Features

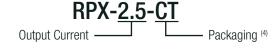
Power Module

- . Buck regulator power module with integrated shielded inductor
- 28V maximum input voltage
- 2.5A maximum output current
- SCP, OCP, OTP, OVP and UVLO protection
- 4.5mm x 4mm low profile QFN package
- Flip-Chip technology for improved thermal management
- Efficiency up to 91%

Description

The RPX-2.5 is a buck converter with integrated inductor in a tiny 4.5mm x 4mm x 2mm thermally-enhanced QFN package (the smallest in its class). The input range is from 4.5 to 28VDC, allowing 5V, 12V or 24V supply voltages to be used. The output voltage can be set with two resistors in the range from 1.2V up to 6V. The output current is up to 2.5A and is fully protected against continuous short-circuits, output overcurrent or over-temperature faults. The enable pin features an internal pull-up current source, so will operate with open-drain, open-collector, logic gate or switched inputs (leave open if not used).

Selection	Guide				
Part Number	Input Voltage Range [VDC] ⁽¹⁾	Vout Adjust Range [VDC] ⁽¹⁾	Output Current max. [A]	Efficiency max. ⁽²⁾ [%]	Max. Capacitive Load ⁽³⁾ [μF]
RPX-2.5	4.5-28	1.2-6	2.5	91	500


Notes:

Note1: Refer to "Safe Operating Area"

Note2: Efficiency is tested at Vin= 12V, lout= 1A, Vout= 5V

Note3: Max. Cap Load is tested at nominal input and full resistive load

Model Numbering

Notes:

Note4: add suffix "-CT" for bag packaging for more details refer to "PACKAGING INFORMATION" without suffix, standard tape and reel packaging

Specifications (measured @ ta= 25°C, 12Vin, 3.3Vout, full load unless otherwise stated, refer to test set up)

ABSOLUTE MAXIMUM RATINGS					
Parameter	Condition	Min.	Тур.	Max.	
	Vin	-0.3VDC		30VDC	
	CTRL, FB	-0.3VDC		7VDC	
Absolute Maximum Voltage (5)	SW	-0.3VDC		30VDC	
	SW transient	-5VDC		30VDC	
	Vout	-0.3VDC		7VDC	
Shock	according to MIL-STD-883D, method			1500G	
SHOCK	2002.3; 1ms, 1/2 sine, mounted				
Vibration	according to MIL-STD-883D, method			20G	
Vibration	2007.7; 20Hz-2kHz				
Operating IC Junction Temperature (T _J)		-40°C		+125°C	
Operating Ambient Temperature (T _{AMB})		-40°C		+85°C	
Storage Temperature (T _{STO})		-55°C		+150°C	

Notes:

Note5: Stresses beyond those listed under absolute maximum ratings can cause permanent damage to the device. (Values are at non-operating)

RPX-2.5

2.5 Amp QFN Package

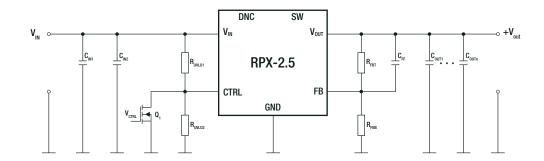
www.recom-power.com REV.: 3/2020 RPX-1

Series

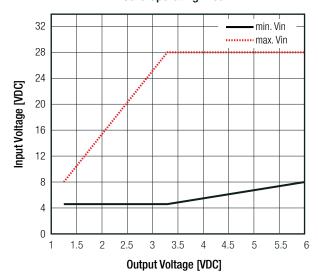
Specifications (measured @ ta= 25°C, 12Vin, 3.3Vout, full load unless otherwise stated, refer to test set up)

OPERATING RATINGS				
Parameter	Condition	Min.	Тур.	Max.
Input Voltage Range		4.5VDC (6)		28VDC
Under Voltage Lockout (UVLO)	DC-DC ON	3.8VDC	4.1VDC	4.4VDC
(default setting) (7)	DC-DC OFF	3.3VDC	3.6VDC	3.9VDC
Output Voltage Adjust Range	refer to "OUTPUT VOLTAGE SETTING"	1.2VDC		6VDC
CTRL Voltage Range		OVDC		6VDC
CTRL ON/OFF Thresholds	DC-DC ON (or open)		1.21VDC	1.28VDC
	DC-DC OFF (or short to GND)	1.1VDC	1.19VDC	
Input Current of CTDL Din	V _{CTRL} = 1.5VDC (DC-DC ON)		1.6µA	
Input Current of CTRL Pin	V _{CTRL} = 1VDC (DC-DC OFF)		0.7μΑ	
Standby Current	DC-DC OFF		2μΑ	
Output Current		0A		2.5A ⁽⁸⁾
Ctart up Timo	power on		10ms	
Start-up Time	by using CTRL (without C _{оит})		6ms	
Rise-time	(internal soft start)		5ms	
Switching Frequency		550kHz	750kHz	1MHz
Output Ripple and Noise (9)	20Mhz BW		22mVp-p	

