Features

- **DC to DC Converter 1.9V / 2.5V (DCDC1)**
- **LDO Regulator 2.7V / 2.8V (LDO1)**
- **LDO Regulator 2.8V (LDO2)**
- **LDO Regulator 2.8V (LDO3)**
- **LDO Regulator 2.47V / 2.66 (LDO4) Backup Battery Supply**
- **LDO Regulator 1.72V / 2.66 (LDO5) RTC Supply**
- **Reset Generator**

1. Description

The AT73C211 is a power management device for digital, analog, interface, and, in some cases, RF and backup sections of add-on modules used as accessories in popular handheld devices like mobile phones, digital still cameras, PDAs and a wide range of multimedia devices. The AT73C211 can also be used to supply the CPU with a high-efficiency DC-DC Converter, a radio frequency transceiver with high power supply rejection ratio (PSRR) and noise performance low-dropout (LDO) regulators, or memories and analog sections with independent LDO channels.

In addition, the AT73C211 integrates LDO regulators to recharge backup elements and convert its voltage to microcontroller RTC supply.

LDO regulators and DC-DC converters output voltage can be programmed by a mask change.

Power Management

AT73C211

2. Functional Block Diagram

 2

3. Pin Description

Table 3-1. Pin Description

Signal	Pin	Type	A/D	Description
VBATT	E ₁	VBATT1		Input supply
ON/OFF	D ₅	IPD	D	Key ON/OFF input, 1.5M Ohm pull-down
UP-ON/OFF	C ₆		D	Hold the Power ON from MCU
RESET-B	F ₆	OD	D	Reset open collector output. Need external pull-up to VBATT
VIN-REG1	G ₆	VBATT2		Input supply for DC/DC converter
LX	F7	O	A	DC/DC converter output inductor
ECO-MODE	G ₅	IPD	D	Eco Mode, from MCU - sets VCORE, V-PAD in low power mode, 1.5M Ohm pull-down
VCORE	G ₄	\circ	A	DC/DC converter output (MCU core supply)
GND1	G7	Ground		Ground of DC/DC converter
VIN-REG2	A5	VBATT3		Input supply
EN-ANALOG-B	B ₅	IPD	D	Enable the analog LDO, active at logic 0, 1.5M Ohm pull-down
AVCC	B4	Ω	A	Analog LDO output (MCU chip analog supply)
AGND	Α7	Ground		Ground of AVCC, V-PAD and RTC LDO
V-PAD	B ₆	\circ	A	Digital LDO output (MCU chip digital PAD supply)
VCC-RTC	B7	\circ	A	MCU RTC supply output
BAT-RTC	A ₆	I/O	A	RTC backup battery charger - must be connected through a 2.2K Ohm resistor to the backup battery
VIN-RF	A ₃	VBATT4		Input supply
AGND ₂	A ₂	Ground		Ground
VIN-VIB	D7	VBATT ₅		Input supply for vibrator LDO
EN-VIB	E ₆	IPD	D	Vibrator driver input (from baseband chip), 1.5M Ohm pull-down
VVIB	E7	\circ	A	Vibrator LDO output (Voltage regulator)
GND	D1	Ground		Ground
CREF	C7	\circ	A	Bandgap decoupling - 100 nF capacitor must be connected from this pin to ground
BB1	D ₄	\mathbf{I}	D	$BB1 = 1 \Rightarrow VCORE = 2.5V$, $BB1 = 0 \Rightarrow VCORE = 1.9V$
TEST	E ₅	IPD	A	Connect to AGND

4. Functional Description

4.1 DC to DC Converter 1.9V/2.5V - 300 mA for Coprocessor Core

The DC-to-DC converter is a synchronous mode DC-to-DC "buck"-switched regulator using fixed-frequency architecture (PWM) and capable of providing 300 mA of continuous current. It has two levels of voltage programming for the co-processor core (1.9V or 2.5V). The operating supply range is from 3.1V to 5.5V, making it suitable for Li-Ion, Li-polymer or Ni-MH battery applications. The DC-to-DC converter is based on pulse width modulation architecture to control the noise perturbation for switching noise sensitive applications (Wireless). The operating frequency is set to 900 kHz using an internal clock, allowing the use of a small surface inductor and moderate output voltage ripple. The controller consists of a reference ramp generator, a feedback comparator, the logic driver used to drive the internal switches, the feedback circuits used to manage the different modes of operation and the over-current protection circuits. An economic mode has been defined to reduce quiescent current. A low-dropout voltage regulator in parallel to the DC-to-DC converter minimizes standby current consumption during standby mode.

