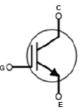
FAIRCHILD SEMICONDUCTOR®

FGA50N100BNT 1000V, 50A NPT-Trench IGBT CO-PAK

Features

- · High Speed Switching
- Low Saturation Voltage $: V_{CE(sat)} = 2.5 \text{ V} @ I_C = 60 \text{ A}$ •
- High Input Impedance •
- RoHS Compliant


Applications

• UPS, PFC, I-H Jar, Induction Heater, Home Appliance.

General Description

Trench insulated gate bipolar transistors (IGBTs) with NPT technology show outstanding performance in conduction and switching characteristics as well as enhanced avalanche ruggedness. These devices are well suited for UPS, PFC, I-H Jar, induction Heater and Home Appliance.

Absolute Maximum Ratings

ĠĊĒ

Symbol	Description		Ratings	Units V	
V _{CES}	Collector to Emitter Voltage		1000		
V _{GES}	Gate to Emitter Voltage		± 25	V	
۱ _C	Collector Current	@ T _C = 25°C	50	A	
	Collector Current	@ T _C = 100°C	35	A	
I _{CM (1)}	Pulsed Collector Current		200	A	
P _D	Maximum Power Dissipation	@ T _C = 25°C	156	W	
	Maximum Power Dissipation	@ T _C = 100°C	63	W	
TJ	Operating Junction Temperature		-55 to +150	°C	
T _{stg}	Storage Temperature Range		-55 to +150	°C	
TL	Maximum Lead Temp. for soldering Purposes, 1/8" from case for 5 seconds	3	300	°C	

Notes: 1: Repetitive rating : Pulse width limited by max. junction temperature

Thermal Characteristics

Symbol	Parameter	Тур.	Max.	Units
$R_{\theta JC}(IGBT)$	Thermal Resistance, Junction to Case	-	0.8	°C/W
R_{\thetaJA}	Thermal Resistance, Junction to Ambient	-	40.0	°C/W

March 2009

Device N	vice Marking Device Pa		Pack	Packaging ackage Type		Qty per Tube		Max Qty per Box	
•		FGA50N100BNTTU	TO-3	3PN	Rail / Tube	30ea		-	
Electric	al Cha	racteristics of t	he IGE	BT T _C = 25	5°C unless otherwise noted				
Symbol		Parameter		Test	Conditions	Min.	Тур.	Max.	Units
Off Charac	teristics								
BV _{CES}		to Emitter Breakdown Vo	oltage V ₀	_{GE} = 0V, I _C	= 1mA	1000	-	-	V
I _{CES}		Cut-Off Current			/, V _{GE} = 0V	-	-	1.0	mA
I _{GES}	G-E Leak	kage Current		$V_{GE} = \pm 25V, V_{CE} = 0V$		-	-	±500	nA
						<u>I</u>	<u> </u>		1
V _{GE(th)}	teristics G-E Threshold Voltage			$I_{\rm C} = 60$ mA, $V_{\rm CE} = V_{\rm GE}$		4.0	5.5	7.0	V
V _{CE(sat)}			v	$I_{\rm C} = 10$ A, $V_{\rm GE} = 15$ V		-	1.5	1.8	V
				$I_{\rm C} = 60$ A, $V_{\rm GE} = 15$ V			2.5	2.9	V
			I _C	$I_{C} = 60A, V_{GE} = 15V,$ $T_{C} = 125^{\circ}C$		-	3.1	-	v
Dynamic C	haracteris	atics	I						
C _{ies}	1	pacitance				-	6000	-	pF
C _{oes}	Output C	Output Capacitance		$V_{CE} = 10V, V_{GE} = 0V,$		-	260	-	pF
C _{res}		Transfer Capacitance	† =	f = 1MHz		-	200	-	pF
.	. .		I			1	1		1
Switching	1						24		-
t _{d(on)}		Delay Time	V	_{CC} = 600V,	I _C = 60A,	-	34	-	ns
t _r	Rise Time	e Delay Time	R ₀	$= R_{G} = 10\Omega, V_{GE} = 15V,$ Inductive Load, $T_{C} = 25^{\circ}C$		-	68 243	-	ns
t _{d(off)}	Fall Time		In			-	243 65	- 100	ns ns
t _f		e Charge				_	257	350	nC
Q _g Q _{ge}		Emitter Charge	V	_{CE} = 600V,	I _C = 60A,	-	45	-	nC
Q _{ge} Q _{gc}		Collector Charge	V	$V_{GE} = 15V, T_{C} = 25^{\circ}C$			45 95		nC

FGA50N100BNT 1000V, 50A NPT-Trench IGBT CO-PAK

Typical Performance Characteristics

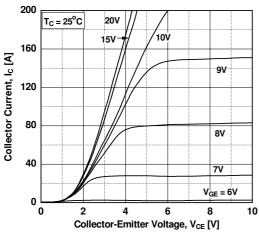


Figure 3. Typical Saturation Voltage Characteristics

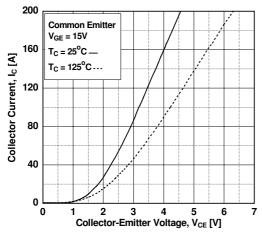
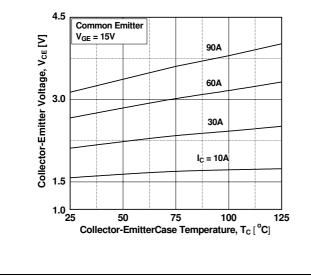



Figure 5. Saturation Voltage vs. Case Temperature at Variant Current Level

Figure 2. Typical Output Characteristics

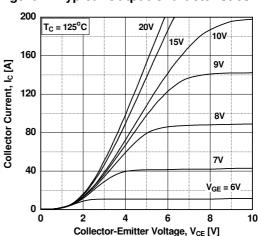


Figure 4. Transfer Characteristics

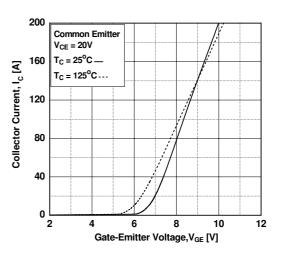
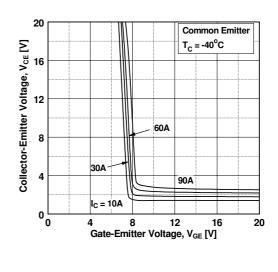
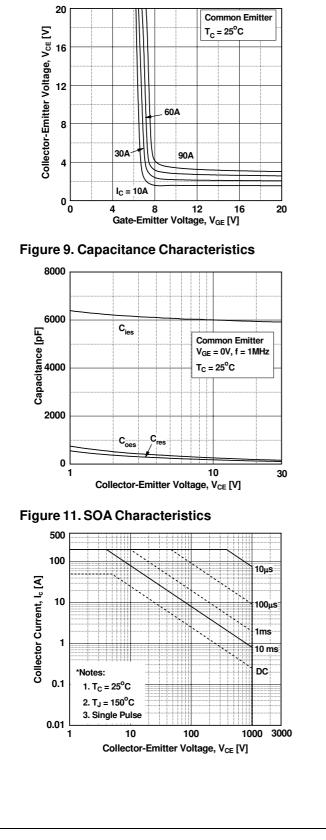




Figure 6. Saturation Voltage vs. V_{GE}

Typical Performance Characteristics

Figure 7. Saturation Voltage vs. V_{GE}

Figure 8. Saturation Voltage vs. V_{GE}

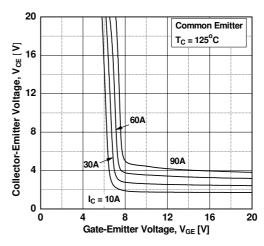


Figure 10. Gate charge Characteristics

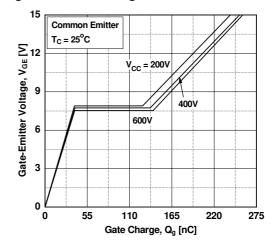
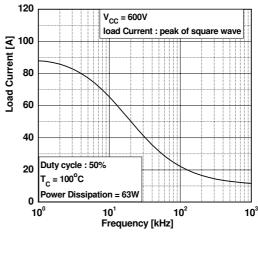
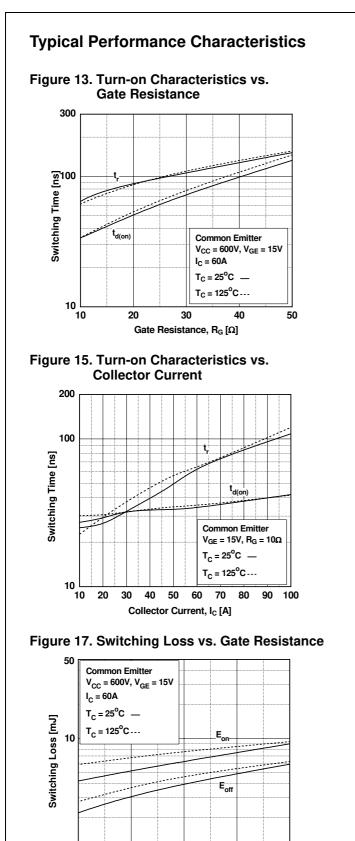
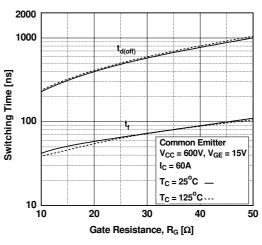
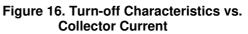
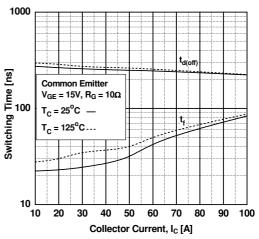
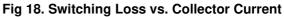
