ne<mark>x</mark>peria

Important notice

Dear Customer,

On 7 February 2017 the former NXP Standard Product business became a new company with the tradename **Nexperia**. Nexperia is an industry leading supplier of Discrete, Logic and PowerMOS semiconductors with its focus on the automotive, industrial, computing, consumer and wearable application markets

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

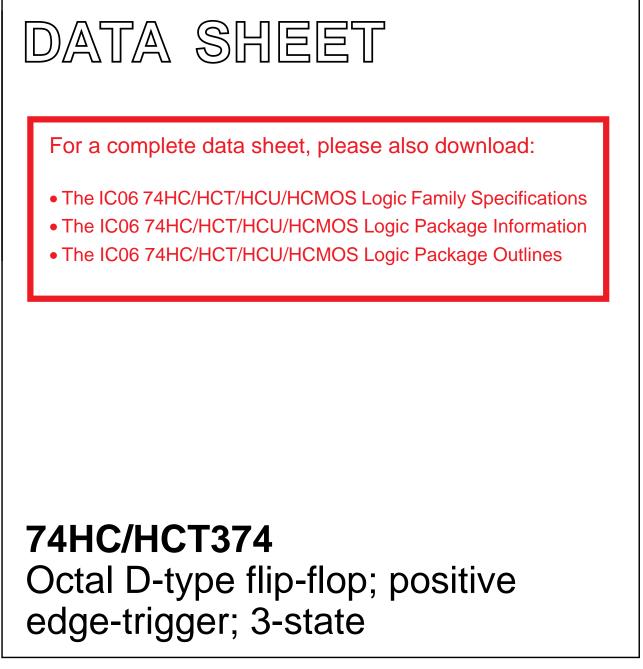
Instead of <u>http://www.nxp.com</u>, <u>http://www.philips.com/</u> or <u>http://www.semiconductors.philips.com/</u>, use <u>http://www.nexperia.com</u>

Instead of sales.addresses@www.nxp.com or sales.addresses@www.semiconductors.philips.com, use **salesaddresses@nexperia.com** (email)

Replace the copyright notice at the bottom of each page or elsewhere in the document, depending on the version, as shown below:

- © NXP N.V. (year). All rights reserved or © Koninklijke Philips Electronics N.V. (year). All rights reserved

Should be replaced with:


- © Nexperia B.V. (year). All rights reserved.

If you have any questions related to the data sheet, please contact our nearest sales office via e-mail or telephone (details via **salesaddresses@nexperia.com**). Thank you for your cooperation and understanding,

Kind regards,

Team Nexperia

INTEGRATED CIRCUITS

Product specification File under Integrated Circuits, IC06 December 1990

74HC/HCT374

FEATURES

- 3-state non-inverting outputs for bus oriented applications
- 8-bit positive, edge-triggered register
- Common 3-state output enable input
- Independent register and 3-state buffer operation
- Output capability: bus driver
- I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT374 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

QUICK REFERENCE DATA

 $GND = 0 \text{ V}; \text{ } T_{amb} = 25 \text{ }^{\circ}C; \text{ } t_r = t_f = 6 \text{ } ns$

The 74HC/HCT374 are octal D-type flip-flops featuring separate D-type inputs for each flip-flop and 3-state outputs for bus oriented applications. A clock (CP) and an output enable (\overline{OE}) input are common to all flip-flops.

The 8 flip-flops will store the state of their individual D-inputs that meet the set-up and hold times requirements on the LOW-to-HIGH CP transition.

When \overline{OE} is LOW, the contents of the 8 flip-flops are available at the outputs. When \overline{OE} is HIGH, the outputs go to the high impedance OFF-state. Operation of the \overline{OE} input does not affect the state of the flip-flops.

The "374" is functionally identical to the "534", but has non-inverting outputs.

SYMBOL	PARAMETER	CONDITIONS	TYP	UNIT	
STWIDOL	PARAMETER	CONDITIONS	нс	нст	UNIT
t _{PHL} / t _{PLH}	propagation delay CP to Q _n	C _L = 15 pF; V _{CC} = 5 V	15	13	ns
f _{max}	maximum clock frequency		77	48	MHz
CI	input capacitance		3.5	3.5	pF
C _{PD}	power dissipation capacitance per flip-flop	notes 1 and 2	17	17	pF

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

 $P_D = C_{PD} \times V_{CC}^2 \times f_i + \Sigma (C_L \times V_{CC}^2 \times f_o)$ where:

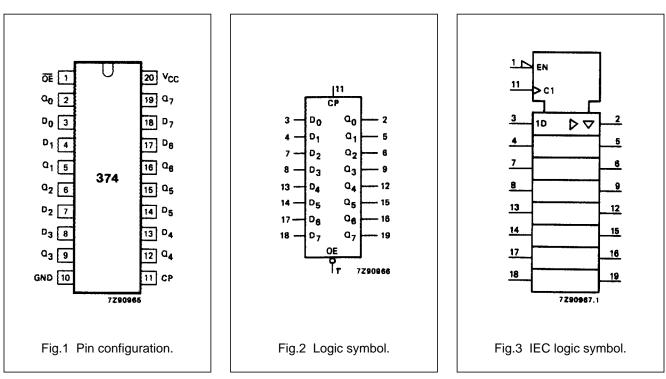
 f_i = input frequency in MHz

 f_0 = output frequency in MHz

 $\Sigma (C_L \times V_{CC}^2 \times f_o) = \text{sum of outputs}$

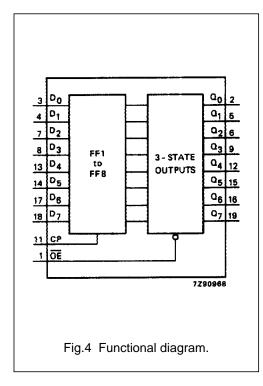
C_L = output load capacitance in pF

 V_{CC} = supply voltage in V


2. For HC the condition is $V_I = GND$ to V_{CC} For HCT the condition is $V_I = GND$ to $V_{CC} - 1.5$ V

ORDERING INFORMATION

See "74HC/HCT/HCU/HCMOS Logic Package Information".


PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
1	ŌĒ	3-state output enable input (active LOW)
2, 5, 6, 9, 12, 15, 16, 19	Q_0 to Q_7	3-state flip-flop outputs
3, 4, 7, 8, 13, 14, 17, 18	D ₀ to D ₇	data inputs
10	GND	ground (0 V)
11	СР	clock input (LOW-to-HIGH, edge-triggered)
20	V _{CC}	positive supply voltage

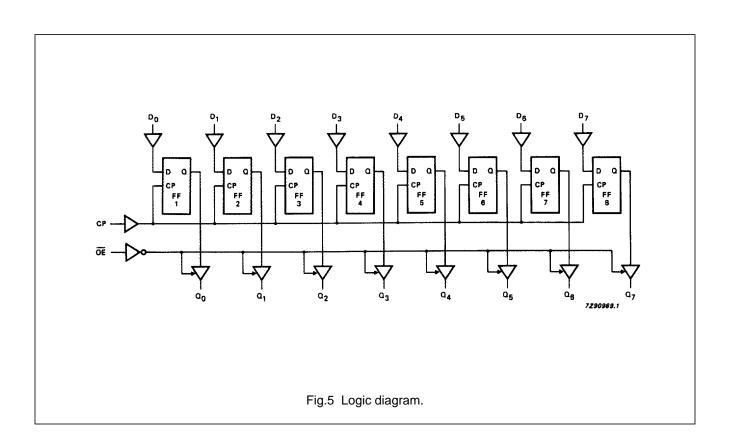
74HC/HCT374

74HC/HCT374

FUNCTION TABLE

OPERATING		NPUT	S	INTERNAL	OUTPUTS		
MODES	ŌE	СР	D _n	FLIP-FLOPS	Q ₀ to Q ₇		
load and read register	L	↑ ↑	l h	L H	L H		
load register and disable outputs	H H	↑ ↑	l h	L H	Z Z		

Notes


1. H = HIGH voltage level

h = HIGH voltage level one set-up time prior to the LOW-to-HIGH CP transition

L = LOW voltage level

I = LOW voltage level one set-up time prior to the LOW-to-HIGH CP transition

- Z = high impedance OFF-state
- \uparrow = LOW-to-HIGH CP transition

74HC/HCT374

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: bus driver I_{CC} category: MSI