Low undershoot voltage is expected when going from PWM to LDO mode and vice-versa. The circuit is designed in order to avoid any spikes when transition between two modes is enabled.

Figure 4-2. Low-power/Full-power DC-to-DC Converter Transition

 4

[Figure 4-3](#page-4-0) shows typical efficiency levels of the DC-to-DC converter for several input voltages.

Note: $1. L = 10 \mu H$, $ESR = 0.2 \text{ Ohm}$, $c = 22 \mu F$, $@ESR = 0.1 \text{ Ohm}$

4.2 LDO1, LDO3 Regulators

The PSRR measures the degree of immunity against voltage fluctuations achieved by a regulator. An example of its importance is in the case of a GSM phone when the antenna switch activates the RF power amplifier (PA). This causes a current peak of up to 2A on the battery, with an important spike on the battery voltage. The voltage regulator must filter or attenuate this spike.

Figure 4-4. Functional Diagram of LDO Single Mode

[Figure 4-5](#page-5-0) shows the Power Supply Rejection Ratio as functions of frequency and battery voltage. If a noise signal occurs at 1 kHz when the battery voltage is at 3V, the noise will be attenuated by 70 dB (divided by more than 3000) at the output of the regulator. Consequently, a 2V spike on the battery is attenuated to less than 1 mV, which is low enough to avoid any risk of malfunction by a device supplied by the regulator.

AT73C211

4.3 LDO2 Regulator

The first approach to reducing standby current is to decrease the standby current inside the regulators themselves. Atmel achieves this by implementing a dual mode architecture where two output transistors are used in parallel as switches in the regulation loop. [Figure 4-6](#page-6-0) illustrates this architecture.

In [Figure 4-6,](#page-6-0) the left-hand output transistor is sized large enough for the required output current under full load, for example, 100 mA. In order to achieve a sufficient margin of stability, the current sensing block uses a bias cell where the current consumption is linked to the required output current. The higher the output current, the higher the bias current needed to stabilize the loop.

The right-hand output transistor delivers a very small output current, typically less than 1 mA, sufficient only to maintain the output voltage with enough current to cover the leakage current of the supplied device. This requires a much smaller bias current and, consequently, a smaller standby current inside the regulator.

5. Electrical Characteristics

5.1 Absolute Maximum Ratings

5.2 DC to DC Converter

Table 5-1. DC to DC Converter Electrical Characteristics $(t_{AMB} = -20^\circ C$ to 85° C, VIN = 3.2V to 4.2V unless otherwise specified)

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
V_{OUT}		$BB1 = 0$		1.9		\vee
	Output Voltage	$BB1 = 1$		2.5		\vee
I_{OUT}		PWM Mode (ECO-MODE = 0)		150	300	mA
	Output Current	LDO Mode (ECO-MODE = 1)			5	mA
I_{OFF}	Standby Current			0.1	1	μA
E_{FF}	Efficiency	I_{OUT} = 10 mA to 200 mA @ 1.9V		90		$\%$
ΔV_{DCLD}	Static Load Regulation	10% to 90% of $I_{OUT(MAX)}$		$\overline{7}$		mV
ΔV _{TRLD}	Transient Load Regulation	10% to 90% of $I_{\text{OUT}(MAX)}$, $T_B = T_F = 5 \mu s$		30		mV
$\Delta\rm{V}_{DCLE}$	Static Line Regulation	10% to 90% of $I_{OUT(MAX)}$, $VIN = 3.2V$ to 4.2V		20		mV
ΔV TRLE	Transient Line Regulation	10% to 90% of $I_{OUT(MAX)}$, $VIN = 3.2V$ to 4.2V		35		mV
PSRR	Ripple Rejection	LDO Mode up to 1 KHz	40	45		dB
ΔV_{LPFP}	Overshoot Voltage	Voltage drop from LDO (ECO- $MODE = 1$) to PWM (ECO- $MODE = 0$		Ω	10	mV
ΔV_{FPLP}	Undershoot Voltage	Voltage drop from PWM (ECO- $MODE = 0$) to LDO (ECO-MODE $= 1$	-15	0		mV

