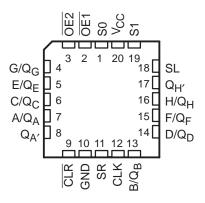
SN54ALS323, SN74ALS323 8-BIT UNIVERSAL SHIFT/STORAGE REGISTERS WITH SYNCHRONOUS CLEAR AND 3-STATE OUTPUTS SDAS267A - DECEMBER 1982 - REVISED DECEMBER 1994

- Multiplexed I/O Ports Provide Improved Bit Density
- Four Modes of Operation:
 - Hold (Store)
 - Shift Right
 - Shift Left
 - Load Data
- Operate With Outputs Enabled or at High Impedance
- 3-State Outputs Drive Bus Lines Directly
- Can Be Cascaded for n-Bit Word Lengths
- Synchronous Clear
- Applications:
 - Stacked or Push-Down Registers
 - Buffer Storage
 - Accumulator Registers
- Package Options Include Plastic Small-Outline (DW) Packages, Ceramic Chip Carriers (FK), and Standard Plastic (N) and Ceramic (J) 300-mil DIPs

description


These 8-bit universal shift/storage registers feature multiplexed input/output (I/O) ports to achieve full 8-bit data handling in a 20-pin package. Two function-select (S0, S1) inputs and two output-enable (OE1, OE2) inputs can be used to choose the modes of operation listed in the function table.

Synchronous parallel loading is accomplished by taking both S0 and S1 high. This places the 3-state outputs in the high-impedance state and permits data applied on the I/O ports to be clocked into the register. Reading out of the register can be accomplished while the outputs are enabled in any mode. Clearing occurs synchronously when the clear (\overline{CLR}) input is low. Taking either $\overline{OE1}$ or $\overline{OE2}$ high disables the outputs but has no effect on clearing, shifting, or storing data.

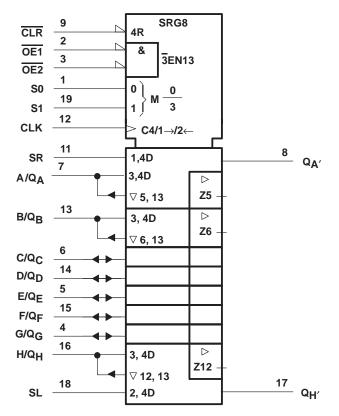
The SN54ALS323 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74ALS323 is characterized for operation from 0°C to 70°C.

SN54ALS323 J PACKAGE SN74ALS323 DW OR N PACKAGE (TOP VIEW)											
S0 OE1 OE2 G/Q _G E/Q _E C/Q _C A/Q _A CLR GND	1 2 3 4 5 6 7 8 9 10	20 19 18 17 16 15 14 13 12 11	V _{CC} S1 SL Q _H ' H/Q _H F/Q _F D/Q _D B/Q _B CLK SR								

SN54ALS323 ... FK PACKAGE (TOP VIEW)

