

CMPA5585030F

30 W, 5.5 - 8.5 GHz, GaN MMIC, Power Amplifier

Description

Wolfspeed's CMPA5585030F is a gallium nitride (GaN) High Electron Mobility Transistor (HEMT) based monolithic microwave integrated circuit (MMIC). GaN has superior properties compared to silicon or gallium arsenide, including higher breakdown voltage, higher saturated electron drift velocity and higher thermal conductivity. GaN HEMTs also offer greater power density and wider bandwidths compared to Si and GaAs transistors. This MMIC is available in a 10 lead metal/ceramic flanged package for optimal electrical and thermal performance.

Package Type: 440213 PN: CMPA5585030F

Typical Performance Over 5.8 - 8.4 GHz (T_c = 25°C)

Parameter	5.8 GHz	6.4 GHz	7.2 GHz	7.9 GHz	8.4 GHz	Units	
S21 ^{1,2}	25.9	23.8	26.5	24.5	26.7	ПР	
Power Gain ^{2,5}	22.3	19.0	20.9	21.6	21.2	dB	
PAE ^{1,2,4,5}	24.7	20.7	20.3	22.6	22.9	%	
ACLR ^{1,2,3,5}	-37	-42	-33	-34	-40	dBc	

Notes (unless otherwise specified):

¹ At 25°C

² Measurements are performed using Wolfspeed test fixture AD-938516

³ Under OQPSK modulated signal, 1.6 Msps, PN23, Alpha Filter = 0.2

⁴ Power Added Efficiency = (P_{OUT} - P_{IN}) / PDC

⁵ Measured at $P_{OUT} = 41 \text{ dBm}$

Features

- 25 dB Small Signal Gain
- 30 W Typical P_{SAT}
- Operation up to 28 V
- High Breakdown Voltage
- High Temperature Operation
- Size 1.00 x 0.385 inches

Applications

- Point to Point Radio
- Communications Radar
- Satellite Communication Uplink

Rev. 2.0, 2022-10-12

Absolute Maximum Ratings (not simultaneous)

Parameter	Symbol	Rating	Units	Conditions
Drain-source Voltage	V _{DSS}	150	N/	25°C
Gate-source Voltage	V _{GS}	-10, +2	V _{DC}	25°C
Storage Temperature	T _{STG}	-65, +150	°C	
Operating Junction Temperature	TJ	225	Ľ	
Maximum Forward Gate Current	I _{GMAX}	10	mA	25°C
Soldering Temperature ¹	Ts	245	°C	
Screw Torque	τ	40	in-oz	
CGHV40180F Thermal Resistance, Junction to Case	R _{θJC}	2.16	°C/W	CW, 85°C, P _{DISS} = 66 W
Case Operating Temperature	Tc	-40, +150	°C	

Note:

¹ Refer to the Application Note on soldering at wolfspeed.com/rf/document-library

Electrical Characteristics (Frequency = 5.5 GHz to 8.5 GHz unless otherwise stated; $T_c = 25^{\circ}C$)

Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions
DC Characteristics ¹						
Gate Threshold Voltage	V _{GS(th)}	-3.8	-2.8	-2.3	V	$V_{DS} = 10 \text{ V}, I_{DS} = 12.7 \text{ mA}$
Saturated Drain Current ²	I _{DS}	9.2	12.7	—	А	$V_{DS} = 6.0 \text{ V}, V_{GS} = 2.0 \text{ V}$
Drain-Source Breakdown Voltage	V _{BD}	84	-	—	V	$V_{GS} = -8 V$, $I_{DS} = 12.7 mA$
RF Characteristics ³						
Small Signal Gain	S21	22.85	26	_		
Input Return Loss	S11	_	7	_	dB	$V_{DD} = 28 \text{ V}, I_{DQ} = 285 \text{ mA}, P_{IN} = -20 \text{ dBm}$
Output Return Loss	S22	_	-7	_		
Output Mismatch Stress	VSWR	_	_	5:1	Ψ	No damage at all phase angles, $V_{DD} = 28 \text{ V}, I_{DQ} = 285 \text{ mA}, P_{OUT} = 43 \text{ dBm}$

