
ASNT6171-KMO DC-20*Gbps*/10*GHz* 15-tap Analog FIR Filter

- Dual FIR filter with 15 fully controlled taps for analog signals
- High bandwidth DC-20Gbps / 10GHz
- Total gain up to 14dB
- Dual-port 3-wire SPI for tap weight and sign adjustment
- Additional frequency response and gain adjustment through the SPI
- Fully differential CML-type analog input interface
- Fully differential CML-type analog output interface
- Independent power supplies for analog and digital sections
- Power consumption: <2.65*W*
- Fabricated in SiGe for high performance, yield, and reliability
- Limited temperature variation over industrial temperature range
- Die size $5.8 \times 5.8 mm^2$
- Optional custom CQFP 64-pin package

DESCRIPTION

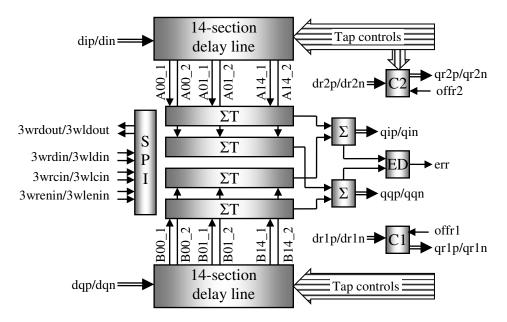


Fig. 1. Functional Block Diagram

The ASNT6171-KMO part is a dual 15-tap FIR filter for processing of two analog signals dip/din and dqp/dqn. It includes two passive delay lines with 14 matching sections and three loss-compensating buffers in each one. The buffers feature gain and frequency response adjustment. The signals from all 15 nodes of both delay lines are delivered to 4 summation blocks (Σ T) through taps. Each tap in both delay lines includes two buffers with individually controlled weight and sign.

The part also includes two output summation blocks (Σ) that allow for mixing of equalized signals from both channels. The resulting signals are delivered to two output analog ports qip/qin and qqp/qqn. The output buffers may have a separate supply voltage for adjustment of the output common-mode voltage level. They also have additional adjustments of gain and frequency response.

The equalized signals are also processed by an error detector block (ED) to produce an error signal that indicates the signal deviation from an ideal pulse shape.

The part includes two calibration blocks for initial calibration of gain and frequency response in the output buffers (C1) and in taps (C2).

All analog input/output ports have internal 50*Ohm* terminations to positive supply rails. The output ports require external 50*Ohm* DC terminations to the same supply rails or AC terminations to ground.

All functions are controlled through a dual 3-wire SPI interface that has two 4-pin ports. Both ports support standard 3-wire slave functionality.

The chip includes two temperature sensors implemented as large diodes with their cathodes connected to vee and their anodes connected to tsens1 and tsens2 ports. The sensors represent temperatures at the top and the bottom of the die respectively.

Delay Lines

Each delay line block includes 14 passive delay sections implemented as transmission lines, an input buffer (IB) before the first delay section, a loss-compensating buffer after the fourth delay section (B5), and a loss-compensating buffer after the ninth delay section (B10). All buffers feature independent adjustments of gain and peaking (or frequency response) through the 3-wire interface. The analog signal to the input buffers is delivered through differential interfaces dip/din and dqp/dqn.

The inputs of the delay lines, and the outputs of all their delay sections are connected to the inputs of 15 pairs of matching tap buffers. In each pair, the output of the first buffer (Axx_1 or Bxx_1) is connected to one tap summation block, and the output of the second buffer (Axx_2 or Bxx_2) is connected to the other tap summation block. This provides two matching outputs from each delay line. Each tap buffer features an independent adjustment of its gain, and the output polarity selection controlled through the 3-wire interface.

Four tap summation blocks are implemented as short transmission lines connected to two output summation blocks.

With peaking in the input and loss-compensating buffers set to its average value, the typical gain vs. frequency characteristic of one tap is plotted in Fig. 2.

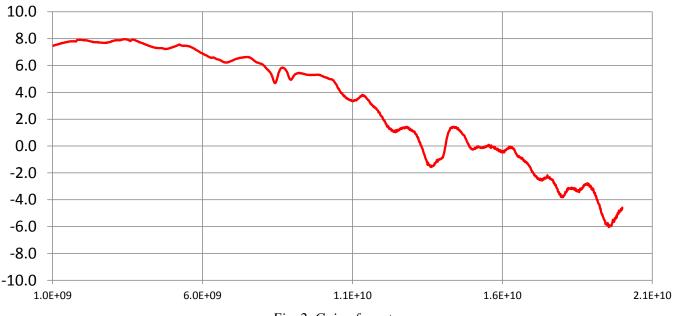


Fig. 2. Gain of one tap

The typical group delay variation of one tap vs. frequency is plotted in Fig. 3.

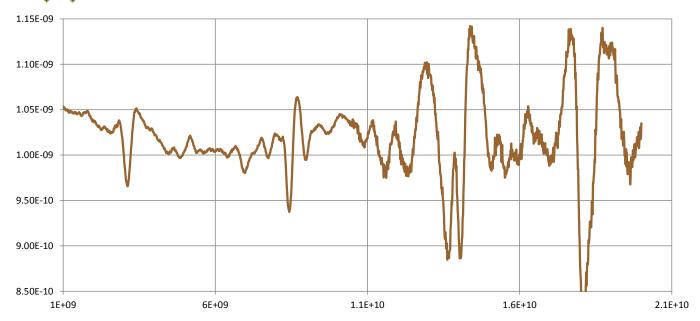


Fig. 3. Group Delay of one tap

Output Summation Blocks and Output Buffers

Each output summation block is an analog current combiner that mixes one signal from one delay line block with one signal from another delay line block. The combined signals are delivered to differential output ports qip/qin and qqp/qqn through output buffers.

Error Detector

The two combined signals before the output buffers are also delivered to the error detector block. The error detector performs the function $ERR = S^2 - \overline{(S^2)}$ on each of the input signals. The ERR equals 0 for an ideal signal S and increases with the signal shape deviation from the ideal.

The error signals for both input signals are combined together for sensitivity improvement and are then delivered to the single-ended output port err.

Calibration Blocks

The chip includes two calibration blocks that allow for controlled initial setting of all internal buffers.

The first calibration block (C1) is an exact copy of the output summation blocks and buffers. It is also controlled by the same signals from the 3-wire interface. Measuring parameters of the signals at its input dr1p/dr1n, and output qr1p/qr1n allows for the initial gain and peaking settings of the corresponding stages.

The second calibration block (C2) includes the same stages as C1 as well as an exact copy of a tap buffer. Measuring parameters of the signals at its input dr2p/dr2n, and output qr2p/qr2n allows for the initial gain and peaking settings of the tap buffers.

The calibration block can be enabled or disabled by CMOS control signals offr1 and offr2 respectively. The calibration procedures are described in detail in the application notes for this part.

3-Wire SPI Control Block

The interface incorporates two ports (right and left) that include data inputs 3wrdin and 3wldin, clock inputs 3wrcin and 3wlcin, enable inputs 3wrenin and 3wlenin, and data outputs 3wrdout and 3wldout. Each port controls certain internal blocks as described below.

Left-Side SPI Port

Table 1 refers to the left-side SPI port.

Table 1. Left CDE SPI Data Transfer Protocol

Byte #	Bit #	Bit order	Signal name	Signal function		
	From 1	LSB				
1	to 8	MSB	crlgn	X and Y channels Input buffers gain control		
	1	sign				
2	From 2	LSB	crlyi0	Tap0 YI buffer gain control		
_	to 8	MSB		Tupo 11 outlet guill control		
	1	sign				
3	From 2	LSB	crlyq0	Tap0 YQ buffer gain control		
	to 8	MSB	J 1			
	1	sign				
4	From 2	LSB	crlyi1	Tap1 YI buffer gain control		
	to 8	MSB				
	1	sign				
5	From 2	LSB	crlyq1	Tap1 YQ buffer gain control		
	to 8	MSB				
	1	sign		Tap2 YI buffer gain control		
6	From 2	LSB	crlyi2			
	to 8	MSB				
	1	sign		Tap2 YQ buffer gain control		
7	From 2	LSB	crlyq2			
	to 8	MSB				
	1	sign		Tap3 YI buffer gain control		
8	From 2	LSB	crlyi3			
	to 8	MSB				
	1	sign				
9	From 2	LSB	crlyq3	Tap3 YQ buffer gain control		
	to 8	MSB				
10	From 1	LSB	oul of	V and V shannals huffers's sain central		
10	to 8	MSB	crlg5	X and Y channels buffer5's gain control		
	1	sign				
11	From 2	LSB	crlyi4	Tap4 YI buffer gain control		
	to 8	MSB		_		
	1	sign		Tap4 YQ buffer gain control		
12	From 2	LSB	crlyq4			
	to 8	MSB	V 1			

www.adsantec.com

Byte #	Bit #	Bit order	Signal name	Signal function		
	1	sign				
13	From 2	LSB	crlyi5	Tap5 YI buffer gain control		
	to 8	MSB				
	1	sign				
14	From 2	LSB	crlyq5	Tap6 YQ buffer gain control		
	to 8	MSB				
	1	sign				
15	From 2	LSB	crlyi6	Tap6 YI buffer gain control		
	to 8	MSB		-		
	1	sign				
16	From 2	LSB	crlyq6	Tap6 YQ buffer gain control		
	to 8	MSB				
	1	sign				
17	From 2	LSB	crlyi7	Tap7 YI buffer gain control		
	to 8	MSB		-		
	1	sign				
18	From 2	LSB	crlyq7	Tap7 YQ buffer gain control		
	to 8	MSB				
	1	sign		Tap8 YI buffer gain control		
19	From 2	LSB	crlyi8			
	to 8	MSB		-		
	1	sign		Tap8 YQ buffer gain control		
20	From 2	LSB	crlyqi8			
	to 8	MSB				
21	From 1			Notwood		
21	to 8			Not used		
22	From 1	LSB	orla10	V and V abannala huffer 10's coin as utu-1		
22	to 8	MSB	crlg10	X and Y channels buffer10's gain control		
	1	sign				
23	From 2	LSB	crlyi9	Tap9 YI buffer gain control		
	to 8	MSB				
	1	sign				
24	From 2	LSB	crlyq9	Tap9 YQ buffer gain control		
	to 8	MSB				
	1	sign				
25	From 2	LSB	crlyi10	Tap10 YI buffer gain control		
	to 8	MSB				
	1	sign				
26	From 2	LSB	crlyq10	Tap10 YQ buffer gain control		
	to 8	MSB				
	1	sign		Tap11 YI buffer gain control		
27	From 2	LSB	crlyi11			
	to 8	MSB				

Byte #	Bit #	Bit order	Signal name	Signal function
	1	sign		
28	From 2	LSB	crlyq11	Tap11 YQ buffer gain control
	to 8	MSB		
	1	sign		
29	From 2	LSB	crlyi12	Tap12 YI buffer gain control
	to 8	MSB		
	1	sign		
30	From 2	LSB	crlyq12	Tap12 YQ buffer gain control
	to 8	MSB		
	1	sign		Tap13 YI buffer gain control
31	From 2	LSB	crlyi13	
	to 8	MSB		
	1	sign		Tap13 YQ buffer gain control
32	From 2	LSB	crlyq13	
	to 8	MSB		
	1	sign		
33	From 2	LSB	crlyi14	Tap14 YI buffer gain control
	to 8	MSB		
	1	sign		Tap14 YQ buffer gain control
34	From 2	LSB	crlyq14	
	to 8	MSB		

Right-Side SPI Port

Table 2 refers to the right-side SPI port.

Table 2. Right CDE SPI Data Transfer Protocol

Byte #	Bit #	Bit order	Signal name	Signal function	
1	From 1	LSB	orlolz	V 1 V -1 1- I t 1 ff 1-' 1-'	
1	to 8	MSB	crlpk	X and Y channels Input buffers peaking control	
	1	sign			
2	From 2	LSB	crlxi0	Tap0 XI buffer gain control	
	to 8	MSB			
	1	sign		Tap0 XQ buffer gain control	
3	From 2	LSB	crlxq0		
	to 8	MSB			
	1	sign		Tap1 XI buffer gain control	
4	From 2	LSB	crlxi1		
	to 8	MSB			
	1 sign				
5	From 2	LSB	crlxq1	Tap1 XQ buffer gain control	
	to 8	MSB			

www.adsantec.com

Byte #	Bit #	Bit order	Signal name	Signal function		
Dyte II	1	sign	Signar name	Signal function		
6	From 2	LSB	crlxi2	Tap2 XI buffer gain control		
O O	to 8	MSB	CHAIZ	Tup2 AT builer gain control		
	1	sign				
7	From 2	LSB	crlxq2	Tap2 XQ buffer gain control		
,	to 8	MSB	0111142	Tup 2 Ti Q outroi gami contaot		
	1	sign				
8	From 2	LSB	crlxi3	Tap3 XI buffer gain control		
	to 8	MSB		Fo 5 5		
	1	sign				
9	From 2	LSB	crlxq3	Tap3 XQ buffer gain control		
	to 8	MSB	1			
1.0	From 1	LSB				
10	to 8	MSB	crlp5	X and Y channels buffer5's peaking control		
	1	sign				
11	From 2	LSB	crlxi4	Tap4 XI buffer gain control		
	to 8	MSB				
	1	sign				
12	From 2	LSB	crlxq4	Tap4 XQ buffer gain control		
	to 8	MSB	-			
	1	sign		Tap5 XI buffer gain control		
13	From 2	LSB	crlxi5			
	to 8	MSB				
	1	sign		Tap6 XQ buffer gain control		
14	From 2	LSB	crlxq5			
	to 8	MSB				
	1	sign		Tap6 XI buffer gain control		
15	From 2	LSB	crlxi6			
	to 8	MSB				
	1	sign				
16	From 2	LSB	crlxq6	Tap6 XQ buffer gain control		
	to 8	MSB				
	1	sign				
17	From 2	LSB	crlxi7	Tap7 XI buffer gain control		
	to 8	MSB				
	1	sign				
18	From 2	LSB	crlxq7	Tap7 XQ buffer gain control		
	to 8	MSB				
	1	sign				
19	From 2	LSB	crlxi8	Tap8 XI buffer gain control		
	to 8	MSB				
20	1	sign	crlxqi8	Tap8 XQ buffer gain control		
20	From 2	LSB	Jimqio			

Byte #	Bit #	Bit order	Signal name	Signal function		
	to 8	MSB				
21	From 1	LSB	crlout	Q and I output buffers gain control		
21	to 8	MSB	Criout			
22	From 1	LSB	crlp10	X and Y channels buffer10's peaking control		
	to 8	MSB	Cripio	A and 1 channels buffer to 3 peaking control		
	1	sign				
23	From 2	LSB	crlxi9	Tap9 XI buffer gain control		
	to 8	MSB				
	1	sign				
24	From 2	LSB	crlxq9	Tap9 XQ buffer gain control		
	to 8	MSB				
	1	sign				
25	From 2	LSB	crlxi10	Tap10 XI buffer gain control		
	to 8	MSB				
	1	sign				
26	From 2	LSB	crlxq10	Tap10 XQ buffer gain control		
	to 8	MSB	-			
	1	sign				
27	From 2	LSB	crlxi11	Tap11 XI buffer gain control		
	to 8	MSB				
	1	sign				
28	From 2	LSB	crlxq11	Tap11 XQ buffer gain control		
	to 8	MSB	1			
	1	sign		Tap12 XI buffer gain control		
29	From 2	LSB	crlxi12			
	to 8	MSB				
	1	sign				
30	From 2	LSB	crlxq12	Tap12 XQ buffer gain control		
	to 8	MSB	1			
	1	sign				
31	From 2	LSB	crlxi13	Tap13 XI buffer gain control		
	to 8	MSB				
	1	sign				
32	From 2	LSB	crlxq13	Tap13 XQ buffer gain control		
	to 8	MSB	1			
	1	sign				
33	From 2	LSB	crlxi14	Tap14 XI buffer gain control		
	to 8	MSB				
	1	sign				
34	From 2	LSB	crlxq14	Tap14 XQ buffer gain control		
	to 8	MSB	1			

%

Power supply configuration

The part operates from three positive power supplies related to a common ground vee.

The main supply is vcc. It powers all analog blocks except for the output buffers.

The second supply vccOB powers the output buffers and can be used for the output common mode voltage adjustment. If such adjustment is not required, vccOB can be shorted to vcc.

The third supply vdd is used for the internal CMOS circuits of the SPI.

ABSOLUTE MAXIMUM RATINGS

Caution: Exceeding the absolute maximum ratings shown in Table 3 may cause damage to this product and/or lead to reduced reliability. Functional performance is specified over the recommended operating conditions for power supply and temperature only. AC and DC device characteristics at or beyond the absolute maximum ratings are not assumed or implied. All min and max voltage limits are referenced to ground (assumed **vee**).

Min Units **Parameter** Max Supply Voltage (vcc) +3.6 VPower Consumption 3.0 W RF Input Voltage Swing (SE) 0.5 V ${}^{o}C$ Case Temperature +90 Storage Temperature +100 ${}^{o}C$ -40 **Operational Humidity** 10 98 %

10

98

Table 3. Absolute Maximum Ratings

TERMINAL FUNCTIONS

Storage Humidity

	Supply and Termination Voltages					
Name	Description	Pin Number				
vcc	Positive power supply $(+3.3V)$	2, 4, 6, 11, 13, 15, 18, 20, 22, 27, 29, 31,				
		34, 36, 38, 43, 45, 47, 50, 52, 54, 59, 61, 63				
vee	Negative power supply (GND	17, 32, 33, 48, 49, 64				
	or 0 <i>V</i>)					
vdd	Positive power supply $(+1.3V)$	1, 16				
vccOB	Positive power supply (+3.3 <i>V</i>)	39, 42				
nc	Not connected	8				

www.adsantec.com

TERMINAL			DECODIMETON
Name	No.	Type	DESCRIPTION
			High-Speed I/Os
dip	28	Analog input	CML-type differential data ports with internal SE 50 <i>Ohm</i>
din	30		termination to VCC
dqp	51		
dqn	53		
dr1p	3		
dr1n	5		
dr2p	12		
dr2n	14		
qip	37	Analog output	CML-type differential data ports with internal SE 500hm
qin	35		termination to vcc. Require external SE 50 <i>Ohm</i> termination
qqp	46		to vcc.
qqn	44		
qr1p	62		
qr1n	60		
qr2p	21		
qr2n	19		
			Controls
offr1	7	3.3 <i>V</i> CMOS	C1 activation (default: high, C1 is off; active: low, C1 is on)
offr2	10	input	C2 activation (default: high, C2 is off; active: low, C2 is on)
err	40	Analog output	Error signal high-impedance output port
tsens1	41	Current-sinking	Connected to anodes of temperature-sensing diodes
tsens2	9	outputs	
			3-Wire Controls
3wrdin	24	1.2 <i>V</i> CMOS	Right-side data input
3wldin	57	input	Left-side data input
3wrcin	25		Right-side clock input
3wlcin	56		Left-side clock input
3wrenin	26		Right-side enable input
3wlenin	55		Left-side enable input
3wrdout	23	1.2V CMOS	Right-side data output
3wldout	58	output	Left-side data output

www.adsantec.com

ELECTRICAL CHARACTERISTICS

PARAMETER	MIN	TYP	MAX	UNIT	COMMENTS	
General Parameters						
VCC	3.1	3.3	3.5	V	±6%, analog supply	
vccOB	3.1	3.3	3.6	V	analog supply	
vdd		1.3		V	±6%, digital supply	
vee		0.0		V	External ground	
Ivcc			800	mA		
Power consumption			2.64	W		
Junction temperature	-25	50	125	$^{\circ}C$		
	Aı	nalog Inj	put Data	(dip/din, d	dqp/dqn)	
Frequency	DC		10	GHz		
Swing	0.02		0.1	mV	Differential or SE, p-p	
S11		-12		dB	at 10GHz	
CM Voltage Level		VCC		V	Must match for both inputs	
	Analog Output Data (qip/qin, qqp/qqn)					
Frequency	DC		18	GHz		
Swing		220		mV	on each SE output	
S22		-12		dB	at 10GHz	
CM Voltage Level	V	ccOB-0.	35	V		
3-Wire Interface Ports						
Clock frequency			50	MHz		
Low logic level		0		V		
High logic level		1.2		V		

PACKAGE INFORMATION

The chip die is housed in a custom 64-pin CQFP package. The dimensioned drawings are shown in Fig. 4. The package provides a center heat slug located on its back side to be used for heat dissipation. ADSANTEC recommends for this section to be soldered to the **vcc** plain, which is ground for a negative supply, or power for a positive supply.

The part's identification label is ASNT6171-KMO. The first 8 characters of the name before the dash identify the bare die including general circuit family, fabrication technology, specific circuit type, and part version while the 3 characters after the dash represent the package's manufacturer, type, and pin out count.

This device complies with the Restriction of Hazardous Substances (RoHS) per 2011/65/EU for all ten substances.

64-PIN KMO Package

[inches] millimeters

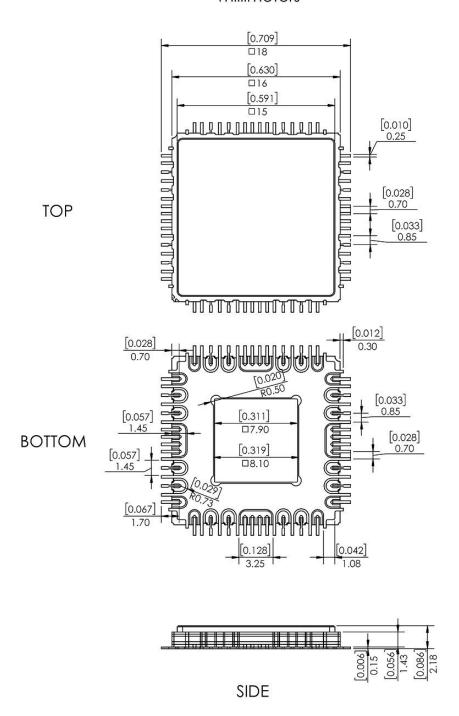


Fig. 4. CQFP 64-Pin Package Drawing (All Dimensions in mm)

www.adsantec.com

REVISION HISTORY

Revision	Date	Changes			
1.1.2	05-2020	Updated Package Information			
1.0.2	07-2019	Updated Letterhead			
1.0.1	12-2016	First release			
0.2.1	08-2016	Updated title			
		Corrected Package information section			
0.1.1	08-2016	Added pin out diagram			
		Corrected block diagram			
		Corrected description			
		Added Power Supply Configuration			
		Added Absolute Maximum Ratings			
		Added Package Information			
0.0.1	07-2016	Preliminary release			