Notes:


Note6: The minimum recommended input voltage is 4.5 V or ($V_{OUT} \times 1.3$), whichever is greater

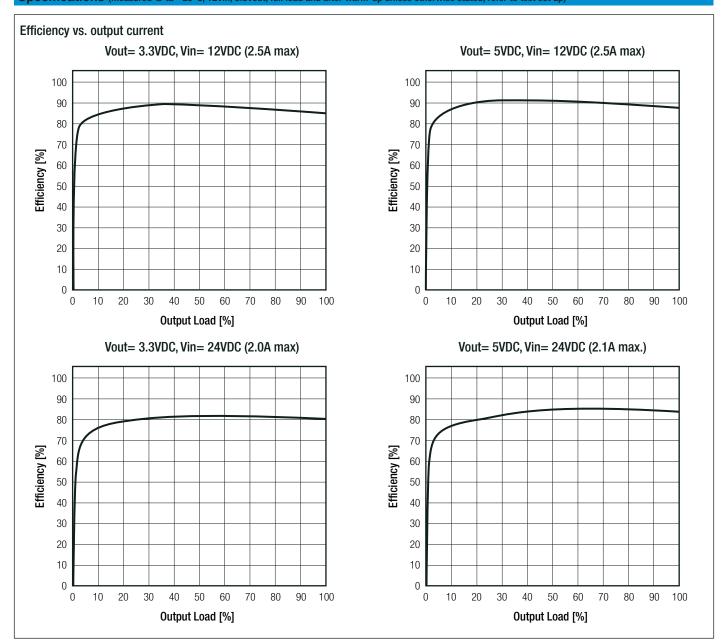
Note7: Refer to "UNDER VOLTAGE LOCKOUT SETTING"


 $Note 8: The \ maximum \ output \ current \ that \ the \ RPX \ can \ deliver \ is \ a \ function \ of \ input \ voltage, \ output \ voltage, \ and \ ambient \ temperature$

Note9: Measurement with C_{IN1} = 10 μ F, 50V 1210 ceramic, C_{IN2} = 100 μ F, 35V electrolytic and $C_{0UT1,2}$ = 47 μ F 16V, ceramic capacitors

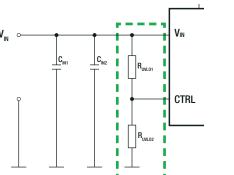
Test Set-up

Safe Operating Area



Typical operating conditions				
Nominal Vin	Vout	lout , max		
24VDC	5VDC	2.0A		
24VDC	3.3VDC	2.1A		
12VDC	5VDC	2.5A		
12VDC	3.3VDC	2.5A		
5VDC	3.3VDC	2.5A		
5VDC	1.2VDC	2.5A		

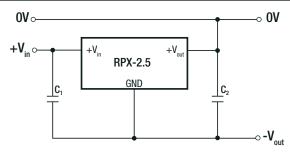
Series


Specifications (measured @ ta= 25°C, 12Vin, 3.3Vout, full load and after warm-up unless otherwise stated, refer to test set up)

UNDER VOLTAGE LOCKOUT SETTING

The RPX-2.5 features an internal UVLO circuit that disables the converter until the input voltage exceeds 4.1V typ. This threshold can be raised by adding an external resistor divider R_{UVL01} and R_{UVL02}.

Standard Resistor Values					
VIN UVLO [VDC]	4.5	10	15	18	20
R _{UVL01} [kΩ]	68.1	68.1	68.1	68.1	68.1
R _{UVL02} [kΩ]	25.5	9.53	6.04	4.99	4.42

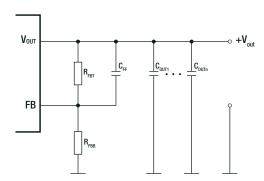


Series

Specifications (measured @ ta= 25°C, 12Vin, 3.3Vout, full load and after warm-up unless otherwise stated, refer to test set up)

POSITIVE TO NEGATIVE

 $\mathbf{C_1}$ and $\mathbf{C_2}$ may be added to reduced ripple and should be fitted close to the converter pins.


Notes:

Note10:RECOM Power Modules can also be used to convert a positive voltag into a negative voltage. Parameters such as maximum Vin, efficiency and maximum operating temperature are reduced. Please contact RECOM for further details.