Notes:

¹ Measured on-wafer prior to packaging

² Scaled from PCM data

³ Measured using network analyzer (Power = -20 dBm)

Electrical Characteristics Continued ($T_c = 25^{\circ}C$)

Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions
RF Characteristics ^{1,2,4,6}						
Power Added Efficiency at 5.8 GHz⁵	PAE ₁	19.0	25.8	-		
Power Added Efficiency at 6.4 GHz⁵	PAE ₂	16.0	22.4	_		
Power Added Efficiency at 7.2 GHz⁵	PAE ₃	16.2	22.0	_	%	
Power Added Efficiency at 7.9 GHz⁵	PAE ₄	18.0	23.9	_		
Power Added Efficiency at 8.4 GHz⁵	PAE₅	19.2	25.0	_		
Power Gain at 5.8 GHz	G _{P1}	18.25	22.4	_		
Power Gain at 6.4 GHz	G _{P2}	16.35	20.2	-		
Power Gain at 7.2 GHz	G _{P3}	16.85	21.0	—	dB	$V_{DD} = 28 \text{ V}, I_{DQ} = 285 \text{ mA}, P_{IN} = 41 \text{ dBm}$
Power Gain at 7.9 GHz	G _{P4}	17.15	22.2	-		
Power Gain at 8.4 GHz	G _{P5}	17.65	21.8	-		
OQPSK Linearity at 5.8 GHz	ACLR1	_	-42	-32		
OQPSK Linearity at 6.4 GHz	ACLR ₂	_	-44	-33		
OQPSK Linearity at 7.2 GHz	ACLR ₃	_	-34	-27.5	dBc	
OQPSK Linearity at 7.9 GHz	ACLR ₄	_	-37	-28		
OQPSK Linearity at 8.4 GHz	ACLR₅	_	-40	-32		

Notes:

1 At 25°C

2 Measurements are to be performed using Wolfspeed CMPA5585030F-AMP

3 Measured using network analyzer (Power = -20 dBm)

4 Under OQPSK modulated signal, 1.6 Msps, PN23, Alpha Filer = 0.2

5 Power Added Efficiency = $(P_{OUT} - P_{IN})/PDC$

6 Fixture loss de-embedded using the following offset. The offset is subtracted from the input offset value and

added to the output offset value.

- a. 5.8 GHz 0.182 dB
- b. 6.4 GHz 0.200 dB
- c. 7.2 GHz 0.217 dB
- d. 7.9 GHz 0.234 dB
- e. 8.4 GHz 0.246 dB

Electrostatic Discharge (ESD) Classifications

Parameter	Symbol	Class	Classification Level	Test Methodology
Human Body Model	НВМ	2	ANSI/ESDA/JEDEC JS-001 Table 3	JEDEC JESD22 A114-D
Charge Device Model	СDМ	С3	ANSI/ESDA/JEDEC JS-002 Table 3	JEDEC JESD22 C101-C

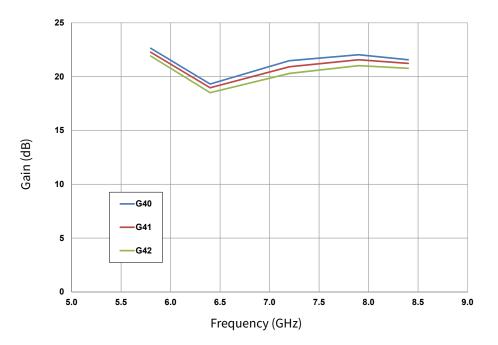


Figure 1. Gain vs. Frequency & Output Power OQPSK 1.6 Msps V_{DD} = 28 V, I_{DQ} = 285 mA

