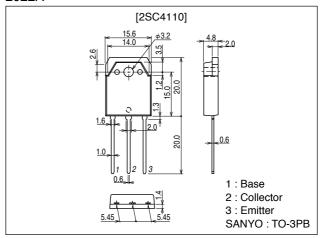


ON Semiconductor DATA SHEET

NPN Triple Diffused Planar Silicon Transistor

2SC4110 — 400V/25A Switching Regulator Applications


Features

- · High breakdown voltage and high reliability.
- · Fast switching speed.
- · Wide ASO.
- · Adoption of MBIT process.

Package Dimensions

unit:mm

2022A

Specifications

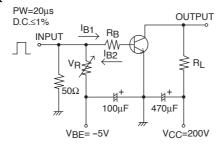
Absolute Maximum Ratings at Ta = 25°C

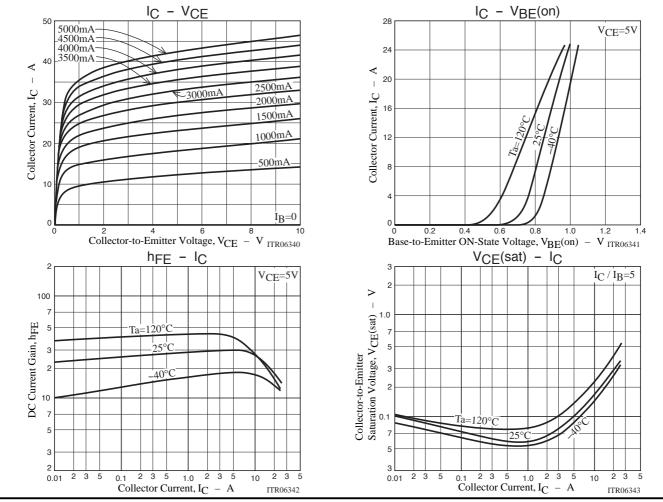
Parameter	Symbol	Conditions	Ratings	Unit
Collector-to-Base Voltage	V _{CBO}		500	V
Collector-to-Emitter Voltage	V _{CEO}		400	V
Emitter-to-Base Voltage	V _{EBO}		7	V
Collector Current	I _C		25	Α
Collector Current (Pulse)	I _{CP}	PW≤300μs, duty cycle≤10%	40	Α
Base Current	I _B		8	Α
Collector Dissipation	В		2.5	W
	PC	Tc=25°C	160	W
Junction Temperature	Tj		150	°C
Storage Temperature	Tstg		-55 to +150	°C

Electrical Characteristics at Ta = 25°C

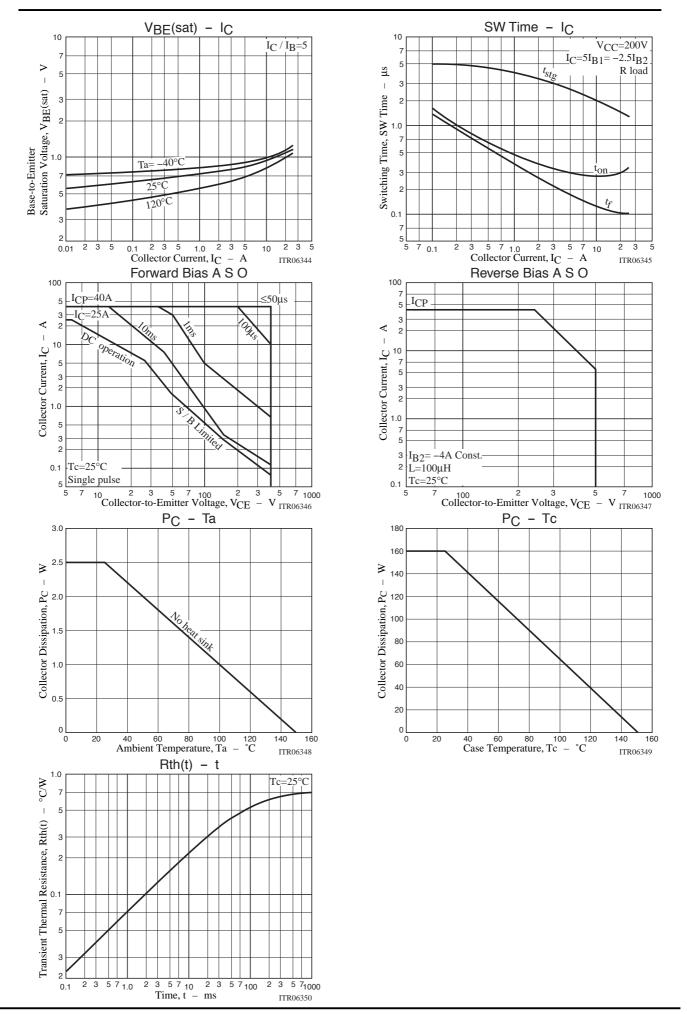
Parameter	Symbol	Conditions	Ratings			Linit
			min	typ	max	Unit
Collector Cutoff Current	I _{CBO}	V _{CB} =400V, I _E =0			10	μΑ
Emitter Cutoff Current	I _{EBO}	V _{EB} =5V, I _C =0			10	μΑ

