

STGP4M65DF2

Trench gate field-stop IGBT, M series 650 V, 4 A low loss

Datasheet - production data

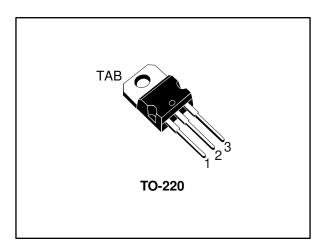
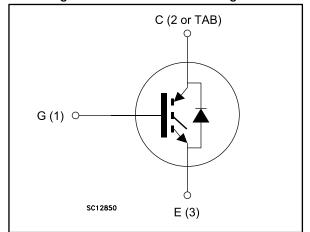



Figure 1: Internal schematic diagram

Features

- 6 μs of short-circuit withstand time
- V_{CE(sat)} = 1.6 V (typ.) @ I_C = 4 A
- Tight parameter distribution
- Safer paralleling
- Low thermal resistance
- Soft and very fast recovery antiparallel diode

Applications

- Motor control
- UPS
- PFC

Description

This device is an IGBT developed using an advanced proprietary trench gate field-stop structure. The device is part of the M series IGBTs, which represent an optimal balance between inverter system performance and efficiency where low-loss and short-circuit functionality are essential. Furthermore, the positive $V_{\text{CE(sat)}}$ temperature coefficient and tight parameter distribution result in safer paralleling operation.

Table 1: Device summary

Order code	Marking	Package	Packing
STGP4M65DF2	G4M65DF2	TO-220	Tube

Contents STGP4M65DF2

Contents

1	Electrical ratings				
		cal characteristics			
	2.1	Electrical characteristics (curves)	6		
3	Test cir	cuits	11		
4	Packag	e information	12		
	4.1	TO-220 type A package information	13		
5	Revisio	n history	15		

STGP4M65DF2 Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
Vces	Collector-emitter voltage (V _{GE} = 0 V)	650	V
1-	Continuous collector current at T _C = 25 °C	8	Α
lc	Continuous collector current at T _C = 100 °C	4	Α
ICP ⁽¹⁾	Pulsed collector current	16	Α
V_{GE}	Gate-emitter voltage	±20	V
	Continuous forward current at T _C = 25 °C	8	Α
l _F	Continuous forward current at T _C = 100 °C	4	Α
I _{FP} ⁽¹⁾	Pulsed forward current	16	Α
Ртот	Total dissipation at T _C = 25 °C	68	W
Tstg	Storage temperature range - 55 to 150		°C
T_J	Operating junction temperature range	- 55 to 175	°C

Notes:

Table 3: Thermal data

Symbol	Parameter	Value	Unit
RthJC	Thermal resistance junction-case IGBT	2.2	°C/W
RthJC	Thermal resistance junction-case diode	5	°C/W
R _{thJA}	Thermal resistance junction-ambient	62.5	°C/W

 $[\]ensuremath{^{(1)}}\mbox{Pulse}$ width limited by maximum junction temperature.

Electrical characteristics STGP4M65DF2

2 Electrical characteristics

T_C = 25 °C unless otherwise specified

Table 4: Static characteristics

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)CES}	Collector-emitter breakdown voltage	$V_{GE} = 0 \text{ V}, I_{C} = 250 \mu\text{A}$	650			٧
		$V_{GE} = 15 \text{ V}, I_{C} = 4 \text{ A}$		1.6	2.1	
V _{CE(sat)} Collector-emit voltage	Collector-emitter saturation	V _{GE} = 15 V, I _C = 4 A, T _J = 125 °C		1.9		٧
	voltage	V _{GE} = 15 V, I _C = 4 A, T _J = 175 °C		2.1		
		I _F = 4 A		1.9		
V_{F}	Forward on-voltage	I _F = 4 A, T _J = 125 °C		1.7		V
		I _F = 4 A, T _J = 175 °C		1.6		
$V_{\text{GE(th)}}$	Gate threshold voltage	$V_{CE} = V_{GE}, I_C = 250 \mu A$	5	6	7	V
I _{CES}	Collector cut-off current	V _{GE} = 0 V, V _{CE} = 650 V			25	μΑ
Iges	Gate-emitter leakage current	V _{CE} = 0 V, V _{GE} = ± 20 V			±250	μΑ

Table 5: Dynamic characteristics

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Cies	Input capacitance		1	369	ı	
Coes	Output capacitance	V _{CE} = 25 V, f = 1 MHz,	1	24.8	1	рF
Cres	Reverse transfer capacitance	V _{GE} = 0 V	-	8	-	ρ.
Q_g	Total gate charge	$V_{CC} = 520 \text{ V}, I_C = 4 \text{ A},$	1	15.2	ı	
Q_{ge}	Gate-emitter charge	V _{GE} = 15 V (see <i>Figure 30: " Gate charge</i>	1	3	ı	nC
Q_{gc}	Gate-collector charge	test circuit")	-	7	-	

Table 6: IGBT switching characteristics (inductive load)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time			12	-	ns
tr	Current rise time			6.9	-	ns
(di/dt) _{on}	Turn-on current slope	V _{CE} = 400 V, I _C = 4 A,		480	-	A/μs
t _{d(off)}	Turn-off-delay time	$V_{GE} = 15 \text{ V}, R_G = 47 \Omega$		86	-	ns
t _f	Current fall time	(see Figure 29: "Test circuit for inductive load		120	-	ns
E _{on} ⁽¹⁾	Turn-on switching energy	switching")		0.040	-	mJ
E _{off} (2)	Turn-off switching energy			0.136	-	mJ
Ets	Total switching energy			0.176	1	mJ
t _{d(on)}	Turn-on delay time			11.6	-	ns
tr	Current rise time			8	1	ns
(di/dt) _{on}	Turn-on current slope	$V_{CE} = 400 \text{ V}, I_{C} = 4 \text{ A},$		410	-	A/μs
t _{d(off)}	Turn-off-delay time	$V_{GE} = 15 \text{ V}, R_{G} = 47 \Omega,$ $T_{J} = 175 \text{ °C}$		85	-	ns
tf	Current fall time	(see Figure 29: " Test circuit		211	1	ns
E _{on} ⁽¹⁾	Turn-on switching energy	for inductive load switching")		0.067	-	mJ
E _{off} (2)	Turn-off switching energy			0.210	-	mJ
Ets	Total switching energy			0.277	-	mJ
t _{sc}	Short-circuit withstand time	V _{CC} ≤ 400 V, V _{GE} = 15 V, T _{Jstart} = 150 °C	6		-	μs
		$V_{CC} \le 400 \text{ V}, V_{GE} = 13 \text{ V},$ $T_{Jstart} = 150 \text{ °C}$	10		-	μs

Notes:

Table 7: Diode switching characteristics (inductive load)

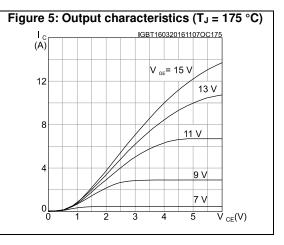
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
trr	Reverse recovery time		1	133	ı	ns
Qrr	Reverse recovery charge	$I_F = 4 A, V_R = 400 V,$	1	140	ı	nC
Irrm	Reverse recovery current	V _{GE} = 15 V, di/dt = 800 A/μs	1	5	1	Α
dl _{rr} /dt	Peak rate of fall of reverse recovery current during t_{b}	(see Figure 29: " Test circuit for inductive load switching")		520	ı	A/μs
Err	Reverse recovery energy			15	1	μJ
t _{rr}	Reverse recovery time		-	236	ı	ns
Qrr	Reverse recovery charge	I _F = 4 A, V _R = 400 V,	1	370	ı	nC
I _{rrm}	Reverse recovery current	V _{GE} = 15 V, T _J = 175 °C, di/dt = 800 A/μs	1	6.6	1	Α
dl _{rr} /dt	Peak rate of fall of reverse recovery current during tb	(see Figure 29: " Test circuit for inductive load switching")	1	378	ı	A/μs
Err	Reverse recovery energy		-	32	-	μJ

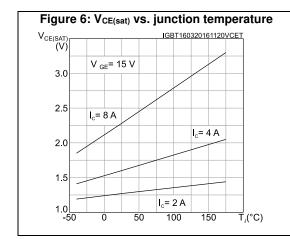
⁽¹⁾Including the reverse recovery of the diode.

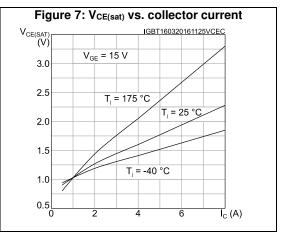
 $[\]ensuremath{^{(2)}}\mbox{Including}$ the tail of the collector current.

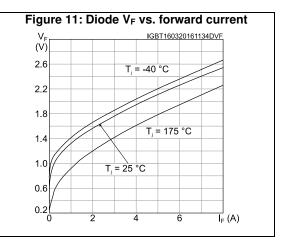
2.1 Electrical characteristics (curves)

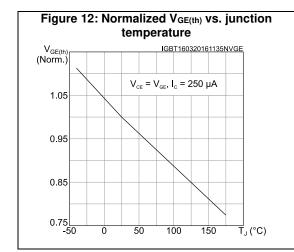
Figure 2: Power dissipation vs. case temperature


P_{TOT}
(W)
V_{GE} ≥15 V, T_J ≤175 °C


60


40


20


-50
0
50
100
150
T_C (°C)

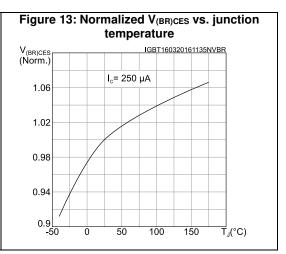


Figure 14: Capacitance variations

C
(pF)

10²

10¹

10⁰

10¹

10⁰

10¹

10⁰

10¹

10⁰

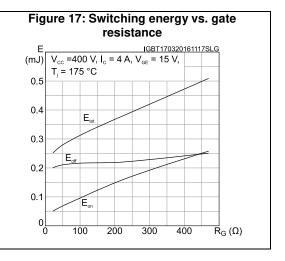
10¹

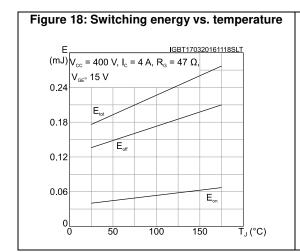
10⁰

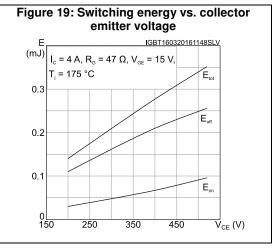
10¹

10⁰

10¹

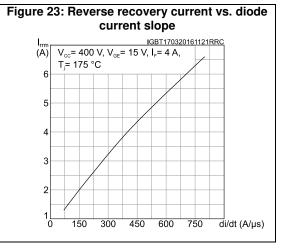

10²

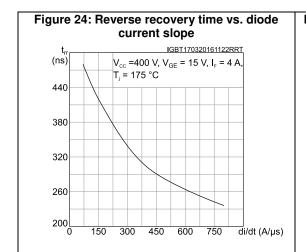

V_{CE} (V)

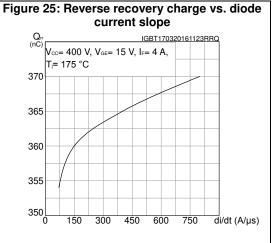

Figure 15: Gate charge vs. gate-emitter voltage

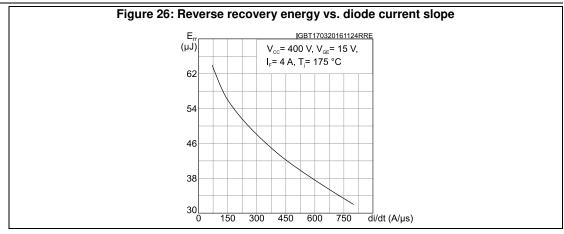
V_{GE}
(V)
(V_{CC} = 520 V, I_C = 4 A, I_G = 1 mA

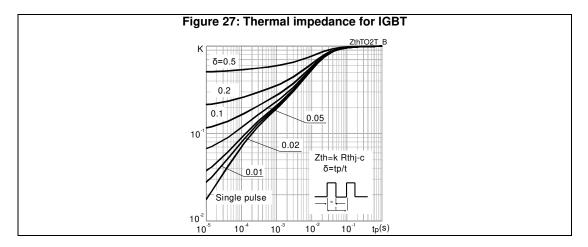
15
12
9
6
3
0
3
6
9
12
15
Q_g (nC)

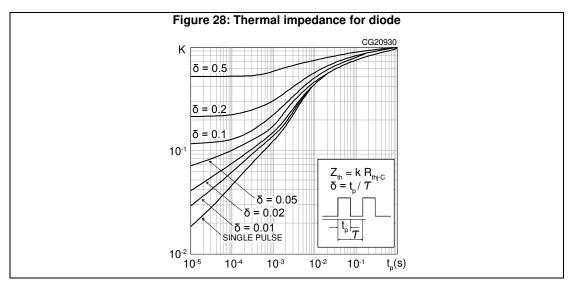

STGP4M65DF2 Electrical characteristics

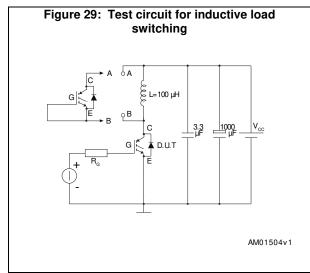

Figure 21: Switching times vs. collector current

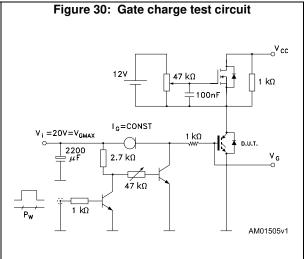

(ns) $V_{CC} = 400 \text{ V}, V_{GE} = 15 \text{ V}, R_G = 47 \Omega,$ $V_{CC} = 400 \text{ V}, V_{GE} = 15 \text{ V}, R_G = 47 \Omega,$ $V_{CC} = 400 \text{ V}, V_{GE} = 15 \text{ V}, R_G = 47 \Omega,$ $V_{CC} = 400 \text{ V}, V_{GE} = 15 \text{ V}, R_G = 47 \Omega,$ $V_{CC} = 400 \text{ V}, V_{GE} = 15 \text{ V}, R_G = 47 \Omega,$ $V_{CC} = 400 \text{ V}, V_{GE} = 15 \text{ V}, R_G = 47 \Omega,$ $V_{CC} = 400 \text{ V}, V_{GE} = 15 \text{ V}, R_G = 47 \Omega,$ $V_{CC} = 400 \text{ V}, V_{GE} = 15 \text{ V}, R_G = 47 \Omega,$ $V_{CC} = 400 \text{ V}, V_{GE} = 15 \text{ V}, R_G = 47 \Omega,$ $V_{CC} = 400 \text{ V}, V_{GE} = 15 \text{ V}, R_G = 47 \Omega,$ $V_{CC} = 400 \text{ V}, V_{GE} = 15 \text{ V}, R_G = 47 \Omega,$ $V_{CC} = 400 \text{ V}, V_{GE} = 15 \text{ V}, R_G = 47 \Omega,$ $V_{CC} = 400 \text{ V}, V_{GE} = 15 \text{ V}, R_G = 47 \Omega,$ $V_{CC} = 400 \text{ V}, V_{GE} = 15 \text{ V}, R_G = 47 \Omega,$ $V_{CC} = 400 \text{ V}, V_{GE} = 15 \text{ V}, R_G = 47 \Omega,$ $V_{CC} = 400 \text{ V}, V_{GE} = 15 \text{ V}, R_G = 47 \Omega,$ $V_{CC} = 400 \text{ V}, V_{GE} = 15 \text{ V}, R_G = 47 \Omega,$ $V_{CC} = 400 \text{ V}, V_{GE} = 15 \text{ V}, R_G = 47 \Omega,$ $V_{CC} = 400 \text{ V}, V_{CC} = 400 \text{ V$

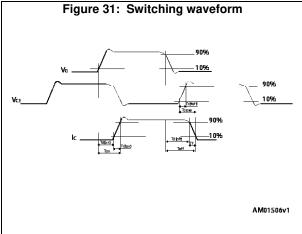

Figure 22: Switching times vs. gate resistance

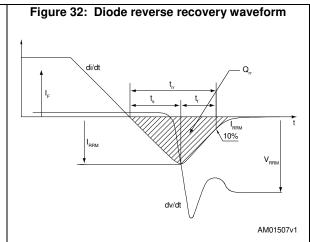

(ns) $V_{CC} = 400 \text{ V}, V_{GE} = 15 \text{ V}, I_{C} = 4 \text{ A}, I_{C} = 4 \text{ A$










STGP4M65DF2 Test circuits

3 Test circuits

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

STGP4M65DF2 Package information

4.1 TO-220 type A package information

Figure 33: TO-220 type A package outline

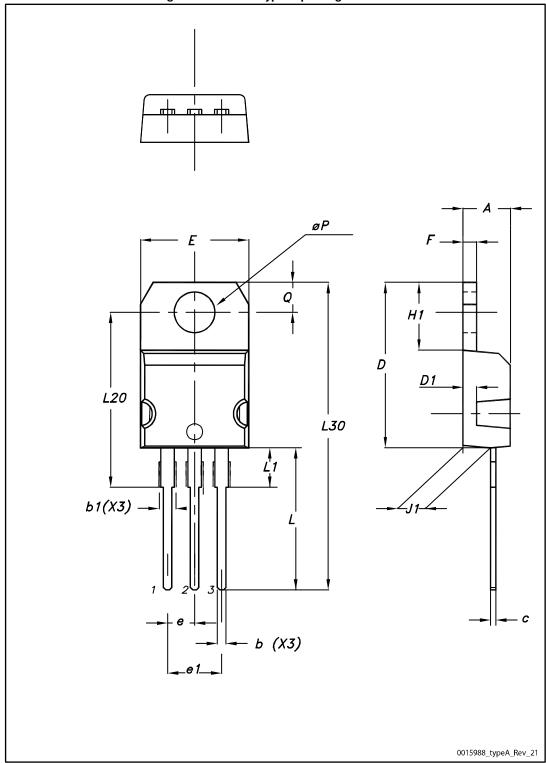


Table 8: TO-220 type A mechanical data

Dim	,	mm	
Dim.	Min.	Тур.	Max.
А	4.40		4.60
b	0.61		0.88
b1	1.14		1.55
С	0.48		0.70
D	15.25		15.75
D1		1.27	
Е	10.00		10.40
е	2.40		2.70
e1	4.95		5.15
F	1.23		1.32
H1	6.20		6.60
J1	2.40		2.72
L	13.00		14.00
L1	3.50		3.93
L20		16.40	
L30		28.90	
øΡ	3.75		3.85
Q	2.65		2.95

STGP4M65DF2 Revision history

5 Revision history

Table 9: Document revision history

Date	Revision	Changes	
25-Nov-2015	1	First release.	
30-Mar-2016	2	Modified: features in cover page Datasheet promoted from preliminary data to production data Modified: Table 2: "Absolute maximum ratings", Table 4: "Static characteristics", Table 5: "Dynamic characteristics", Table 6: "IGBT switching characteristics (inductive load)" and Table 7: "Diode switching characteristics (inductive load)" Added: Section 2.1: "Electrical characteristics (curves)" Minor text changes	
21-Nov-2016	3	Updated Table 2: "Absolute maximum ratings" Updated Table 6: "IGBT switching characteristics (inductive load)" Updated Figure 25: "Reverse recovery charge vs. diode current slope" Minor text changes	

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