5.3 LDO1 Regulator Electrical Characteristics

Table 5-3. LDO1 Electrical Characteristics $(t_{AMB} = -20^{\circ}C$ to 85 $^{\circ}C$, VIN = 3.2V to 4.2V unless otherwise specified)

Table 5-4. LDO1 External Components

5.4 LDO2 Regulator Electrical Characteristics

TAND								
Symbol	Parameter	Conditions	Min	Typ	Max	Unit		
V_{OUT}	Output Voltage			2.8		V		
I_{OUT}		PWM Mode (ECO-MODE = 0)			80	mA		
	Output Current	LDO Mode (ECO-MODE = 1)			5	mA		
$I_{\rm QC}$		PWM Mode (ECO-MODE = 0)		100		μA		
	Quiescent Current	LDO Mode (ECO-MODE = 1)			10	μA		
ΔV_{OUT}	Line Regulation	V_{IN} : 3V to 3.4V, I_{OUT} = 80 mA		1	$\overline{2}$	mV		
ΔV_{PEAK}	Line Regulation Transient	Same as above, $T_B = T_F = 5 \mu s$		1.5	2.85	mV		
ΔV_{OUT}	Load Regulation	10% - 90% I_{OUT} VIN = 3V			3	mV		
ΔV_{PEAK}	Load Regulation Transient	Same as above, $T_R = T_F = 5 \,\mu s$		1.2	2.4	mV		
PSRR	Ripple rejection	$F = 217$ Hz; VIN = 3.6V	70	73		dB		
V_N	Output Noise	BW: 10 Hz to 100 kHz		29	37	μV_{RMS}		
T_R	Rise Time	100% I_{OUT} , 10% - 90% V_{OUT}			50	μs		
l _{SD}	Shut Down Current					μA		

Table 5-5. LDO2 Electrical Characteristics $(t_{AMB} = -20^{\circ}C$ to 85 $^{\circ}C$, VIN = 3.2V to 4.2V unless otherwise specified)

Table 5-6. LDO2 External Components

5.5 LDO3 Regulator Electrical Characteristics

Table 5-7. LDO3 Electrical Characteristics $(t_{AMB} = -20^{\circ}C$ to 85°C, VIN = 3.2V to 4.2V unless otherwise specified)

Table 5-8. LDO3 External Components

5.6 LDO4 Regulator Electrical Characteristics

Table 5-9. LDO4 Electrical Characteristics $(t_{AMB} = -20^{\circ}C$ to 85 $^{\circ}C$, VIN = 3.2V to 4.2V unless otherwise specified)

Table 5-10. LDO4 External Components

5.7 LDO5 Regulator Electrical Characteristics

Table 5-11. LDO5 Electrical Characteristics $(t_{AMB} = -20^{\circ}C$ to 85 $^{\circ}C$, VIN = 3.2V to 4.2V unless otherwise specified)

Table 5-12. LDO4 External Components

5.8 Package Outline (Top view)

Figure 5-1. Forty-nine Ball FBGA Package (Top View)

6. Revision History

Table 6-1. Revision History

Atmel Corporation Atmel Operations

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 487-2600

Regional Headquarters

Europe

Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland Tel: (41) 26-426-5555 Fax: (41) 26-426-5500

Asia

Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong Tel: (852) 2721-9778 Fax: (852) 2722-1369

Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

Memory 2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

La Chantrerie BP 70602 44306 Nantes Cedex 3, France Tel: (33) 2-40-18-18-18 Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards

Zone Industrielle 13106 Rousset Cedex, France Tel: (33) 4-42-53-60-00 Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland Tel: (44) 1355-803-000 Fax: (44) 1355-242-743

RF/Automotive

Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany Tel: (49) 71-31-67-0 Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/

High Speed Converters/RF Datacom Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex, France Tel: (33) 4-76-58-30-00 Fax: (33) 4-76-58-34-80

Literature Requests www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDI-
TIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILIT **WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR** PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTER **OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.** Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel's products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© Atmel Corporation 2005. All rights reserved. Atmel®, logo and combinations thereof, Everywhere You Are® and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

