ADC0811 8-Bit Serial I/O A/D Converter With 11-Channel Multiplexer CHO CH1 CH2 СНЗ CH4 CHS CH6 CH7 CH8 · CH9 ### **General Description** The ADC0811 is an 8-Bit successive approximation A/D converter with simultaneous serial I/O. The serial input controls an analog multiplexer which selects from 11 input channels or an internal half scale test voltage. An input sample-and-hold is implemented by a capacitive reference ladder and sampled data comparator. This allows the input signal to vary during the conversion cycle. Separate serial I/O and conversion clock inputs are provided to facilitate the interface to various microprocessors. #### **Features** - Separate asynchronous converter clock and serial data I/O clock. - 11-Channel multiplexer with 4-Bit serial address logic. - Built-in sample and hold function. - Ratiometric or absolute voltage referencing. - No zero or full-scale adjust required. - Internally addressable test voltage. - 0V to 5V input range with single 5V power supply. - TTL/MOS input/output compatible. - 0.3" standard width 20-pin dip or 20-pin molded chip carrier ### **Key Specifications** - Resolution - Total unadjusted error - 8-Bits ± 1/2LSB and ± 1LSB - Single supply - 5V_{DC} ■ Low Power **Functional Diagram** 15 mW TL/H/5587--3 Conversion Time 32 µS # **Connection Diagrams** # Molded Chip Carrier (PCC) Package Order Number ADC0811J,N,V See NS Packages J20A, N20A, V20A **Use Ordering Information** # **ADDRESS** LATCH AND DECODER TIMING DI ANALOG INPUT DO SHIFT-REGISTER MILY 11 **Φ2**ΕLΚ CH10 12 **J** 13 VTEST 18 GND ### Absolute Maximum Ratings (Notes 1 & 2) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. Supply Voltage (V_{CC}) Voltage Inputs and Outputs Input Current Per Pin (Note 3) -0.3V to $V_{CC} + 0.3$ V Total Package Input Current (Note 3) ±5mA Storage Temperature ± 20mA -65°C to +150°C 875 mW Package Dissipation at T_A = 25°C Lead Temp. (Soldering, 10 seconds) Dual-In-Line Package (plastic) Dual-In-Line Package (ceramic) Molded Chip Carrier Package Vapor Phase (60 seconds) Infrared (15 seconds) 215°C 220°C 2000V ESD Susceptibility (Note 11) ### Operating Ratings (Notes 1 & 2) Supply Voltage (V_{CC}) Temperature Range ADC0811BCN, ADC0811CCN ADC0811BCV 4.5 V_{DC} to 6.0 V_{DC} $T_{MIN} \le T_A \le T_{MAX}$ $0^{\circ}C \le T_A \le 70^{\circ}C$ $-40^{\circ}C \le T_A \le 85^{\circ}C$ ADC0811CCJ, ADC0811CCV -40°C≤T_A≤85°C #### **Electrical Characteristics** The following specifications apply for $V_{CC}=4.75V$ to 5.25V, $V_{REF}=+4.6V$ to $(V_{CC}+0.1V)$, $\phi_{2\ CLK}=2.097\ MHz$ unless otherwise specified. **Boldface limits apply from T_{MIN} to T_{MAX};** all other limits $T_A=T_J=25^\circ C$. | | | | ADC0811CCJ | F .) | ADC0811BCN, ADC0811BCV
ADC0811CCN, ADC0811CCV | | | | |---|---|---------------------|-----------------------------|-----------------------------|--|-----------------------------|-----------------------------|---------------------| | Parameter | Conditions | Typical
(Note 6) | Tested
Limit
(Note 7) | Design
Limit
(Note 8) | Typical
(Note 6) | Tested
Limit
(Note 7) | Design
Limit
(Note 8) | Units | | CONVERTER AND MULTIPLEX | ER CHARACTERI | STICS | * | 11.4 | | | | | | Maximum Total Unadjusted Error ADC0811BCN, ADC0811BCV ADC0811CCN, ADC0811CCV ADC0811CCJ | V _{REF} = 5.00 V _{DC}
(Note 4) | | ± 1 | | : | ±½
±1 | ± ½
± 1 | LSB
LSB
LSB | | Minimum Reference
Input Resistance | | 8 | | 5 | 8 | | 5 . | kΩ | | Maximum Reference
Input Resistance | | 8 | 11. | | 8 | 11 | 11 | kΩ | | Maximum Analog Input Range | (Note 5) | | V _{CC} + 0.05 | | | V _{CC} +0.05 | V _{CC} + 0.05 | ٧ | | Minimum Analog Input Range | | | GND-0.05 | | | GND-0.05 | GND-0.05 | > | | On Channel Leakage Current
ADC0811BCJ, CCJ, BCN, CCN,
BCV, CCV | On Channel = 5V
Off Channel = 0V | | 1000 | | | 400 | 1000 | nA | | ADC0811CJ, BJ | | | 1000 | - | ŀ | | | nA | | ADC0811BCJ, CCJ, BCN, CCN, BCV, CCV | On Channel = 0V
Off Channel = 5V | | -1000 | | | -400 | ~ 1000 | nA | | ADC0811BJ, CJ | (Note 9) | ļ | -1000 | ļ | <u> </u> | | | nA | | Off Channel Leakage Current
ADC0811BCJ, CCJ, BCN, CCN,
BCV, CCV | On Channel = 5V
Off Channel = 0V | | - 1000 | | | -400 | 1000 | пА | | ADC0811CJ, BJ | | · . | - 1000 | | , | | | nA | | ADC0811BCJ, CCJ, BCN, CCN,
BCV, CCV | On Channel = 0V
Off Channel = 5V | | 1000 | | | 400 | 1000 | nA | | ADC0811BJ, CJ | (Note 9) | | 1000 | | | | | пА | | Minimum V _{TEST}
Internal Test Voltage | V _{REF} =V _{CC} ,
CH 11 Selected | | 125 | 5. | | 125 | 125 | (Note 10)
Counts | | Maximum V _{TEST}
Internal Test Voltage | V _{REF} =V _{CC} ,
CH 11 Selected | | 130 | | | 130 | 130 | (Note 10)
Counts | **Electrical Characteristics**The following specifications apply for $V_{CC}=4.75V$ to 5.25V, $V_{REF}=+4.6V$ to $(V_{CC}+0.1V)$, $\phi_{2\ CLK}=2.097$ MHz unless otherwise specified. **Boldface limits apply from T_{MIN} to T_{MAX}**; all other limits $T_A=T_J=25^{\circ}C$. (Continued) | | | A | DC0811C | i J | ADC081 | | | | |---|---|---------------------|-----------------------------|-----------------------------|---------------------|-----------------------------|-----------------------------|----------| | Parameter | Conditions | Typical
(Note 6) | Tested
Limit
(Note 7) | Design
Limit
(Note 8) | Typical
(Note 6) | Tested
Limit
(Note 7) | Design
Limit
(Note 8) | Units | | DIGITAL AND DC CHARACTERI | STICS | | | | | | | : | | V _{IN(1)} , Logical "1" Input
Voltage (Min) | V _{CC} =5.25V | | 2.0 | | | 2.0 | 2.0 | ·V | | V _{IN(0)} , Logical "0" Input
Voltage (Max) | V _{CC} =4.75V | | 0.8 | | | 0.8 | 0.8 | V. | | I _{IN(1)} , Logical "1" Input
Current (Max) | V _{IN} = 5.0V | 0.005 | 2.5 | | 0.005 | 2.5 | 2.5 | μΑ | | I _{IN(0)} , Logical "0" Input
Current (Max) | V _{IN} =0V | -0.005 | - 2.5 | | -0.005 | 2.5 | - 2.5 | μА | | V _{OUT(1)} , Logical "1"
Output Voltage (Min) | V _{CC} =4.75V
I _{OUT} = -360 μA
I _{OUT} = -10 μA | | 2.4
4.5 | | 417 E 1 | 2.4
4.5 | 2.4
4.5 | | | V _{OUT(0)} , Logical "0"
Output Voltage (Max) | V _{CC} =5.25V
I _{OUT} =1.6 mA | : | 0.4 | | | 0.4 | 0.4 | ٧ | | I _{OUT} , TRI-STATE Output
Current (Max) | V _{OUT} =0V
V _{OUT} =5V | -0.01
0.01 | 3:
3 | | -0.01
0.01 | -3
3 | - 3
3 | μA
μA | | I _{SOURCE} , Output Source
Current (Min) | V _{OUT} =0V | -12 | - 6.5 | | -14 | -6.5 | -6.5 | mA | | I _{SINK} , Output Sink Current (Min) | V _{OUT} =V _{CC} | 18 | 8.0 | | 16 | 8.0 | 8.0 | mA | | I _{CC} , Supply Current (Max) | CS=1, V _{REF} Open | 1 | 2.5 | | 1 | 2.5 | 2.5 | mA | | I _{REF} (Max) | V _{REF} =5V | 0.7 | 1 | | 0.7 | 1 | 1 | mΑ | #### **AC CHARACTERISTICS** | Parameter | | Conditions | Typical
(Note 6) | Tested
Limit
(Note 7) | Design
Limit
(Note 8) | Units | | |---|-----|--|---------------------|-----------------------------|--|-----------------------|--| | φ _{2 CLK} , φ ₂ Clock Frequency | MIN | : | 0.70 | | 1.0 | MHz | | | | MAX | | 3.0 | 2.0 | 2.1 | | | | S _{CLK} , Serial Data Clock | MIN | | | | 5.0 | KHz | | | Frequency | MAX | and the second | 700 | 525 | 525 | | | | T _C , Conversion Process Time | MIN | Not Including MUX
Addressing and | 48 | | 48 | φ ₂ cycles | | | | MAX | Analog Input
Sampling Times | 64 | | 64 | | | | t _{ACC} , Access Time Delay From CS | MIN | | | | 1 | φ ₂ cycles | | | Falling Edge to DO Data Valid | MAX | 1, 4 6 | | | 3 | | | | t _{SET-UP} , Minimum Set-up Time of CS Falling
Edge to S _{CLK} Rising Edge | | . * | | | 4/¢2CLK+ 1/2 SCLK | sec | | | t _{HCS} , CS Hold Time After the Falling
Edge of S _{CLK} | | | | | 0 | ns | | | t CS, Total CS Low Time | MIN | | | | t _{set-up} + 8/S _{CLK} | sec | | | | MAX | | | | tes(min) + 48/ ϕ_{2CLK} | sec | | | t _{HDI} , Minimum DI Hold Time from
S _{CLK} Rising Edge | | | 0. | | 0 | ns | | | t _{HDO} , Minimum DO Hold Time from S _{CLK}
Falling Edge | | R _L =30k,
C _L =100 pF | | | 10 | ns | | ### **Electrical Characteristics** The following specifications apply for $V_{CC}=4.75V$ to 5.25V, $V_{REF}=+4.6V$ to ($V_{CC}+0.1V$), $\phi_{2\ CLK}=2.097$ MHz unless otherwise specified. **Boldface limits apply from T_{MIN} to T_{MAX}**; all other limits $T_A=T_J=25^{\circ}C$. (Continued) | Parameter | | Conditions | Typical
(Note 6) | Tested
Limit
(Note 7) | Design
Limit
(Note 8) | Units | | | | |---|--|-----------------------------|---------------------|-----------------------------|-----------------------------|-------|--|--|--| | AC CHARACTERISTICS (Continued) | | | | | | | | | | | t _{SDI} , Minimum DI Set-up Time to S _{CLK}
Rising Edge | | | 200 | | 400 | ns | | | | | t _{DDO} , Maximum Delay From S _{CLK}
Falling Edge to DO Data Valid | R _L =30k,
C _L =100 pF | | 180 | 400 | 400 | ns | | | | | t _{TRI} , Maximum DO Hold Time,
(CS Rising edge to DO
TRI-STATE) | R _L =3k,
C _L =100 pF | | 90 | 150 | 150 | ns | | | | | t _{CA} , Analog
Sampling Time | After Addres | s Is Latched | | | 4/S _{CLK} + 1 μs | sec | | | | | t _{RDO} , Maximum DO | R _L =30 kΩ, | "TRI-STATE" to "HIGH" State | 75 | 150 | 150 | ns | | | | | Rise Time | C _L =100 pf | "LOW" to "HIGH" State | 150 | 300 | 300 | "" | | | | | t _{FDO} , Maximum DO | $R_L = 30 \text{ k}\Omega$, | "TRI-STATE" to "LOW" State | 75 | 150 | 150 | ns | | | | | Fall Time | C _L =100 pf | "HIGH" to "LOW" State | 150 | 300 | 300 | .13 | | | | | C _{IN} , Maximum Input | IN, Maximum Input Analog Inputs, ANO-AN10 and VREF | | | | 55 | рF | | | | | Capacitance | All Others | - | 5 | | 15 | | | | | Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating conditions. Note 2: All voltages are measured with respect to ground. Note 3: Under over voltage conditions $(V_{IN} < 0V \text{ and } V_{IN} > V_{CC})$ the maximum input current at any one pin is ± 5 mA. If the voltage at more than one pin exceeds $V_{CC} + .3V$ the total package current must be limited to 20 mA. For example the maximum number of pins that can be over driven at the maximum current level of ± 5 mA is four. Note 4: Total unadjusted error includes offset, full-scale, linearity, multiplexer, and hold step errors. Note 5: Two on-chip diodes are tied to each analog input, which will forward-conduct for analog input voltages one diode drop below ground or one diode drop greater than V_{CC} supply. Be careful during testing at low V_{CC} levels (4.5V), as high level analog inputs (5V) can cause this input diode to conduct, especially at elevated temperatures, and cause errors for analog inputs near full-scale. The spec allows 50 mV forward bias of either diode. This means that as long as the analog V_{IN} does not exceed the supply voltage by more than 50 mV, the output code will be correct. To achieve an absolute 0 V_{DC} to 5 V_{DC} input voltage range will therefore require a minimum supply voltage of 4.950 V_{DC} over temperature variations, initial tolerance and loading. Note 6: Typicals are at 25°C and represent most likely parametric norm. Note 7: Guaranteed and 100% production tested under worst case condition. Note 8: Guaranteed, but not 100% production tested. These limits are not used to calculate outgoing quality levels. Note 9: Channel leakage current is measured after the channel selection. Note 10: 1 count = V_{REF}/256. Note 11: Human body model, 100 pF discharged through a 1.5 k Ω resistor. ### **Test Circuits** #### D0 Except "TRI-STATE" ### Test Circuits (Continued) TL/H/5587-22 # **Typical Performance Characteristics** TL/H/5587-16 ## **Timing Diagrams** # D0 Low to High State #### D0 High to Low State ### Timing with a continuous S_{CLK} *Strobing CS High and Low will abort the present conversion and initiate a new serial I/O exchange. TL/H/5587~11 ### Timing with a gated S_{CLK} and \overline{CS} Continuously Low TL/H/5587-9 ### Using CS To TRI-STATE D0 TL/H/5587-10 Note: Strobing $\overline{\text{CS}}$ Low during this time interval will abort the conversion in process. ### Timing Diagrams (Continued) #### **CS** High During Conversion #### **CS** Low During Conversion TL/H/5587-5 Note: DO and DI lines share the 8-bit I/O shift register(see Functional Block Diagram). Since the MUX address bits are shifted in on S_{CLK} rising edges while S_{CLK} falling edges shift out conversion data on DO, the eighth falling edge of S_{CLK} will shift out the MSB MUX address bit (A7) on DO. Thus, if addressing channels CH8-CH10, a high DO will occur momentarily (one ϕ_2 clock period) until the 8-bit I/O shift register is cleared by the internal EOC signal. # **Channel Addressing Table** **TABLE I. ADC 0811 Channel Addressing** | MUX ADDRESS | | | | | | ANALOG CHANNEL | | | |-----------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|-------------------| | A ₇ | A ₆ | A ₅ | A ₄ | A ₃ | A ₂ | A ₁ | A ₀ | SELECTED | | 0 | 0 | 0 | 0 | Х | Х | Х | Х | CH0 | | 0 | 0 | 0 | 1 | Х | Х | Х | Х | CH1 | | 0 | 0 | 1 | 0 | Х | X | Х | X | CH2 | | 0 | 0 | 1 | 1 | Х | Х | Х | X | CH3 | | 0 | 1 | 0 | 0 | Х | Х | Х | X | CH4 | | 0 | 1 | 0 | 1 | Х | Х | Х | X | CH5 | | 0 | 1 | 1 | 0 | X | Х | Х | x | CH6 | | 0 | 1 | 1 | 1 1 | Х | Х | Х | x | CH7 | | 1 | 0 | 0 | 0 | X | Х | Х | x | CHB | | 1 | 0 | 0 | 1 | X | Х | Х | x | CH9 | | 1 | 0 | 1 | 0 | Х | X | Х | X | CH10 | | 1 | 0 | 1 | 1 | Х | Х | Х | Х | V _{TEST} | | 1 | 1 | Х | Х | Х | Χ | Х | Х | LOGIC TEST MODE* | ^{*} Analog channel inputs CH0 thru CH3 are logic outputs | 6501124 0092993 484 **||** ### **Functional Description** #### 1.0 DIGITAL INTERFACE The ADC0811 uses five input/output pins to implement the serial interface. Taking chip select (CS) low enables the I/O data lines (DO and DI) and the serial clock input (S_{CLK}). The result of the last conversion is transmitted by the A/D on the DO line, while simultaneously the DI line receives the address data that selects the mux channel for the next conversion. The mux address is shifted in on the rising edge of S_{CLK} and the conversion data is shifted out on the falling edge. It takes eight S_{CLK} cycles to complete the serial I/O. A second clock (ϕ_2) controls the SAR during the conversion process and must be continuously enabled. #### 1.1 CONTINUOUS SCLK With a continuous S_{CLK} input \overline{CS} must be used to synchronize the serial data exchange (see Figure 1). The ADC0811 recognizes a valid \overline{CS} one to three φ_2 clock periods after the actual falling edge of \overline{CS} . This is implemented to ensure noise immunity of the \overline{CS} signal. Any spikes on \overline{CS} less than one φ_2 clock period will be ignored. \overline{CS} must remain low during the complete I/O exchange which takes eight S_{CLK} cycles. Although \overline{CS} is not immediately acknowledged for the purpose of starting a new conversion, the falling edge of \overline{CS} immediately enables DO to output the MSB (D7) of the previous conversion. The first S_{CLK} rising edge will be acknowledged after a setup time (t_{set-up}) has elapsed from the falling edge of \overline{CS} . This and the following seven S_{CLK} rising edges will shift in the channel address for the analog multiplexer. Since there are 12 channels only four address bits are utilized. The first four S_{CLK} cycles clock in the mux address, during the next four S_{CLK} cycles the analog input is selected and sampled. During this mux address/sample cycle, data from the last conversion is also clocked out on DO. Since D7 was clocked out on the falling edge of $\overline{\text{CS}}$ only data bits D6–D0 remain to be received. The following seven falling edges of S_{CLK} shift out this data on DO. The 8th S_{CLK} falling edge initiates the beginning of the A/D's actual conversion process which takes between 48 to 64 φ_2 cycles (T_C). During this time \overline{CS} can go high to TRI-STATE DO and disable the S_{CLK} input or it can remain low. If \overline{CS} is held low a new I/O exchange will not start until the conversion sequence has been completed, however once the conversion ends serial I/O will immediately begin. Since there is an ambiguity in the conversion time (T_C) synchronizing the data exchange is impossible. Therefore \overline{CS} should go high before the 48th φ_2 clock has elasped and return low after the 64th φ_2 to synchronize serial communication. A conversion or I/O operation can be aborted at any time by strobing \overline{CS} . If \overline{CS} is high or low less than one φ_2 clock it will be ignored by the A/D. If the \overline{CS} is strobed high or low between 1 to 3 φ_2 clocks the A/D may or may not respond. Therefore \overline{CS} must be strobed high or low greater than 3 φ_2 clocks to ensure recognition. If a conversion or I/O exchange is aborted while in process the consequent data output will be erroneous until a complete conversion sequence has been implemented. #### 1.2 DISCONTINUOUS SCLK Another way to accomplish synchronous serial communication is to tie $\overline{\text{CS}}$ low continuously and disable S_{CLK} after its 8th falling edge (see *Figure 2*). S_{CLK} must remain low for FIGURE 1 TL/H/5587-18 FIGURE 2 TL/H/5587-19 ### Functional Description (Continued) at least 64 φ_2 clocks to insure that the A/D has completed its conversion. If S_{CLK} is enabled sooner, synchronizing to the data output on DO is not possible since an end of conversion signal from the A/D is not available and the actual conversion time is not known. With \overline{CS} low during the conversion time (64 φ_2 max) DO will go low after the eighth falling edge of S_{CLK} and remain low until the conversion is completed. Once the conversion is through DO will transmit the MSB. The rest of the data will be shifted out once S_{CLK} is enabled as discussed previously. If \overline{CS} goes high during the conversion sequence DO is tristated, and the result is not affected so long as \overline{CS} remains high until the end of the conversion. #### 1.2 MULTIPLEXER ADDRESSING The four bit mux address is shifted, MSB first, into DI. Input data corresponds to the channel selected as shown in table 1. Care should be taken not to send an address greater than or equal to twelve (11XX) as this puts the A/D in a digital testing mode. In this mode the analog inputs CH0 thru CH3 become digital outputs, for our use in production testing. #### 2.0 ANALOG INPUT #### 2.1 THE INPUT SAMPLE AND HOLD The ADC0811's sample/hold capacitor is implemented in its capacitive ladder structure. After the channel address is received, the ladder is switched to sample the proper analog input. This sampling mode is maintained for 1 µsec after the eighth S_{CLK} falling edge. The hold mode is initiated with the start of the conversion process. An acquisition window of $4t_{S_{CLK}}+1$ µsec is therefore available to allow the ladder capacitance to settle to the analog input voltage. Any change in the analog voltage before or after the acquisition window will not effect the A/D conversion result. In the most simple case, the ladder's acquisition time is determined by the R_{on} (3K) of the multiplexer switches and the total ladder capacitance (90pf). These values yield an acquisition time of about 2 μsec for a full scale reading. Therefore the analog input must be stable for at least 2 μsec before and 1 μsec after the eighth S_{CLK} falling edge to ensure a proper conversion. External input source resistance and capacitance will lengthen the acquisition time and should be accounted for. Other conventional sample and hold error specifications are included in the error and timing specs of the A/D. The hold step and gain error sample/hold specs are taken into account in the ADC0811's total unadjusted error, while the hold settling time is included in the A/D's max conversion time of 64 ϕ_2 clock periods. The hold droop rate can be thought of as being zero since an unlimited amount of time can pass between a conversion and the reading of data. However, once the data is read it is lost and another conversion is started. ### **Typical Applications** #### ADC0811-INS8048 INTERFACE TL/H/5587-21 # **Ordering Information** | Temperature | Range | 0°C to 70°C | -40°C to +85°C | | | |---------------------------|---------|-------------|--------------------------|--|--| | Total Unadjusted
Error | ±1/2LSB | ADC0811BCN | ADC0811BCV | | | | | ±1 LSB | ADC0811CCN | ADC0811CCJ
ADC0811CCV | | | | Package Outline | | N20A | J20A, V20A | | |