OUTPUT VOLTAGE SETTING

The recommended value of R_{FBT} is $10k\Omega$. The values for trim resistors shown in trim tables below are according to standard E96 values; therefore, the specified voltage may slightly vary. For other output voltages, the value of the required $R_{\tiny FBB}$ resistor can be calculated using below equation:

 R_{FBB}

Vout_{nom} = nominal output voltage [VDC] $Vout_{\text{set}}$ = trimmed output voltage [VDC] = reference voltage (6VDC) [VDC] = trim offset (0.6VDC) [VDC] = Trim resistor ($10k\Omega$) $[k\Omega]$

= calculated trim resistor

 $[k\Omega]$

Calculation: $\mathbf{R}_{\text{FBB}} = \begin{bmatrix} V_{\text{REF}} \\ \hline V_{\text{Out}_{\text{set}}} - d \end{bmatrix}$

Practical Example:

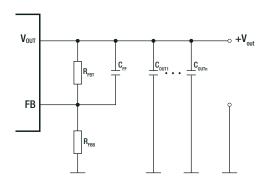
$$\mathbf{R}_{\text{FBB}} = \begin{bmatrix} \frac{6\text{VDC}}{3.3\text{VDC} - 0.6} \end{bmatrix} = \mathbf{2.22k\Omega}$$
 \mathbf{R}_{FBB} according to E96 $\approx \underline{\mathbf{2.21k\Omega}}$

Resistor Table:

Vout _{set} =	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2	2.1	[VDC]
R _{FBB} (E96) ≈	10k	8k45	7k5	6k65	6k04	5k36	4k99	4k64	4k22	4k02	[Ω]
Vout _{set} =	2.2	2.3	2.4	2.5	2.6	2.7	2.8	2.9	3	3.1	[VDC]
R_{FBB} (E96) \approx	3k74	3k48	3k32	3k16	3k01	2k87	2k74	2k61	2k49	2k37	[Ω]
Vout _{set} =	3.2	3.3	3.4	3.5	3.6	3.7	3.8	3.9	4	4.1	[VDC]
	3.2	3.3	3.4	3.3	3.0	3.7	3.0	3.9	4	4.1	[VDC]
R_{FBB} (E96) \approx	2k32	2k21	2k15	2k05	2k	1k96	1k87	1k82	1k74	1k69	[Ω]
		T	1	1	r			1	1		_
Vout _{set} =	4.2	4.3	4.4	4.5	4.6	4.7	4.8	4.9	5	5.1	[VDC]
R_{FBB} (E96) \approx	1k65	1k62	1k58	1k54	1k5	1k47	1k43	1k4	1k37	1k33	$[\Omega]$
Vout _{set} =	5.2	5.3	5.4	5.5	5.6	5.7	5.8	5.9	6	[VDC]	
R _{FBB} (E96) ≈	1k3	1k27	1k24	1k22	1k2	1k18	1k15	1k13	1k1	[Ω]	

Series

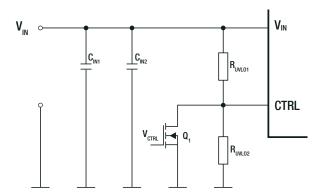
Specifications (measured @ ta= 25°C, 12Vin, 3.3Vout, full load and after warm-up unless otherwise stated, refer to test set up)


INPUT AND OUTPUT CAPACITOR

Input Capacitor

The RPX-2.5 requires a 10μF MLCC input capacitor for normal operation. For high transient load applications, an additional 47μF electrolytic capacitor connected in parallel is recommended, rated for a ripple current of 1.25A or higher.

Output Capacitor


The RPX-2.5 requires MLCC output capacitors for normal operation (see table). Transient load reaction time can be improved by adding a speedup capacitor, C_{FF} across R_{FBT} , but it is not required for normal operation or for output voltages below 2.5V.

	Minimum output capacitance				
	Output Voltage Ceramic [VDC] Capacitor (C _{OUTn})		Feed Forward Capacitor (C _{FF})		
MIN	MAX	[μ F]	[pF]		
1.2	<1.5	188 (4 x 47μF)	330		
1.5	<2.5	141 (3 x 47μF)	220		
2.5	<3.3	94 (2 x 47μF)	100		
3.3	<5	94 (2 x 47μF)	100		
5	<6	47	100		

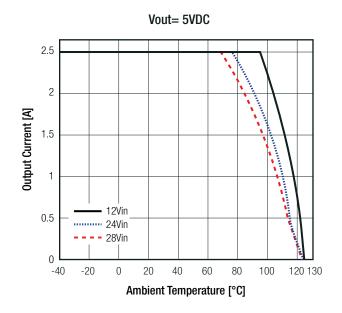
CTRL ON/OFF

The external CTRL input can also be used to disable the converter by pulling the CTRL pin to ground. An internal pull-up current source allows an external switch, open-collector transistor, open-drain transistor or a 3.3V/5V logic gate to be used to drive the CTRL pin. The UVLO adjust and external CTRL functions can be combined.

