# 74LVTN16244B

3.3 V 16-bit buffer/driver; 3-state
Rev. 02 — 23 March 2010

**Product data sheet** 

#### 1. **General description**

The 74LVTN16244B is a high-performance BiCMOS product designed for  $V_{CC}$  operation at 3.3 V.

This device is a 16-bit buffer and line driver featuring non-inverting 3-state bus outputs. The device can be used as four 4-bit buffers, two 8-bit buffers, or one 16-bit buffer.

#### **Features and benefits** 2.

- 16-bit bus interface
- 3-state buffers
- Output capability: +64 mA and -32 mA
- TTL input and output switching levels
- Input and output interface capability to systems at 5 V supply
- Power-up 3-state
- Live insertion and extraction permitted
- No bus current loading when output is tied to 5 V bus
- Latch-up protection
  - ◆ JESD78B Class II exceeds 500 mA
- ESD protection:
  - HBM JESD22-A114F exceeds 2000 V
  - MM JESD22-A115-A exceeds 200 V

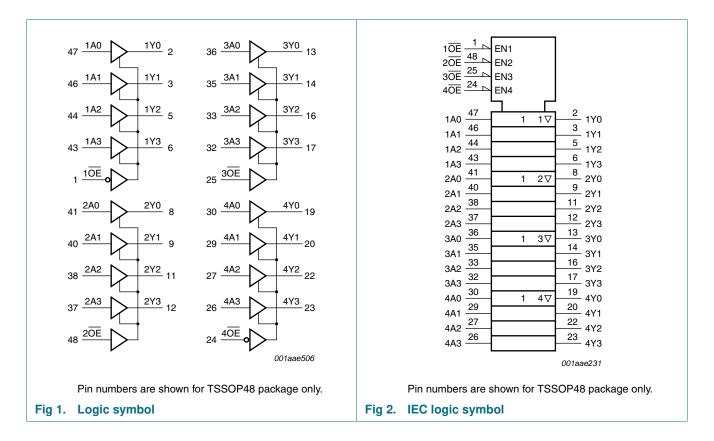
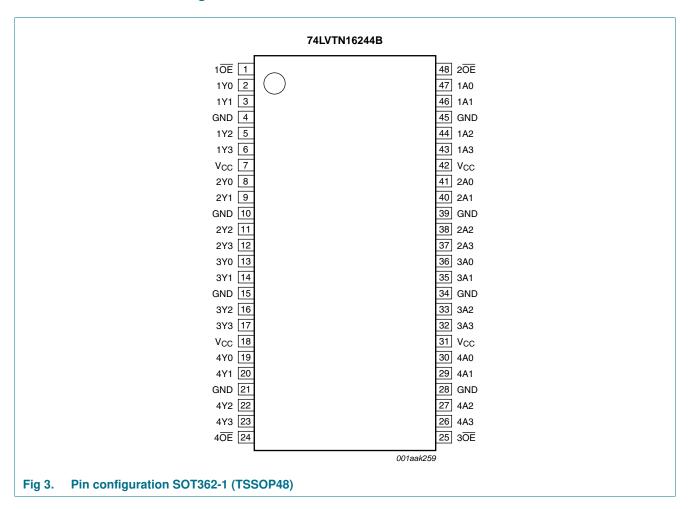
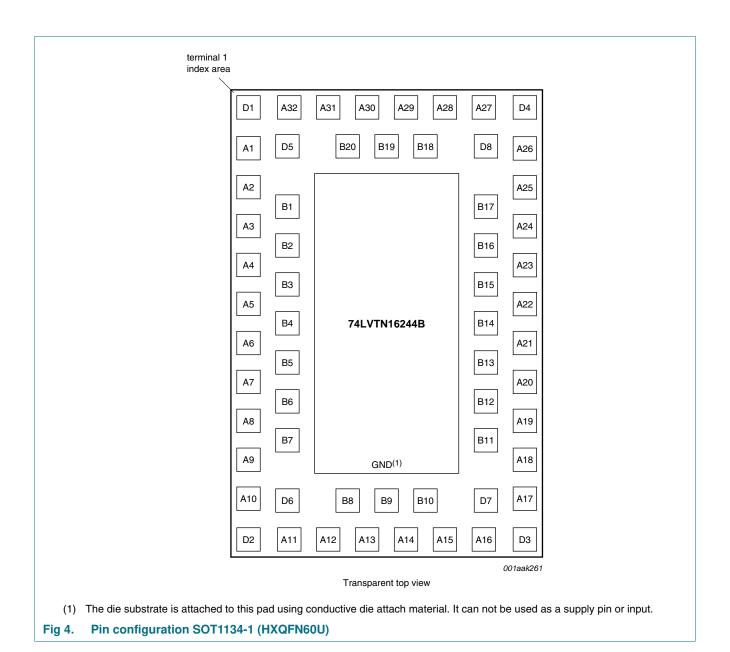