Continued on next page.


Continued from preceding page.


Parameter	Symbol	Conditions	Ratings			Unit
Farameter	Parameter Symbol Con-		min	typ	max	Offic
	h _{FE} 1	V _{CE} =5V, I _C =3.2A			50*	
DC Current Gain	h _{FE} 2	V _{CE} =5V, I _C =16A				
	h _{FE} 3	V _{CE} =5V, I _C =10mA	10			
Collector-to-Emitter Saturation Voltage	V _{CE(sat)}	I _C =16A, I _B =3.2A			0.8	V
Base-to-Emitter Saturation Voltage	V _{BE(sat)}	I _C =16A, I _B =3.2A			1.5	V
Gain-Bandwidth Product	f _T	V _{CE} =10V, I _C =3.2A		20		MHz
Output Capacitance	C _{ob}	V _{CB} =10V, f=1MHz		300		pF
Collector-to-Base Breakdown Voltage	V _(BR) CBO	I _C =1mA, I _E =0				V
Collector-to-Emitter Breakdown Voltage	V _(BR) CEO	I _C =10mA, R _{BE} =∞				V
Emitter-to-Base Breakdown Voltage	V _{(BR)EBO}	I _E =1mA, I _C =0				V
Collector-to-Emitter Sustain Voltage	V _{CEX(sus)}	I _C =10A, I _{B1} =1A, I _{B2} =-4A, L=200 μ H, clamped				V
Turn-ON Time	ton	I _C =20A, I _{B1} =4A, I _{B2} =-8A, R _L =10Ω, V _{CC} =200V			0.5	μs
Storage Time	t _{stg}	I _C =20A, I _{B1} =4A, I _{B2} =-8A, R _L =10Ω, V _{CC} =200V			2.5	μs
Fall Time	t _f	I _C =20A, I _{B1} =4A, I _{B2} =-8A, R _L =10Ω, V _{CC} =200V			0.3	μs

^{*:} The $h_{FE}1$ of the 2SC4110 is classified as follows. When specifying the $h_{FE}1$ rank, specify two ranks or more in principle.


Rank	L	М	N		
hFE	15 to 30	20 to 40	30 to 50		

Switching Time Test Circuit

Rev.0 I Page 2 of 4 I www.onsemi.com

2SC4110

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. SCILLC strives to supply high-quality high-reliability products and recommends adopting safety measures when designing equipment to avoid accidents or malfunctions. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals," must be validated for each customer application by customer's technical experts. SCILLC shall not be held liable for any claim or suits with regard to a third party's intellectual property rights which has resulted from the use of the technical information and products mentioned above. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affi liates, and distributors harmless against all claims, costs, dama

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Email: orderlit@onsemi.com

Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

N. American Technical Support: 800-282-9855 Toll Free USA/Canada.

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5773-3850 ON Semiconductor Website:www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative