

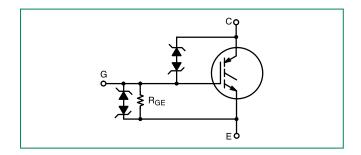
NGB18N40ACLB - 18 A, 400 V, N-Channel Ignition IGBT, D2PAK

18 Amps, 400 Volts V_{CE} (on) $\leq 2.0 V$ @ $I_{C} = 10 A$, $V_{GE} \geq 4.5 V$

Maximum Ratings (TJ = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Collector–Emitter Voltage	V _{CES}	430	V _{DC}
Collector-Gate Voltage	V _{CER}	430	V _{DC}
Gate-Emitter Voltage	V _{GE}	18	V _{DC}
Collector Current–Continuous		18	A _{DC}
@ TC = 25°C - Pulsed	l _c	50	A _{AC}
ESD (Human Body Model) R = 1500 Ω , C = 100 pF	ESD	8.0	kV
ESD (Machine Model) R = 0 Ω , C = 200 pF	ESD	800	V
Total Power Dissipation @ TC = 25°C	DD	115	Watts
Derate above 25°C	PD	0.77	W/°C
Operating and Storage Temperature Range	T_{J},T_{stg}	–55 to +175	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


Description

This Logic Level Insulated Gate Bipolar Transistor (IGBT) features monolithic circuitry integrating ESD and Over–Voltage clamped protection for use in inductive coil drivers applications. Primary uses include Ignition, Direct Fuel Injection, or wherever high voltage and high current switching is required.

Features

- Ideal for Coil-on-Plug Applications
- DPAK Package Offers Smaller Footprint for Increased Board Space
- Gate-Emitter ESD Protection
- Temperature Compensated Gate–Collector Voltage Clamp Limits Stress Applied to Load
- Integrated ESD Diode Protection
- New Design Increases Unclamped Inductive Switching (UIS) Energy Per Area
- LowThreshold Voltage Interfaces Power Loads to Logic or Microprocessor Devices
- Low Saturation Voltage
- High Pulsed Current Capability
- Optional Gate Resistor (R_G) and Gate–Emitter Resistor (R_{GE})
- Emitter Ballasting for Short-Circuit Capability
- These are Pb-Free Devices

Functional Diagram

Additional Information

Datasheet

Sample

Ur	iclamped C	Collector	-To–Emitt	er Aval	anche C	haracter	istic	cs (–55	°≤T _J ≤ 150°	C)
----	------------	-----------	-----------	---------	---------	----------	-------	---------	-------------------------	----

Rating	Symbol	Value	Unit			
Single Pulse Collector-to-Emitter Avalanche Energy						
$V_{CC} = 50 \text{ V}, V_{GE} = 5.0 \text{ V}, P_k I_L = 21.1 \text{ A}, L = 1.8 \text{ mH}, Starting T_J = 25^{\circ}\text{C}$	F	400				
$V_{CC} = 50 \text{ V}, V_{GE} = 5.0 \text{ V}, P_k I_L = 18.3 \text{ A}, L = 1.8 \text{ mH}, Starting T_J = 125^{\circ}\text{C}$	E _{AS}	300	mJ			
Reverse Avalanche Energy						
$V_{cc} = 100 \text{ V}, V_{gE} = 20 \text{ V}, P_k I_L = 25.8 \text{ A}, L = 6.0 \text{ mH}, Starting T_J = 25^{\circ}\text{C}$	E _{AS (R)}	2000	mJ			

Maximum Short-Circuit Times (-55° ≤ T_J ≤ 150°C)

Rating	Symbol	Value	Unit
Short Circuit Withstand Time 1 (See Figure 17, 3 Pulses with 10 ms Period)	t _{sc1}	750	μs
Short Circuit Withstand Time 2 (See Figure 18, 3 Pulses with 10 ms Period)	t _{sc2}	5.0	ms

Thermal Characteristics

Rating	Symbol	Value	Unit
Thermal Resistance, Junction to Case	$R_{ hetaJc}$	1.3	°C/W
Thermal Resistance, Junction to Ambient D ² PAK (Note 1)	$R_{\theta JA}$	50	°C/W
Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 5 seconds	T _L	275	°C

Electrical Characteristics - OFF

Characteristic	Symbol	Test Conditions	Temperature	Min	Тур	Max	Unit		
Collector-Emitter	D) /	IC = 2.0 mA	TJ = -40°C to 150°C	380	395	420	W		
Clamp Voltage	BV _{CES}	IC = 10 mA	TJ = -40°C to 150°C	390	405	430	V _{DC}		
			T _J = 25°C	_	2.0	20			
Zero Gate Voltage Collector Current	I _{CES}	$V_{CE} = 350$ $V, V_{GE} = 0 V$	T _J = 150°C	_	10	40*	μΑ		
		-, - GE	T _J = -40°C	_	1.0	10			
	I _{ECS}				T _J = 25°C	-	0.7	2.0	
Reverse Collector–Emitter Leakage Current		V _{CE} = -24 V	T _J = 150°C	_	12	25*	mA		
			T _J = -40°C	_	0.1	1.0			
			T _J = 25°C	27	33	37			
Reverse Collector–Emitter Clamp Voltage	B _{VCES(R)}	$I_{\rm C} = -75 \mathrm{mA}$	T _J = 150°C	30	36	40	V _{DC}		
, G			T _J = -40°C	25	32	35			
Gate-Emitter Clamp Voltage	BV _{GES}	I _G = 5.0 mA	T _J = -40°C to 150°C	11	13	15	V _{DC}		
Gate–Emitter Leakage Current	I _{GES}	$V_{GE} = 10 \text{ V}$	T _J = -40°C to 150°C	384	640	1000	μA _{DC}		
Gate Emitter Resistor	R _{GE}	-	T _J = -40°C to 150°C	10	16	26	kΩ		

Electrical Characteristics - ON (Note 2)

Characteristic	Symbol	Test Conditions	Temperature	Min	Тур	Max	Unit												
			T _J = 25°C	1.0	1.4	1.6													
		$I_{C} = 6.0 \text{ A},$ $V_{GE} = 4.0 \text{ V}$	T _J = 150°C	0.9	1.3	1.6													
		GE - 1.0 V	T _J = -40°C	1.1	1.45	1.7*													
			T _J = 25°C	1.3	1.6	1.9*													
		$I_{\rm C} = 8.0 \text{A},$ $V_{\rm GE} = 4.0 \text{V}$	T _J = 150°C	1.2	1.55	1.8													
		GE - 1.0 V	T _J = -40°C	1.4	1.6	1.9*													
			T _J = 25°C	1.4	1.8	2.05													
Collector-to-Emitter		$I_{c} = 10 \text{ A},$		$I_{c} = 10 \text{ A},$ $V_{GE} = 4.0 \text{ V}$	T _J = 150°C	1.5	1.8	2.0											
On-Voltage	V _{CE(on)}	V _{CE(on)}	V CE(on)	V _{CE(on)}	$V_{CE(on)}$	$V_{CE(on)}$	V _{CE(on)}	V _{CE(on)}	$V_{\text{CE(on)}}$	GE	T _J = -40°C	1.4	1.8	2.1*	V _{DC}				
					T _J = 25°C	1.6	1.9	2.2											
		$I_{c} = 15 \text{ A},$ $V_{c} = 4.0 \text{ V}$										$I_{c} = 15 \text{ A},$ $V_{GE} = 4.0 \text{ V}$			T _J = 150°C	1.7	2.1	2.3	
		GE	T _J = -40°C	1.6	1.8	2.2													
			T _J = 25°C	1.3	1.8	2.0*													
		$I_{c} = 10 \text{ A},$ $V_{GF} = 4.5 \text{ V}$	T _J = 150°C	1.3	1.75	2.0*													
	V _{GE} = 4.5 V	V _{GE} = 4.5 V	V GE - 4.0 V	V _{GE} = 4.5 V	V _{GE} – 4.5 V	V _{GE} – 4.5 V	V _{GE} - 4.5 V	v _{GE} = 4.5 v	T _J = -40°C	1.4	1.8	2.0*							
		$I_{\rm C} = 6.5 \text{A},$ $V_{\rm GE} = 3.7 \text{V}$	T _J = 25°C	-	-	1.65													
Forward Transconductance	gfs	$V_{CE} = 5.0 \text{ V},$ $I_{C} = 6.0 \text{ A}$	T _J = -40°C to 150°C	8.0	14	25	Mhos												

Dynamic Characteristics

Characteristic	Symbol	Test Conditions	Temperature	Min	Тур	Max	Unit	
Input Capacitance	C _{ISS}	V - 25V		400	800	1000		
Output Capacitance	C _{oss}	$V_{CC} = 25 \text{ V},$ $V_{GE} = 0 \text{ V}$	T _J = -40°C to 150°C	50	75	100	pF	
Transfer Capacitance	C _{RSS}	f = 1.0 MHz	f = 1.0 MHz		4.0	7.0	10	

Switching Characteristics

Characteristic	Symbol	Test Conditions	Temperature	Min	Тур	Max	Unit
Turn–Off Delay Time (Resistive)	t _{d(off)}	$V_{cc} = 300 \text{ V},$ $I_c = 6.5 \text{ A}$ $R_g = 1.0 \text{ k}\Omega,$ $R_L = 46 \Omega,$	T _J = 25°C	-	4.0	10	μS
Fall Time (Resistive)	tf	$V_{cc} = 300 \text{ V},$ $I_c = 6.5 \text{ A}$ $R_G = 1.0 \text{ k}\Omega,$ $R_L = 46 \Omega,$	T _J = 25°C	-	9.0	15	μο
Turn–On Delay Time	t _{d(on)}	$V_{cc} = 10 \text{ V},$ $I_c = 6.5 \text{ A}$ $R_G = 1.0 \text{ k}\Omega,$ $R_L = 1.5 \Omega,$	T _J = 25°C	-	0.7	4.0	μS
Rise Time	t _r	$V_{cc} = 10 \text{ V},$ $I_c = 6.5 \text{ A}$ $R_G = 1.0 \text{ k}\Omega,$ $R_L = 1.5 \Omega,$	T _J = 25°C	_	4.5	7.0	μο

^{*}Maximum Value of Characteristic across Temperature Range.

Ratings and Characteristic Curves

Figure 1. Output Characteristics

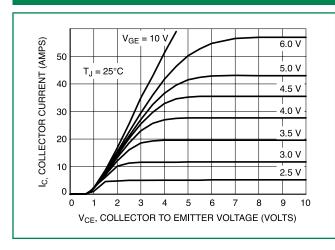
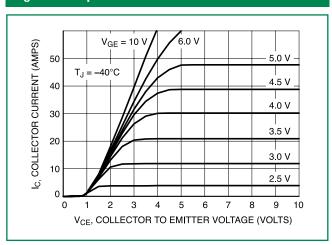
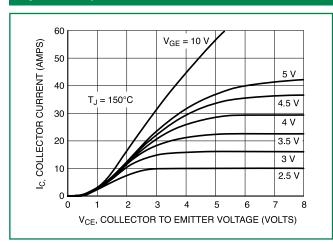



Figure 2. Output Characteristics



^{1.} When surface mounted to an FR4 board using the minimum recommended pad size.

^{2.} Pulse Test: Pulse Width \leq 300 μ S, Duty Cycle \leq 2%.

Figure 3. Output Characteristics

Figure 4. Transfer Characteristics

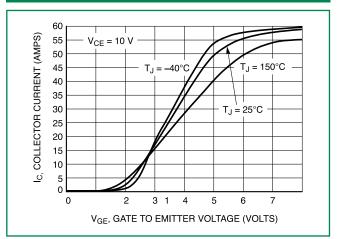


Figure 5. Collector-to-Emitter Saturation Voltage versus Junction Temperature

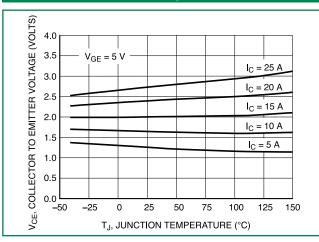


Figure 6. Collector-to-Emitter Voltage versus Gate-to-Emitter Voltage

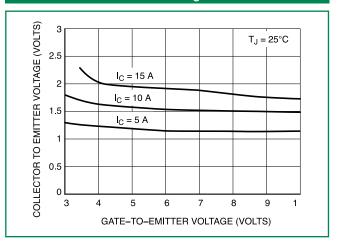


Figure 7. Collector-to-Emitter Voltage versus
Gate-to-Emitter Voltage

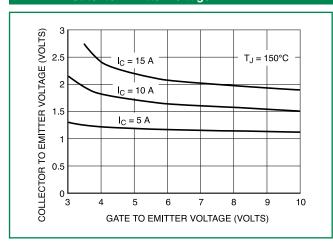


Figure 8. Capacitance Variation

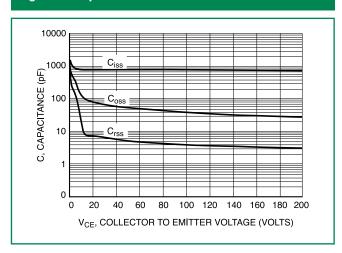


Figure 9. Gate Threshold Voltage versus Temperature

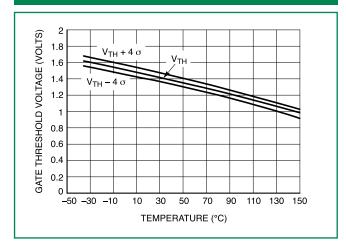


Figure 11. Typical Open Secondary Latch Current versus Temperature

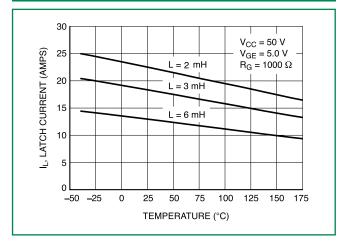


Figure 13. Single Pulse Safe Operating Area (Mounted on an Infinite Heatsink at $T_a = 25^{\circ}\text{C}$)

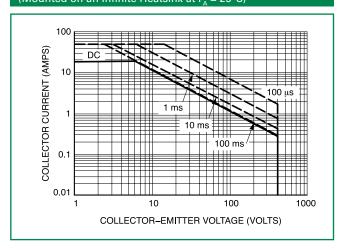


Figure 10. Minimum Open Secondary Latch Current versus Temperature

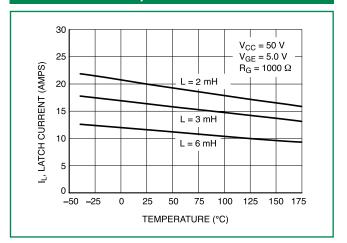


Figure 12. Inductive Switching Fall Time versus Temperature

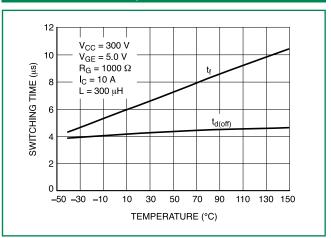


Figure 14. Single Pulse Safe Operating Area (Mounted on an Infinite Heatsink at T_s = 125°C)

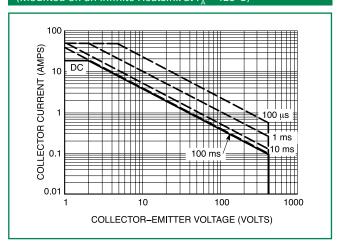


Figure 15. Pulse Train Safe Operating Area (Mounted on an Infinite Heatsink at $T_c = 25$ °C)

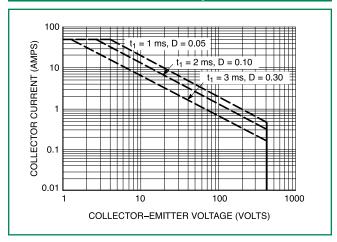


Figure 15. Pulse Train Safe Operating Area (Mounted on an Infinite Heatsink at $T_c = 125$ °C)

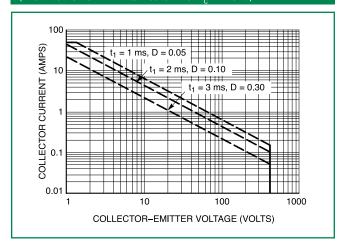


Figure 17. Circuit Configuration for Short Circuit Test #1

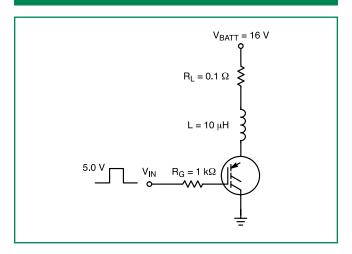
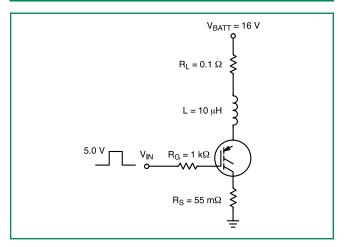
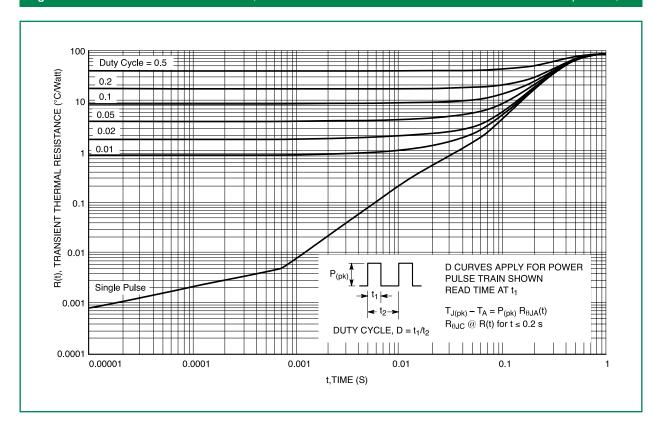
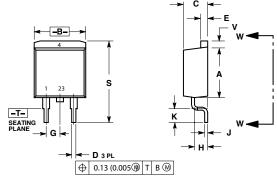
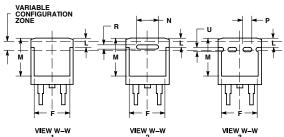
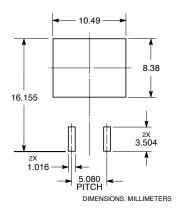


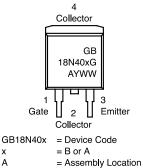
Figure 18. Circuit Configuration for Short Circuit Test #2




Figure 19. Transient Thermal Resistance (Non-normalized Junction-to-Ambient mounted on minimum pad area)


Dimensions



Dim	Inches		Millimeters		
DIM	Min	Max	Min	Max	
Α	0.086	0.094	2.18	2.38	
A1	0.000	0.005	0.00	0.13	
b	0.025	0.035	0.63	0.89	
b2	0.028	0.045	0.72	1.14	
b3	0.180	0.215	4.57	5.46	
С	0.018	0.024	0.46	0.61	
c2	0.018	0.024	0.46	0.61	
D	0.235	0.245	5.97	6.22	
Е	0.250	0.265	6.35	6.73	
е	0.090	BSC	2.29	BSC	
Н	0.370	0.410	9.40	10.41	
L	0.055	0.070	1.40	1.78	
L1	0.114	REF	2.90 REF		
L2	0.020	0.020 BSC		BSC	
L3	0.035	0.050	0.89	1.27	
L4		0.040		1.01	
Z	0.155		3.93		

Soldering Footrpint

Part Marking System

 A
 = Assembly Location

 Y
 = Year

 WW
 = Work Week

 G
 = Pb-Free Package

ORDERING INFORMATION

Device	Package	Shipping†
NGB18N40ACLBT4G	DPAK (Pb-Free)	2500 / Tape & Reel

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASMEY14.5M, 1994.
- 2. CONTROLLING DIMENSION: INCHES.
- 3. THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS b3, L3 and Z.
- 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE.
- 5. DIMENSIONS D AND E ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.
- 6. DATUMS A AND B ARE DETERMINED AT DATUM PLANE H.
- 7. OPTIONAL MOLD FEATURE.

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at: www.littelfuse.com/disclaimer-electronics.