#### **Ordering information** 3.

Table 1. **Ordering information** 

| Type number     | Package           |          |                                                                                                                                   |           |  |  |  |  |  |  |
|-----------------|-------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------|-----------|--|--|--|--|--|--|
|                 | Temperature range | Name     | Description                                                                                                                       | Version   |  |  |  |  |  |  |
| 74LVTN16244BDGG | –40 °C to +85 °C  | TSSOP48  | plastic thin shrink small outline package;<br>48 leads; body width 6.1 mm                                                         | SOT362-1  |  |  |  |  |  |  |
| 74LVTN16244BBQ  | –40 °C to +85 °C  | HXQFN60U | plastic thermal enhanced extremely thin quad flat package; no leads; 60 terminals; UTLP based; body $4\times6\times0.5~\text{mm}$ | SOT1134-1 |  |  |  |  |  |  |





## 4. Functional diagram



## 5. Pinning information

### 5.1 Pinning





### 5.2 Pin description

Table 2. Pin description

| Symbol                                  | Pin            |                    | Description                      |
|-----------------------------------------|----------------|--------------------|----------------------------------|
|                                         | SOT362-1       | SOT1134-1          |                                  |
| 1 <u>OE</u> , 2 <u>OE</u> ,<br>3OE, 4OE | 1, 48, 25, 24  | A30, A29, A14, A13 | output enable input (active LOW) |
| 1Y0 to 1Y3                              | 2, 3, 5, 6     | B20, A31, D5, D1   | data output                      |
| 2Y0 to 2Y3                              | 8, 9, 11, 12   | A2, B2, B3, A5     | data output                      |
| 3Y0 to 3Y3                              | 13, 14, 16, 17 | A6, B5, B6, A9     | data output                      |
| 4Y0 to 4Y3                              | 19, 20, 22, 23 | D2, D6, A12, B8    | data output                      |

74LVTN16244B\_2

All information provided in this document is subject to legal disclaimers.

 Table 2.
 Pin description ...continued

| Symbol          | Pin                              |                                                         | Description    |  |  |
|-----------------|----------------------------------|---------------------------------------------------------|----------------|--|--|
|                 | SOT362-1                         | SOT1134-1                                               |                |  |  |
| GND             | 4, 10, 15, 21, 28, 34, 39,<br>45 | A32, A3, A8, A11, A16, A19,<br>A24, A27                 | ground (0 V)   |  |  |
| V <sub>CC</sub> | 7, 18, 31, 42                    | A1, A10, A17, A26                                       | supply voltage |  |  |
| 1A0 to 1A3      | 47, 46, 44, 43                   | B18, A28, D8, D4                                        | data input     |  |  |
| 2A0 to 2A3      | 41, 40, 38, 37                   | A25, B16, B15, A22                                      | data input     |  |  |
| 3A0 to 3A3      | 36, 35, 33, 32                   | A21, B13, B12, A18                                      | data input     |  |  |
| 4A0 to 4A3      | 30, 29, 27, 26                   | D3, D7, A15, B10                                        | data input     |  |  |
| n.c.            | -                                | A4, A7, A20, A23, B1, B4, B7,<br>B9, B11, B14, B17, B19 | not connected  |  |  |

# 6. Functional description

Table 3. Function table [1]

| Control<br>nOE | Input | Output |
|----------------|-------|--------|
| nOE            | nAn   | nYn    |
| L              | L     | L      |
| L              | Н     | Н      |
| Н              | X     | Z      |

<sup>[1]</sup> H = HIGH voltage level; L = LOW voltage level; X = don't care; Z = high-impedance OFF-state.