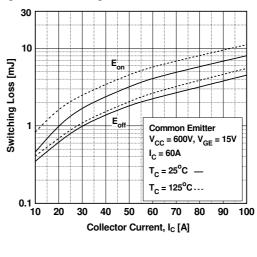
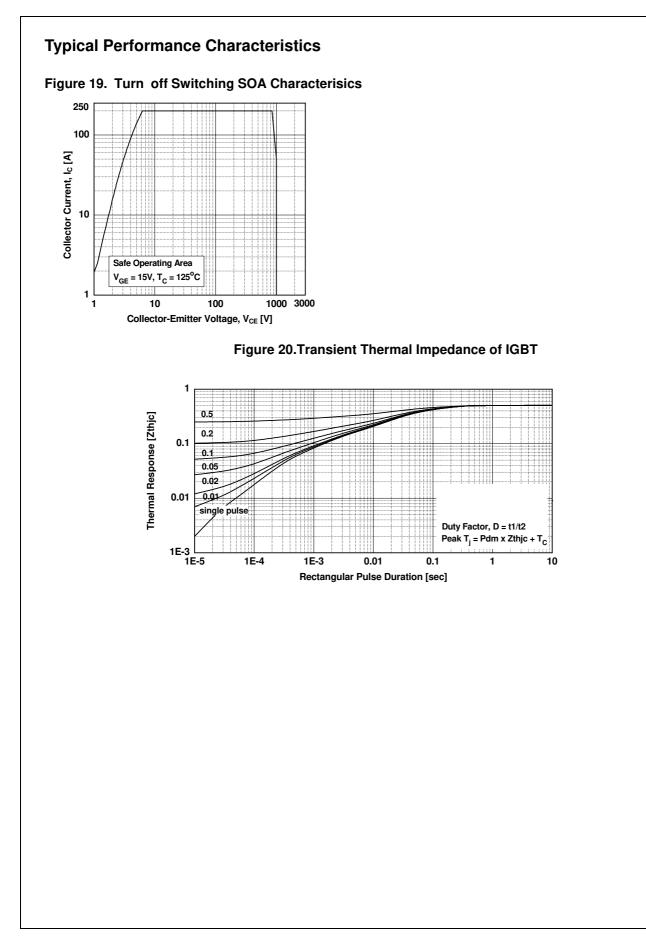
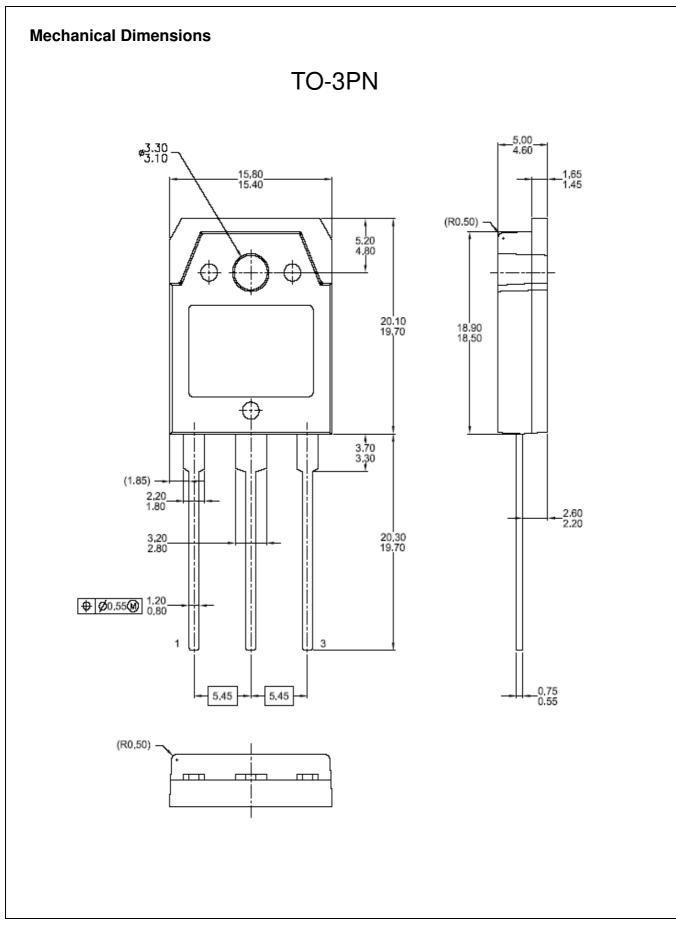



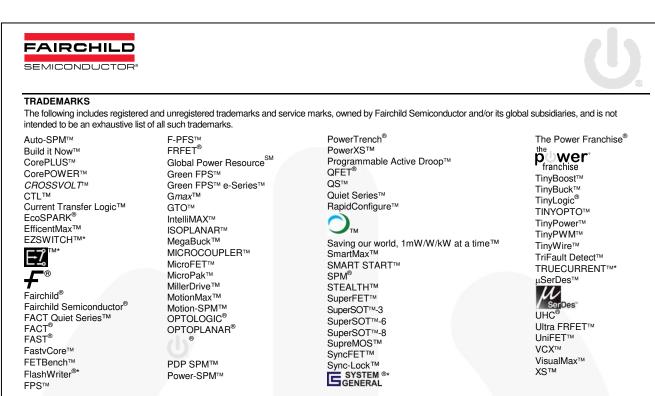
Figure 12. Load Current vs. Frequency


Figure 14. Turn-off Characteristics vs. Gate Resistance


. 10 20


30


Gate Resistance, $R_{G}\left[\,\Omega\right]$

40

50

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition		
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.		
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.		