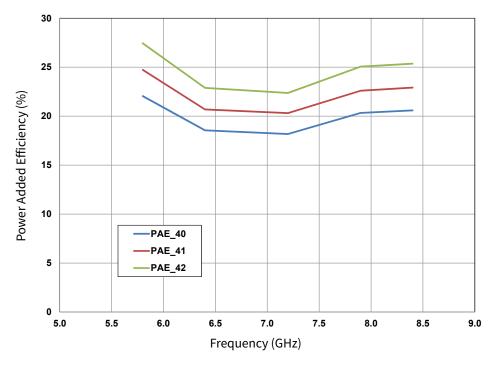


Figure 2. Power Added Efficiency vs. Frequency & Output Power OQPSK 1.6 Msps V_{DD} = 28 V, I_{DQ} = 285 mA

Rev. 2.0, 2022-10-12

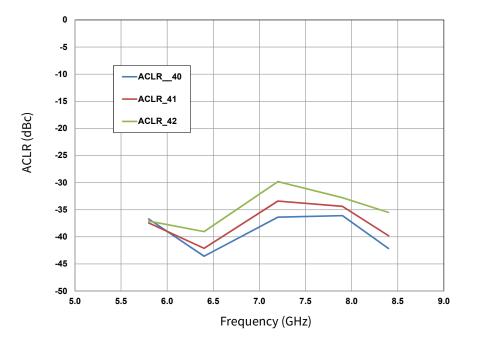
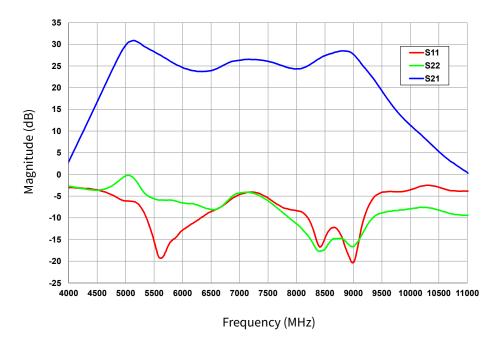
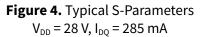




Figure 3. ACLR vs. Frequency & Output Power OQPSK 1.6 Msps V_{DD} = 28 V, I_{DQ} = 285 mA

Rev. 2.0, 2022-10-12

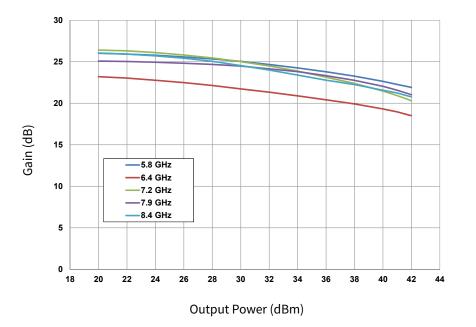


Figure 5. Gain vs. Output Power and Frequency OQPSK 1.6 Msps V_{DD} = 28 V, I_{DQ} = 285 mA

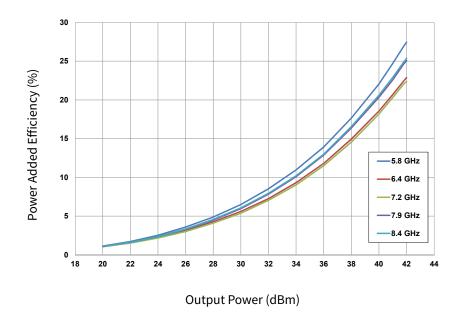
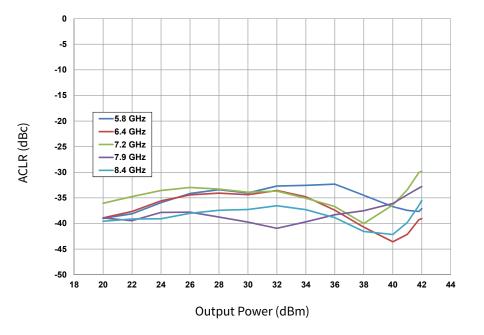
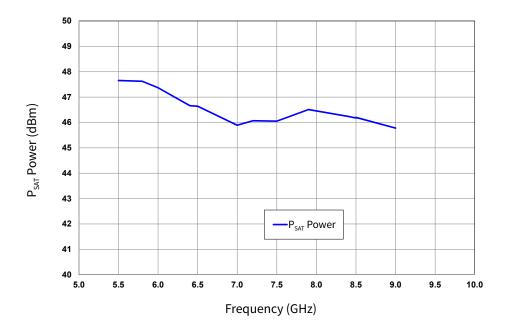
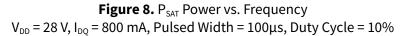
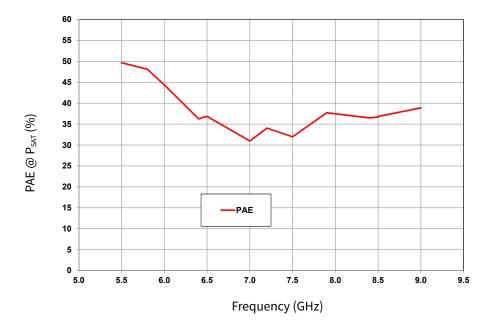
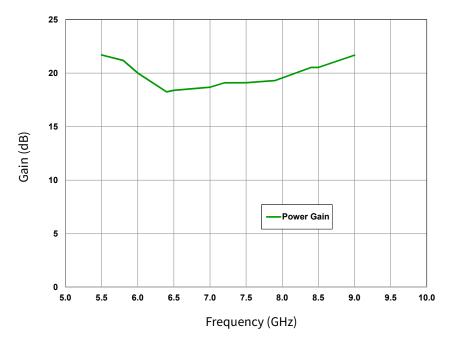


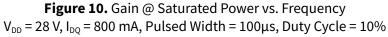
Figure 6. Power Added Efficiency vs. Output Power and Frequency OQPSK 1.6 Msps V_{DD} = 28 V, I_{DQ} = 285 mA

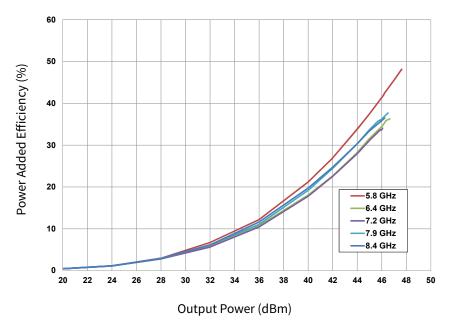
Rev. 2.0, 2022-10-12

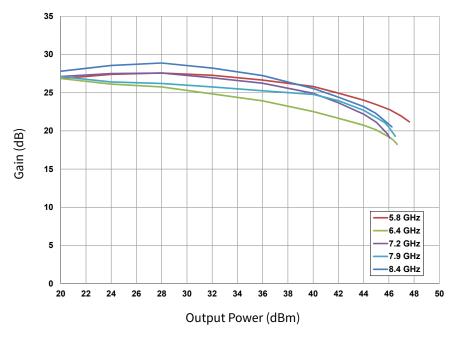




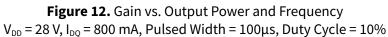

Figure 7. ACLR vs. Output Power and Frequency OQPSK 1.6 Msps V_{DD} = 28 V, I_{DQ} = 285 mA

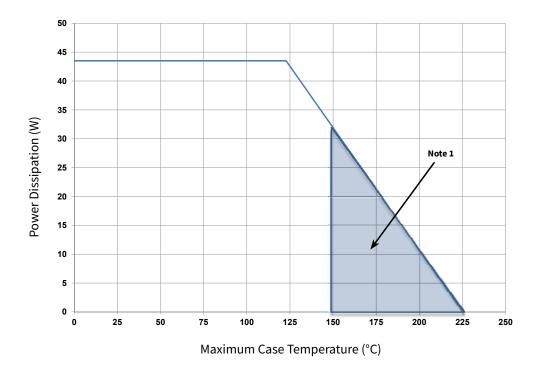



Rev. 2.0, 2022-10-12


Figure 9. Power Added Efficiency @ Saturated Power vs. Frequency $V_{DD} = 28 \text{ V}$, $I_{DQ} = 800 \text{ mA}$, Pulsed Width = 100 μ s, Duty Cycle = 10%



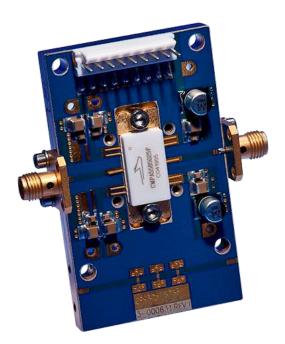

Rev. 2.0, 2022-10-12


Figure 11. PAE vs. Output Power and Frequency $V_{DD} = 28 \text{ V}, I_{DQ} = 800 \text{ mA}, \text{ Pulsed Width} = 100 \mu \text{s}, \text{ Duty Cycle} = 10\%$

Rev. 2.0, 2022-10-12

Note: ¹ Area exceeds Maximum Case Operating Temperature (See Page 2)

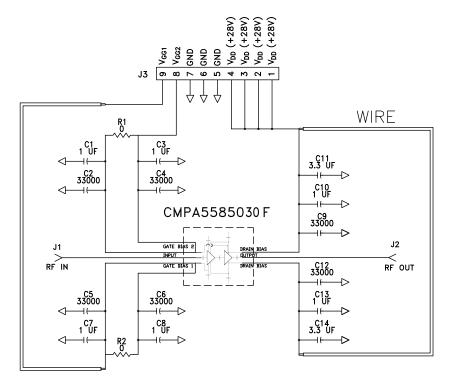
Rev. 2.0, 2022-10-12


10

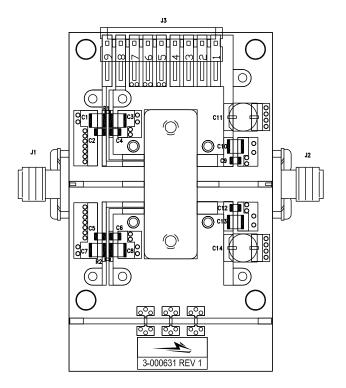
CMPA5585030F-AMP Application Circuit Bill of Materials

Designator	Description	Qty
C1, C3, C7, C8, C10, C13	CAP, 1.0μF, +/-10%, 1210, 100V, X7R	6
C2, C4, C5, C6, C9, C12	CAP, 33000pF, 0805, 100V, X7R	6
C11, C14	CAP ELECT 3.3µF 80V FK SMD	2
R1, R2	RES 0.0 OHM 1/16W 0402 SMD	2
J1,J2	CONN, SMA, PANEL MOUNT JACK, FLANGE, 4-HOLE, BLUNT POST, 20MIL	2
J3	CONNECTOR, HEADER, RT>PLZ .1CEN LK 9POS	1
	PCB, TACONIC, RF-35P-0200-CL1/CL1	1
Q1	CMPA5585030F	1

CMPA5585030F-AMP Demonstration Amplifier Circuit

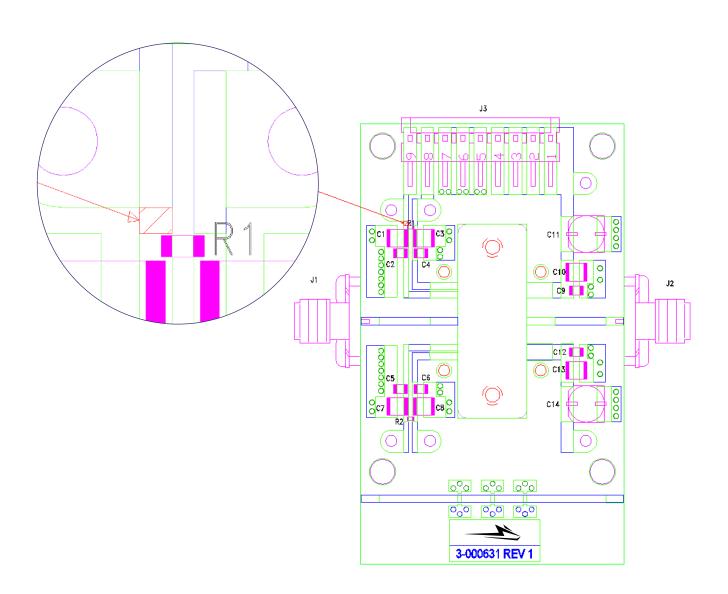


Rev. 2.0, 2022-10-12


4600 Silicon Drive | Durham, NC 27703 | Tel: +1.919.313.5300

CMPA5585030F-AMP Demonstration Amplifier Circuit

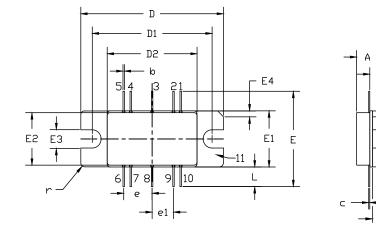
CMPA5585030F-AMP Demonstration Amplifier Circuit Outline



Rev. 2.0, 2022-10-12

CMPA5585030F-AMP Demonstration Amplifier Circuit

To configure the CMPA5585030F test fixture to enable independent VG1 / VG2 control of the device, a cut must be made to the microstrip line just above the R1 resistor as shown. Pin 9 will then supply VG1 and Pin 8 will supply VG2.



Rev. 2.0, 2022-10-12

4600 Silicon Drive | Durham, NC 27703 | Tel: +1.919.313.5300

Product Dimensions CMPA5585030F (Package Type – 440213)

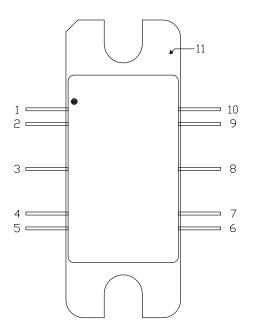
NDTES:

____.002

- A1

- A2

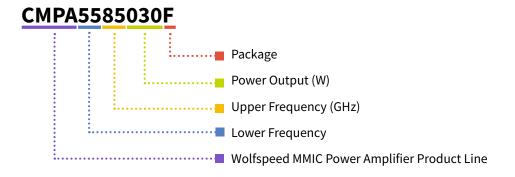
PIN 1: GATE BIAS 6: DRAIN BIAS 2: GATE BIAS 7: DRAIN BIAS 3: RF IN 8: RF DUT 4: GATE BIAS 9: DRAIN BIAS 5: GATE BIAS 10: DRAIN BIAS 11: SDURCE 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M - 1994.


2. CONTROLLING DIMENSION: INCH.

3. ADHESIVE FROM LID MAY EXTEND A MAXIMUM OF 0.020″ BEYOND EDGE OF LID.

4. LID MAY BE MISALIGNED TO THE BODY OF PACKAGE BY A MAXIMUM OF $0.008^{\prime\prime}$ IN ANY DIRECTION.

INC	HES	MILLIM	MILLIMETERS		OTES
MIN	MAX	MIN	MAX		
0.148	0.168	3.76	4.27		
0.055	0.065	1.40	1.65		
0.035	0.045	0.89	1.14		
0.01	TYP	0.254	0.254 TYP		10x
0.007	0.009	0.18	0.23		
0.995	1.005	25.27	25.53		
0.835	0.845	21.21	21.46		
0.623	0.637	15.82	16.18		
0.653	5 TYP	16.59	TYP		
0.380	0.390	9.65	9.91		
0.355	0.365	9.02	9.27		
0.120	0.130	3.05	3.30		
0.035	0.045	0.89	1.14	45 °	CHAMFER
0.20) TYP	5.08	TYP		4x
0.15) TYP	3.81	TYP		4x
0.115	0.155	2.92	3.94		10x
0.02	5 TYP	.635	TYP		Зx
	MIN 0.148 0.055 0.035 0.01 0.995 0.835 0.623 0.623 0.380 0.355 0.120 0.035 0.200 0.155 0.115	0.148 0.168 0.055 0.045 0.035 0.045 0.01 TYP 0.007 0.009 0.995 1.005 0.845 0.643 0.623 0.637 0.635 TYP 0.380 0.390 0.355 0.365 0.120 0.130 0.035 0.045 0.202 TYP 0.355 TYP	MIN MAX MIN 0.148 0.168 3.76 0.055 0.065 1.40 0.055 0.065 1.40 0.055 0.045 0.89 0.01 TYP 0.254 0.007 0.009 0.18 0.995 1.005 25.27 0.835 0.845 21.21 0.623 0.637 15.82 0.653 TYP 16.59 0.380 0.390 9.65 0.355 0.365 9.02 0.120 0.130 3.05 0.252 TYP 5.08 0.120 TYP 5.08 0.152 TYP 3.81 0.115 YP 3.81	MIN MAX MIN MAX 0.148 0.168 3.76 4.27 0.055 0.065 1.40 1.65 0.035 0.045 0.89 1.14 0.01 TP 0.254 TP 0.007 0.009 0.18 0.23 0.995 1.005 25.27 25.53 0.835 0.845 21.21 21.46 0.623 0.637 15.82 16.18 0.653 TP 16.59 TP 0.380 0.390 9.65 9.91 0.355 0.365 9.02 9.27 0.120 0.130 3.05 3.30 0.355 0.045 0.89 1.14 0.200 TP 5.08 TP 0.150 TP 3.81 TP 0.150 TP 3.81 TP	MIN MAX MIN MAX 0.148 0.168 3.76 4.27 0.055 0.065 1.40 1.65 0.055 0.045 0.89 1.14 0.055 0.045 0.89 1.14 0.01 TYP 0.254 TYP 0.007 0.009 0.18 0.23 0.995 1.005 25.27 25.53 0.835 0.845 21.21 21.46 0.623 0.637 15.82 16.18 0.653 TYP 16.59 TYP 0.380 0.390 9.65 9.91 0.380 0.390 9.65 9.91 0.355 0.365 9.02 9.27 0.120 0.130 3.05 3.30 0.2035 0.045 0.89 1.14 0.20 TYP 5.08 TYP 0.150 TYP 3.81 TYP 0.150 YP 3.94 5.94 </td


PIN	Qty		
1	Gate Bias for Stage 2		
2	Gate Bias for Stage 2		
3	RF In		
4	Gate Bias for Stage 1		
5	Gate Bias for Stage 1		
6	Drain Bias		
7	Drain Bias		
8	RF Out		
9	Drain Bias		
10	Drain Bias		
11	Source		

Rev. 2.0, 2022-10-12

Part Number System

Table 1.

Parameter	Value	Units
Lower Frequency	5.5	GHz
Upper Frequency ¹	8.5	GHZ
Power Output	30	W
Package	Flange	_

Note:

¹ Alpha characters used in frequency code indicate a value greater than 9.9 GHz. See Table 2 for value.

Table 2.

Character Code	Code Value
A	0
В	1
С	2
D	3
E	4
F	5
G	6
н	7
J	8
К	9
Examples	1A = 10.0 GHz 2H = 27.0 GHz

Rev. 2.0, 2022-10-12

Product Ordering Information

Order Number	Description	Unit of Measure	Image
CMPA5585030F	GaN MMIC	Each	CHIP ASSB50307
CMPA5585030F-AMP	Test board with GaN MMIC installed	Each	

For more information, please contact:

4600 Silicon Drive Durham, NC 27703 USA Tel: +1.919.313.5300 www.wolfspeed.com/RF

Sales Contact RFSales@wolfspeed.com

RF Product Marketing Contact RFMarketing@wolfspeed.com

Notes & Disclaimer

Specifications are subject to change without notice. "Typical" parameters are the average values expected by Wolfspeed in large quantities and are provided for information purposes only. Wolfspeed products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death. No responsibility is assumed by Wolfspeed for any infringement of patents or other rights of third parties which may result from use of the information contained herein. No license is granted by implication or otherwise under any patent or patent rights of Wolfspeed.

©2017-2022 Wolfspeed, Inc. All rights reserved. Wolfspeed® and the Wolfstreak logo are registered trademarks and the Wolfspeed logo is a trademark of Wolfspeed, Inc. PATENT: https://www.wolfspeed.com/legal/patents

The information in this document is subject to change without notice.

Rev. 2.0, 2022-10-12