

60 A 1200 V thyristor controlled bridge leg in ACEPACK SMIT module

ACEPACK SMIT

Product status STTN6050H-12M1Y

Product summary						
I _{T(RMS)}	60 A					
I _{OUT(AV)}	75 A					
I _{IN_AC(RMS)}	85 A					
V _{DRM} /V _{RRM}	1200 V					
V _{DSM} /V _{RSM}	1400 V					
I _{GT}	50 mA					
T _j	-40 to +150 °C					

Features

- AEC-Q101 qualified
- 1200 V symmetrical blocking voltage
- High junction temperature: 150 °C
- High noise immunity, static dV/dt: 1000 V/µs
- Embed two TN6050HP-12 dies in series
- Module qualified according to AQG324 recommendation
- · SMD with isolated top cooled tab
- 4000 V insulated tab-to-lead package
 - UL recognized, File E81734
- · Terminal pins opposite to cooling side
 - Fully automatic PCB mounting to heat sink
- Large creepage distance to meet IEC 60664-1
 - 250 V_{AC}, material group 2, pollution degree 3
 - 600 V_{AC}, material group 2, pollution degree 2
- ECOPACK2 compliant component

Applications

- · Single and tri-phase controlled rectifier bridge
- AC phasing half bridge of a totem pole PFC
- · On-board and stationary chargers
- AC / DC converter for motor drive, UPS and SMPS
- Output full wave DC current up to 75 A_{AV}
- AC Input converter current up to 85 A_{RMS}
- · Solid-state relay in heating control, by pass switch and motor starter

Description

The STTN6050H-12M1Y achieves a 1200 V 60 A full controlled SCR bridge leg in ACEPACK SMIT module, and it can control an AC current up to 85 A_{RMS} when connected to an AC line network. Thus, it allows to design a single or three-phase AC / DC rectifier bridge, a phase recombination branch of a totem pole PFC up to 75 $A_{(AV)}$ output current, the AC phasing arm of a line inverter or even an back-to-back SCR based AC switch for a heating controller or the by pass relay of an UPS.

With its top cooling pad opposite to the printed circuit board this device allows the PCB-module-heat sink stack to be automatically assembled. This provides a low profile and compact converter in the field of on-board charger, charging station, motor drive, UPS and AC / DC power supplies.

Based on the ST high temperature automotive ASD technology, it offers higher specified noise immunity of 1000 V/ μ s at the 150 °C junction temperature T $_j$, and an over-voltage robustness V $_{DSM}$ up to 1400 V.

1 Characteristics

Table 1. Absolute maximum ratings (limiting values, per single SCR)

Symbol	Paramete	Value	Unit		
I _{T(RMS)}	RMS on-state current, sine half wave	60	Α		
I _{T(AV)}	Average on-state current, sine half wave		T _C = 106 °C	38	Α
L	Non repetitive surge peak on-state current, V _R =	t _p = 8.3 ms	T _i initial = 25 °C	660	Α
I _{TSM}	0 V, I _G = 100 mA	t _p = 10 ms	Tjillillal – 25 C	600	A
l ² t	I ² t value for fusing	t _p = 10 ms	T _j = 25 °C	1800	A ² s
dl/dt	Critical rate of rise of on-state SCR current $I_G = 2 \times I_{GT}$, tr $\leq 100 \text{ ns}$	200	A/µs		
V _{DRM} / V _{RRM}	Repetitive off-state voltage	T _j = -40 °C to 150 °C	1200	V	
V _{DSM} / V _{RSM}	Non repetitive surge peak off-state voltage	t _p = 10 ms	T _j = 25 °C	1400	V
V _{GM}	Peak forward SCR gate voltage	t _p = 20 μs	T _j = 150 °C	10	V
I _{GM}	Peak forward SCR gate current	t _p = 20 μs	T _j = 150 °C	8	Α
I _{GCM}	Peak cathode drive current, C1 and C2 pins	t _p = 20 μs	T _j = 150 °C	8	Α
V_{RGM}	Peak SCR gate voltage		T _j = 25 °C	5	V
P _{G(AV)}	Average SCR gate power dissipation		T _j = 150 °C	1	W
T _{stg}	Storage junction temperature range	-40 to +150	°C		
Tj	Operating junction temperature range		-40 to +150	°C	
V _{INS}	RMS tab-to-pin lead insulation voltage, 1 minute			4	kV