## 7. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

| Symbol           | Parameter               | Conditions                           | Min              | Max  | Unit |
|------------------|-------------------------|--------------------------------------|------------------|------|------|
| $V_{CC}$         | supply voltage          |                                      | -0.5             | +4.6 | V    |
| VI               | input voltage           |                                      | [ <u>1]</u> -0.5 | +7.0 | V    |
| V <sub>O</sub>   | output voltage          | output in OFF-state or<br>HIGH-state | <u>[1]</u> –0.5  | +7.0 | V    |
| I <sub>IK</sub>  | input clamping current  | $V_I < 0 V$                          | -50              | -    | mA   |
| I <sub>OK</sub>  | output clamping current | $V_O < 0 V$                          | -50              | -    | mA   |
| Io               | output current          | output in LOW-state                  | -                | 128  | mA   |
|                  |                         | output in HIGH-state                 | -64              | -    | mA   |
| T <sub>stg</sub> | storage temperature     |                                      | -65              | +150 | °C   |
| T <sub>j</sub>   | junction temperature    |                                      | [2] _            | 150  | °C   |

Table 4. Limiting values ...continued

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

| Symbol           | Parameter               | Conditions                                                           | Min          | Max  | Unit |
|------------------|-------------------------|----------------------------------------------------------------------|--------------|------|------|
| P <sub>tot</sub> | total power dissipation | $T_{amb} = -40  ^{\circ}\text{C} \text{ to } +85  ^{\circ}\text{C};$ |              |      |      |
|                  |                         | TSSOP48 package                                                      | [3] _        | 500  | mW   |
|                  |                         | HXQFN60U package                                                     | <u>[4]</u> _ | 1000 | mW   |

<sup>[1]</sup> The input and output negative voltage ratings may be exceeded if the input and output clamp current ratings are observed.

## 8. Recommended operating conditions

Table 5. Recommended operating conditions

| Symbol              | Parameter                           | Conditions      | Min | Тур | Max | Unit |
|---------------------|-------------------------------------|-----------------|-----|-----|-----|------|
| $V_{CC}$            | supply voltage                      |                 | 2.7 | -   | 3.6 | V    |
| VI                  | input voltage                       |                 | 0   | -   | 5.5 | V    |
| $V_{IH}$            | HIGH-level input voltage            |                 | 2.0 | -   | -   | V    |
| $V_{IL}$            | LOW-level input voltage             |                 | -   | -   | 8.0 | V    |
| I <sub>OH</sub>     | HIGH-level output current           |                 | -32 | -   | -   | mA   |
| I <sub>OL</sub>     | LOW-level output current            | none            | -   | -   | 32  | mA   |
|                     |                                     |                 | -   | -   | 64  | mA   |
| T <sub>amb</sub>    | ambient temperature                 | in free-air     | -40 | -   | +85 | °C   |
| $\Delta t/\Delta V$ | input transition rise and fall rate | outputs enabled | -   | -   | 10  | ns/V |
| -                   |                                     |                 |     |     |     |      |

<sup>[2]</sup> The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability.

<sup>[3]</sup> Above 60 °C the value of Ptot derates linearly with 5.5 mW/K.

<sup>[4]</sup> Above 70 °C the value of  $P_{tot}$  derates linearly with 1.8 mW/K.

### 9. Static characteristics

Table 6. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

| Symbol                | Parameter                          | Conditions                                                                                                                                | Min                   | Тур      | Max  | Unit |
|-----------------------|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------|------|------|
| T <sub>amb</sub> = -  | 40 °C to +85 °C[1]                 |                                                                                                                                           |                       |          |      |      |
| $V_{IK}$              | input clamping voltage             | $V_{CC} = 2.7 \text{ V}; I_{IK} = -18 \text{ mA}$                                                                                         | -1.2                  | -0.85    | -    | V    |
| V <sub>OH</sub>       | HIGH-level output voltage          | $I_{OH}$ = $-100 \mu A$ ; $V_{CC}$ = 2.7 V to 3.6 V                                                                                       | V <sub>CC</sub> - 0.2 | $V_{CC}$ | -    | V    |
|                       |                                    | $I_{OH} = -8 \text{ mA}; V_{CC} = 2.7 \text{ V}$                                                                                          | 2.4                   | 2.5      | -    | V    |
|                       |                                    | $I_{OH} = -32 \text{ mA}; V_{CC} = 3.0 \text{ V}$                                                                                         | 2.0                   | 2.3      | -    | V    |
| $V_{OL}$              | LOW-level output voltage           | V <sub>CC</sub> = 2.7 V                                                                                                                   |                       |          |      |      |
|                       |                                    | I <sub>OL</sub> = 100 μA                                                                                                                  | -                     | 0.07     | 0.2  | V    |
|                       |                                    | I <sub>OL</sub> = 24 mA                                                                                                                   | -                     | 0.3      | 0.5  | V    |
|                       |                                    | V <sub>CC</sub> = 3.0 V                                                                                                                   |                       |          |      |      |
|                       |                                    | I <sub>OL</sub> = 16 mA                                                                                                                   | -                     | 0.25     | 0.4  | V    |
|                       |                                    | I <sub>OL</sub> = 32 mA                                                                                                                   | -                     | 0.3      | 0.5  | V    |
|                       |                                    | I <sub>OL</sub> = 64 mA                                                                                                                   | -                     | 0.4      | 0.55 | V    |
| I <sub>I</sub>        | input leakage current              | all input pins; $V_{CC} = 0 \text{ V or } 3.6 \text{ V}; V_I = 5.5 \text{ V}$                                                             | -                     | 0.1      | 10   | μΑ   |
|                       |                                    | control pins; $V_{CC} = 3.6 \text{ V}$ ; $V_I = V_{CC} \text{ or GND}$                                                                    | -                     | 0.1      | ±1.0 | μΑ   |
|                       |                                    | data pins; unused pins at V <sub>CC</sub> or GND                                                                                          |                       |          |      |      |
|                       |                                    | $V_{I} = V_{CC}; V_{CC} = 3.6 \text{ V}$                                                                                                  | -                     | 0.1      | 1    | μΑ   |
|                       |                                    | $V_{I} = 0 \text{ V}; V_{CC} = 3.6 \text{ V}$                                                                                             | -5                    | -0.1     | -    | μΑ   |
| I <sub>OFF</sub>      | power-off leakage current          | $V_{CC} = 0 \text{ V}$ ; $V_{I}$ or $V_{O} = 0 \text{ V}$ to 4.5 V                                                                        | -                     | 0.1      | ±100 | μΑ   |
| I <sub>LO</sub>       | output leakage current             | output in HIGH-state when $V_O > V_{CC}$ ; $V_O = 5.5 \text{ V}$ ; $V_{CC} = 3.0 \text{ V}$                                               | -                     | 50       | 125  | μΑ   |
| I <sub>O(pu/pd)</sub> | power-up/power-down output current | $V_{CC} \le \underline{1.2} \text{ V; } V_O = 0.5 \text{ V to } V_{CC}; V_I = GND \text{ or } V_{CC}; n\overline{OE} = \text{don't care}$ | [2] -                 | 1        | ±100 | μΑ   |
| l <sub>OZ</sub>       | OFF-state output current           | $V_{CC} = 3.6 \text{ V}; V_I = V_{IH} \text{ or } V_{IL}$                                                                                 |                       |          |      |      |
|                       |                                    | output HIGH: V <sub>O</sub> = 3.0 V                                                                                                       | -                     | 0.5      | 5    | μА   |
|                       |                                    | output LOW: V <sub>O</sub> = 0.5 V                                                                                                        | -5                    | +0.5     | -    | μА   |
| I <sub>CC</sub>       | supply current                     | $V_{CC} = 3.6 \text{ V}$ ; $V_I = \text{GND or } V_{CC}$ ; $I_O = 0 \text{ A}$                                                            |                       |          |      |      |
|                       |                                    | output HIGH                                                                                                                               | -                     | 0.07     | 0.12 | mA   |
|                       |                                    | output LOW                                                                                                                                | -                     | 4.0      | 6.0  | mA   |
|                       |                                    | outputs disabled                                                                                                                          | [3] _                 | 0.07     | 0.12 | mA   |
| Δl <sub>CC</sub>      | additional supply current          | per input pin; $V_{CC}$ = 3.0 V to 3.6 V; one input at $V_{CC}$ – 0.6 V other inputs at $V_{CC}$ or GND                                   | [4] -                 | 0.1      | 0.2  | mA   |
| Cı                    | input capacitance                  | $V_1 = 0 \text{ V or } 3.0 \text{ V}$                                                                                                     | -                     | 3        | -    | pF   |
|                       | output capacitance                 | outputs disabled; V <sub>O</sub> = 0 V or 3.0 V                                                                                           |                       | 9        |      | pF   |

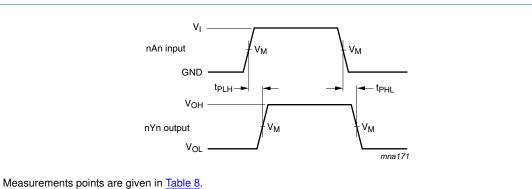
<sup>[1]</sup> Typical values are measured at  $V_{CC}$  = 3.3 V and at  $T_{amb}$  = 25 °C.

This parameter is valid for any  $V_{CC}$  between 0 V and 1.2 V with a transition time of up to 10 ms. From  $V_{CC}$  = 1.2 V to  $V_{CC}$  = 3.3 V  $\pm$  0.3 V a transition time of 100  $\mu$ s is permitted. This parameter is valid for  $T_{amb}$  = 25 °C only.

<sup>[3]</sup>  $I_{CC}$  is measured with outputs pulled to  $V_{CC}$  or GND.

<sup>[4]</sup> This is the increase in supply current for each input at the specified voltage level other than  $V_{CC}$  or GND.

# 10. Dynamic characteristics


Table 7. Dynamic characteristics

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 7.

| Symbol           | Parameter         | Conditions                                 | Min | Тур | Max | Unit |
|------------------|-------------------|--------------------------------------------|-----|-----|-----|------|
| $T_{amb} = -40$  | °C to +85 °C[1]   |                                            |     |     |     |      |
| t <sub>PLH</sub> | LOW to HIGH       | nAn to nYn; see Figure 5                   |     |     |     |      |
|                  | propagation delay | $V_{CC} = 2.7 \text{ V}$                   | -   | -   | 4.0 | ns   |
|                  |                   | $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$ | 0.5 | 1.8 | 3.2 | ns   |
| t <sub>PHL</sub> | HIGH to LOW       | nAn to nYn; see Figure 5                   |     |     |     |      |
|                  | propagation delay | $V_{CC} = 2.7 \text{ V}$                   | -   | -   | 4.0 | ns   |
|                  |                   | $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$ | 0.5 | 1.7 | 3.2 | ns   |
| t <sub>PZH</sub> | OFF-state to HIGH | nOE to nYn; see Figure 6                   |     |     |     |      |
|                  | propagation delay | $V_{CC} = 2.7 \text{ V}$                   | -   | -   | 5.0 | ns   |
|                  |                   | $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$ | 1.0 | 2.3 | 4.0 | ns   |
| t <sub>PZL</sub> | OFF-state to LOW  | nOE to nYn; see Figure 6                   |     |     |     |      |
|                  | propagation delay | $V_{CC} = 2.7 \text{ V}$                   | -   | -   | 5.3 | ns   |
|                  |                   | $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$ | 1.0 | 2.1 | 4.0 | ns   |
| t <sub>PHZ</sub> | HIGH to OFF-state | nOE to nYn; see Figure 6                   |     |     |     |      |
|                  | propagation delay | $V_{CC} = 2.7 \text{ V}$                   | -   | -   | 5.0 | ns   |
|                  |                   | $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$ | 1.0 | 3.2 | 4.5 | ns   |
| t <sub>PLZ</sub> | LOW to OFF-state  | nOE to nYn; see Figure 6                   |     |     |     |      |
|                  | propagation delay | $V_{CC} = 2.7 \text{ V}$                   | -   | -   | 4.4 | ns   |
|                  |                   | $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$ | 1.0 | 2.9 | 4.0 | ns   |

<sup>[1]</sup> Typical values are measured at  $V_{CC}$  = 3.3 V and  $T_{amb}$  = 25 °C.

### 11. Waveforms



 $V_{\text{OL}}$  and  $V_{\text{OH}}$  are typical voltage output levels that occur with the output load.

Fig 5. Propagation delay input (nAn) to output (nYn)

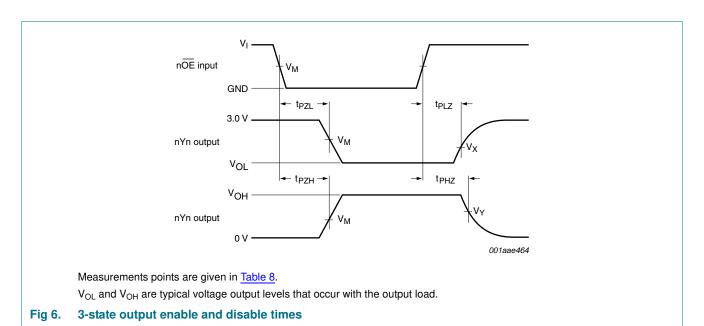
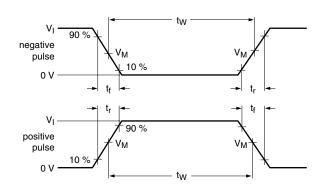
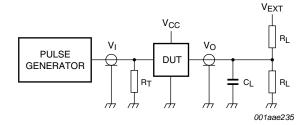





Table 8. **Measurement points** 

| Input   | Output  |                         |                         |
|---------|---------|-------------------------|-------------------------|
| $V_{M}$ | $V_{M}$ | V <sub>X</sub>          | V <sub>Y</sub>          |
| 1.5 V   | 1.5 V   | V <sub>OL</sub> + 0.3 V | V <sub>OH</sub> – 0.3 V |





Test data is given in Table 9.

Definitions test circuit:

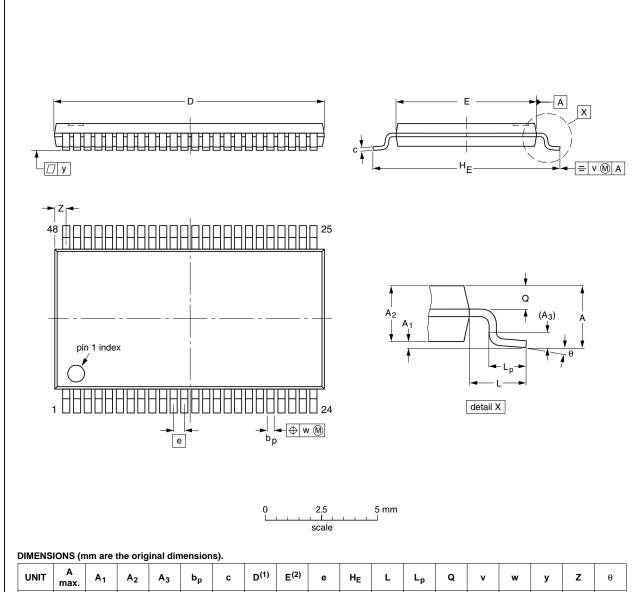
R<sub>L</sub> = Load resistance.

C<sub>L</sub> = Load capacitance including jig and probe capacitance.

 $R_T$  = Termination resistance should be equal to output impedance  $Z_o$  of the pulse generator.

 $V_{EXT}$  = External voltage for measuring switching times.