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443

SN54ALS323, SN74ALS323 8-BIT UNIVERSAL SHIFT/STORAGE REGISTERS WITH SYNCHRONOUS CLEAR AND 3-STATE OUTPUTS

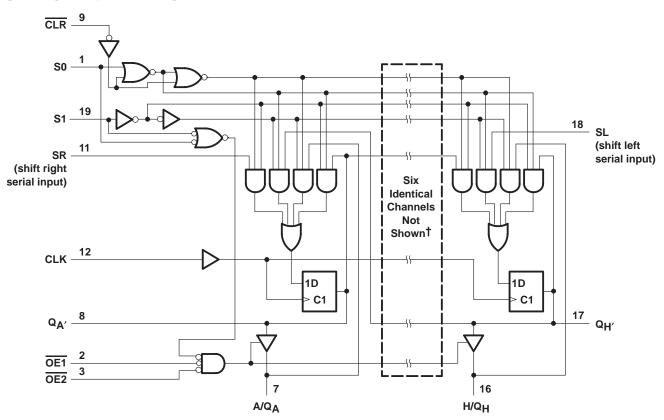

SDAS267A - DECEMBER 1982 - REVISED DECEMBER 1994

								FU	NCTIO	N TABL	E							
MODE	INPUTS								I/O PORTS							OUTPUTS		
MODE	CLR	S 1	S0	OE1†	OE2†	CLK	SL	SR	A/Q _A	B/Q _B	C/Q _C	d/q _d	E/Q _E	F/Q _F	G/Q _G	H/Q _H	$Q_{A'}$	Q _{H′}
Clear	L L L	X L H	L X H	L L X	L L X	↑ ↑ ↑	X X X	X X X	L L X	L L L	LLL							
Hold	H H	L X	L X	L L	L L	X L	X X	X X	Q _{A0} Q _{A0}	Q _{B0} Q _{B0}	Q _{C0} Q _{C0}	Q _{D0} Q _{D0}	Q _{E0} Q _{E0}	Q _{F0} Q _{F0}	Q _{G0} Q _{G0}	Q _{H0} Q _{H0}	Q _{A0} Q _{A0}	Q _{H0} Q _{H0}
Shift Right	H H	L L	H H	L L	L L	↑ ↑	X X	H L	ΗL	Q _{An} Q _{An}	Q _{Bn} Q _{Bn}	Q _{Cn} Q _{Cn}	Q _{Dn} Q _{Dn}	Q _{En} Q _{En}	Q _{Fn} Q _{Fn}	Q _{Gn} Q _{Gn}	H L	Q _{Gn} Q _{Gn}
Shift Left	H H	H H	L	L	L	↑ ↑	H L	X X	Q _{Bn} Q _{Bn}	Q _{Cn} Q _{Cn}	Q _{Dn} Q _{Dn}	Q _{En} Q _{En}	Q _{Fn} Q _{Fn}	Q _{Gn} Q _{Gn}	Q _{Hn} Q _{Hn}	H L	Q _{Bn} Q _{Bn}	H L
Load	Н	Н	Н	Х	Х	Ŷ	Х	Х	а	b	С	d	е	f	g	h	а	h

NOTE: a . . . h = the level of the steady-state input at inputs A through H, respectively. This data is loaded into the flip-flops while the flip-flop outputs are isolated from the I/O terminals.

[†] When one or both output-enable inputs are high, the eight I/O terminals are disabled to the high-impedance state; however, sequential operation or clearing of the register is not affected.

logic symbol[‡]



[‡] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

SN54ALS323, SN74ALS323 8-BIT UNIVERSAL SHIFT/STORAGE REGISTERS WITH SYNCHRONOUS CLEAR AND 3-STATE OUTPUTS SDAS267A – DECEMBER 1982 – REVISED DECEMBER 1994

logic diagram (positive logic)

[†] I/O ports not shown: B/Q_B (13), C/Q_C (6), D/Q_D (14), E/Q_E (5), F/Q_F (15), and G/Q_G (4).

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[‡]

Supply voltage, V _{CC}	
Input voltage, VI: All inputs	
I/O ports	
Operating free-air temperature range, T _A : SN54ALS323	–55°C to 125°C
SN74ALS323	0°C to 70°C
Storage temperature range	–65°C to 150°C

[‡] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

SN54ALS323, SN74ALS323 **8-BIT UNIVERSAL SHIFT/STORAGE REGISTERS** WITH SYNCHRONOUS CLEAR AND 3-STATE OUTPUTS

SDAS267A - DECEMBER 1982 - REVISED DECEMBER 1994

recommended operating conditions

			SN	54ALS3	23	SN74ALS323				
			MIN	NOM	MAX	MIN	NOM	MAX	UNIT	
VCC	Supply voltage		4.5	5	5.5	4.5	5	5.5	V	
VIH	High-level input voltage	2			2			V		
VIL	Low-level input voltage			0.7			0.8	V		
		Q _{A'} or Q _{H'}			-0.4			-0.4		
ЮН	High-level output current	Q _A thru Q _H		-				-2.6	mA	
		Q _{A'} or Q _{H'}			4			8		
IOL	Low-level output current	Q _A thru Q _H			12			24	mA	
T _A	Operating free-air temperature	-55		125	0		70	°C		

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

				SN	54ALS3	23	SN	74ALS3	23		
F	PARAMETER	TEST CO	ONDITIONS	MIN	TYP†	MAX	MIN	TYP†	MAX	UNIT	
VIK		V _{CC} = 4.5 V,	lı = – 18 mA			-1.5			-1.5	V	
	Any output	V_{CC} = 4.5 V to 5.5 V,	I _{OH} = – 0.4 mA	V _{CC} -2	2		V _{CC} -2	2			
∨он			I _{OH} = – 1 mA	2.4	3.3					V	
	Q _A thru Q _H	$V_{CC} = 4.5 V$	I _{OH} = – 2.6 mA				2.4	3.2			
$v_{OL} = \frac{Q_{A'} \text{ or } Q_{H'}}{Q_A \text{ thru } Q_H}$		$I_{OL} = 4 \text{ mA}$		0.25	0.4		0.25	0.4			
	$V_{CC} = 4.5 V$	I _{OL} = 8 mA					0.35	0.5			
	O three O		I _{OL} = 12 mA		0.25	0.4		0.25	0.4	V	
	Q _A thru Q _H	V _{CC} = 4.5 V	I _{OL} = 24 mA					0.35	0.5		
	A thru H		V _I = 5.5 V			0.1			0.1		
Ιį	Any others	V _{CC} = 5.5 V	V _I = 7 V		0.1				0.1	mA	
IIH‡		V _{CC} = 5.5 V,	V _I = 2.7 V			20			20	μΑ	
	S0, S1, SR, SL					-0.2			-0.2		
IIL‡	Any others	V _{CC} = 5.5 V,	V _I = 0.4 V		-0.1				-0.1	mA	
	Q _A ' or Q _H '			-15		-70	-15		-70		
IOS§	Q _A thru Q _H	V _{CC} = 5.5 V,	V _O = 2.25 V	-20		-112	-30		-112	2 mA	
	-		Outputs high		15	28		15	28		
ICC		V _{CC} = 5.5 V	Outputs low		22	38		22	38	mA	
00			Outputs disabled		23	40		23	40		

[†] All typical values are at V_{CC} = 5 V, T_A = 25°C. [‡] For I/O ports (Q_A thru Q_H), the parameters I_{IH} and I_{IL} include the off-state output current.

§ The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, IOS.

SN54ALS323, SN74ALS323 8-BIT UNIVERSAL SHIFT/STORAGE REGISTERS WITH SYNCHRONOUS CLEAR AND 3-STATE OUTPUTS SDAS267A - DECEMBER 1982 - REVISED DECEMBER 1994

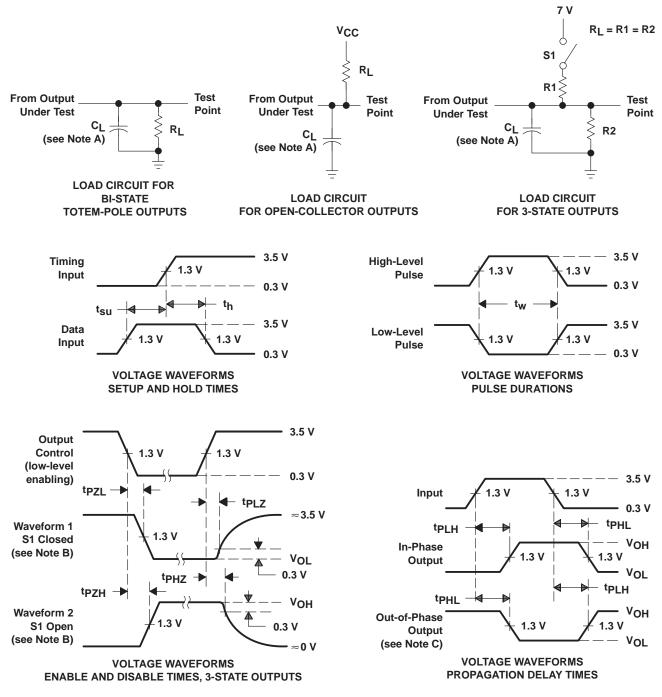
timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

					SN54A	LS323	SN74A			
							MIN	MAX	UNIT	
fclock	Clock frequency (at 50% duty cycle)				0	17	0	17	MHz	
tw	Pulse duration	CLK high or low	22		16.5		ns			
	Setup time before CLK [↑]	S0 or S1	25		20					
				High	18		16			
t _{su}		Serial or parallel data	Low	15		6		ns		
		CLR active	CLR active				20			
	Inactive-state setup time before CLK $\uparrow\uparrow$	CLR	18		16					
	Hold time after CLK	S0 or S1	0		0					
th	Hold time after CLK	Serial or parallel data			0		0		ns	

[†] Inactive-state setup time is also referred to as recovery time.

switching characteristics (see Figure 1)