DS13748 - Rev 2 page 2/18

Table 2. SCR electrical characteristics, per single SCR

Symbol Test Conditions					
acteristics					
V ₋ = 12 V P. = 23 O	T 25 °C	Min.	10	mA	
VD - 12 V, KL - 33 12	1j - 25 C	Max.	50	mA	
V_D = 12 V, R_L = 33 Ω	T _j = 25 °C	Max.	1.3	V	
$V_D = 2/3 \ V_{DRM}, \ R_L = 3.3 \ k\Omega$	T _j = 150 °C	Min.	0.2	V	
I _T = 500 mA, gate open	T _j = 25 °C	Max.	100	mA	
I _G = 1.2 x I _{GT}	T _j = 25 °C	Max.	125	mA	
cteristics					
I_T = 60 A , V_D = 800 V, I_G = 100 mA,	T - 25 °C	_			
$dI_G/dt = 0.2 A/\mu s$	1 _j = 25 C	Typ.	1	μs	
$I_T = 38 \text{ A}, V_D = 800 \text{ V}, dI_T/dt = 10 \text{ A/}\mu\text{s},$	T = 450 °C	Т. нь	450		
$V_R = 75 \text{ V}, dV_D/dt = 20 \text{ V}/\mu\text{s}, t_p = 100 \mu\text{s}$	1j = 150 C	Typ.	150	μs	
V _D = 800 V, gate open	T _j = 150 °C	Min.	1000	V/µs	
ristics	'	'			
L = 60 A t_ = 390 us	T _j = 25 °C	Max.	1.3	V	
ημ – 60 Α, τρ – 360 μs	T _j = 150 °C	Max.	1.3	V	
SCR on-state threshold voltage	T _j = 150 °C	Max.	0.8	V	
SCR on-state dynamic resistance	T _j = 150 °C	Max.	7.35	mΩ	
, , , , , , , , , , , , , , , , , , ,	T _j = 25 °C	Max.	5	μΑ	
$v_D = v_{DRM}, v_R = v_{RRM}$	T _j = 150 °C	Max.	7.5	mA	
$V_D = V_{DSM}, V_R = V_{RSM}$ $T_j = 25 ^{\circ}C$ Max.					
on					
$V_{TOT} \times I_{T(AV)} + R_{DT} \times I_{T(RMS)}^2$				W	
	V _D = 12 V, R _L = 33 Ω V _D = 12 V, R _L = 33 Ω V _D = 2/3 V _{DRM} , R _L = 3.3 kΩ I _T = 500 mA, gate open I _G = 1.2 x I _{GT}	$V_{D} = 12 \text{ V, } R_{L} = 33 \Omega \qquad \qquad T_{j} = 25 \text{ °C}$ $V_{D} = 12 \text{ V, } R_{L} = 33 \Omega \qquad \qquad T_{j} = 25 \text{ °C}$ $V_{D} = 2/3 \text{ V}_{DRM}, R_{L} = 3.3 \text{ k}\Omega \qquad \qquad T_{j} = 150 \text{ °C}$ $I_{T} = 500 \text{ mA, gate open} \qquad \qquad T_{j} = 25 \text{ °C}$ $I_{G} = 1.2 \text{ x I}_{GT} \qquad \qquad T_{j} = 25 \text{ °C}$ $I_{T} = 60 \text{ A, } V_{D} = 800 \text{ V, } I_{G} = 100 \text{ mA,}$ $dI_{G}/dt = 0.2 \text{ A/}\mu\text{s} \qquad \qquad T_{j} = 25 \text{ °C}$ $I_{T} = 38 \text{ A, } V_{D} = 800 \text{ V, } dI_{T}/dt = 10 \text{ A/}\mu\text{s,}$ $V_{R} = 75 \text{ V, } dV_{D}/dt = 20 \text{ V/}\mu\text{s, } t_{p} = 100 \mu\text{s}$ $V_{D} = 800 \text{ V, gate open} \qquad \qquad T_{j} = 150 \text{ °C}$ $V_{D} = 800 \text{ V, gate open} \qquad \qquad T_{j} = 150 \text{ °C}$ $SCR \text{ on-state threshold voltage} \qquad \qquad T_{j} = 150 \text{ °C}$ $SCR \text{ on-state dynamic resistance} \qquad \qquad T_{j} = 150 \text{ °C}$ $V_{D} = V_{DRM}, V_{R} = V_{RRM} \qquad \qquad T_{j} = 25 \text{ °C}$ $T_{j} = 150 \text{ °C}$ $V_{D} = V_{DSM}, V_{R} = V_{RSM} \qquad \qquad T_{j} = 25 \text{ °C}$	$ \begin{array}{c} \text{Acteristics} \\ \hline \\ V_D = 12 \ \text{V}, \ R_L = 33 \ \Omega \\ \hline \\ V_D = 12 \ \text{V}, \ R_L = 33 \ \Omega \\ \hline \\ V_D = 2/3 \ V_{DRM}, \ R_L = 3.3 \ k\Omega \\ \hline \\ V_D = 2/3 \ V_{DRM}, \ R_L = 3.3 \ k\Omega \\ \hline \\ V_D = 2/3 \ V_{DRM}, \ R_L = 3.3 \ k\Omega \\ \hline \\ V_D = 2/3 \ V_{DRM}, \ R_L = 3.3 \ k\Omega \\ \hline \\ V_D = 2/3 \ V_{DRM}, \ R_L = 3.3 \ k\Omega \\ \hline \\ V_D = 2/5 \ ^{\circ}\text{C} \\ \hline \\ Max. \\ \hline \\ Max. \\ \hline \\ Max. \\ \hline \\ T_j = 25 \ ^{\circ}\text{C} \\ \hline \\ Max. \\ \hline \\ T_j = 25 \ ^{\circ}\text{C} \\ \hline \\ Max. \\ \hline \\ T_j = 25 \ ^{\circ}\text{C} \\ \hline \\ Max. \\ \hline \\ T_j = 25 \ ^{\circ}\text{C} \\ \hline \\ Typ. \\ \hline \\ T_j = 150 \ ^{\circ}\text{C} \\ \hline \\ Typ. \\ \hline \\ T_j = 150 \ ^{\circ}\text{C} \\ \hline \\ Max. \\ \hline \\ T_j = 150 \ ^{\circ}\text{C} \\ \hline \\ Max. \\ \hline \\ T_j = 150 \ ^{\circ}\text{C} \\ \hline \\ Max. \\ \hline \\ T_j = 150 \ ^{\circ}\text{C} \\ \hline \\ Max. \\ \hline \\ T_j = 150 \ ^{\circ}\text{C} \\ \hline \\ Max. \\ \hline \\ T_j = 150 \ ^{\circ}\text{C} \\ \hline \\ Max. \\ \hline \\ V_D = V_{DRM}, \ V_R = V_{RRM} \\ \hline \\ V_D = V_{DSM}, \ V_R = V_{RSM} \\ \hline \\ \hline \\ \text{On} \\ \hline \\ \hline \\ \text{On} \\ \hline \\ \hline \\ T_j = 25 \ ^{\circ}\text{C} \\ \hline \\ Max. \\ \hline \\ T_j = 25 \ ^{\circ}\text{C} \\ \hline \\ Max. \\ \hline \\ T_j = 150 \ ^{\circ}\text{C} \\ \hline \\ Max. \\ \hline \\ T_j = 150 \ ^{\circ}\text{C} \\ \hline \\ Max. \\ \hline \\ T_j = 150 \ ^{\circ}\text{C} \\ \hline \\ Max. \\ \hline \\ T_j = 150 \ ^{\circ}\text{C} \\ \hline \\ Max. \\ \hline \\ T_j = 150 \ ^{\circ}\text{C} \\ \hline \\ \\ Max. \\ \hline \\ \hline \\ T_j = 150 \ ^{\circ}\text{C} \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$ \begin{array}{c} \text{Acteristics} \\ \\ V_D = 12 \ \text{V}, \ R_L = 33 \ \Omega \\ \\ V_D = 12 \ \text{V}, \ R_L = 33 \ \Omega \\ \\ V_D = 2/3 \ \text{V}_{DRM}, \ R_L = 3.3 \ \text{k} \Omega \\ \\ V_D = 2/3 \ \text{V}_{DRM}, \ R_L = 3.3 \ \text{k} \Omega \\ \\ V_D = 2/3 \ \text{V}_{DRM}, \ R_L = 3.3 \ \text{k} \Omega \\ \\ V_D = 2/3 \ \text{V}_{DRM}, \ R_L = 3.3 \ \text{k} \Omega \\ \\ V_D = 2/3 \ \text{V}_{DRM}, \ R_L = 3.3 \ \text{k} \Omega \\ \\ V_D = 2/3 \ \text{V}_{DRM}, \ R_L = 3.3 \ \text{k} \Omega \\ \\ V_D = 2/3 \ \text{V}_{DRM}, \ R_L = 3.3 \ \text{k} \Omega \\ \\ V_D = 2/3 \ \text{V}_{DRM}, \ R_L = 3.3 \ \text{k} \Omega \\ \\ V_D = 2/3 \ \text{V}_{DRM}, \ R_L = 3.3 \ \text{k} \Omega \\ \\ V_D = 2/3 \ \text{V}_{DRM}, \ V_D = 800 \ \text{V}, \ U_D = 100 \ \text{mA}, \ U_D = 25 \ \text{°C} \\ \\ V_D = 2/5 $	