Fig 7. Load circuit for measuring switching times


Table 9. Test data

| Input   |                           |        |                                 | Load  |                                     | V <sub>EXT</sub>      |                                     |      |  |
|---------|---------------------------|--------|---------------------------------|-------|-------------------------------------|-----------------------|-------------------------------------|------|--|
| $V_{I}$ | $f_i$ $t_W$ $t_r$ , $t_f$ |        | $t_W$ $t_r$ , $t_f$ $C_L$ $R_L$ |       | t <sub>PHZ</sub> , t <sub>PZH</sub> | $t_{PLZ}$ , $t_{PZL}$ | t <sub>PLH</sub> , t <sub>PHL</sub> |      |  |
| 2.7 V   | $\leq$ 10 MHz             | 500 ns | ≤ 2.5 ns                        | 50 pF | $500 \Omega$                        | GND                   | 6 V                                 | open |  |

## 12. Package outline

TSSOP48: plastic thin shrink small outline package; 48 leads; body width 6.1 mm

SOT362-1



| UNIT | A<br>max. | A <sub>1</sub> | A <sub>2</sub> | A <sub>3</sub> | bp           | С          | D <sup>(1)</sup> | E <sup>(2)</sup> | е   | HE         | L | Lp         | Q            | v    | w    | у   | z          | θ  |
|------|-----------|----------------|----------------|----------------|--------------|------------|------------------|------------------|-----|------------|---|------------|--------------|------|------|-----|------------|----|
| mm   | 1.2       | 0.15<br>0.05   | 1.05<br>0.85   | 0.25           | 0.28<br>0.17 | 0.2<br>0.1 | 12.6<br>12.4     | 6.2<br>6.0       | 0.5 | 8.3<br>7.9 | 1 | 0.8<br>0.4 | 0.50<br>0.35 | 0.25 | 0.08 | 0.1 | 0.8<br>0.4 | 8° |

#### Notes

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

| OUTLINE<br>VERSION | REFERENCES |        |       | EUROPEAN | ISSUE DATE |                                 |
|--------------------|------------|--------|-------|----------|------------|---------------------------------|
|                    | IEC        | JEDEC  | JEITA |          | PROJECTION | ISSUE DATE                      |
| SOT362-1           |            | MO-153 |       |          |            | <del>99-12-27</del><br>03-02-19 |

Fig 8. Package outline SOT362-1 (TSSOP48)

74LVTN16244B\_2

All information provided in this document is subject to legal disclaimers.

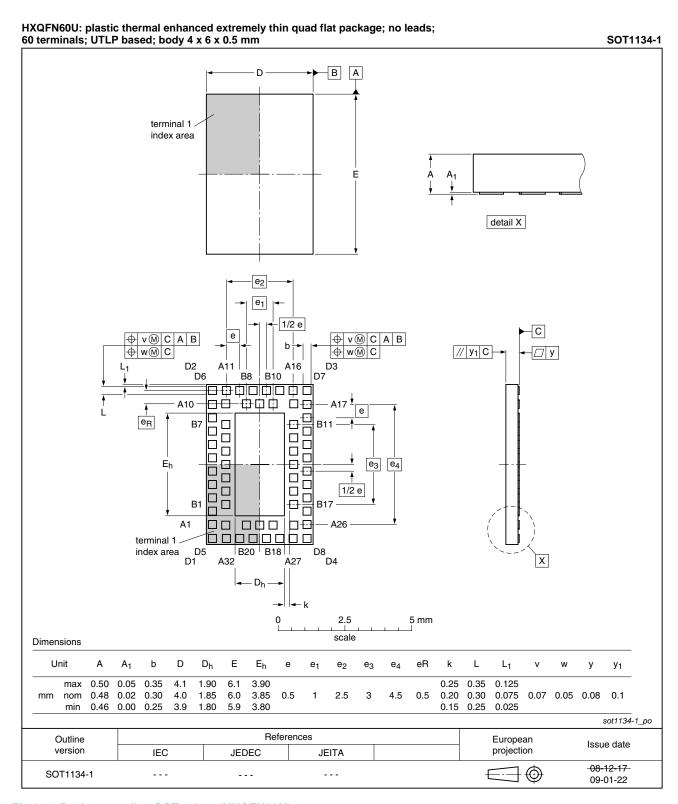



Fig 9. Package outline SOT1134-1 (HXQFN60U)

74LVTN16244B\_2

All information provided in this document is subject to legal disclaimers.

## 13. Abbreviations

### Table 10. Abbreviations

| Acronym | Description                                     |
|---------|-------------------------------------------------|
| BiCMOS  | Bipolar Complementary Metal Oxide Semiconductor |
| DUT     | Device Under Test                               |
| ESD     | ElectroStatic Discharge                         |
| HBM     | Human Body Model                                |
| MM      | Machine Model                                   |
| TTL     | Transistor-Transistor Logic                     |

## 14. Revision history

### Table 11. Revision history

| Document ID    | Release date                                                                                              | Data sheet status  | Change notice | Supersedes     |  |
|----------------|-----------------------------------------------------------------------------------------------------------|--------------------|---------------|----------------|--|
| 74LVTN16244B_2 | 20100323                                                                                                  | Product data sheet | -             | 74LVTN16244B_1 |  |
| Modifications: | <ul> <li>74LVTN16244BBQ changed from HUQFN60U (SOT1025-1) to HXQFN60U (SOT1134-1)<br/>package.</li> </ul> |                    |               |                |  |
| 74LVTN16244B_1 | 20090713                                                                                                  | Product data sheet | -             | -              |  |

### 15. Legal information

#### 15.1 Data sheet status

| Document status[1][2]          | Product status[3] | Definition                                                                            |
|--------------------------------|-------------------|---------------------------------------------------------------------------------------|
| Objective [short] data sheet   | Development       | This document contains data from the objective specification for product development. |
| Preliminary [short] data sheet | Qualification     | This document contains data from the preliminary specification.                       |
| Product [short] data sheet     | Production        | This document contains the product specification.                                     |

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL <a href="http://www.nxp.com">http://www.nxp.com</a>.

#### 15.2 Definitions

**Draft** — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

**Product specification** — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

#### 15.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use in automotive applications — This NXP Semiconductors product has been qualified for use in automotive applications. The product is not designed, authorized or warranted to be

suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

**Applications** — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on a weakness or default in the customer application/use or the application/use of customer's third party customer(s) (hereinafter both referred to as "Application"). It is customer's sole responsibility to check whether the NXP Semiconductors product is suitable and fit for the Application planned. Customer has to do all necessary testing for the Application in order to avoid a default of the Application and the product. NXP Semiconductors does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at <a href="http://www.nxp.com/profile/terms">http://www.nxp.com/profile/terms</a>, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

**No offer to sell or license** — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

**Export control** — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

#### 15.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

74LVTN16244B 2

All information provided in this document is subject to legal disclaimers.

74LVTN16244B

3.3 V 16-bit buffer/driver; 3-state

## 16. Contact information

For more information, please visit: <a href="http://www.nxp.com">http://www.nxp.com</a>

For sales office addresses, please send an email to: <a href="mailto:salesaddresses@nxp.com">salesaddresses@nxp.com</a>

# 74LVTN16244B

3.3 V 16-bit buffer/driver; 3-state

### 17. Contents

| 1    | General description                |
|------|------------------------------------|
| 2    | Features and benefits              |
| 3    | Ordering information 1             |
| 4    | Functional diagram 2               |
| 5    | Pinning information                |
| 5.1  | Pinning                            |
| 5.2  | Pin description 4                  |
| 6    | Functional description 5           |
| 7    | Limiting values 5                  |
| 8    | Recommended operating conditions 6 |
| 9    | Static characteristics 7           |
| 10   | Dynamic characteristics 8          |
| 11   | Waveforms                          |
| 12   | Package outline                    |
| 13   | Abbreviations                      |
| 14   | Revision history                   |
| 15   | Legal information                  |
| 15.1 | Data sheet status                  |
| 15.2 | Definitions                        |
| 15.3 | Disclaimers                        |
| 15.4 | Trademarks14                       |
| 16   | Contact information                |
| 17   | Contents                           |
|      |                                    |

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.