AC CHARACTERISTICS FOR 74HC

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

		T _{amb} (°C)								TEST CONDITIONS	
SYMBOL	PARAMETER	74HC									WAVEEODMS
		+25			-40 to +85		-40 to +125		UNIT	V _{CC} (V)	WAVEFORMS
		min.	typ.	max.	min.	max.	min.	max.			
t _{PHL} / t _{PLH}	propagation delay CP to Q _n		50 18 14	165 33 28		205 41 35		250 50 43	ns	2.0 4.5 6.0	Fig.6
t _{PZH} / t _{PZL}	$\frac{3\text{-state output enable time}}{\overline{OE}} \text{ to } Q_n$		41 15 12	150 30 26		190 38 33		225 45 38	ns	2.0 4.5 6.0	Fig.7
t _{PHZ} / t _{PLZ}	$\frac{3\text{-state output disable time}}{\overline{\text{OE}} \text{ to } Q_n}$		50 18 14	150 30 26		190 38 33		225 45 38	ns	2.0 4.5 6.0	Fig.7
t _{THL} / t _{TLH}	output transition time		14 5 4	60 12 10		75 15 13		90 18 15	ns	2.0 4.5 6.0	Fig.6
t _W	clock pulse width HIGH or LOW	80 16 14	19 7 6		100 20 17		120 24 20		ns	2.0 4.5 6.0	Fig.6
t _{su}	set-up time D _n to CP	60 12 10	14 5 4		75 15 13		90 18 15		ns	2.0 4.5 6.0	Fig.8
t _h	hold time D _n to CP	5 5 5	-6 -2 -2		5 5 5		5 5 5		ns	2.0 4.5 6.0	Fig.8
f _{max}	maximum clock pulse frequency	6.0 30 35	23 70 83		4.8 24 28		4.0 20 24		MHz	2.0 4.5 6.0	Fig.6

74HC/HCT374

DC CHARACTERISTICS FOR 74HCT

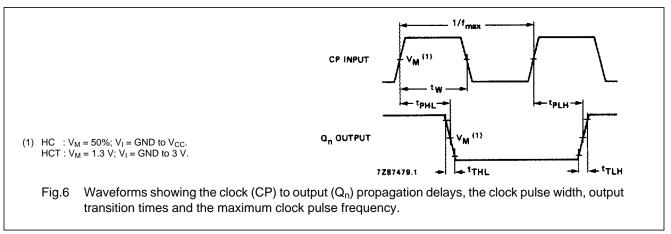
For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

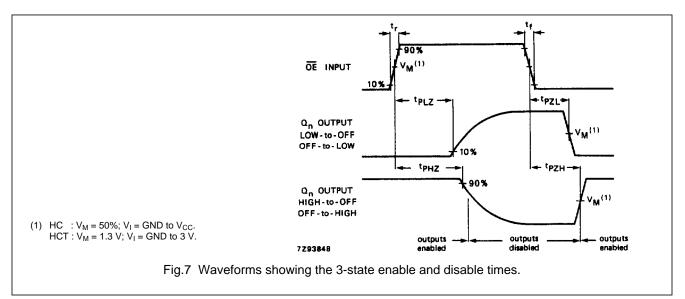
Output capability: bus driver I_{CC} category: MSI

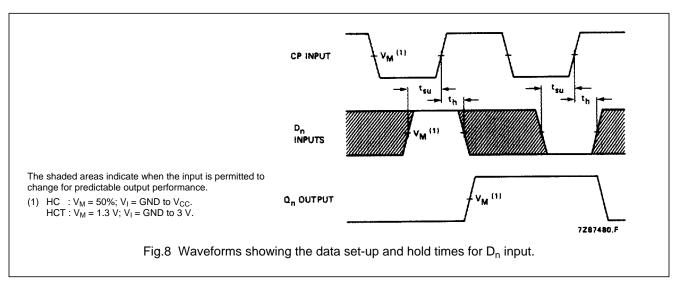
Note to HCT types

The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT
ŌĒ	1.25
CP	0.90
D _n	0.35


AC CHARACTERISTICS FOR 74HCT


 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$


		T _{amb} (°C)								TEST CONDITIONS		
SYMBOL	PARAMETER	74HCT									WAVEFORMS	
		+25			-40 to +85		-40 to +125		UNIT	V _{CC} (V)	WAVEFORMS	
		min.	typ.	max.	min.	max.	min.	max.				
t _{PHL} / t _{PLH}	propagation delay CP to Q _n		16	32		40		48	ns	4.5	Fig.6	
t _{PZH} / t _{PZL}	$\begin{array}{c} \text{3-state output enable time} \\ \overline{\text{OE}} \text{ to } Q_n \end{array}$		16	30		38		45	ns	4.5	Fig.7	
t _{PHZ} / t _{PLZ}			18	28		35		42	ns	4.5	Fig.7	
t _{THL} / t _{TLH}	output transition time		5	12		15		18	ns	4.5	Fig.6	
t _W	clock pulse width HIGH or LOW	19	11		24		29		ns	4.5	Fig.6	
t _{su}	set-up time D _n to CP	12	7		15		18		ns	4.5	Fig.8	
t _h	hold time D _n to CP	5	-3		5		5		ns	4.5	Fig.8	
f _{max}	maximum clock pulse frequency	26	44		21		17		MHz	4.5	Fig.6	

74HC/HCT374

AC WAVEFORMS

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".

74HC/HCT374