Table 3. Thermal characteristics

Symbol	Parameter	Value	Unit	
R _{th(j-c)}	Junction to case (DC), per SCR ⁽¹⁾	Max.	0.75	°C/W

^{1.} The case temperature is measured right underneath the device die on cooling pad

DS13748 - Rev 2 page 3/18

1.1 Characteristics (curves)

Figure 1. SCR on-state characteristics (maximum value), $$T_j = 25\ ^{\circ}C$$ and 150 $^{\circ}C$

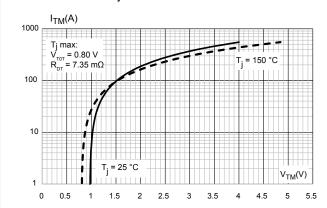


Figure 2. SCR maximum average power dissipation versus average half-wave on-state current, a = 30° to 180°

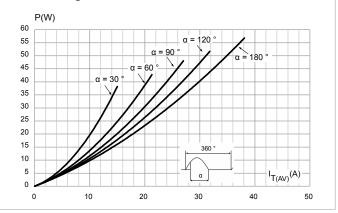


Figure 3. SCR average on-state current versus case temperature

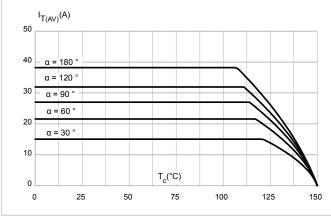


Figure 4. SCR relative variation of thermal impedance junction to case and junction to ambient versus pulse duration, 1 ms to 1 s

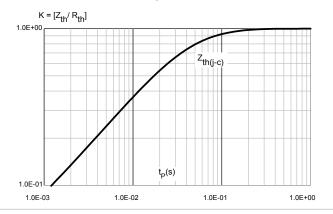


Figure 5. SCR relative variation of gate trigger voltage and current versus junction temperature (typical values)

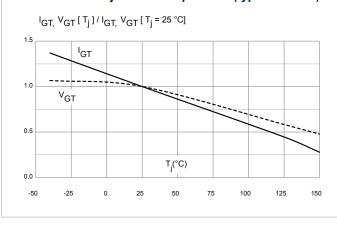
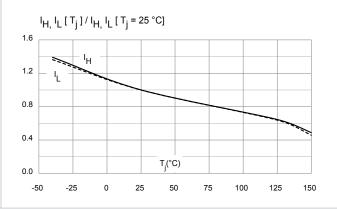



Figure 6. SCR relative variation of holding current and latching current versus junction temperature (typical values)

DS13748 - Rev 2 page 4/18

Figure 7. SCR non repetitive surge peak on-state current for a sinusoidal pulse ($t_p < 10 \text{ ms}$), $V_R = 0 \text{ V}$

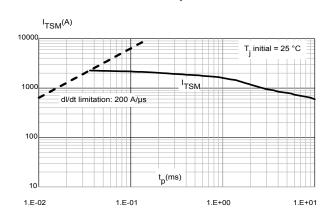


Figure 8. SCR surge peak forward current versus number of half cycles, V_R = 0 V

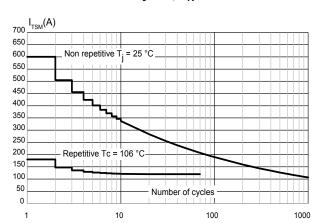


Figure 9. SCR relative variation of the static dV/dt immunity versus junction temperature (typical values

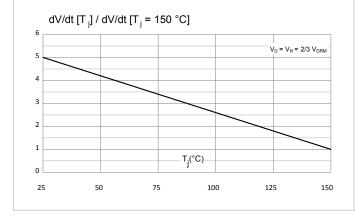


Figure 10. SCR junction capacitance versus reverse voltage applied, gate open (typical values)

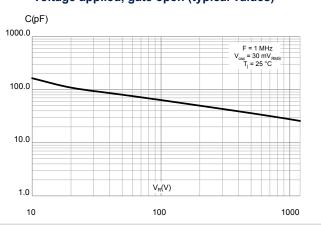
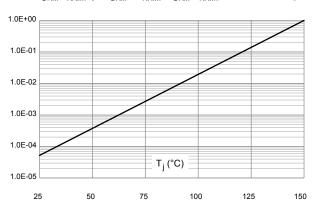



Figure 11. SCR relative variation of leakage current versus junction temperature for max blocking voltage (typical values)

 $I_{DRM}\,,I_{RRM}[Tj$, V_{DRM} , $V_{RRM}]\,/\,I_{DRM}\,,I_{RRM}[150~^{\circ}\text{C}$, 1200 V]

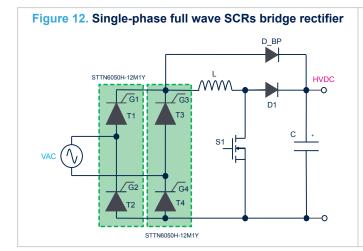
DS13748 - Rev 2 page 5/18

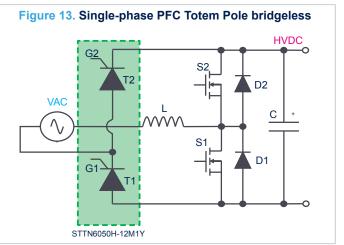
2 Application

2.1 Solid state Inrush current limitation (ICL) using STTN6050H-12M1Y

SCRs can be used in single and three phase applications as AC line polarity switches with an active current limitation at power up or line recovery.

For more information, refer to the application note:


 AN4606: Inrush-current limiter circuits (ICL) with Triacs and thyristors (SCR) and controlled bridge design tips.


Solid-state topologies with SCR allow the applications to easily comply to the following standard:

- IEC61000-3-3 (voltage fluctuations and flicker in public low-voltage supply systems, for equipment with rated current ≤ 16 A). the high current powered from the grid may lead to voltage fluctuations and drops due to the line impedance. Those mains voltage disturbances have an impact on any other equipment connected to the same circuit and cause undesired brightness variation of lamps or displays (commonly called flickering phenomenon).
- 2. IEC61000-4-11 (voltage dips, short interruptions, and voltage variations immunity tests) As any appliance connected to the mains can be subject to line voltage dips or interruptions, a high input current may occur when the line voltage suddenly comes back to its nominal value. This high current may damage the front-end circuit components and can trigger an AC fuse for example.

2.1.1 Single- phase applications

Figure 12 and Figure 13 define an active inrush current limiter in single-phase application with SCRs respectively in full wave SCRs bridge and in PFC totem pole bridgeless topology.

SCRs are controlled in phase angle to smoothly increase the PFC output capacitor voltage up to peak AC line voltage. The pre-charging peak current value is controlled by a microcontroller which smartly synchronize the SCRs gate driving signal angle step (referred as Δt in the Figure 14 here below). Limiting resistor like a negative temperature coefficient resistor (NTC) is no more needed.

DS13748 - Rev 2 page 6/18

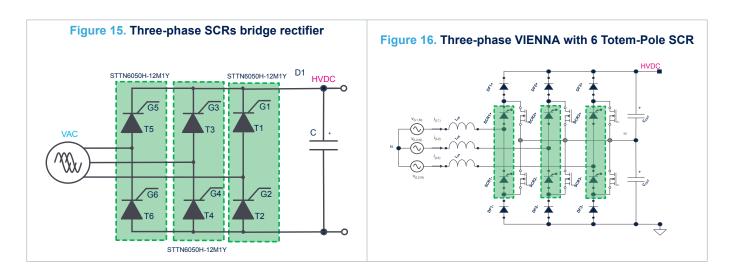



Figure 14. Inrush current controlled by SCRs principle

2.1.2 Three-phase applications

Figure 15 and Figure 16 define an example of active inrush current limiter in three-phase application with SCR respectively in three-phase SCRs bridge rectifier and in three-phase VIENNA with 6 totem-pole SCRs topology.