REGULATIONS				
Parameter	Condition	Min.	Тур.	Max.
Feedback Voltage	no load	0.581VDC	0.596VDC	0.611VDC
Temperature Coefficient	I _{OUT} = 0.2A		0.003%/K	
Line Regulation	low line to high line		±0.2%	
Load Regulation	5 - 100% load		0.2%	
	0 - 5% load		0.5%	
	10 <-> 100% load step change			200mV
Transient Response	recovery time		6ms	
	25% <-> 75% load step change			100mV
	recovery time		125µs	

Series

Specifications (measured @ ta= 25°C, 12Vin, 3.3Vout, full load and after warm-up unless otherwise stated, refer to test set up)


PROTECTIONS		
Parameter	Condition	Value
Short Circuit Protection (SCP)		Hiccup Mode, auto recovery
Over Current Protection (OCP)		4.8A typ., hiccup mode
Over Temperature Protection (OTP)	internal junction	165°C typ., thermal shut down
Over Temperature Protection (OTP)	internal junction	10°C typ. restart hysteresis

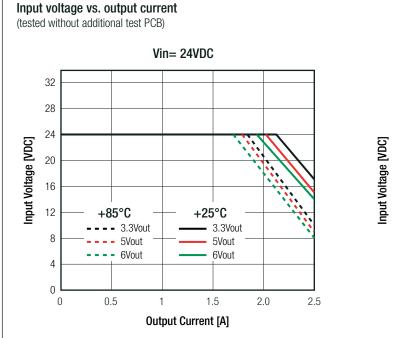
ENVIRONMENTAL			
Parameter	Condition		Value
ESD	human-body model (HBM), ANSI/ESDA/JED	DEC JS-001	±2.5kV
ESD	charged-device model (CDM), JEDEC JES	D22-C101	±1kV
Moisture Sensitive Level	MSL peak temp. (11)	Level 3, 260°C, 168hrs	
	junction to T _{AMB}		32.7K/W
Thermal Impedance (12)	junction to case (refer to tc point)		2.2K/W
	junction to board (refer to tb point)		17K/W
MTBF	according to TR-332, 50% stress G.B.	+25°C	400 x 10 ⁶ hours
INTO	according to TR-332, 50% stress G.B.	+85°C	6 x 10 ⁶ hours

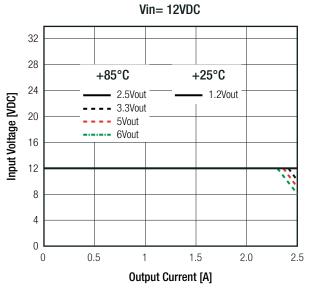
Notes:

Note11:The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature

Thermal Derating (11)

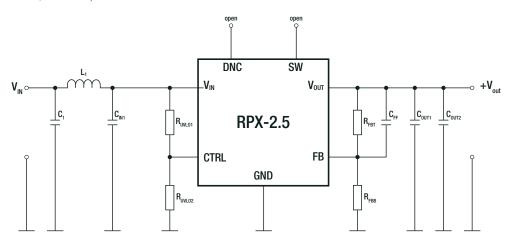
Notes:


Note12:Tested with 54.0 x 85.6mm 2 layer PCB with 105µm copper


continued on next page

Series

Specifications (measured @ ta= 25°C, 12Vin, 3.3Vout, full load and after warm-up unless otherwise stated, refer to test set up)



SAFETY AND CERTIFICATIONS		
Certificate Type (Safety)		Standard
RoHS2+		RoHS 2011/65/EU + AM2015/863
EMC Compliance	Condition	Standard / Criterion
Electromagnetic compatibility of multimedia equipment - Emission requirements	refer ro "EMC Filtering"	EN55032, Class B

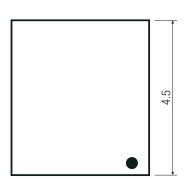
EMC Filtering suggestions for EN55032

(Vin= 12VDC; Vout= 5VDC; lout= 2.5A)

Component List Class B

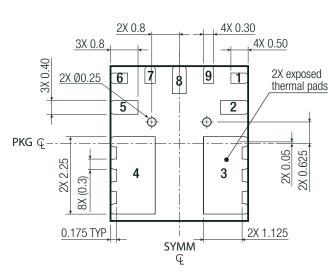
C1, C _{IN1}	L1	C _{0UT1,2}
10μF, 50V; X7R 1210	18µH choke RLS-186	47μF, 10V; X7R 1210

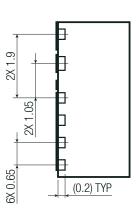
Series


Specifications (measured @ ta= 25°C, 12Vin, 3.3Vout, full load and after warm-up unless otherwise stated, refer to test set up)

DIMENSION AND PHYSICAL CHARACTERISTICS				
Parameter	Туре	Value		
Material	case	plastic, UL94 V-0		
Dimension (LxWxH)		4.1 x 4.6 x 2.1mm		
Weight		107mg typ.		

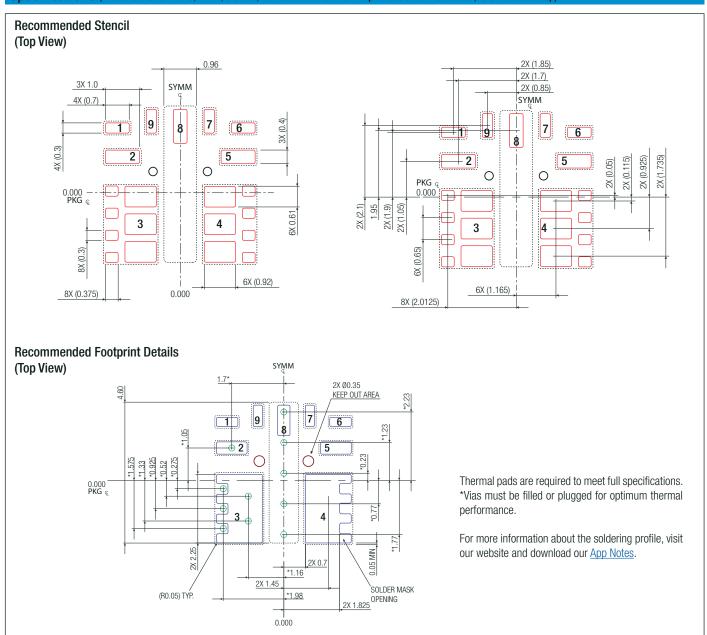
Dimension Drawing (mm)


Pad Information


Pad #	Function	Description	
1	FB	Feedback Input. Used to set the output voltage between 1.2V and 6V	
2	VIN	Input Voltage. Connect external bypass capacitors between this pin and GND close to the pins	
3	VOUT	Output Voltage. Connect external bypass capacitors between this pin and GND close to the pins	
4, 5	SW	Switch node. Do not connect	
6, 7	DNC	Do not connect. Must be soldered to an isolated pad	
8	GND	Ground pin. Connect this pin to the power ground plane on the PCB	
9	CTRL	CTRL pin. Float this pin when not used	

 $\begin{array}{ll} \text{Tolerances:} & \text{x.x} = \pm 0.1 \text{mm} \\ & \text{x.xx} / \text{x.xxx} = \pm 0.05 \text{mm} \end{array}$

Dimensioning and tolerancing according to ASME Y14.5



continued on next page

Series

Specifications (measured @ ta= 25°C, 12Vin, 3.3Vout, full load and after warm-up unless otherwise stated, refer to test set up)

PACKAGING INFORMATION				
Parameter	Туре	Value		
Packaging Dimension (LxWxH)	reel (diameter + width)	Ø330.0 + 12.4mm height		
	tape and reel (carton)	336.0 x 336.0 x 48.0mm		
	moisture barrier bag ("-CT")	100.0 x 100.0 x 30mm		
Packaging Quantity	tape and reel	250pcs		
Packaging Quantity	moisture barrier bag ("-CT")	10pcs		
Tape Width		12mm		
Storage Temperature Range		-55°C to +125°C		
Storage Humidity	non-condensing	95% RH max.		
ESD Sensitivity Level	HBM	Class 2		
Moisture Sensitivity Level	JEDEC J-STD-020E	MSL3		

The product information and specifications may be subject to changes even without prior written notice. The product has been designed for various applications; its suitability lies in the responsibility of each customer. The products are not authorized for use in safety-critical applications without RECOM's explicit written consent. A safety-critical application is an application where a failure may reasonably be expected to endanger or cause loss of life, inflict bodily harm or damage property. The applicant shall indemnify and hold harmless RECOM, its affiliated companies and its representatives against any damage claims in connection with the unauthorized use of RECOM products in such safety-critical applications.