PARAMETER	FROM (INPUT)	то (оитрит)	CL R1 R2	V _{CC} = 4.5 V to 5.5 V, C _L = 50 pF, R1 = 500 Ω, R2 = 500 Ω, T _A = MIN to MAX [‡]					
			SN54A	LS323	SN74A	LS323			
			MIN	MAX	MIN	MAX			
^f max			17		17		MHz		
^t PLH	CLK	O thru O	2	19	4	13	20		
^t PHL	ULK	Q _A thru Q _H	4	25	7	19	ns		
^t PLH	CLK		2	21	5	15			
^t PHL	OER	$Q_{A'}$ or $Q_{H'}$	4	25	8	18	ns		
^t PZH	OE1, OE2	On thru Ou	5	22	6	16			
^t PZL	UET, UEZ	Q _A thru Q _H	6	27	8	22	ns		
^t PZH	C0 C1	O . thru O .	5	27	7	17	20		
^t PZL	S0, S1	Q _A thru Q _H	6	27	8	22	ns		
^t PHZ	OE1, OE2	O . thru O .	1	15	1	8	20		
^t PLZ	UET, UEZ	Q _A thru Q _H	4	38	5	15	ns		
^t PHZ	S0 S1	O . thru O .	1	16	1	12	ns		
^t PLZ	S0, S1	Q _A thru Q _H	4	34	8	25	115		


[‡] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

SN54ALS323, SN74ALS323 8-BIT UNIVERSAL SHIFT/STORAGE REGISTERS WITH SYNCHRONOUS CLEAR AND 3-STATE OUTPUTS

SDAS267A - DECEMBER 1982 - REVISED DECEMBER 1994

PARAMETER MEASUREMENT INFORMATION SERIES 54ALS/74ALS AND 54AS/74AS DEVICES

NOTES: A. CL includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 C. When measuring propagation delay items of 3-state outputs, switch S1 is open.
- . When measuring propagation delay items of 3-state outputs, switch S1 is open.
- D. All input pulses have the following characteristics: PRR \leq 1 MHz, t_f = t_f = 2 ns, duty cycle = 50%.
- E. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuits and Voltage Waveforms

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
	(.)		J			(=)	(6)	(0)		(,,,,)	
8302102RA	ACTIVE	CDIP	J	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	8302102RA SNJ54ALS323J	Samples
8302102SA	ACTIVE	CFP	W	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	8302102SA SNJ54ALS323W	Samples
SN74ALS323N	ACTIVE	PDIP	Ν	20	20	RoHS & Non-Green	NIPDAU	N / A for Pkg Type	0 to 70	SN74ALS323N	Samples
SNJ54ALS323J	ACTIVE	CDIP	J	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	8302102RA SNJ54ALS323J	Samples
SNJ54ALS323W	ACTIVE	CFP	W	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	8302102SA SNJ54ALS323W	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

PACKAGE OPTION ADDENDUM

30-Mar-2022

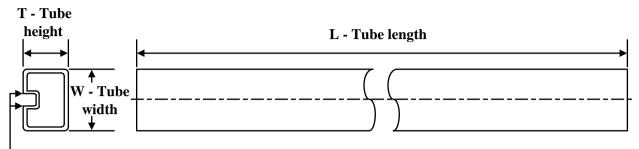
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN54ALS323, SN74ALS323 :

- Catalog : SN74ALS323
- Military : SN54ALS323

NOTE: Qualified Version Definitions:

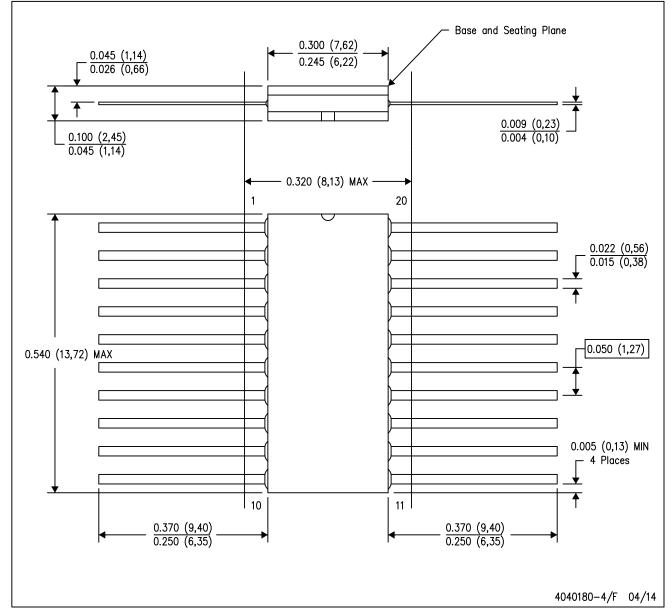

- Catalog TI's standard catalog product
- Military QML certified for Military and Defense Applications

TEXAS INSTRUMENTS

www.ti.com

9-Aug-2022

TUBE

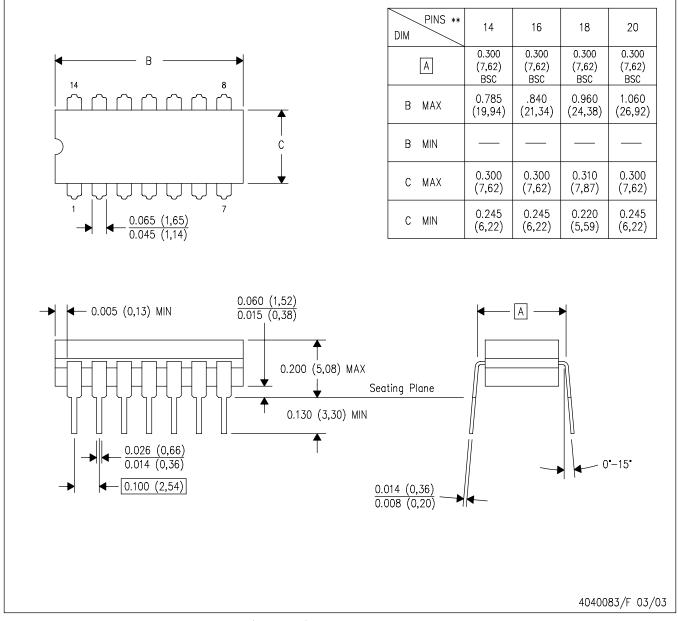

- B - Alignment groove width

*All dimensions are nominal

Device	Package Name	Package Type Pins SPQ		SPQ	L (mm)	W (mm)	Τ (μm)	B (mm)
8302102SA	W	CFP	20	1	506.98	26.16	6220	NA
SN74ALS323N	N	PDIP	20	20	506	13.97	11230	4.32
SNJ54ALS323W	W	CFP	20	1	506.98	26.16	6220	NA

W (R-GDFP-F20)

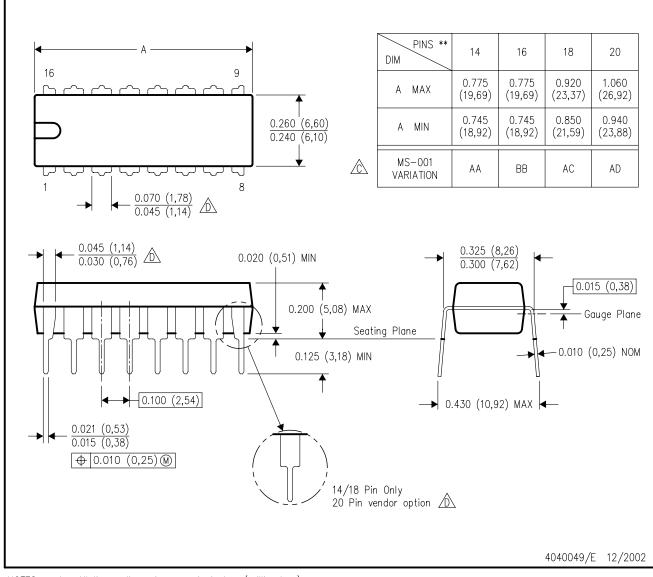
CERAMIC DUAL FLATPACK



- NOTES: A. All linear dimensions are in inches (millimeters).
 - This drawing is subject to change without notice. В.
 - C. This package can be hermetically sealed with a ceramic lid using glass frit.
 D. Index point is provided on cap for terminal identification only.
 E. Falls within Mil-Std 1835 GDFP2-F20

J (R-GDIP-T**) 14 LEADS SHOWN

CERAMIC DUAL IN-LINE PACKAGE


NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

NOTES:

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- \triangle The 20 pin end lead shoulder width is a vendor option, either half or full width.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated