Finisar

Product Specification Multiprotocol 80Km, 10Gb/s DWDM XFP Optical Transceiver FTLX3815M3xx

PRODUCT FEATURES

- Supports 8.5Gb/s to 11.35Gb/s
- Hot-pluggable XFP footprint
- RoHS-6 Compliant (lead-free)
- 100GHz ITU Grid, C-Band
- Duplex LC connector
- Power dissipation <3.5W
- Built-in digital diagnostic functions
- Temperature range: 0°C to 70°C
- Point-to-Point & OSNR optimized versions
- Reference Clock Not Required

APPLICATIONS

- ITU G.698.1, DW100S-2Dx compliant DWDM 10G SONET/SDH
- ITU G.698.2, DW100C-2Ax compliant DWDM 10G SONET/SDH
- DWDM, IEEE 10GBASE-ZR based Ethernet
- 10GFC (SM-1200-LL-L) & 8GFC (SM-800-LC-L) compliant
- ITU G.709 / OTN FEC applications

Finisar's FTLX3815M3xx Small Form Factor 10Gb/s (XFP) transceiver complies with the XFP Multi-Source Agreement (MSA) Specification¹. It supports amplified DWDM 10Gb/s SONET/SDH, 10 Gigabit Ethernet, and 10 Gigabit Fibre Channel applications over 80km of fiber without dispersion compensation. Digital diagnostics functions are available via a 2-wire serial interface, as specified in the XFP MSA. The transceiver is RoHS compliant and lead free per Directive 2002/95/EC³, and Finisar Application Note AN-2038⁴.

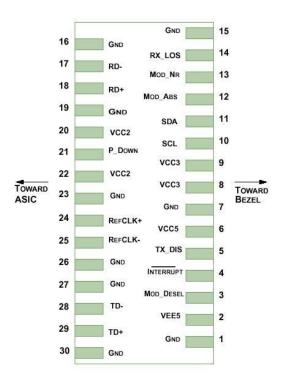
PRODUCT SELECTION

FTLX3815M3xx

xx: 100GHz ITU-T channel

1174161		Rev.: A04	Page 1 of 23		
Finisar	<i>a</i> This document contains proprietary and confidential information to Finisar Corp. This document and the entire information contained herein, and any other tangible representation thereof, is not to be copied, reproduced, duplicated, distributed, or modified, in whole or in part, and/or used without the expressed written consent of Finisar Corp.				
	Printed copy may not be the	ne latest revision	please refer to Agile for current revision		

Finisar


I. **Pin Descriptions** II.

II Pin	Logic	Symbol	Name/Description	Ref.
1		GND	Module Ground	1
2		VEE5	Optional –5.2 Power Supply – Not used	
3	LVTTL-I	Mod-Desel	Module De-select; When held low allows the module to	
			respond to 2-wire serial interface commands	
4	LVTTL-O		Interrupt (bar); Indicates presence of an important condition	2
		Interrupt	which can be read over the serial 2-wire interface	
5	LVTTL-I	TX_DIS	Transmitter Disable; Transmitter laser source turned off	
6		VCC5	+5 Power Supply	
7		GND	Module Ground	1
8		VCC3	+3.3V Power Supply	
9		VCC3	+3.3V Power Supply	
10	LVTTL-I	SCL	Serial 2-wire interface clock	2
11	LVTTL-	SDA	Serial 2-wire interface data line	2
	I/O			
12	LVTTL-O	Mod_Abs	Module Absent; Indicates module is not present. Grounded	2
			in the module.	
13	LVTTL-O	Mod_NR	Module Not Ready; Finisar defines it as a logical OR	2
			between RX_LOS and Loss of Lock in TX/RX.	
14	LVTTL-O	RX_LOS	Receiver Loss of Signal indicator	2
15		GND	Module Ground	1
16		GND	Module Ground	1
17	CML-O	RD-	Receiver inverted data output	
18	CML-O	RD+	Receiver non-inverted data output	
19		GND	Module Ground	1
20		VCC2	+1.8V Power Supply – Not used	
21	LVTTL-I	P_Down/RST	Power Down; When high, places the module in the low	
			power stand-by mode and on the falling edge of P_Down	
			initiates a module reset	
			Reset; The falling edge initiates a complete reset of the	
			module including the 2-wire serial interface, equivalent to a	
			power cycle.	
22		VCC2	+1.8V Power Supply – Not used	
23		GND	Module Ground	1
24	PECL-I	RefCLK+	Reference Clock non-inverted input, AC coupled on the	
			host board – Not Required	
25	PECL-I	RefCLK-	Reference Clock inverted input, AC coupled on the host	
		(1) 75	board – Not Required	
26		GND	Module Ground	1
27		GND	Module Ground	1
28	CML-I	TD-	Transmitter inverted data input	
29	CML-I	TD+	Transmitter non-inverted data input	
30		GND	Module Ground	1

Notes:

 Module circuit ground is isolated from module chassis ground within the module.
 Open collector; should be pulled up with 4.7k – 10kohms on host board to a voltage between 3.15V and 3.6V.

1174161		Rev.: A04	Page 2 of 23			
Finisar	contained herein, and any othe	ument contains proprietary and confidential information to Finisar Corp. This document and the entire informatio d herein, and any other tangible representation thereof, is not to be copied, reproduced, duplicated, distributed, or , in whole or in part, and/or used without the expressed written consent of Finisar Corp.				
	Printed copy may not be t	he latest revision	please refer to Agile for current revision			

II. Absolute Maximum Ratings

Parameter	Symbol	Min	Тур	Max	Unit	Ref.
Maximum Supply Voltage #1	Vcc3	-0.5		4.0	V	
Maximum Supply Voltage #2	Vcc2	-0.5		6.0	V	
Storage Temperature	Ts	-40		85	°C	
Case Operating Temperature	T _{OP}	0		70	°C	
Receiver Damage Threshold	P _{Rdmg}	+5			dBm	

1174161	Rev.: A04 Page				
Finisar	contained herein, and any other	prietary and confidential information to Finisar Corp. This document and the entire informat her tangible representation thereof, is not to be copied, reproduced, duplicated, distributed, or t, and/or used without the expressed written consent of Finisar Corp.			
	Printed copy may not be th	he latest revision	please refer to Agile for current revision		

	FTLX	3815M3xx				
Parameter	Symbol	Min	Тур	Max	Unit	Ref.
Supply Voltage #1	Vcc3	3.13		3.46	V	
Supply Voltage #2	Vcc5	4.75		5.25	V	
Supply Current – Vcc5 supply	Icc5			450	mA	
Supply Current – Vcc3 supply	Icc3			750	mA	
Module total power dissipation	Р			3.5	W	1
Transmitter						
Input differential impedance	R _{in}		100		Ω	2
Differential data input swing	Vin,pp	120		820	mV	
Transmit Disable Voltage	V _D	2.0		Vcc	V	3
Transmit Enable Voltage	V _{EN}	GND		GND+ 0.8	V	
Receiver						
Differential data output swing	Vout,pp		500	850	mV	4
Data output rise time	t _r			40	ps	5
Data output fall time	t _f			40	ps	5
LOS Fault	V _{LOS fault}	Vcc - 0.5		Vcc _{HOST}	V	6
LOS Normal	V _{LOS norm}	GND		GND+0.5	V	6
Power Supply Rejection	PSR		See Note	e 7 below		7
Reference Clock (AC-Coupled)						
Single-ended peak to peak voltage	V _{SEPP}	200		450	mV	
swing						
Single-ended resistance	R _L	40	50	60		
Frequency clock tolerance	Δf	-100		+100	ppm	
Duty cycle	-	40		60	%	

III. Electrical Characteristics (T_{OP} = -5 to 70 °C, V_{CC5} = 4.75 to 5.25 Volts)

Notes:

- 1. Maximum total power value is specified across the full temperature and voltage range.
- 2. After internal AC coupling.
- 3. Or open circuit.
- 4. Into 100 ohms differential termination.
- 5. 20 80 %
- 6. Loss Of Signal is open collector to be pulled up with a 4.7k 10kohm resistor to 3.15 3.6V. Logic 0 indicates normal operation; logic 1 indicates no signal detected.
- 7. Per Section 2.7.1. in the XFP MSA Specification¹.

1174161 Rev.: A04 Pa			
Finisar	This document contains proprietary and confidential contained herein, and any other tangible representation modified, in whole or in part, and/or used without the	information to Finisar Corp. This document and the entire information on thereof, is not to be copied, reproduced, duplicated, distributed, or e expressed written consent of Finisar Corp.	
	Printed copy may not be the latest revision p	please refer to Agile for current revision	

Transmitter						
Parameter	Symbol	Min	Тур	Max	Unit	Ref
Output Opt. Pwr: 9/125 SMF	P _{OUT}	-1		+3	dBm	
Optical Extinction Ratio	ER	8.2			dB	
Center Wavelength Spacing			100		GHz	1
Transmitter Center Wavelength – End Of Life	λc	X-100	Х	X+100	pm	2
Transmitter Center Wavelength – Beginning Of Life	λc	X-25	Х	X+25	pm	2
Sidemode Suppression ratio	SSR _{min}	35			dB	
Tx Jitter Generation (peak-to-peak)	Txj			0.1	UI	3
Tx Jitter Generation (RMS)	Tx _{jRMS}			0.01	UI	4
Tx Locked Eye (Cold Start)				30	S	
Receiver						
Overload	P _{MAX}	-6			dBm	
Optical Center Wavelength	$\lambda_{\rm C}$	1270		1615	nm	
Receiver Reflectance	R _{rx}			-27	dB	
LOS De-Assert	LOS _D			-30	dBm	
LOS Assert	LOSA	-37			dBm	
LOS Hysteresis		0.5			dB	

XII.	Optical Characteristics (EOL, $T_{OP} = -5$ to 70°C, $V_{CC5} = 4.75$ to 5.25 Volts)
------	---

	FTLX3815M3xx									
Receiver S	Receiver Sensitivity ⁵									
Data rate (Gb/s)	BER	Dispersion (ps/nm)	Sensitivity back-to- back at OSNR>30dB (dBm)	Power Penalty at OSNR>30dB (dB)	Threshold Adjust Required					
8.5	1e-12	-500 to 1450	-24	3	No					
9.95	1e-12	-500 to 1450	-24	3	No					
10.3	1e-12	-500 to 1450	-24	3	No					
10.7	1e-4	-500 to 1450	-27	3	Yes					
11.1	1e-4	-500 to 1450	-27	3	Yes					
11.3	1e-4	-500 to 1450	-27	3	Yes					

1174161	Re	ev.: A04	Page 5 of 23		
Finisar	contained herein, and any other tan	ngible representation	information to Finisar Corp. This document and the entire information on thereof, is not to be copied, reproduced, duplicated, distributed, or e expressed written consent of Finisar Corp.		
modified, in whole or in part, and/or used without the expressed written consent of Finisar Corp. Printed copy may not be the latest revision please refer to Agile for current revision					

OSNR Performan	OSNR Performance ⁶						
Data rate (Gb/s)	BER	Dispersion (ps/nm)	Max OSNR w/ dispersion at Power: -7 to -18dBm (dB)	Threshold Adjustm. Required			
8.5	1e-12	-500 to 1450	28	No			
9.95	1e-12	-500 to 1450	28	No			
10.3	1e-12	-500 to 1450	28	No			
10.7	1e-4	-500 to 1300	22	Yes			
11.1	1e-4	-500 to 1300	22	Yes			
11.3	1e-4	-500 to 1100	22	Yes			

Notes:

- 1. Corresponds to approximately 0.8 nm.
- 2. X = Specified ITU Grid wavelength. Wavelength stability is achieved within 10 seconds of power up.
- 3. Measured with a host jitter of 50 mUI peak-to-peak.
- Measured with a host jitter of 7 mUI RMS.
 Measured at 1528-1600nm with worst ER; PRBS31.
- 6. All OSNR measurements are performed with 0.1nm resolution.

1174161 Rev.: A04 Page 6			Page 6 of 23	
Finisar	<i>Finisa ar</i> This document contains proprietary and confidential information to Finisar Corp. This document and the entire informat contained herein, and any other tangible representation thereof, is not to be copied, reproduced, duplicated, distributed, or modified, in whole or in part, and/or used without the expressed written consent of Finisar Corp.			
Printed copy may not be the latest revision please refer to Agile for current revision				

Channel #	Product Code	Frequency (THz)	Center Wavelength (nm)
17	FTLX3815M317	191.7	1563.86
18	FTLX3815M318	191.8	1563.05
19	FTLX3815M319	191.9	1562.23
20	FTLX3815M320	192.0	1561.42
21	FTLX3815M321	192.1	1560.61
22	FTLX3815M322	192.2	1559.79
23	FTLX3815M323	192.3	1558.98
24	FTLX3815M324	192.4	1558.17
25	FTLX3815M325	192.5	1557.36
26	FTLX3815M326	192.6	1556.55
27	FTLX3815M327	192.7	1555.75
28	FTLX3815M328	192.8	1554.94
29	FTLX3815M329	192.9	1554.13
30	FTLX3815M330	193.0	1553.33
31	FTLX3815M331	193.1	1552.52
32	FTLX3815M332	193.2	1551.72
33	FTLX3815M333	193.3	1550.92
34	FTLX3815M334	193.4	1550.12
35	FTLX3815M335	193.5	1549.32
36	FTLX3815M336	193.6	1548.51
37	FTLX3815M337	193.7	1547.72
38	FTLX3815M338	193.8	1546.92
39	FTLX3815M339	193.9	1546.12
40	FTLX3815M340	194.0	1545.32
41	FTLX3815M341	194.1	1544.53
42	FTLX3815M342	194.2	1543.73
43	FTLX3815M343	194.3	1542.94
44	FTLX3815M344	194.4	1542.14
45	FTLX3815M345	194.5	1541.35
46	FTLX3815M346	194.6	1540.56
47	FTLX3815M347	194.7	1539.77
48	FTLX3815M348	194.8	1538.98
49	FTLX3815M349	194.9	1538.19
50	FTLX3815M350	195.0	1537.40
51	FTLX3815M351	195.1	1536.61
52	FTLX3815M352	195.2	1535.82
53	FTLX3815M353	195.3	1535.04
54	FTLX3815M354	195.4	1534.25
55	FTLX3815M355	195.5	1533.47
56	FTLX3815M356	195.6	1532.68
57	FTLX3815M357	195.7	1531.90
58	FTLX3815M358	195.8	1531.12
59	FTLX3815M359	195.9	1530.33
60	FTLX3815M360	196.0	1529.55
61	FTLX3815M361	196.1	1528.77

Part Numbers for Amplified (OSNR) Applications:

1174161 Rev.: A04 Page			Page 7 of 23	
Finisar	<i>n i s a t</i> This document contains proprietary and confidential information to Finisar Corp. This document and the entire information contained herein, and any other tangible representation thereof, is not to be copied, reproduced, duplicated, distributed, modified, in whole or in part, and/or used without the expressed written consent of Finisar Corp.			
Printed copy may not be the latest revision please refer to Agile for current revision				

V. Additional Specifications and Response Timing

Parameter	Symbol	Min	Тур	Max	Units	Ref.
Bit Rate	BR	8.5		11.35	Gb/s	1
Maximum Supported Link Length	L _{MAX}		80		km	2

Notes:

1. Amplified SONET OC-192, 10G Ethernet, SONET OC-192 with FEC, 10G Ethernet with FEC, 10GFC, and 8GFC

2. Distance indicates dispersion budget. Optical amplification may be required to achieve maximum distance.

Response timing:

Parameter		Min	Тур	Max	Units	Ref.
Tx_Dis	Assert			10	us	
	De-assert			2	ms	
Rx_LOS	Asset			100	us	
	De-assert			100	us	
Mod_NR	Asset			1	ms	
	De-assert			1	ms	
Interrupt	Asset			200	ms	
	De-assert			500	us	
P_Down/RST Time		10			us	
P_Down/RST Asser Delay				100	us	
Start-up time (Initialize time)				300	ms	1

1. Time required for transponder to be ready to begin I2C communication with host from a cold start or a hardware reset condition.

1174161 Rev.: A04		Rev.: A04	Page 8 of 23
Finisar Corp. This document contains proprietary and confidential information to Finisar Corp. This document and the entire informatic contained herein, and any other tangible representation thereof, is not to be copied, reproduced, duplicated, distributed, or modified, in whole or in part, and/or used without the expressed written consent of Finisar Corp.			
Printed copy may not be the latest revision please refer to Agile for current revision			

VI. Environmental Specifications

Finisar XFP transceivers have an operating temperature range from 0° C to $+70^{\circ}$ C case temperature.

Parameter	Symbol	Min	Тур	Max	Units	Ref.
Case Operating Temperature	T _{op}	0		70	°C	
Storage Temperature	T _{sto}	-40		85	°C	

VII. Regulatory Compliance

Finisar XFP transceivers are Class 1 Laser Products. They are certified per the following standards:

Feature	Agency	Standard	Certificate Number
Laser Eye Safety	FDA/CDRH	CDRH 21 CFR 1040 and Laser Notice 50	TBD
Laser Eye Safety	TÜV	EN 60825-1: 1994+A11:1996+A2:2001 IEC 60825-1: 1993+A1:1997+A2:2001 IEC 60825-2: 2000, Edition 2	TBD
Electrical Safety	TÜV	EN 60950	TBD
Electrical Safety	UL/CSA	CLASS 3862.07 CLASS 3862.87	TBD

Copies of the referenced certificates are available at Finisar Corporation upon request.

1174161 Rev.: A04		Rev.: A04	Page 9 of 23	
Finisar	contained herein, and any other	proprietary and confidential information to Finisar Corp. This document and the entire information y other tangible representation thereof, is not to be copied, reproduced, duplicated, distributed, or part, and/or used without the expressed written consent of Finisar Corp.		
Printed copy may not be the latest revision please refer to Agile for current revision				

VIII. Digital Diagnostics Functions

As defined by the XFP MSA¹, Finisar XFP transceivers provide digital diagnostic functions via a 2-wire serial interface, which allows real-time access to the following operating parameters:

- Transceiver temperature
- Laser bias current
- Transmitted optical power
- Received optical power
- Transceiver supply voltage
- TEC Temperature

It also provides a sophisticated system of alarm and warning flags, which may be used to alert end-users when particular operating parameters are outside of a factory-set normal range.

The operating and diagnostics information is monitored and reported by a Digital Diagnostics Transceiver Controller (DDTC) inside the transceiver, which is accessed through the 2-wire serial interface. When the serial protocol is activated, the serial clock signal (SCL pin) is generated by the host. The positive edge clocks data into the XFP transceiver into those segments of its memory map that are not write-protected. The negative edge clocks data from the XFP transceiver. The serial data signal (SDA pin) is bi-directional for serial data transfer. The host uses SDA in conjunction with SCL to mark the start and end of serial protocol activation. The memories are organized as a series of 8-bit data words that can be addressed individually or sequentially. The 2-wire serial interface provides sequential or random access to the 8 bit parameters, addressed from 000h to the maximum address of the memory.

For more detailed information, including memory map definitions, please see the XFP MSA documentation¹.

Receiver Threshold Adjustment

The FTLX3815M3xx also provide access to receiver decision threshold adjustment via 2wire serial interface, in order to improve receiver OSNR performance based on specific link conditions. It is implemented as follows:

• Rx Threshold of XFP transceivers will be factory-set for optimized performance in non-FEC applications. This will be the default value during both cold start (power-up) and warm start (module reset).

1174161 R		Rev.: A04	Page 10 of 23
Finisar This document contains proprietary and confidential information to Finisar Corp. This document and the entire information contained herein, and any other tangible representation thereof, is not to be copied, reproduced, duplicated, distributed, modified, in whole or in part, and/or used without the expressed written consent of Finisar Corp.			on thereof, is not to be copied, reproduced, duplicated, distributed, or
Printed copy may not be the latest revision please refer to Agile for current revision			

- The transceiver supports adjustment of Rx Threshold value by the host through register 76d, table 01h. This is intended to be used in FEC applications.
- Register 76d, table 01h is a volatile memory. Therefore if the transceiver is power-cycled, the register starts up with a value of 00h which corresponds to the default Rx Threshold value.
- The threshold adjustment input value is 2's complement 7 bit value (-128 to +127). The default Rx threshold value will be approximately 0. Full range of adjustment provides at least a $\pm 10\%$ change in Rx threshold from the default value.

SBS suppression, dither tone

Set Address 111, bit 1 to "0" to enable tone, "1" to disable dither tone (defaults: frequency = 40kHz, tone is disabled). Please contact your Finisar RSM or PLM if specific amplitudes and frequencies are needed for SBS suppression.

8.5Gb/s Fibre-Channel CDR Bypass rate select:

For 8G FC operation, write "1" to Byte 116, bit 1. Every time that the module is power cycled, this will need to be re-written (bit goes back to "0" and CDR is now set for 10Gb/s operation) in order to operate properly at 8G FC.