DS13748 - Rev 2 page 7/18

2.2 Solid state relay (SSR) using STTN6050H-12M1Y

Solid-state relays (SSR) can perform same tasks as electromechanical relay. SSR provides a high reliability, a long service life, an electromagnetic interference reduction, a fast response. Moreover, the SSR has no moving parts to wear out or arcing contacts to deteriorate that are cause of failure about the electromechanical relay. As defined by the Figure 17, when a control current is applied to the input of the opto-TRIAC, the SCRs are turned on. When the control current is removed from the input of the opto-TRIAC, SCRs are turned off when the load current falls to the zero. Note the SSR can be used as contactor for 2-phase motor (see Figure 18) or as bypass relay (see Figure 19).

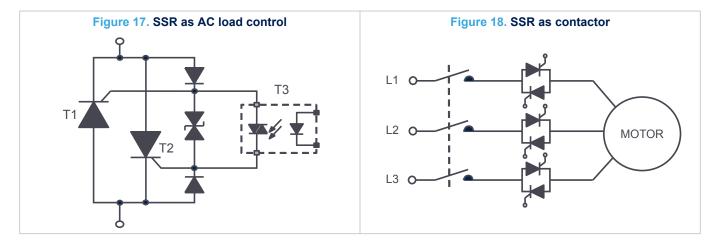
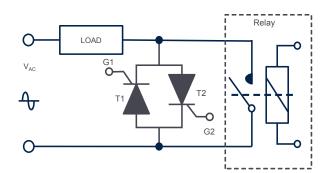



Figure 19. SSR as relay bypass

DS13748 - Rev 2 page 8/18

2.3 Dissipated power and junction temperature calculation at steady state

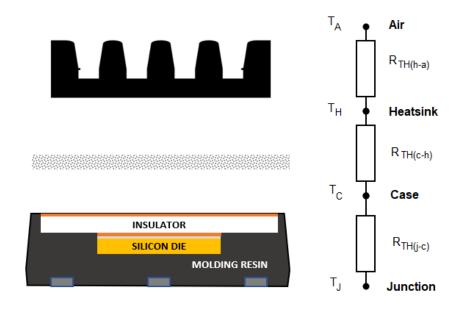
2.3.1 Dissipated power definition

Dissipated power of the SCR is defined by the following equation with V_{TOT} the SCR on-state threshold voltage, R_{DT} the SCR on-state dynamic resistance, $I_{T(AV)}$ the SCR average current and $I_{T(RMS)}$ the SCR RMS current:

$$P_d = V_{TOT} \times I_{T(AV)} + R_{DT} \times I_{T(RMS)}^2$$
(1)

Table 4 gives the average and RMS current of SCR according to the topology defined in the previous section by considering the RMS current of the AC line $I_{L(RMS)}$ is a sinus waveform.

Table 4. I_{T(AV)} and I_{T(RMS)} definition


Topology	Current o	definition
Single-phase full wave SCRs bridge rectifier	l , zono	$I_{T(AV)} = \frac{\sqrt{2}}{\pi} \times I_{L(RMS)}$
Single-phase PFC Totem Pole bridgeless	lT(AV)	$IT(AV) = \frac{1}{\pi} \times IL(RMS)$
SSR		II (DMC)
Three-phase VIENNA with 6 Totem-Pole SCRs	I _{T(RMS)}	$I_{T(RMS)} = \frac{I_{L(RMS)}}{\sqrt{2}}$

DS13748 - Rev 2 page 9/18

2.3.2 Junction temperature definition

Figure 20. Die assembly representation

When Tc value is known, silicon junction temperature can be calculated as follows:

$$T_j = T_C + P_D \times R_{TH(j-c)}$$

Otherwise, starting from ambient temperature measurement, junction temperature can be calculated as follows:

$$T_j = T_A + P_D \times R_{TH}(j - a)$$

Note: $R_{th(j-c)}$ value is given in the datasheet above.

with:

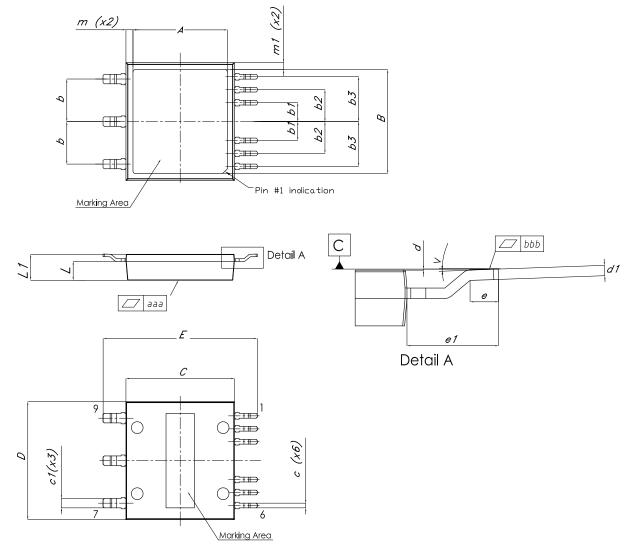
$$R_{TH(j-a)} = R_{TH(j-c)} + R_{TH(c-h)} + R_{TH(h-a)}$$

and where $R_{TH(c-h)}$ is the thermal interface resistance (grease or foil) and $R_{TH(h-a)}$ is the heatsink thermal resistance.

For more information about the thermal management and power dissipation calculation, refer to the application note:

AN533: SCRs, TRIACs, and AC switches, thermal management precautions for handling and mounting

DS13748 - Rev 2 page 10/18


3 Package information

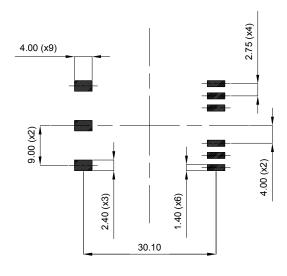
In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

3.1 ACEPACK SMIT package information

- · Lead-free package leads finishing
- Halogen-free molding compound resin meets UL94 standard level V0

Figure 21. ACEPACK SMIT package outline

DM00447519_Rev.6


DS13748 - Rev 2 page 11/18

Dim		mm		Inches (for reference only)				
Dim.	Min.		Max.	Min.	Тур.	Max.		
А	19.50	20.00	20.50	0.7677	0.7874	0.8071		
В	21.50	22.00	22.50	0.8465	0.8661	0.8858		
С	22.80	23.00	23.20	0.8976	0.9055	0.9134		
D	24.80	25.00	25.20	0.9764	0.9843	0.9921		
Е	32.20	32.70	33.20	1.2677	1.2874	1.3071		
b		9.00			0.3543			
b1		4.00			0.1575			
b2		6.75			0.2657			
b3		9.50			0.3740			
С	0.95	1.00	1.10	0.0374	0.0394	0.0433		
c1	1.95	2.00	2.10	0.0768	0.0787	0.0827		
d	0.00		0.15	0.0000	0.0000	0.0059		
d1	0.45	0.55	0.65	0.0177	0.0217	0.0256		
е	1.30	1.50	1.70	0.0512	0.0591	0.0669		
e1	4.65	4.85	5.05	0.1831	0.1909	0.1988		
L	3.95	4.00	4.05	0.1555	0.1575	0.1594		
L1	5.40	5.50	5.60	0.2126	0.2165	0.2205		
m	1.30	1.50	1.80	0.0512	0.0591	0.0709		
m1	1.30	1.50	1.80	0.0512	0.0591	0.0709		
V	0°	2°	4°	0°	2°	4°		
aaa	0.01		0.05		0.0004	0.0020		
bbb	0.00		0.10		0.0000	0.0039		

Table 5. ACEPACK SMIT package mechanical data

Figure 22. ACEPACK SMIT recommended footprint (dimensions are in mm)

DM00447519_FP_Rev.5

Note: Recommended pressing force on package to the heatsink: 50 N as described in application note AN5384.

DS13748 - Rev 2 page 12/18

3.2 ACEPACK SMIT package insulation information

Figure 23. ACEPACK SMIT package insulation information

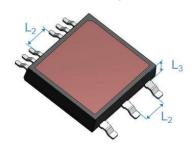
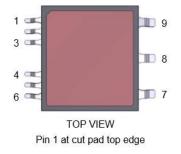


Table 6. ACEPACK SMIT package insulation characteristics

Symbol	Parameter							
L2	Pin-to-pin creepage distance	Terminal to terminal: 3 to 4, 7 to 8, 8 to 9	Min.	6.6	mm			
L3	Pin-to-backside creepage distance		Min.	4	mm			
I _{INS}	RMS tab-to-pin lead insulation current	Duration = 1 s., V _{INS} = 4.8 kV	Max.	1	mA			

Note: Recommended pressing force on package to the heatsink: 50 N as described in application note AN5384.

DS13748 - Rev 2 page 13/18



3.3 ACEPACK SMIT terminal description

Table 7. ACEPACK SMIT STTN6050H-12M1Y module pinout description

Pin #	Name	Description
1	C2	T2 cathode drive
2	NC	Not connected
3	G2	T2 gate
4	4 G1 T1 gate	
5	NC	Not connected
6	C1	T1 cathode drive
7	DC1	DC output 1
8	DC2	DC output 2
9	AC	AC line

Figure 24. ACEPACK SMIT STTD6050H-12M2Y module pinout

DS13748 - Rev 2 page 14/18

3.4 ACEPACK SMIT packing information

Figure 25. ACEPACK SMIT carrier tape outline, bottom view

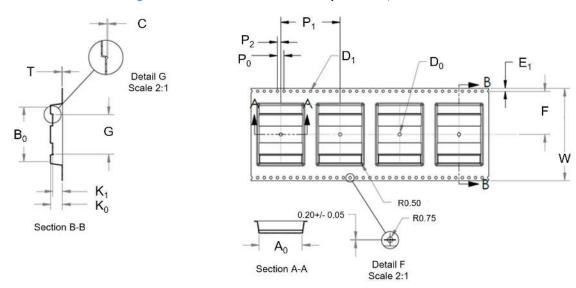


Table 8. ACEPACK SMIT carrier tape dimensions

	Carrier tape typical dimension (mm)													
A ₀	B ₀	С	D ₀	D ₁	E ₁	F	G	K ₀	K ₁	P ₀	P ₁	P ₂	Т	W
26.00	33.30	0.40	2.00	1.50	1.75	26.20	24.10	7.10	5.80	4.00	36.00	2.00	0.35	56.00

Figure 26. ACEPACK SMIT reel outline

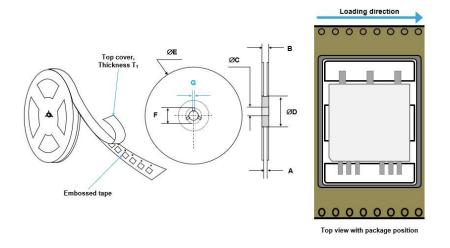


Table 9. ACEPACK SMIT reel dimensions

Door on		Reel dimension (mm)									
Base qty.	A B (max.) C	С	D (min.)	E (max.)	F (min.)	G	T ₁ (max.)				
200	16.4 ±0.3	22.4	13.2 ±0.2	20.2 ±0.25	330	20.2	2.0 ±0.5	0.1			

DS13748 - Rev 2 page 15/18

4 Ordering information

Figure 27. Ordering information scheme

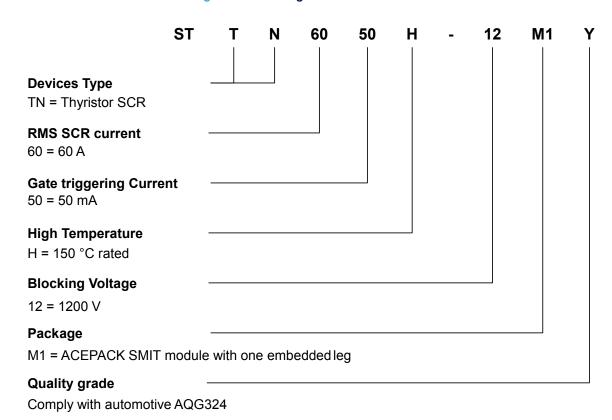


Table 10. Ordering information

Order code	Marking	rking Package		Base qty.	Delivery mode
STTN6050H-12M1Y	STTN6050H12M1Y	ACEPACK SMIT	8.1 g	200	Tape and reel

DS13748 - Rev 2 page 16/18

Revision history

Table 11. Document revision history

Date	Revision	Changes
15-Jun-2021	1	Initial release.
15-Feb-2023	2	Updated product summary table on cover page.

DS13748 - Rev 2 page 17/18

IMPORTANT NOTICE - READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2023 STMicroelectronics - All rights reserved

DS13748 - Rev 2 page 18/18