	3 Vr.m.s	perf. Criteria A		
EMS	Voltage dips, short and interruptions immunity	IEC/EN61000-4-29	0%-70%	perf. Criteria B		

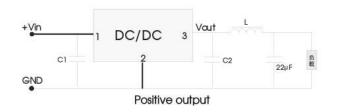
Part Number	Input Voltage [VDC]	Output Voltage	Output Current	Efficiency	Max. capacitive load
	Nominal (Range)	[VDC]	[mA]	[%, min/typ]	[μF]
LMO78_03-0.5	24 (4.75-36)	3.3	500	78/81	680
LMO78_05-0.5	24 (6.5-36)	5	500	82/85	680
	12 (7-31)	-5	-300	78/81	330
LMO78_12-0.5	24 (15-36)	12	500	89/92	680
	12 (8-24)	-12	-150	82/85	330
LMO78_15-0.5	24 (19-36)	15	500	90/93	680
	12 (8-21)	-15	-150	82/85	330

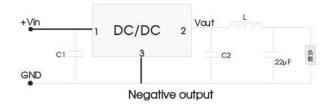

Typical characteristics


Typical application circuit

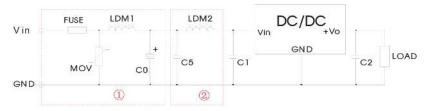
Positive output application circuit

Negative output application circuit

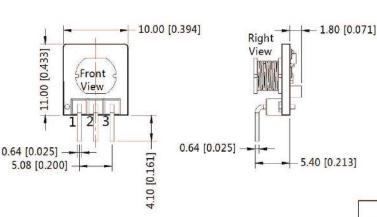

Part number	C1,C3 (Ceramic Capacitor)	C2,C4 (Ceramic Capacitor)
LMO78_03-0.5	10μF/50V	22μF/10V
LMO78_05-0.5	10μF/50V	22μF/10V
LMO78_12-0.5	10μF/50V	22μF/25V
LMO78_15-0.5	10μF/50V	22μF/25V


Note:

- 1. C1 and C2 are required and should be connected close to the pin terminal of the module.
- The capacitance of C1 and C2 refer to Sheet 1, it can be increased properly if required, and tantalum or low ESR electrolytic capacitors may also suffice.
- 3. When the products used as the circuit like figure 3, an inductor named as LDM up to $10\mu H$ is recommended in the circuit to reduce the mutual interference.
- 4. Cannot be used in parallel for output and hot swap.
- 5. Operation under no load will not damage these devices, however they may not meet all specifications. In order to ensure the converter can work reliably with high efficiency, please parallel a resistor on the output side (The sum of the efficient power and resistor consumption power is not less than 10%).


Typical application circuit

To reduce the output ripple furtherly, it is suggested to connect a "LC" filter at the output terminal, and recommended value of L is $10\mu H-47\mu H$.


EMC solution-recommended circuit

Part①in the Fig. 5 is for EMS test, part②is for EMI filtering; parts①and②can be added based on actual requirement.

FUSE	MOV	LDM1	CO	C1/C2	C5	LDM2
Selected based on the actual input current from the customer	S10K35	82µН	680μF /50V	Refer to typical application circuit	4.7μF /50V	12µН

Mechanical dimension and footprint

THIRD ANGLE PROJECTION (

Note: Grid 2.54*2.54mm

Note: Unit:mm[inch]

Pin diameter tolerances :±0.10[±0.004] General tolerances:±0.50[±0.020]

Pin-Out			
Pin	Positive Output	Negative Output	
1	Vin	Vin	
2	GND	-Vo	
3	+Vo	GND	