Contact your Finisar RSM or PLM for details on the CDR Bypass.

Write "1" to Byte 116, bit 1. Every time that the module is power cycled, this will need to be re-written (bit goes back to "0" and CDR is now set for 10Gb/s operation) in order to operate properly at 8G FC.

1174161	1174161 Rev.: A04 Page 11 c				
Finisar	contained herein, and any other tangible representation	t contains proprietary and confidential information to Finisar Corp. This document and the entire informatio in, and any other tangible representation thereof, is not to be copied, reproduced, duplicated, distributed, or hole or in part, and/or used without the expressed written consent of Finisar Corp.			
Printed copy may not be the latest revision please refer to Agile for current revision					

Address	Parameter	Threshold Values	UNITS
02-03	Temp High Alarm	78	С
04-05	Temp Low Alarm	-13	С
06-07	Temp High Warning	73	С
08-09	Temp Low Warning	-8	С
10-17	Reserved		
18-19	Bias High Alarm	120	mA
20-21	Bias Low Alarm	10	mA
22-23	Bias High Warning	100	mA
24-25	Bias Low Warning	15	mA
26-27	TX Power High Alarm	+5	dBm
28-29	TX Power Low Alarm	-3	dBm
30-31	TX Power High Warning	+4	dBm
32-33	TX Power Low Warning	-2	dBm
34-35	RX Power High Alarm	-4	dBm
36-37	RX Power Low Alarm	-31	dBm
38-39	RX Power High Warning	-5	dBm
40-41	RX Power Low Warning	-25	dBm
42-43	AUX 1 High Alarm	57	С
44-45	AUX 1 Low Alarm	20	С
46-47	AUX 1 High Warning	54	С
48-49	AUX 1 Low Warning	25	С
50-51	AUX 2 High Alarm	3.564	V
52-53	AUX 2 Low Alarm	3.036	V
54-55	AUX 2 High Warning	3.465	V
56-57	AUX 2 Low Warning	3.135	V

Alarm and Warning Threshold Values

A/D Table

Address	Parameter	Accuracy	Resolution	Units	Note s
96-97	Internal module Temp	+/-3	+/- 0.1	degC	PCB mounted thermocouple
98-99	Reserved				
100-101	TX bias current	+/-8	+/-2	uA	
102-103	Transmit Power	+/-1.5 dB	0.1	uW	
104-105	Receive Power	+/-1.5 dB	+/-0.1	uW	
106-107	Auxiliary monitor1	+/-3	+/-0.1	degC	Laser Temperature
108-109	Auxiliary monitor2	+/-3	+/-100	uV	3.3V Supply Voltage

1174161		Rev.: A04	Page 12 of 23
Finisar	contained herein, and any other	tangible representation	information to Finisar Corp. This document and the entire information on thereof, is not to be copied, reproduced, duplicated, distributed, or e expressed written consent of Finisar Corp.
	Printed copy may not be the	ne latest revision	please refer to Agile for current revision

EEPROM (Table A0h)

- - - -		Uľ	<u> </u>	· · · · · · · · · · · · · · · · · · ·				
Byte Addr	Hex	LSB	Bit SB Size Name Description		escription	Value	Hex Value	
0	00	0	-		pe of serial transceiver	6	6	
1	01	0	7		, gnal Conditioner Control	0	0	
2	02	0	/		SB at low address	78		
4	04	0	7		SB at low address	-13		
6	06	0	16		SB at low address	73		
8	08	0	16		SB at low address	-8		
10	0A	0	7		SB at low address	0	00 00	
12	0C	0	2		SB at low address	0	00 00	
14	0E	0			SB at low address	0	00 00	
16	10	0	-		SB at low address	0	00 00	
18	12	0	/		SB at low address	120		
20	14	0	7	0	SB at low address	10		
22	16	0	-		SB at low address	110		
24	18	0	/		SB at low address	15		
6	10 1A	0	-		SB at low address	+5		
.0	10	0			SB at low address	-3		
30	1E	0	-		SB at low address	+4		
32	20	0	7		SB at low address	-2		
4	20	0		-	SB at low address	-2 -4		
		-	7					
6	24	0	/		SB at low address	-31		
8	26	0	7	0 0	SB at low address	-5		
0	28	0	-		SB at low address	-25		
2	2A	0	7	0	SB at low address	57		
4	2C	0	7		SB at low address	20		
6	2E	0			SB at low address	54		
8	30	0	7		SB at low address	25		
0	32	0	16	-	SB at low address	3.564		
2	34	0	16		SB at low address	3.036		
4	36	0	16	AUX 2 High Warning MS	SB at low address	3.465		
6	38	0	16	AUX 2 Low Warning MS	SB at low address	3.135		
8	3A	0	16	Optional VPS Control Registers Op	otional VPS Control Registers	0		
60	3C	0	80	RESERVED RE	SERVED	NA	NA	
0	46	0	8		cceptable BER Reported by the FEC to the odule	0	0	
		-	-		tual BER Reported by the FEC to the			
-				Ac				
	·	0	8		. ,	0	0	
	47	0	8	Actual BER Mo	odule	0	0	
'1	47			Actual BER Mo	odule ser input of Wavelength setpoint. (Units of			
1	·	0		Actual BER Mo Us Wavelength Set MSB 0.0	odule ser input of Wavelength setpoint. (Units of D5nm)	0	0	
'1 '2	47 48	0	8	Actual BER Mo Us Wavelength Set MSB 0.C Us	odule ser input of Wavelength setpoint. (Units of D5nm) ser input of Wavelength setpoint. (Units of	0	0	
'1 '2	47		8	Actual BER Mo Us Wavelength Set MSB 0.0 Us Wavelength Set LSB 0.0	odule ser input of Wavelength setpoint. (Units of D5nm) ser input of Wavelength setpoint. (Units of D5nm)			
1 2 3	47 48 49	0	8	Actual BER Mo Us Wavelength Set MSB 0.0 Us Wavelength Set LSB 0.0 Mo	odule ser input of Wavelength setpoint. (Units of D5nm) ser input of Wavelength setpoint. (Units of D5nm) onitor of Current Wavelength Error. (Units	0	0	
1 2 3 4	47 48 49 4A	0 0 0	8 8 8	Actual BER Mo Us Wavelength Set MSB 0.0 Us Wavelength Set LSB 0.0 Wavelength Error MSB of	odule ser input of Wavelength setpoint. (Units of D5nm) ser input of Wavelength setpoint. (Units of D5nm) onitor of Current Wavelength Error. (Units 0.005nm)	0 0 0	0 0 0	
1 2 3 4	47 48 49	0	8 8 8	Actual BER Mo Us Wavelength Set MSB 0.0 Wavelength Set LSB 0.0 Wavelength Error MSB of Wavelength Error MSB sig	odule ser input of Wavelength setpoint. (Units of D5nm) D5nm) onitor of Current Wavelength Error. (Units 0.005nm) gned 2's complement value	0	0	
'1 '2 '3 '4 '5	47 48 49 4A 4B	0 0 0 0	8 8 8 8	Actual BER Mo Us Wavelength Set MSB 0.0 Wavelength Set LSB 0.0 Wavelength Error MSB of Wavelength Error MSB Sig Re	odule ser input of Wavelength setpoint. (Units of D5nm) er input of Wavelength setpoint. (Units of D5nm) onitor of Current Wavelength Error. (Units 0.005nm) gned 2's complement value elative amplitude of receive quantization	0 0 0 0	0 0 0 0	
1 2 3 4 5	47 48 49 4A	0 0 0	8 8 8 8	Actual BER Model Us Us Wavelength Set MSB 0.0 Wavelength Set LSB 0.0 Maxelength Error MSB 0.0 Wavelength Error MSB of Wavelength Error MSB Sig Re Amplitude Adjustment	odule ser input of Wavelength setpoint. (Units of D5nm) er input of Wavelength setpoint. (Units of D5nm) onitor of Current Wavelength Error. (Units 0.005nm) gned 2's complement value elative amplitude of receive quantization reshold	0 0 0	0 0 0	
1 2 3 4 5 6	47 48 49 4A 4B 4C	0 0 0 0	8 8 8 8	Actual BER Model Us Us Wavelength Set MSB 0.0 Wavelength Set LSB 0.0 Wavelength Frror MSB 0.0 Wavelength Error MSB 0.0 Re Amplitude Adjustment	odule ser input of Wavelength setpoint. (Units of D5nm) ser input of Wavelength setpoint. (Units of D5nm) onitor of Current Wavelength Error. (Units 0.005nm) gned 2's complement value elative amplitude of receive quantization reshold nase of receive quantization relative to 0.5	0 0 0 0 0	0 0 0 0	
1 2 3 4 5 6 7	47 48 49 4A 4B 4C 4D	0 0 0 0 0	8 8 8 8 8	Actual BER Model Us Us Wavelength Set MSB 0.0 Wavelength Set LSB 0.0 Wavelength Error MSB 0.0 Phase Adjustment UI	odule ser input of Wavelength setpoint. (Units of 05nm) ser input of Wavelength setpoint. (Units of 05nm) onitor of Current Wavelength Error. (Units 0.005nm) gned 2's complement value lative amplitude of receive quantization reshold nase of receive quantization relative to 0.5	0 0 0 0 0	0 0 0 0 0	
11 22 33 44 55 66 77 88	47 48 49 4A 4B 4C 4D 4E	0 0 0 0 0	8 8 8 8 8 8 16	Actual BER Model Wavelength Set MSB 0.0 Wavelength Set LSB 0.0 Wavelength Set LSB 0.0 Wavelength Error MSB of Wavelength Error MSB Sig Amplitude Adjustment Ph Phase Adjustment UI RESERVED RE	odule ser input of Wavelength setpoint. (Units of D5nm) onitor of Current Wavelength Error. (Units of 0.005nm) gned 2's complement value elative amplitude of receive quantization reshold nase of receive quantization relative to 0.5 ESERVED	0 0 0 0 0 0 NA	0 0 0 0 0 0 0 0 NA	
1 2 3 4 5 6 7 8 0	47 48 49 4A 4B 4C 4D 4E 50	0 0 0 0 0 0 0	8 8 8 8 8 8 16 1	Actual BER Model Wavelength Set MSB 0.0 Wavelength Set LSB 0.0 Wavelength Set LSB 0.0 Wavelength Error MSB 0.0 Wavelength Error MSB of Wavelength Error MSB Sig Amplitude Adjustment Ph Phase Adjustment UI RESERVED RE L-TX Power Low Alarm Lat	odule ser input of Wavelength setpoint. (Units of D5nm) ser input of Wavelength setpoint. (Units of D5nm) onitor of Current Wavelength Error. (Units 0.005nm) gned 2's complement value elative amplitude of receive quantization reshold nase of receive quantization relative to 0.5 SERVED tched low TX Power alarm.	0 0 0 0 0 0 0 NA FALSE	0 0 0 0 0 0 0 NA 0	
11 22 33 44 55 76 77 88 60 60	47 48 49 4A 4B 4C 4D 4E 50 50	0 0 0 0 0 0 0 0 0 1	8 8 8 8 8 16 1 1	Actual BER Md Us Us Wavelength Set MSB 0.0 Wavelength Set LSB 0.0 Wavelength Error MSB 0.1 Wavelength Error MSB of Wavelength Error MSB of Wavelength Error MSB of Phase Adjustment Ph Phase Adjustment UI RESERVED RE L-TX Power Low Alarm Lat	odule ser input of Wavelength setpoint. (Units of 05nm) er input of Wavelength setpoint. (Units of 05nm) onitor of Current Wavelength Error. (Units 0.005nm) gned 2's complement value elative amplitude of receive quantization reshold nase of receive quantization relative to 0.5 ESERVED tched low TX Power alarm. tched high TX Power alarm.	0 0 0 0 0 0 NA FALSE FALSE	0 0 0 0 0 0 NA 0 0	
1 2 3 4 5 6 7 8 0 0 0 0	47 48 49 4A 4B 4C 4D 4E 50 50 50	0 0 0 0 0 0 0 0 1 2	8 8 8 8 8 16 1 1 1	Actual BER Model Us Us Wavelength Set MSB 0.0 Wavelength Set LSB 0.0 Wavelength Error MSB 0.1 Wavelength Error MSB of Wavelength Error MSB of Wavelength Error MSB of Phapel Adjustment Ph Phase Adjustment UI Phase Adjustment UI L TX Power Low Alarm Lat L-TX Power High Alarm Lat	odule ser input of Wavelength setpoint. (Units of D5nm) er input of Wavelength setpoint. (Units of D5nm) onitor of Current Wavelength Error. (Units 0.005nm) gned 2's complement value elative amplitude of receive quantization reshold nase of receive quantization relative to 0.5 SERVED tched low TX Power alarm. tched low TX Power alarm.	0 0 0 0 0 0 NA FALSE FALSE FALSE FALSE	0 0 0 0 0 0 NA 0 0 0	
1 2 3 4 5 6 7 8 0 0 0 0 0 0	47 48 49 4A 4B 4C 4D 4E 50 50 50 50	0 0 0 0 0 0 0 0 1 2 3	8 8 8 8 8 16 1 1 1 1	Actual BER Model Us Us Wavelength Set MSB 0.0 Wavelength Set LSB 0.0 Wavelength Error MSB 0.0 Wavelength Error MSB of Wavelength Error MSB of Wavelength Error MSB Sig Re Amplitude Adjustment Phase Adjustment Ul RESERVED RE L TX Power Low Alarm Lat L TX Bias Low Alarm Lat L-TX Bias High Alarm Lat	odule ser input of Wavelength setpoint. (Units of D5nm) onitor of Wavelength setpoint. (Units of D5nm) onitor of Current Wavelength Error. (Units 0.005nm) gned 2's complement value elative amplitude of receive quantization reshold nase of receive quantization relative to 0.5 ESERVED tched low TX Power alarm. tched high TX Power alarm. tched low TX Bias alarm.	0 0 0 0 0 0 NA FALSE FALSE FALSE FALSE FALSE FALSE	0 0 0 0 0 0 NA 0 0 0 0	
1 2 3 4 5 6 7 8 0 0 0 0 0 0 0 0	47 48 49 44 40 42 40 40 42 50 50 50 50 50	0 0 0 0 0 0 0 0 1 2 3 4	8 8 8 8 8 16 1 1 1 1 1	Actual BER Model Us Us Wavelength Set MSB 0.0 Wavelength Set LSB 0.0 Wavelength Frror MSB 0.0 Wavelength Error MSB 0.0 Wavelength Error MSB 0.0 Wavelength Error MSB 0.0 Wavelength Error MSB 0.0 Phase Adjustment 0.0 Phase Adjustment 0.0 L- TX Power Low Alarm Lat L- TX Bias Low Alarm Lat L- TX Bias Ligh Alarm Lat L- TX Bias Ligh Alarm Lat L- TX Bias Ligh Alarm Lat L- TX Bias Low Alarm Lat	odule ser input of Wavelength setpoint. (Units of D5nm) er input of Wavelength setpoint. (Units of D5nm) onitor of Current Wavelength Error. (Units 0.005nm) gned 2's complement value elative amplitude of receive quantization reshold asse of receive quantization relative to 0.5 ESERVED tched low TX Power alarm. tched ligh TX Power alarm. tched low TX Bias alarm. tched low TX Bias alarm.	0 0 0 0 0 NA FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE	0 0 0 0 0 0 0 0 0 0 0 0 0 0	
1 2 3 4 5 6 7 8 0 0 0 0 0 0 0 0	47 48 49 4A 4B 4C 4D 4E 50 50 50 50	0 0 0 0 0 0 0 0 1 2 3	8 8 8 8 8 16 1 1 1 1 1	Actual BER Max Us Us Wavelength Set MSB 0.0 Wavelength Set LSB 0.0 Wavelength Error MSB 0.0 Wavelength Error MSB of Wavelength Error MSB Sig Amplitude Adjustment Ph Phase Adjustment UI RESERVED RE L- TX Power High Alarm Lat L- TX Bias Low Alarm Lat L- TX Bias High Alarm Lat L- VCC Low Alarm Lat	odule ser input of Wavelength setpoint. (Units of D5nm) onitor of Current Wavelength setpoint. (Units of D5nm) gned 2's complement value lative amplitude of receive quantization reshold asse of receive quantization relative to 0.5 ESERVED tched low TX Power alarm. tched high TX Power alarm. tched low TX Bias alarm. tched low VX Bias alarm. tched high TX Bias alarm. tched high TX Bias alarm. tched high Vcc alarm.	0 0 0 0 0 0 NA FALSE FALSE FALSE FALSE FALSE FALSE	0 0 0 0 0 0 NA 0 0 0 0	
11 22 33 44 55 66 77 88 60 60 60 60 60 60 60 60	47 48 49 44 40 42 40 40 42 50 50 50 50 50	0 0 0 0 0 0 0 0 1 2 3 4	8 8 8 8 8 16 1 1 1 1 1	Actual BER Max Us Us Wavelength Set MSB 0.0 Wavelength Set LSB 0.0 Wavelength Error MSB 0.0 Wavelength Error MSB of Wavelength Error MSB Sig Amplitude Adjustment Ph Phase Adjustment UI RESERVED RE L- TX Power High Alarm Lat L- TX Bias Low Alarm Lat L- TX Bias High Alarm Lat L- VCC Low Alarm Lat	odule ser input of Wavelength setpoint. (Units of D5nm) er input of Wavelength setpoint. (Units of D5nm) onitor of Current Wavelength Error. (Units 0.005nm) gned 2's complement value elative amplitude of receive quantization reshold asse of receive quantization relative to 0.5 ESERVED tched low TX Power alarm. tched ligh TX Power alarm. tched low TX Bias alarm. tched low TX Bias alarm.	0 0 0 0 0 NA FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE	0 0 0 0 0 0 0 0 0 0 0 0 0 0	
11 22 33 44 55 66 77 88 60 60 60 60 60 60 60 60 60 60 60 60 60	47 48 49 44 40 42 40 42 50 50 50 50 50 50	0 0 0 0 0 0 0 0 1 2 3 4 5	8 8 8 8 8 8 16 1 1 1 1 1 1 1	Actual BER Model Wavelength Set MSB 0.0 Wavelength Set LSB 0.0 Wavelength Set LSB 0.0 Wavelength Error MSB 0.0 Wavelength Error MSB of Wavelength Error MSB Sig Amplitude Adjustment Ph Phase Adjustment UI RESERVED RE L- TX Power High Alarm Lat L- TX Bias Low Alarm Lat L- YCS Bias High Alarm Lat L Vcc High Alarm Lat L TX Power Low Alarm Lat	odule ser input of Wavelength setpoint. (Units of D5nm) onitor of Current Wavelength setpoint. (Units of D5nm) gned 2's complement value lative amplitude of receive quantization reshold asse of receive quantization relative to 0.5 ESERVED tched low TX Power alarm. tched high TX Power alarm. tched low TX Bias alarm. tched low VX Bias alarm. tched high TX Bias alarm. tched high TX Bias alarm. tched high Vcc alarm.	0 0 0 0 0 0 NA FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
1 2 3 4 5 6 7 8 00	47 48 49 4A 4B 4C 4D 4E 50 50 50 50 50 50 50	0 0 0 0 0 0 0 0 1 2 3 4 5 6	8 8 8 8 8 16 1 1 1 1 1 1 1 1 1 1	Actual BER Model Us Us Wavelength Set MSB 0.0 Wavelength Set LSB 0.0 Wavelength Fror MSB 0.0 Wavelength Error MSB of Wavelength Error MSB of Wavelength Error MSB sig Amplitude Adjustment Ph Phase Adjustment UI RESERVED RE L- TX Power Low Alarm Lat L- TX Bias Low Alarm Lat L- TX Bias Low Alarm Lat L- Vcc Low Alarm Lat L- Vcc High Alarm Lat L- Temp Low Alarm Lat L- Temp High Alarm Lat	odule ser input of Wavelength setpoint. (Units of D5nm) ser input of Wavelength setpoint. (Units of D5nm) onitor of Current Wavelength Error. (Units 0.005nm) gned 2's complement value elative amplitude of receive quantization reshold nase of receive quantization relative to 0.5 SERVED tched low TX Power alarm. tched high TX Power alarm. tched high TX Bas alarm. tched high TX Bias alarm. tched high TX Bias alarm. tched high Vcc alarm. tched high Vcc alarm.	0 0 0 0 0 0 0 NA FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
1 2 3 4 4 5 5 6 7 7 8 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	47 48 49 4A 4B 4C 4D 4E 50 50 50 50 50 50 50 50 50	0 0 0 0 0 0 0 0 1 2 3 4 5 6 7	8 8 8 8 8 16 1 1 1 1 1 1 1 1 1 1 1	Actual BER Model Us Us Wavelength Set MSB 0.0 Wavelength Set LSB 0.0 Wavelength Error MSB 0.0 Wavelength Error MSB of Wavelength Error MSB of Wavelength Error MSB of Phapelitude Adjustment Ph Phase Adjustment UI RESERVED RE L- TX Power Low Alarm Lat L- TX Bias High Alarm Lat L- Vcc Low Alarm Lat L- Vcc High Alarm Lat L- Temp High Alarm Lat L- Temp High Alarm Lat RESERVED RE	odule ser input of Wavelength setpoint. (Units of D5nm) ser input of Wavelength setpoint. (Units of D5nm) onitor of Current Wavelength Error. (Units 0.005nm) gned 2's complement value elative amplitude of receive quantization reshold nase of receive quantization relative to 0.5 SERVED tched low TX Power alarm. tched high TX Power alarm. tched low TX Bias alarm. tched low TX Bias alarm. tched low TX Bias alarm. tched low TX Bias alarm. tched high TX Bias alarm. tched high YC alarm. tched high VC alarm. tched low Temperature alarm.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
1 2 3 4 4 5 5 6 7 8 6 7 8 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	47 48 49 4A 4B 4C 4D 4E 50 50 50 50 50 50 50 50 50 50 50 50 50	0 0 0 0 0 0 0 1 2 3 4 5 6 7 0	8 8 8 8 8 16 1 1 1 1 1 1 1 1 1 1 1	Actual BER Model Us Us Wavelength Set MSB 0.0 Wavelength Set LSB 0.0 Wavelength Error MSB 0.0 Wavelength Error MSB of Wavelength Error MSB of Wavelength Error MSB of Phape Adjustment th Phase Adjustment UI Phase Adjustment UI L TX Power Low Alarm Lat L TX Power High Alarm Lat L TX Bias High Alarm Lat L TX Bias High Alarm Lat L Temp Low Alarm Lat L Temp High Alarm Lat L Temp High Alarm Lat L Temp High Alarm Lat RESERVED RE RESERVED RE	odule ser input of Wavelength setpoint. (Units of D5nm) ser input of Wavelength setpoint. (Units of D5nm) onitor of Current Wavelength Error. (Units 0.005nm) gned 2's complement value elative amplitude of receive quantization reshold aase of receive quantization relative to 0.5 SERVED tched low TX Power alarm. tched high TX Power alarm. tched high TX Power alarm. tched high TX Bias alarm. tched high TX Bias alarm. tched low Vcc alarm. tched low Vcc alarm. tched low Tcc alarm. tched low Tcc alarm. tched high TX Bias alarm.	0 0 0 0 0 0 0 NA FALSE	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
1 2 3 4 5 6 7 7 8 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	47 48 49 4A 4B 4C 4D 4E 50 50 50 50 50 50 50 50 50 50 50 50 50	0 0 0 0 0 0 0 0 1 2 3 4 5 6 7 0 1	8 8 8 8 16 1 1 1 1 1 1 1 1 1 1 1 1 1	Actual BER Model Us Us Wavelength Set MSB 0.0 Wavelength Set LSB 0.0 Wavelength Error MSB 0.0 Wavelength Error MSB of Wavelength Error MSB of Wavelength Error MSB Sig Re Amplitude Adjustment Phase Adjustment Ul L TX Power Low Alarm Lat L TX Power High Alarm Lat L- TX Bias Low Alarm Lat L- TX Bias High Alarm Lat L TX Clow Alarm Lat L Temp Low Alarm Lat L Temp High Alarm Lat L Temp High Alarm Lat L Temp Kugh Alarm Lat L AUX 2 Low Alarm Lat	odule ser input of Wavelength setpoint. (Units of D5nm) onitor of Wavelength setpoint. (Units of D5nm) onitor of Current Wavelength Error. (Units 0.005nm) gned 2's complement value elative amplitude of receive quantization reshold nase of receive quantization relative to 0.5 SERVED tched low TX Power alarm. tched high TX Power alarm. tched low TX Bias alarm. tched low TC alarm. tched high TC calarm. tched high Temperature alarm SERVED SERVED SERVED tched low AUX2 monitor alarm.	0 0 0 0 0 0 NA FALSE	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
1 2 3 3 4 5 5 6 7 7 8 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	47 48 49 4A 4B 4C 4D 4E 50 50 50 50 50 50 51 51 51	0 0 0 0 0 0 0 0 0 1 2 3 4 5 6 7 0 1 2	8 8 8 8 8 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Actual BER Model Us Us Wavelength Set MSB 0.0 Wavelength Set LSB 0.0 Wavelength Fror MSB 0.0 Wavelength Error MSB of Wavelength Error MSB Sig Amplitude Adjustment Ph Phase Adjustment UI RESERVED RE L- TX Power High Alarm Lat L- TX Bias High Alarm Lat L- TX Bias High Alarm Lat L- TX Bias High Alarm Lat L- TR Duow Alarm Lat L- TRE Duo Alarm Lat L- Temp Low Alarm Lat L- Temp Kigh Alarm Lat L- AUX 2 Low Alarm Lat	odule ser input of Wavelength setpoint. (Units of D5nm) onitor of Current Wavelength setpoint. (Units of D5nm) onitor of Current Wavelength Error. (Units 0.005nm) gned 2's complement value lative amplitude of receive quantization reshold iase of receive quantization relative to 0.5 SERVED tched low TX Power alarm. tched high TX Power alarm. tched high TX Power alarm. tched high TX Bias alarm. tched high TX Bias alarm. tched high TX Bias alarm. tched high Tx Bias alarm. tched high Tc calarm. tched high Temperature alarm SERVED SERVED tched low AUX2 monitor alarm. tched high AUX2 monitor alarm.	0 0 0 0 0 0 0 NA FALSE	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
1 2 3 3 4 5 5 6 7 7 8 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	47 48 49 4A 4B 4C 4D 4E 50 50 50 50 50 50 51 51 51 51	0 0 0 0 0 0 0 0 0 0 1 2 3 4 5 6 7 0 1 2 3 4	8 8 8 8 8 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Actual BER Md Us Us Wavelength Set MSB 0.0 Wavelength Set LSB 0.0 Wavelength Fror MSB 0.0 Wavelength Error MSB of Wavelength Error MSB Sig Amplitude Adjustment Ph Phase Adjustment UI RESERVED RE L- TX Power High Alarm Lat L- TX Bias Low Alarm Lat L- Yoc Warm Lat L- Vcc High Alarm Lat L- Temp High Alarm Lat L- AUX 2 Low Alarm Lat L- AUX 2 Low Alarm Lat L- AUX 1 Low Alarm Lat	odule ser input of Wavelength setpoint. (Units of D5nm) onitor of Wavelength setpoint. (Units of D5nm) onitor of Current Wavelength Error. (Units 0.005nm) gned 2's complement value elative amplitude of receive quantization reshold asse of receive quantization relative to 0.5 SERVED tched low TX Power alarm. tched high TX Power alarm. tched high TX Bias alarm. tched low VIX Bias alarm. tched low VIX Bias alarm. tched low VC alarm. tched low VC alarm. tched high TX Bias alarm. tched high AUX2 monitor alarm. tched high AUX2 monitor alarm.	0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
1 12 13 14 15 16 17 18 10 10 11 11 11 11 11 11 11 11 11 11 11 11 11 11	47 48 49 4A 4B 4C 4D 4E 50 50 50 50 50 51 51 51 51	0 0 0 0 0 0 0 0 0 1 2 3 4 5 6 7 0 1 2 3	8 8 8 8 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Actual BER Model Us Us Wavelength Set MSB 0.0 Wavelength Set LSB 0.0 Wavelength Fror MSB 0.0 Wavelength Error MSB of Wavelength Error MSB of Wavelength Error MSB Sig Amplitude Adjustment Ph Phase Adjustment UI RESERVED RE L- TX Power High Alarm Lat L- TX Bias Low Alarm Lat L- Vcc Low Alarm Lat L- Vcc Low Alarm Lat L- Vcc High Alarm Lat L- Temp High Alarm Lat L- Temp High Alarm Lat L- Temp High Alarm Lat L- AUX 2 Low Alarm Lat L - AUX 2 Ligh Alarm Lat L - AUX 2 Ligh Alarm Lat L - AUX 1 Ligh Alarm Lat	odule ser input of Wavelength setpoint. (Units of D5nm) onitor of Current Wavelength setpoint. (Units of D5nm) onitor of Current Wavelength Error. (Units 0.005nm) gned 2's complement value lative amplitude of receive quantization reshold iase of receive quantization relative to 0.5 SERVED tched low TX Power alarm. tched high TX Power alarm. tched high TX Power alarm. tched high TX Bias alarm. tched high TX Bias alarm. tched high TX Bias alarm. tched high Tx Bias alarm. tched high Tc calarm. tched high Temperature alarm SERVED SERVED tched low AUX2 monitor alarm. tched high AUX2 monitor alarm.	0 0 0 0 0 0 0 NA FALSE	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	

1174161

Rev.: A04

Page 13 of 23

Finisar

This document contains proprietary and confidential information to Finisar Corp. This document and the entire information contained herein, and any other tangible representation thereof, is not to be copied, reproduced, duplicated, distributed, or modified, in whole or in part, and/or used without the expressed written consent of Finisar Corp.

EEPROM (Table A0h) continued

82	52	0	1	L- TX Power Low Warning	Latched low TX Power warning.	FALSE	0
82	52	1		L- TX Power High Warning	Latched high TX Power warning.	FALSE	0
82	52	2	1	L- TX Bias Low Warning	Latched low TX Bias warning.	FALSE	0
82	52	3	1	L- TX Bias High Warning	Latched high TX Bias warning.	FALSE	0
32	52	4	1	L- Vcc Low Warning	Latched low Vcc warning.	FALSE	0
32	52	5	1	L- Vcc High Warning	Latched high Vcc warning.	FALSE	0
32	52	6	1	L- Temp Low Warning	Latched low Temperature warning.	FALSE	0
32	52	7	1	L- Temp High Warning	Latched high Temperature warning.	FALSE	0
33	53	0		RESERVED	RESERVED	NA	NA
33	53	1		RESERVED	RESERVED	NA	NA
33	53	2		L- AUX 3 Low Warning	Latched low AUX2 monitor warning.	FALSE	0
33	53	3		L- AUX 2 High Warning	Latched high AUX2 monitor warning.	FALSE	0
33	53	4		L- AUX 1 Low Warning	Latched low AUX1 monitor warning.	FALSE	0
33	53	5		L- AUX 1 High Warning	Latched high AUX1 monitor warning.	FALSE	0
33	53	6		L- RX Power Low Warning	Latched low RX Power warning.	FALSE	0
33	53	7		L- RX Power High Warning	Latched high RX Power warning.	FALSE	0
34	54	0	_	L- Reset Complete	Latched Reset Complete Flag	FALSE	0
34 34	54 54	2	1	L- MOD_NR L- RX CDR not Locked	Latched Mirror of MOD_NR pin Latched RX CDR Loss of Lock	FALSE	0
94	54	2	1		Latched mirror of LOS pin (RX optical loss of	FALJE	0
34	54	3	1	1.105		FALSE	0
54 34	54 54	3		L- LOS L- RX NR	signal) Latched RX_NR Status	FALSE	0
34 34	54 54	4		L- TX CDR not Locked	Latched TX CDR Loss of Lock	FALSE	0
/*†	4ر	J	1	E IN CONTICUCICED	Latched TA CDR Loss of Lock	IADE	0
4	54	6	1	L- TX Fault	laser safety system.	FALSE	0
34 34	54	7	_	L- TX_NR	Latched TX_NR Status.	FALSE	0
15	55	0	_	RESERVED	RESERVED	NA	NA
35	55	5	-	L- Wavelength Unlocked	Latched Wavelength Unlocked Condition	FALSE	0
35	55	6	_	L- TEC Fault	Latched TEC Fault	FALSE	0
35	55	7		L- APD Supply Fault	Latched APD Supply Fault	FALSE	0
36	56	0		RESERVED	RESERVED	NA	NA
38	58	0	1	M- TX Power Low Alarm	Masking bit for low TX Power alarm.	FALSE	0
38	58	1		M- TX Power High Alarm	Masking bit for high TX Power alarm.	FALSE	0
38	58	2	1	M- TX Bias Low Alarm	Masking bit for low TX Bias alarm.	FALSE	0
38	58	3		M- TX Bias High Alarm	Masking bit for high TX Bias alarm.	FALSE	0
38	58	4	1	M- Vcc Low Alarm	Masking bit for low Vcc alarm.	FALSE	0
88	58	5	1	M- Vcc High Alarm	Masking bit for high Vcc alarm.	FALSE	0
38	58	6	1	M- Temp Low Alarm	Masking bit for low Temperature alarm.	FALSE	0
8	58	7	1	M- Temp High Alarm	Masking bit for high Temperature alarm.	FALSE	0
39	59	0	1	RESERVED	RESERVED	NA	NA
39	59	1	1	RESERVED	RESERVED	NA	NA
9	59	2	1	M- AUX 2 Low Alarm	Masking bit for low AUX2 monitor alarm.	FALSE	0
39	59	3	1	M- AUX 2 High Alarm	Masking bit for high AUX2 monitor alarm.	FALSE	0
9	59	4	1	M- AUX 1 Low Alarm	Masking bit for low AUX1 monitor alarm.	FALSE	0
39	59	5		M- AUX 1 High Alarm	Masking bit for high AUX1 monitor alarm.	FALSE	0
39	59	6	1	M- RX Power Low Alarm	Masking bit for low RX Power alarm.	FALSE	0
39	59	7	1	M- RX Power High Alarm	Masking bit for high RX Power alarm.	FALSE	0
90	5A	0	/	M- TX Power Low Warning	Masking bit for low TX Power warning.	FALSE	0
0	5A	1	/	M- TX Power High Warning	Masking bit for high TX Power warning.	FALSE	0
90	5A	2	/	M- TX Bias Low Warning	Masking bit for low TX Bias warning.	FALSE	0
90	5A	3	7	M- TX Bias High Warning	Masking bit for high TX Bias warning.	FALSE	0
90	5A	4	7	M- Vcc Low Warning	Masking bit for low Vcc warning.	FALSE	0
0	5A	5	/	M- Vcc High Warning	Masking bit for high Vcc warning.	FALSE	0
0	5A	6	/	M- Temp Low Warning	Masking bit for low Temperature warning.	FALSE	0
0	5A	7		M- Temp High Warning	Masking bit for high Temperature warning.	FALSE	0
)1	5B	0		RESERVED	RESERVED	NA	NA
1	5B	1		RESERVED	RESERVED	NA	NA
1	5B	2		M- AUX 2 Low Warning	Masking bit for low AUX2 monitor warning.	FALSE	0
1	5B	3		M- AUX 2 High Warning	Masking bit for high AUX2 monitor warning. Masking bit for low AUX1 monitor warning.	FALSE	0
1 1	5B 5B	4 5		M- AUX 1 Low Warning M- AUX 1 High Warning		FALSE	0
1	5B	5	7	M- RX Power Low Warning	Masking bit for high AUX1 monitor warning. Masking bit for low RX Power warning.	FALSE	0
1	5B	7	7	M- RX Power Low Warning M- RX Power High Warning	Masking bit for high RX Power warning.	FALSE	0
12	5B	0		M- Reset Complete	Masking bit for Reset Complete Flag	FALSE	0
92 92	SC 5C	1		M- MOD NR	Masking bit for Mirror of MOD-NR pin	FALSE	0
92 92	5C	2		M- RX CDR not Locked	Masking bit for RX CDR Loss of Lock	FALSE	0
12	50	~	1	IN IN CONTOL LOCKED	Masking bit for mirror of LOS pin (RX optical	IADE	
92	5C	3	1	M- LOS	loss of signal)	FALSE	0
92 92	5C	4	-	M- RX_NR	Masking bit for RX_NR Status	FALSE	0
92 92	5C	4	-	M- TX CDR not Locked	Masking bit for TX CDR Loss of Lock	FALSE	0
·2	JC	5	1		Masking bit for Laser Fault condition.	IADE	
	5C	6	1	M- TX Fault	Generated by laser safety system.	FALSE	0
2			1	in in_rault	Scherateu by laser safety system.	IALJE	

1174161

Rev.: A04

Page 14 of 23

Finisar

This document contains proprietary and confidential information to Finisar Corp. This document and the entire information contained herein, and any other tangible representation thereof, is not to be copied, reproduced, duplicated, distributed, or modified, in whole or in part, and/or used without the expressed written consent of Finisar Corp.

Finisar

EEPROM (Table A0h) continued

93	5D	0	5	RESERVED	RESERVED	NA	NA
					Masking bit for Wavelength Unlocked		
93	5D	5	1	M- Wavelength Unlocked	Condition	FALSE	0
93	5D	6	1	M- TEC Fault	Masking bit for TEC Fault	FALSE	0
93	5D	7	1	M- APD Supply Fault	Masking bit for APD Supply Fault	FALSE	0
94	5E	0		RESERVED	RESERVED	NA	NA
96	60	0	8	Temperature MSB	Internally measured module temperature	0	0
)7	61	0	8	Temperature LSB	Internally measured module temperature	0	0
,,	01	0	0		Internally measured supply voltage in	0	0
98	62	0	8	Vcc MSB	transceiver	0	0
70	02	0	0			0	0
	60		~		Internally measured supply voltage in		
99	63	0	8	Vcc LSB	transceiver	0	0
00	64	0		TX Bias MSB	Internally measured TX Bias Current	0	0
01	65	0	8	TX Bias LSB	Internally measured TX Bias Current	0	0
02	66	0	8	TX Power MSB	Measured TX output power	0	0
03	67	0	8	TX Power LSB	Measured TX output power	0	0
04	68	0	8	RX Power MSB	Measured RX output power	0	0
05	69	0	8	RX Power LSB	Measured RX output power	0	0
					Auxiliary measurement 1 defined in Byte 222		
06	6A	0	8	AUX 1 MSB	Page 01h	0	0
					Auxiliary measurement 1 defined in Byte 222		
07	6B	0	8	AUX 1 LSB	Page 01h	0	0
	-		-		Auxiliary measurement 2 defined in Byte 222		
08	6C	0	8	AUX 2 MSB	Page 01h	0	0
	50				Auxiliary measurement 2 defined in Byte 222		0
.09	6D	0	8	AUX 2 LSB	Page 01h	0	0
.05	00	0	0	A0X 2 13B	Indicates transceiver has achieved power up	0	0
					and data is ready. Bit remains high until data		
					is ready to be read at which time the device		-
.10	6E	0	1	Data_Not_Ready	sets the bit low.	0	0
					Indicates Optical Loss of Signal (per relevant		
					optical link standard). Updated within		
.10	6E	1	1	LOS	100msec of change on pin	FALSE	0
10	6E	2	1	Interrupt	Digital state of the Interrupt output pin	FALSE	0
					Read/write bit that allows the module to be		
					placed in the power down mode. This is		
					identical to the P_Down hardware pin		
					function except that it does not initiate a		
.10	6E	3	1	Soft P Down	system reset	FALSE	0
	02	<u> </u>	-		Digital state of the P_Down Pin. Updated	THESE	
L10	6E	4	1	P Down State	within 100msec of change on pin	FALSE	0
110	UE	4	1	F_DOWITState	Digital state of the MOD_NR Pin. Updated	FALSE	0
10	6E	5	1	MOD NB State		FALSE	0
110	UE	5	1	MOD_NR State	within 100msec of change on pin	FALSE	0
					Read/write bit that allows software disable		
					of laser. Writing '1' disables laser. Turn on/off		
					time is 100msec max from acknowledgement		
					of serial byte transmission. This bit is "OR"d		
					with the hard TX_DISABLE pin value. Note,		
					per SFP MSA TX DISABLE pin is default		
					enabled unless pulled low by hardware. If		
					Soft TX Disable is not implemented, the		
					transceiver ignores the value of this bit.		
10	6F	F	1	Soft TX Disable	Ū	0	0
10	6E	6	-	Soft TX Disable	Default power up value is 0.	0	0
10	~~	-		TV Disable Chats	Digital state of the TX Disable Input Pin.	FALSE	~
10	6E	7	_	TX Disable State	Updated within 100msec of change on pin	FALSE	0
11	6F	0		RESERVED	RESERVED		,
11	6F	3	1	RX_CDR not Locked	Identifies Loss of Lock in RX path CDR	FALSE	0
			I		Identifies Not Ready condition as specific to		
11	6F	4	1	RX_NR State	the TX path	FALSE	0
11	6F	5	1	TX_CDR not Locked	Identifies Loss of Lock in TX path CDR	FALSE	0
			ſ		Identifies Laser fault conditoin (Generated		
11	6F	6	1	TX_Fault State	by laser safety system)	FALSE	0
			1		Identifies Not Ready condition as specific to		
.11	6F	7	1	TX NR State	the TX path	FALSE	0
12	70	0	48	RESERVED	RESERVED	NA	NA
12	10	0	40				INA
	70	0		From Chaptering	Free Charling	Packet error checking not	~
40	76	0	1	Error Checking	Error Checking	supported	0
		1	7	RESERVED	RESERVED	NA	NA
18	76	/		New Password Entry	Location of Entry of New Optional Password	0	00 00 00 00
18	76 77	0	32	New Password Entry		0	
.18 .18 .19 .23	·	0 0		Password Entry	Location for Entry of Optional Password	0	00 00 00 00

1174161

Rev.: A04

Page 15 of 23

Finisar

• This document contains proprietary and confidential information to Finisar Corp. This document and the entire information contained herein, and any other tangible representation thereof, is not to be copied, reproduced, duplicated, distributed, or modified, in whole or in part, and/or used without the expressed written consent of Finisar Corp.

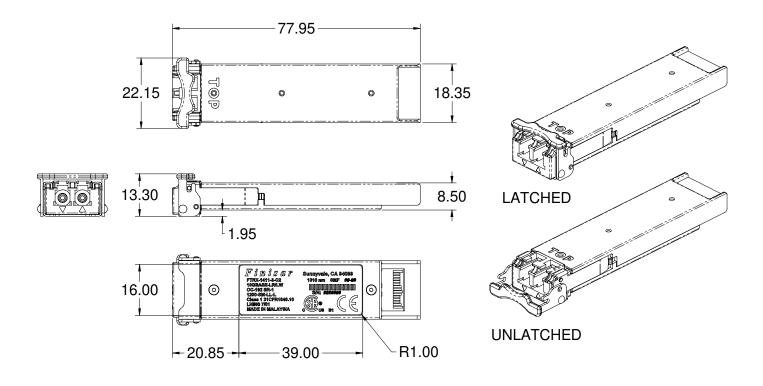
EEPROM (Table 01h)

Byte Addr	Hex	LSB	Bit Size	Name	Description	Value	Hex Value
128	80	0		Identifier	Type of serial transceiver	XFP	6
129	81	0	3	RESERVED	RESERVED	NA	NA
						No CLEI code present in	-
129 129	81 81	3		CLEI code present in Table 02h TX Ref Clock Input Required	CLEI code present in Table 02h TX Ref Clock Input Required	Table 02h Not Required	0
129	81	4		Module with CDR	Module with CDR	with CDR	0
129	81	6		Ext.Identifier	Defines Module Power Class	Power level 3 (< 3.5W)	2
130	82	0	8	Connector	Code for connector type	LC	7
131	83	0	1	RESERVED	RESERVED	NA	NA
131	83	1	1	10GBASE-EW	10GBASE-EW	FALSE	0
131	83	2	1	10GBASE-LW	10GBASE-LW	FALSE	0
131	83	3	1	10GBASE-SW	10GBASE-SW 10GBASE-LRM	FALSE	0
131 131	83 83	4 5	1	10GBASE-LRM 10GBASE-ER	10GBASE-ER 10GBASE-ER	FALSE FALSE	0
131	83	6	1	10GBASE-LR	10GBASE-LR	FALSE	0
	83	7		10GBASE-SR	10GBASE-SR	FALSE	0
132	84	0	4	RESERVED	RESERVED	NA	NA
132	84	4	1	Intermediate Reach 1300 nm FP	Intermediate Reach 1300 nm FP	FALSE	0
132	84	5		Extented Reach 1550 nm	Extented Reach 1550 nm	FALSE	0
132	84	6	1	1200-SM-LL-L	1200-SM-LL-L	FALSE	0
132	84	7	1	1200-MX-SN-I	1200-MX-SN-I	FALSE	0
133	85	0	8	RESERVED	RESERVED	NA NA	NA NA
134 134	86 86	0	1	RESERVED OC-48-LR	RESERVED Lower speed link compliance code	FALSE	0 NA
134	86	2		OC-48-IR OC-48-IR	Lower speed link compliance code	FALSE	0
134	86	3	_	OC-48-SR	Lower speed link compliance code	FALSE	0
134	86	4	1	2xFC SMF	Lower speed link compliance code	FALSE	0
134	86	5	1	2xFC MMF	Lower speed link compliance code	FALSE	0
134	86	6	1	1000BASE-LX/1xFC SMF	Lower speed link compliance code	FALSE	0
134	86	7	1	1000BASE-SX/1xFC MMF	Lower speed link compliance code	FALSE	0
135	87	0		RESERVED	RESERVED	NA	NA
135 135	87 87	2	1	I-64.5 I-64.3	Sonet codes	FALSE FALSE	0
135	87	3	1	1-64.2	Sonet codes Sonet codes	FALSE	0
135	87	5	1	I-64.2r	Sonet codes	FALSE	0
135	87	6	1	1-64.1	Sonet codes	FALSE	0
135	87	7	1	I-64.1r	Sonet codes	FALSE	0
136	88	0	1	RESERVED	RESERVED	NA	NA
136	88	1	1	S-64.5b	Sonet Short Haul Link codes	FALSE	0
136	88	2	1	S-64.5a	Sonet Short Haul Link codes	FALSE	0
136	88	3	1	S-64.3b	Sonet Short Haul Link codes	FALSE	0
136 136	88 88	4 5	1	S-64.3a S-64.2c	Sonet Short Haul Link codes Sonet Short Haul Link codes	FALSE FALSE	0
136	88	6	1	S-64.2a	Sonet Short Haul Link codes	FALSE	0
136	88	7	1	S-64.1	Sonet Short Haul Link codes	FALSE	0
137	89	0	1	RESERVED	RESERVED	NA	NA
137	89	1	1	DWDM	DWDM	FALSE	0
137	89	2	1	G.959.1 P1L1-2D2	Sonet Long Haul Link codes	TRUE	1
137	89	3	1	L-64.3	Sonet Long Haul Link codes	FALSE	0
137	89	4	1	L-64.2c	Sonet Long Haul Link codes	FALSE	0
137 137	89 89	5 6	1	L-64.2b L-64.2a	Sonet Long Haul Link codes Sonet Long Haul Link codes	FALSE FALSE	0
137	89 89	7	1	L-64.1	Sonet Long Haul Link codes	FALSE	0
138			-	RESERVED	RESERVED	NA	NA
	8A	5		V-64.3	Sonet Very Long Haul Link codes	FALSE	0
	8A	6	-	V-64.2b	Sonet Very Long Haul Link codes	FALSE	0
138	8A	7			Sonet Very Long Haul Link codes	FALSE	0
	8B	0		RESERVED	RESERVED	NA	NA
	8B	2	1	Tx Dither Supported	5 1 5	TRUE	1
139	8B	3	1	RZ	Encoding Support	FALSE	0
139	8B 8B	4 5	1	NRZ Sonet Scrambled	Encoding Support Encoding Support	TRUE	1
120	8B	6	1	8B/10B	Encoding Support	TRUE	1
		7	1	64B/66B	Encoding Support	TRUE	1
139	8B			BR, minimum	Minimum Supported Bitrate (/100Mb)	99	63
139	8B 8C	0			MaximumSupported Bitrate (/100Mb)	113	71
139 139		0	8	BR, maximum			
139 139 140	8C 8D	0					r
139 139 140	8C			BR, maximum Length(SMF)-km	LENGTH (STANDARD SINGLE MODE FIBER)-KM	л 80	50
139 139 140 141 142	8C 8D 8E	0	8	Length(SMF)-km	LENGTH (STANDARD SINGLE MODE FIBER)-KN LENGTH (EXTENDED BANDWIDTH 50 um		
139 139 140 141 142	8C 8D	0	8		LENGTH (STANDARD SINGLE MODE FIBER)-KM	л <u>80</u> 0	50 0

Finis a This document contains proprietary and confidential information to Finisar Corp. This document and the entire information contained herein, and any other tangible representation thereof, is not to be copied, reproduced, duplicated, distributed, or modified, in whole or in part, and/or used without the expressed written consent of Finisar Corp.

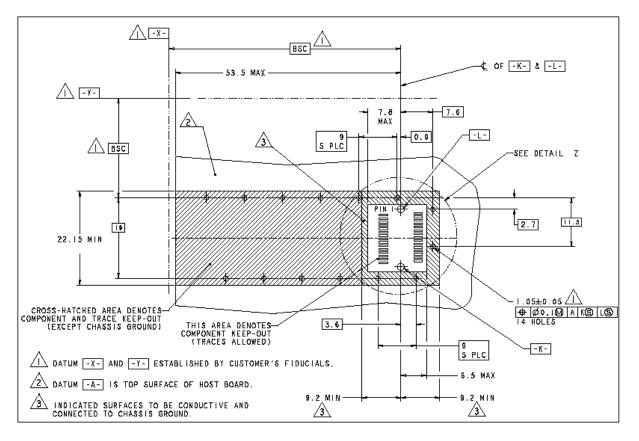
EEPROM (Table 01h) continued

144	90	0	8	Length(50)-meter	LENGTH (50 UM MULTIMODE FIBER) (/1meter)	0	0
					LENGTH (62.5 UM MULTIMODE		
145	91	0	8	Length(62.5)-meter	FIBER)(/1meter)	0	0
146	92	0	8	Length(Copper)-km	LENGTH (COPPER) (/1meter)	0	0
147	93	0	1	Tunable Transmitter	Device Technology	FALSE	0
147	93	1	1	Detector Type	Device Technology	APD	1
147	93	2	1	Cooled Transmitter	Device Technology	TRUE	1
147	93	3	1	Wavelength Control	Device Technology	FALSE	0
147	93	4	4	Transmitter Technology	Device Technology	1550 nm EML	7
							46 69 6E 69 73 6 72 20 20 20 20 2
148	94	0	128	Vendor Name	Vendor Name (ascii)	Finisar	20 20 20 20
164	A4	0	1	XFI Loopback Supported	CDR support	TRUE	1
164	A4	1	1	Lineside Loopback Mode Supported	CDR support	FALSE	0
164	A4	2	1	RESERVED	RESERVED	NA	NA
164	A4	3	1	CDR support for 11.1 Gb/s	CDR support	TRUE	1
164	A4	4	1	CDR support for 10.7 Gb/s	CDR support	TRUE	1
164	A4	5	1	CDR support for 10.5 Gb/s	CDR support	TRUE	1
164	A4	6	1	CDR support for 10.3 Gb/s	CDR support	TRUE	1
164	A4	7	1	CDR support for 9.95 Gb/s	CDR support	TRUE	1
165	A5	0	24	Vendor OUI	SFP vendor IEEE company ID	00 90 65h (36965 Decimal)	00 90 65
168	A8	0	128	Vendor PN	Part number provided by vendor (ASCII)	FTLX3815M3xx	Variable
184	B8	0		Vendor Rev	Revision level for part number provided by vendor (ASCII)	0	Variable
					Nominal laser wavelength		
186	BA	0	16	Wavelength	(Wavelength=value/20 in nm)	Variable	Variable
					Guaranteed range of laser wavelength (+/-		
					value) from Nominal wavelength.		
188	BC	0	16	Wavelength Tolerance	(Wavelength Tol. = value/200 in nm)	04	00 04
190	BE	0	8	Max Case Temp	MAXIMUM CASE TEMPERATURE	70	46
191	BF	0	8	CC_BASE	Checksum (128 to 190)		Variable
		, r	~		Maximum Power Dissipation, Max power is 8		
192	CO	0	8	Maximum Power	bit value * 20 mW.	175	AF
	00	Č	, č	maximum rower	Maximum Total Power Dissipation in Power	275	,
					Down Mode, Max Power is 8 bit value * 10		
193	C1	0	8	Max Power in Power Down Mode	mW.	100	64
192	C1	0	°	Max Power in Power Down Mode		100	04
104	~	0	4	Man Current (2.2)	Maximum current required by +3.3V Supply.	0	0
194	C2	0	4	Max Current +3.3v	Max current is 4 bit value * 100 mA.	8	8
					Maximum current required by +5V		
					Supply.Max current is 4 bit value * 50 mA.		
194	C2	4	4	Max Current +5v	[500 mA max]	9	9
					Maximum current required by -5.2V		
					Supply.Max current is 4 bit value * 50 mA.		
195	C3	0	4	Max Current -5v	[500 mA max]	0	0
					Maximum current required by +1.8V Supply.		ĺ
195	C3	4	4	Max Current +1.8v	Max current is 4 bit value * 100 mA.	0	0
196	C4	0	128	Vendor SN	Serial number provided by vendor (ASCII)	Variable	Variable
					Two low order digits of year (00 = 2000) -		
212	D4	0	16	Date Code - Year	ASCII code	Variable	Variable
					Digits of month (01=JAN ~ 12=DEC) - ASCII		
214	D6	0	16	Date Code - Month	code	Variable	Variable
216	D8	0	16	Date Code - Day	Digits of day (01-31) - ASCII code	Variable	Variable
					Vendor specific lot code, may be left blank -		
218	DA	0	16	Date Code - Vendor specific lot code	ASCII code	0	0
220	DC	0		RESERVED	RESERVED	NA	NA
20	DC	3	1	Received power meas. Type	Special functions	Average power	1
20	DC	4		FEC BER support	Special functions	FALSE	0
20	DC	5		AUX3 (Finisar)	Aux3 minitor (1612 only)	RESERVED	0
220	DD	0	3	Optional CMU support mode	Enhanced Options	FALSE	0
21	DD	1	1			FALSE	0
			1	Wavelength Tunability implemented Active FEC control function umplemented	Enhanced Options		0
21	DD	2	_		Enhanced Options	TRUE	
221	DD	3	7	Support VPS bypass regulator mode	Enhanced Options	FALSE	0
221	DD	4	1	Suport VPS LV regulator mode	Enhanced Options	FALSE	0
221	DD	5	1	Soft P_Down	Enhanced Options	TRUE	1
221	DD	6	1	Soft TX_DISABLE	Enhanced Options	TRUE	1
221	DD	7	1	Variable Power Supply Support	Enhanced Options	FALSE	0
	DE	0	4	Aux A/D Input 2	Enhanced Options	+3.3V Supply Voltage	7
	DE	4	4	Aux A/D Input 1	Enhanced Options	Laser Temperature	4
	DF	0	8	CC_EXT	Check code for bytes 192 to 222		Variable
222	UF						000000000000000000000000000000000000000
222 222 223	DF						
222	DF						000000000000000000000000000000000000000
222	Dr						000000000000000000000000000000000000000
222	Dr						


1174161		Rev.: A04	Page 17 of 23
contained herein, and any othe		rietary and confidential information to Finisar Corp. This document and the entire info ner tangible representation thereof, is not to be copied, reproduced, duplicated, distribute , and/or used without the expressed written consent of Finisar Corp.	
	Printed copy may not be t	he latest revision	please refer to Agile for current revision

EEPROM (Table 02h)

All Bytes except 128 and 129 filled with "00" unless otherwise specified by customer requirements. Addresses 128 and 129 are filled with "FF".


IX. Mechanical Specifications

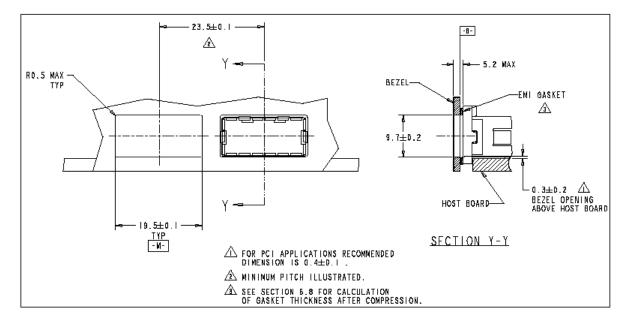
Finisar's XFP transceivers are compliant with the dimensions defined by the XFP Multi-Sourcing Agreement (MSA).

XFP Transceiver (dimensions are in mm)

1174161		Rev.: A04 Page 18 of			
contained herein, and any othe		r tangible representati	information to Finisar Corp. This document and the entire information on thereof, is not to be copied, reproduced, duplicated, distributed, or e expressed written consent of Finisar Corp.		
	Printed copy may not be the	he latest revision	please refer to Agile for current revision		

X. PCB Layout and Bezel Recommendations

XFP Host Board Mechanical Layout (dimensions are in mm)


1174161	Re	ev.: A04	Page 19 of 23	
contained herein, and any othe		I I I I I I I I I I I I I I I I I I I		
	Printed copy may not be the l	latest revision	please refer to Agile for current revision	

-¢ OF -K- & -L- \triangle centerline of rectangular pad. -4.11 🛆 4.1 ØI.55±0.05 ∲Ø0.1©|A|X|K®] -L-Δ 0.9 -C -Ф -¢_0F -C-16 Max 16.3 15.3 0.8 14 PLC 14.9 13.6 铤 Ţ 16 15 0.8 14 PLC € ₽ 0.5±0.03 |\$\\$\\$0.06\$\K\$\L\$\ 30 PLC -2±0.05 ∲Ø0.060[K©]L©] I.55±0.05 ⊕Ø0.1© A X Y DETAIL Z SCALE 8:1 - K -

XFP Detail Host Board Mechanical Layout (dimensions are in mm)

1174161		Rev.: A04	Page 20 of 23
Finisar	contained herein, and any othe		information to Finisar Corp. This document and the entire information on thereof, is not to be copied, reproduced, duplicated, distributed, or e expressed written consent of Finisar Corp.
	Printed copy may not be t	he latest revision	please refer to Agile for current revision

XFP Recommended Bezel Design (dimensions are in mm)

1174161		Rev.: A04	Page 21 of 23	
contained herein, and any othe		rietary and confidential information to Finisar Corp. This document and the entire information to react the tangible representation thereof, is not to be copied, reproduced, duplicated, distributed, or and/or used without the expressed written consent of Finisar Corp.		
	Printed copy may not be the	he latest revision	please refer to Agile for current revision	

XI. Notes & Exceptions

- The FTLX3815 product family has the following exceptions to the XFP MSA;
 Initialize time of 2 sec maximum (MSA requires 300ms).
- XFI loopback operation:
 - When XFI Loopback is enabled, the Transmitter output is disabled.
 - When Line Loopback is enabled, the Receiver input is disabled.
- 8.5Gb/s operation requires configuration change via I2C vendor reserved command.

XIII. References

- 2. 10 Gigabit Small Form Factor Pluggable Module (XFP) Multi-Source Agreement (MSA), Rev 4.5 August 2005. Documentation is currently available at <u>http://www.xfpmsa.org/</u>
- 3. Application Note AN-2035: "Digital Diagnostic Monitoring Interface for XFP Optical Transceivers" Finisar Corporation, December 2003
- 4. Directive 2002/95/EC of the European Council Parliament and of the Council, "on the restriction of the use of certain hazardous substances in electrical and electronic equipment". January 27, 2003.
- 5. "Application Note AN-2038: Finisar Implementation Of RoHS Compliant

Transceivers", Finisar Corporation, January 21, 2005.

1174161		Rev.: A04	Page 22 of 23			
Finisar	<i>Finisar</i> This document contains proprietary and confidential information to Finisar Corp. This document and the entire information contained herein, and any other tangible representation thereof, is not to be copied, reproduced, duplicated, distributed, or modified, in whole or in part, and/or used without the expressed written consent of Finisar Corp.					
Printed copy may not be the latest revision please refer to Agile for current revision						

XIII. Product Selection Details

FTLX3815M3xx

FT: FT Series
L: RoHS-6
X: 10G Bit Rate Class
38: 80km (asymmetric chirp)
1: XFP form factor
5: Standard Performance Class
M: Multiprotocol
3: Commercial temperature range
xx: Sub-Band start channel (please refer to page 6 for channel definition)

XIV. Revision History

Revision	Date	Description	
A00	8/15/2012	Preliminary document created	
A01	10/22/2012	Update EEPROM Table A0h and 01h	
A02	10/31/2012	Include cold start timing, correct initialization timing, SBS/Dither Byte	
A03	6/11/2014	Update TX Bias High Warning; EEPROM: update values for Bytes 188, 189, 193 in Table 01h, and values for Bytes 128 and 129 in Table 02h.	
A04	11/1/2014	Data output Rise and Fall times adjusted to 40ps max.	

XV. For more information

Finisar Corporation 1389 Moffett Park Drive Sunnyvale, CA 94089-1133 Tel. 1-408-548-1000 Fax 1-408-541-6138 <u>sales@finisar.com</u> <u>www.finisar.com</u>

1174161		Rev.: A04	Page 23 of 23		
Finisar	<i>Finisar</i> Corp. This document contains proprietary and confidential information to Finisar Corp. This document and the entire information contained herein, and any other tangible representation thereof, is not to be copied, reproduced, duplicated, distributed, or modified, in whole or in part, and/or used without the expressed written consent of Finisar Corp.				
Printed copy may not be the latest revision please refer to Agile for current revision					