MP3326

16 Channels, 50mA/Ch, LED Driver with Separated PWM Analog Dimming and I²C Interface

DESCRIPTION

The MP3326 is a 16-channel WLED driver that can operate from a wide 4V to 16V input voltage range. The MP3326 applies 16 internal current sources in each LED string terminal. The LED current of each channel is set by an external current-setting resistor. The maximum current of each channel is up to 50mA ($V_{\text{IN}} \ge 4.5\text{V}$).

The device integrates an I²C interface with up to 10 configurable I²C addresses via an external resistor. This means the MP3326 can support up to 10 cascaded ICs to drive the LED array. Each channel can be enabled or disabled through the I²C.

The MP3326 employs both separated PWM dimming and analog dimming for each LED channel, as well as 12-bit resolution PWM dimming and 6-bit analog dimming for each channel. To optimize EMI/EMC performance, the LED current ramp rate and phase shift can be configured.

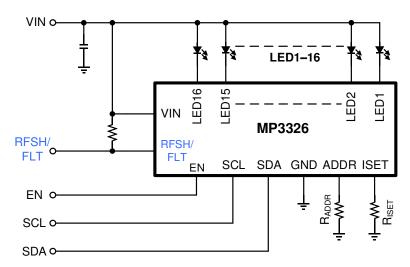
The device can output a refresh signal from the RFSH/FLT pin, and the refresh signal frequency can be set by the register.

Open-load protection, short protection, and overtemperature protection (OTP) are integrated into the device. The fault indicator pulls low if a protection is triggered, and then the corresponding fault register is set.

The MP3326 is available in a QFN-24 (4mmx4mm) package.

FEATURES

- Wide 4V to 16V Input Voltage Range
- 16 Channels, 50mA/Ch Maximum (V_{IN} ≥ 4.5V)
- LED Current Configured by External Resistor
- 6-Bit Analog Dimming for Each Channel
- 12-Bit PWM Dimming for Each Channel
- Selectable 220Hz, 250Hz, 280Hz, or 330Hz PWM Dimming Frequency
- Refresh Signal Output
- I²C Interface
- 10 Addresses Configurable via External Resistor
- Configurable LED Current Slew Rate
- 40µs Phase Shift
- Fault Indicator
- LED Open-Load Protection
- LED Short Protection with Configurable Threshold
- Under-Voltage Lockout (UVLO)
- Over-Temperature Protection (OTP)
- ELV Directive II Compliance
- Available in a QFN-24 (4mmx4mm) Package


APPLICATIONS

- RGB Drivers
- LED Indicators
- Instrument Clusters
- General Displays
- LED Backlighting

All MPS parts are lead-free, halogen-free, and adhere to the RoHS directive. For MPS green status, please visit the MPS website under Quality Assurance. "MPS", the MPS logo, and "Simple, Easy Solutions" are trademarks of Monolithic Power Systems, Inc. or its subsidiaries.

TYPICAL APPLICATION

Figure 1: Typical Application Circuit

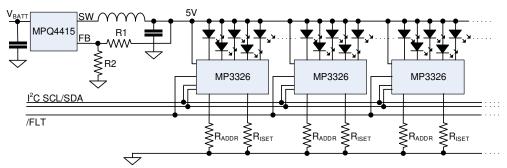
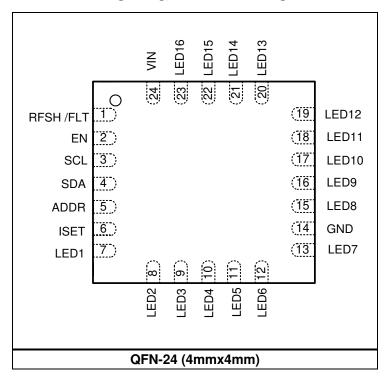


Figure 2: System Application Circuit

ORDERING INFORMATION

Part Number*	Package	Top Marking	MSL Rating
MP3326GR	QFN-24 (4mmx4mm)	See Below	1


^{*} For Tape & Reel, add suffix -Z (e.g. MP3326GR-Z).

TOP MARKING

MPSYWW MP3326 LLLLLL

MPS: MPS prefix Y: Year code WW: Week code MP3326: Part number LLLLL: Lot number

PACKAGE REFERENCE

PIN FUNCTIONS

Pin#	Name	Description
1	RFSH/FLT	Refresh signal output or fault flag. If FLTEN = 0, the RFSH/FLT pin outputs a synchronized signal set by the FRFSH register. If FLTEN = 1, the RFSH/FLT pin indicates a fault condition, and this pin is pulled low if a fault is triggered.
2	EN	Enable. Pull EN low to disable the IC; pull EN high to enable the IC.
3	SCL	I ² C interface clock input.
4	SDA	I ² C interface data input.
5	ADDR	I ² C address setting. Connect a resistor to ADDR and GND to configure the 4LSB of the I ² C address. There are 10 configurable addresses.
6	ISET	LED current setting. Connect a current-setting resistor from this pin to ground to configure the current in each LED string.
7	LED1	LED channel 1 current input. Connect the LED channel 1 cathode to this pin.
8	LED2	LED channel 2 current input. Connect the LED channel 2 cathode to this pin.
9	LED3	LED channel 3 current input. Connect the LED channel 3 cathode to this pin.
10	LED4	LED channel 4 current input. Connect the LED channel 4 cathode to this pin.
11	LED5	LED channel 5 current input. Connect the LED channel 5 cathode to this pin.
12	LED6	LED channel 6 current input. Connect the LED channel 6 cathode to this pin.
13	LED7	LED channel 7 current input. Connect the LED channel 7 cathode to this pin.
14	GND	Ground.
15	LED8	LED channel 8 current input. Connect the LED channel 8 cathode to this pin.
16	LED9	LED channel 9 current input. Connect the LED channel 9 cathode to this pin.
17	LED10	LED channel 10 current input. Connect the LED channel 10 cathode to this pin.
18	LED11	LED channel 11 current input. Connect the LED channel 11 cathode to this pin.
19	LED12	LED channel 12 current input. Connect the LED channel 12 cathode to this pin.
20	LED13	LED channel 13 current input. Connect the LED channel 13 cathode to this pin.
21	LED14	LED channel 14 current input. Connect the LED channel 14 cathode to this pin.
22	LED15	LED channel 15 current input. Connect the LED channel 15 cathode to this pin.
23	LED16	LED channel 16 current input. Connect the LED channel 16 cathode to this pin.
24	VIN	Power supply input. VIN supplies the power to the IC, and must be locally bypassed.

Thermal Resistance (4)	$oldsymbol{ heta}$ JA	$\boldsymbol{\theta}$ JC	
QFN-24 (4mmx4mm)	42	9	.°C/W

Notes:

- 1) Exceeding these ratings may damage the device.
- 2) The maximum allowable power dissipation is a function of the maximum junction temperature, T_J (MAX), the junction-to-ambient thermal resistance, θ_{JA} , and the ambient temperature, T_A . The maximum allowable continuous power dissipation at any ambient temperature is calculated by P_D (MAX) = $(T_J$ (MAX) T_A) / θ_{JA} . Exceeding the maximum allowable power dissipation can cause excessive die temperature, and the regulator may go into thermal shutdown. Internal thermal shutdown circuitry protects the device from permanent damage.
- The device is not guaranteed to function outside of its operating conditions.
- 4) Measured on JESD51-7, 4-layer PCB.

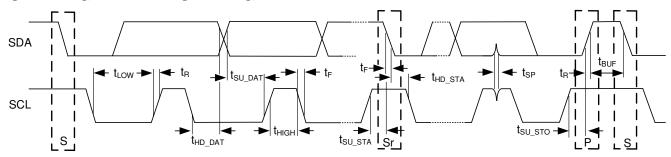
ELECTRICAL CHARACTERISTICS

 V_{IN} = 5V, V_{EN} = 3.5V, T_J = 25°C, unless otherwise noted.

Parameter	Symbol	Condition	Min	Тур	Max	Units
Input Supply Voltage			-	-		•
Input voltage range	V _{IN}		4		16	V
Quiescent supply current	Ιq				4	mA
Shutdown supply current	I _{ST}	V _{EN} = 0V, V _{IN} = 16V			2	μΑ
lancit IIV/I O three chold	V	Rising edge	3.45	3.7	3.95	V
Input UVLO threshold	V_{IN_UVLO}	Falling edge	3.15	3.5	3.85	V
Enable				•	•	
EN rising threshold	V _{EN_ON}	EN rising	2.1			V
EN falling threshold	V _{EN_OFF}	EN falling			0.8	V
EN pull-down resistor	Ren			1		МΩ
RFSH/FLT						
RFSH/FLT output frequency	f _{RFSH}	FRFSH9:0 = 0x1A9, FPWM2:0 = 01	285	300	315	Hz
RFSH/FLT pull-down resistor		FLTEN = 1, fault is triggered			100	Ω
LED Regulator						
ISET voltage	V_{ISET}		1.174	1.2	1.226	V
LED current	I _{LED}	$R_{ISET} = 20k\Omega$, ICHX, bits[5:0] = 0x3F	-2%	25	+2%	mA
Current sink headroom	V_{LEDX}	I _{LED} = 25mA		150	210	mV
Dimming						
PWM frequency	f _{PWM}		230	245	260	Hz
PWM duty step	tрwм	12-bit resolution, f _{PWM} = 250Hz		0.97		μs
Phase shift	t _{DELAY}	PS, EN = 1		40		μs
LED current step		ILED = 25mA, analog dimming step		0.4		mA
LED current slew rate in		SLEW, bits [1:0] = 01, rising edge		5		μs
PWM dimming		SLEW, bits [1:0] = 11, rising edge		20		μs
Protection						
LED string short protection threshold	V _{SLP}	STH, bits[1:0] = 01	2.75	3	3.25	V
LED string short protection time	tslp	V _{LEDX} > STH		4		ms
LED string short protection hiccup time	tslp_HICCUP			1		ms
LED string short protection hiccup detection time	V _{SLP_DET}			32		μs
LED string open-load protection threshold	V LED_UV			100	160	mV

ELECTRICAL CHARACTERISTICS (continued)

 $V_{IN} = 5V$, $V_{EN} = 3.5V$, $T_J = 25$ °C, unless otherwise noted.


Parameter	Symbol	Condition	Min	Тур	Max	Units
LED string open-load protection time	t LEDO	V _{LEDX} < 100mV		4		ms
LED string open-load protection hiccup time	tslp_HICCUP			1		ms
LED string open-load protection hiccup detection time	V _{SLP_DET}			32		μs
Thermal shutdown threshold (5)	T _{ST}			170		°C
Thermal shutdown hysteresis (5)	T _{ST_HYS}			20		°C
I ² C Interface	•		•			
Input logic low	VIL		0		0.4	V
Input logic high	V _{IH}		1.3			V
Output logic low	V _{OL}	I _{LOAD} = 3mA			0.4	V
SCL clock frequency	fscL				1200	kHz
SCL high time	tніgн		0.32			μs
SCL low time	t _{LOW}		0.12			μs
Data set-up time	tsu_dat		10			ns
Data hold time	thd_dat		0		0.15	μs
Repeated start set-up time	tsu_sta		0.16			μs
Hold time for start	thd_sta		0.16			μs
Stop condition set-up time	tsu_sto		0.16			μs
SCL rise time after a repeated start condition and an acknowledge bit	t _{RCL1}		20		160	ns
SCL rise	trcl		20		80	ns
SCL fall time	tFCL		20		80	ns
SDA rise time	t _{RDA}		20		160	ns
SDA fall time	tfda		20		160	ns
Pulse width of suppressed spike	tsp		0		10	ns
Capacitance bus for each bus line	Св				400	pF

Note:

5) Not tested in production. Guaranteed by characterization.

I²C TIMING INTERFACE DIAGRAM

S = Start Condition

Sr = Repeated Start Condition

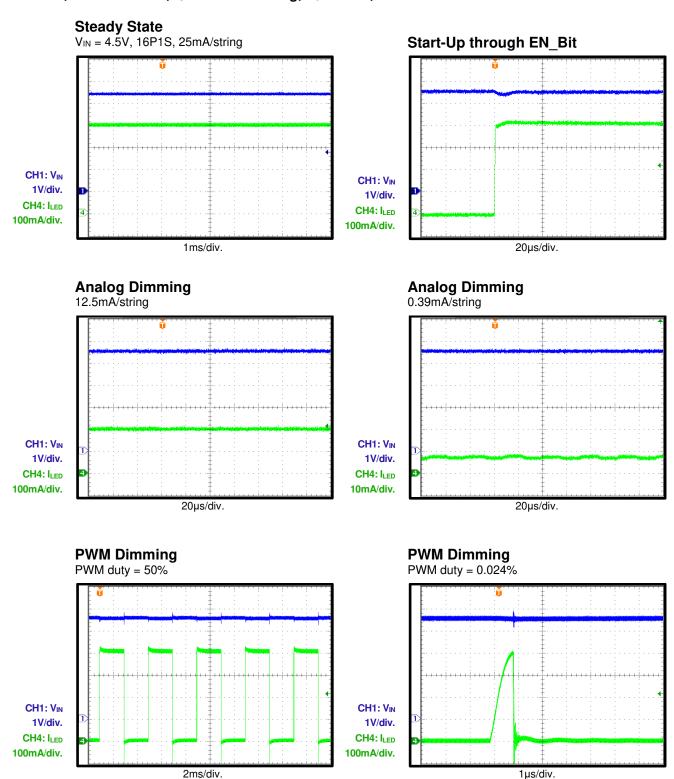
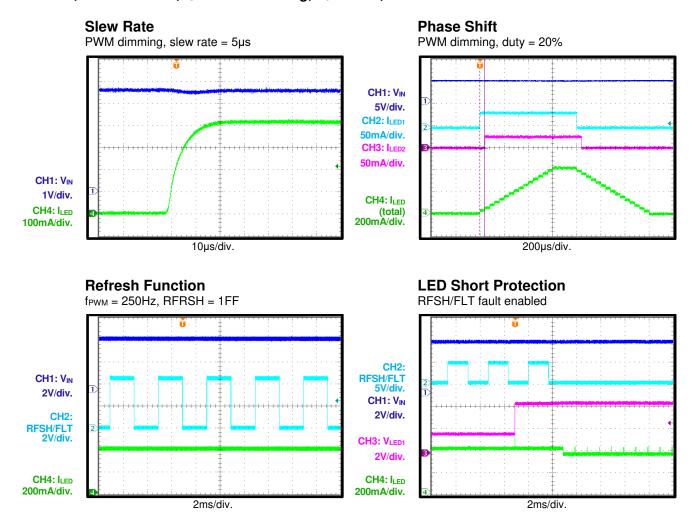
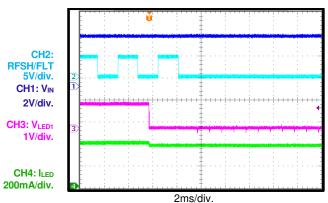

P = Stop Condition

Figure 3: I²C Compatible Interface Timing Diagram

TYPICAL PERFORMANCE CHARACTERISTICS


 $V_{IN} = 4.5V$, LED = 16P/1S, $I_{SET} = 25$ mA/string, $T_{J} = 25$ °C, unless otherwise noted.


TYPICAL PERFORMANCE CHARACTERISTICS (continued)

 $V_{IN} = 4.5V$, LED = 16P/1S, $I_{SET} = 25mA/string$, $T_{J} = 25^{\circ}C$, unless otherwise noted.

LED Open-Load Protection

RFSH/FLT fault enabled

FUNCTIONAL BLOCK DIAGRAM

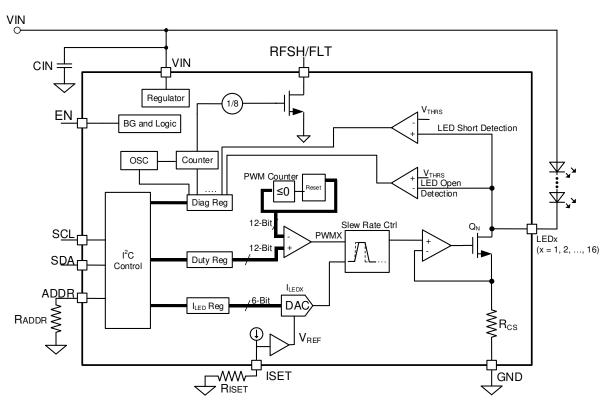


Figure 4: Functional Block Diagram

OPERATION

The MP3326 applies 16 internal current sources in each LED string terminal. The LED current of each channels is set by an external current-setting resistor. The maximum current is 50mA.

Enable (EN) and Start-Up

When the input voltage exceeds the undervoltage lockout (UVLO) threshold and the EN pin exceeds its rising threshold, the MP3326 enters standby mode, and the I²C is active. After setting the I²C register, set the EN bit high to start up the system. The start-up sequence is as follows:

- 1. VIN
- 2. EN
- 3. I2C setting
- 4. Set EN bit

Channel Selection

The channel can be disabled by setting the corresponding CHxEN bit (e.g. x = 1, 2, ..., 16) low, or by connecting the channel to GND.

Dimming

Each channel has its own 6-bit analog dimming register and 12-bit PWM dimming register. The MP3326 supports analog dimming and PWM dimming for each channel.

In analog dimming, the LED current amplitude changes when the analog dimming register changes. Change the code in the ICHx register (e.g. x = 1, 2, ..., 16) to choose analog dimming for the corresponding channel. The LED current (I_{LED}) amplitude can be estimated with Equation (1):

$$I_{LED} = \frac{ICHx}{63} \times ISET \tag{1}$$

Where ICHx is the analog dimming code for the corresponding channel.

For example, if ICHx = 0, I_{LED} is 0A.

In PWM dimming, LED current is a PWM waveform. The LED current amplitude stays the same, and the LED current duty varies with the PWM dimming register.

The PWM dimming duty is set by the PWMx register (e.g x = 1, 2, ..., 16). The duty can be calculated with Equation (2):

$$D = \frac{PWMx}{4095} \tag{2}$$

Where PWMx is the PWM dimming duty code for each corresponding channel. The duty changes only when the 8MSB of PWM duty register are written. When PWMx = 0, the corresponding LED channel current is 0A.

The PWM dimming frequency can be selected via register FPWM1:0. The potential frequencies are listed below:

- FPWM 1:0 = 00, 220Hz
- FPWM 1:0 = 01, 250Hz (default)
- FPWM 1:0 = 10, 280Hz
- FPWM 1:0 = 11. 330Hz

To avoid a glitch during operation, the following conditions must be met:

- Change the FPWM1:0 value only when the EN bit is set 0.
- Write the FPWM register and wait for a 10μs delay before writing other registers.

Phase Shift

A channel-by-channel phase shift function can be implemented. This function is enabled by setting the PS EN bit high.

When the phase shift function is enabled, the channel x + 1 (e.g. x = 1, 2, ..., 15) LED current rising edge is delayed for $40\mu s$ after channel x's LED current rising edge.

SYNC Output for LCD Refresh Frequency

The fault indicator function can be enabled by the FLTEN bit. If FLTEN = 0, the fault indicator function is disabled. RFSH/FLT keeps the output refresh signal even if a protection is triggered.

If FLTEN = 1, the fault indicator function is enabled. The SYNC/FLT pin is pulled low if a protection occurs. Table 1 shows the details of RFSH/FLT pin output status.

		RFSH/FLT P	in Output		
FLTEN	FRFSH =	0x000	FRFSH = 0x001~0x3FF		
	No fault condition	Fault condition	No fault condition	Fault condition	
1	Externally pulled high	Low	Rectangle signal	Low	
0	Externally pu	lled high	Rectang	le signal	

Table 1: RFSH/FLT Pin Output Status

The refresh signal frequency is set by FRFSH 9:0. If FRFSH 9:0 = 0x000, then the RFSH/FLT pin outputs high. If FRFSH 9:0 = 0x001 to 0x3FF, then the RFSH/FLT pin outputs a rectangle signal, and the refresh frequency can be calculated with Equation (3):

$$f_{REFRESH} = \frac{127500}{FRFSH9:0}$$
 (3)

Note that if FPWM1:0 = 01, the PWM dimming frequency is 250Hz. If RFSH 9:0 = 0x000, the RFSH/FLT pin outputs high.

The refresh frequency is also related to the PWM dimming frequency, estimated with Equation (4):

$$f_{REFRESH} = \frac{127500}{FRFSH} \times \frac{f_{PWM}}{250} (Hz)$$
 (4)

Where $f_{REFRESH}$ is the refresh frequency, FRFSH is the value of register FRFSH 9:0, and f_{PWM} is PWM dimming frequency set by register FPWM1:0 (it can be either 200Hz, 250Hz, 280Hz, or 330Hz).

For this equation, FRFSH9:0 > 0.

Note that all numbers in the equation have a decimal base, and that the refresh frequency does not change until the 8MSB are written.

The internal oscillator is divided by 8. As the clock refreshes the frequency generation, the FRFSH register sets the counter number (see Figure 5).

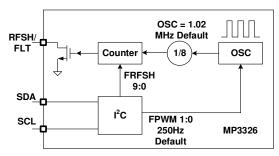


Figure 5: Refresh Frequency Generation

LED Current Slew Rate Control

Changing the LED current's rising/falling slew rate in PWM dimming can optimize EMI performance. The LED current rising/falling slew rate is controlled by the SLEW register, bits[1:0], and can be set to the values listed below:

- SLEW1:0 = 00, no slew rate
- SLEW1:0 = 01, 5μs
- SLEW1:0 = 10, $10\mu s$
- SLEW1:0 = 11, 20μs

Protection

The MP3326 employs VIN under-voltage lockout (UVLO), LED short protection, LED open-load protection, and thermal shutdown.

The /FLT pin is active low, open drain, and should be pulled high to an external voltage source. If a protection is triggered, the corresponding fault bit is set, and /FLT is pulled low.

In hiccup mode, the /FLT pin is pulled high once the fault condition is removed.

In latch-off mode, the /FLT pin is released if all of the fault bits are read.

For LED open-load and short protection, hiccup mode or latch-off mode can be selected by the LATCH bit through the I²C.

If LATCH = 1, the MP3326 is in latch-off mode. This means that if a fault is triggered, the fault channel stays off until VIN or EN is turned off and reset.

If LATCH = 0, the MP3326 is in hiccup mode. In this mode, the fault channel tries to conduct for $32\mu s$ to detect if the fault is cleared in every 1ms. /FLT is released if fault condition is removed.

VIN Under-Voltage Lockout (UVLO)

If the input voltage drops to the VIN undervoltage lockout (UVLO) threshold, the IC stops working and all I²C registers are reset.

LED Open-Load Protection

When an LED open fault occurs, the LEDx (e.g. x = 1, 2, ..., 16) voltage drops. If the LEDx voltage drops below the protection threshold (about 100mV) for 4ms, LED open-load protection is triggered. Once this occurs, the fault channel turns off, the corresponding open fault bit CHxO (x = 1, 2, ..., 16) is set, and the /FLT pin is pulled low. The fault bit is reset when it is read, and the /FLT pin is pulled high.

LED Short Protection

If an LED short condition occurs, the VIN - VLEDx voltage drops. If the VLEDx (e.g. x = 1, 2, ..., 16) voltage exceeds the voltage set by STH for 4ms, LED short protection is triggered. Once this occurs, the short channel turns off, the corresponding CHxS fault bit is set, and /FLT pulls low.

The LED short protection threshold is configured by STH 1:0, and can be set to the following values:

- STH1:0 = 00, 2V
- STH1:0 = 01, 3V
- STH1:0 = 10, 4V
- STH1:0 = 11.5V

The fault bit is reset when it is read, and the /FLT pin is pulled high.

Over-Temperature Protection (OTP)

When the IC temperature exceeds 170°C, overtemperature protection (OTP) is triggered. All channels turn off, the /FLT pin is pulled low, and the FT_OTP bit is set. If the temperature drops by 20°C, the IC recovers, all channels turn on, and the part resumes normal operation.

I²C INTERFACE REGISTER DESCRIPTION I²C Chip Address

The device address is 0x30~0x39, and is configured by the ADDR resistor. The internal current source flows to the ADDR resistor, then the voltage of ADDR determines the I²C address. 10 different addresses can be configured through the ADDR resistor. Table 2 shows how the I²C address resistor relates to the ISET resistor.

Table 2: I²C Address Setting

RADDR / RISET	I ² C Address (A3, A2, A1, A0)
< 0.05	0000
>0.05, <0.15	0001
>0.15, <0.25	0010
>0.25, <0.35	0011
>0.35, <0.45	0100
>0.45, <0.55	0101
>0.55, <0.65	0110
>0.65, <0.75	0111
>0.75, <0.85	1000
>0.85, <0.95	1001

At start-up, the IC checks the I²C address first; this address remains the same during operation unless the IC power is reset.

After the start condition, the I²C-compatible master sends a 7-bit address followed by an 8th read (1) or write (0) bit. The 8th bit indicates the register address to/from which the data will be written/read.

0	1	1	A3	A2	A1	Α0	R/W
---	---	---	----	----	----	----	-----

Figure 6: The I²C-Compatible Device Address

To avoid a glitch during operation, ensure that the following conditions are met:

- Change the FPWM1:0 value only when the EN bit is set 0.
- Write the FPWM register and wait for a 10μs delay before writing other registers.

REGISTER MAP

Add	Default	D7	D6	D5	D4	D3	D2	D1	D0
00H	01			RESE	RVED			FPWI	M 1:0
01H	00	FLTEN	LATCH	STH	H1:0	SLE	W1:0	PS_EN	EN
02H	01			RESERVED)		FT_OTP	FRFS	SH1:0
03H	6A				FRFS	SH 9:2			
04H	FF	CH16EN	CH15EN	CH14EN	CH13EN	CH12EN	CH11EN	CH10EN	CH9EN
05H	FF	CH8EN	CH7EN	CH6EN	CH5EN	CH4EN	CH3EN	CH2EN	CH1EN
06H	00	CH16O	CH15O	CH14O	CH13O	CH12O	CH110	CH10O	CH9O
07H	00	CH8O	CH7O	CH6O	CH5O	CH4O	CH3O	CH2O	CH1O
H80	00	CH16S	CH15S	CH14S	CH13S	CH12S	CH11S	CH10S	CH9S
09H	00	CH8S	CH7S	CH6S	CH5S	CH4S	CH3S	CH2S	CH1S
0AH	3F	RESE	RVED			ICH1	5:0		
0BH	0F		RESE	RVED			PWM	1 3:0	
0CH	FF				PWM	1 11:4			
0DH	3F	RESE	RVED			ICH2	2 5:0		
0EH	0F		RESE	RVED			PWM	2 3:0	
0FH	FF				PWM	2 11:4			
10H	3F	RESE	RVED			ICH3	3 5:0		
11H	0F	RESERVED					PWM	3 3:0	
12H	FF		PWM3 11:4						
13H	3F	RESE	RVED			ICH4	1 5:0		
14H	0F		RESE	RVED			PWM	4 3:0	

REGISTER MAP (continued)

Add	Default	D7	D6	D5	D4	D3	D2	D1	D0	
15H	FF		PWM4[11:4]							
16H	3F	RESE	RVED			ICH5	5[5:0]			
17H	0F		RESI	ERVED			PWM	15[3:0]		
18H	FF				PWM	5[11:4]				
19H	3F	RESE	RVED			ICH	6[5:0			
1aH	0F		R	ESERVED			Р	WM6[3:0]		
1BH	FF				PWM	6[11:4]				
1CH	3F	RESE	RVED			ICH7	'[5:0]			
1DH	0F		RESI	ERVED			PWM	17[3:0]		
1EH	FF				PWM	7[11:4]				
1FH	3F	RESE	RVED			ICH8	ICH8[5:0]			
20H	0F		RESI	ERVED			PWM	18[3:0]		
21H	FF				PWM	8[11:4]				
22H	3F	RESE	RVED			ICHS	9[5:0]			
23H	0F		R	ESERVED			Р	WM9[3:0]		
24H	FF				PWM:	9[11:4]				
25H	3F	RESE	RESERVED ICH10[5:0]							
26H	0F		RESERVED PWM10[3:0]							
27H	FF		PWM10[11:4]							
28H	3F	RESE	RVED			ICH1	1[5:0]			
29H	0F		R	ESERVED			P\	WM11[3:0]		

REGISTER MAP (continued)

Add	Default	D7	D6	D5	D4	D3	D2	D1	D0	
2AH	FF		PWM11[11:4]							
2BH	3F	RESE	RVED			ICH12[5:0]				
2CH	0F		RI	ESERVED			P۱	VM12[3:0]		
2DH	FF				PWM1	2[11:4]				
2EH	3F	RESE	RVED			ICH1	3[5:0]			
2FH	0F		RI	SERVED			P۱	VM13[3:0]		
30H	FF				PWM1	3[11:4]				
31H	3F	RESE	RVED			ICH1	4[5:0]			
32H	0F		RI	ESERVED			P۱	VM14[3:0]		
33H	FF				PWM1	4[11:4]				
34H	3F	RESE	RVED			ICH1	5[5:0]			
35H	0F		RI	ESERVED			P۱	VM15[3:0]		
36H	FF		PWM15[11:4]							
37H	3F	RESE	RESERVED			ICH1	6[5:0]			
38H	0F		RI	ESERVED			P\	VM16[3:0]		
39H	FF				PWM1	6[11:4]				

PWM Dimming Frequency Setting Register

Addr: 0x00									
Bits	Bit Name	Access	Default	Description					
7:2	RESERVED	R	000000	Reserved.					
1:0	FPWM	R/W	01	PWM dimming frequency (f _{PWM}) setting bit. 00: 220Hz 01: 250Hz 10: 280Hz 11: 330Hz The following conditions must be met to avoid glitches: • Change the FPWM setting only when the EN bit is set 0. • Write the FPWM register, then wait for 10μs before writing other registers.					

Control Register

	Addr: 0x01						
Bits	Bit Name	Access	Default	Description			
				RFSH/FLT pin fault indicator enable bit.			
7	FLTEN	R/W	0	0: Disabled. The RFSH/FLT pin refreshes the signal output 1: Enabled			
				Latch-off fault response enable bit.			
6	LATCH	R/W	1	0: Disabled. The device enters hiccup mode if a fault condition is detected 1: Enabled			
				LED short protection threshold setting register.			
5:4	S_TH[1:0]	R/W	00	00: 2V 01: 3V 10: 4V 11: 5V			
				LED current slew rate setting register.			
3:2	SLEW[1:0]	R/W	00	00: No slew rate 01: 5µs			
				10: 10μs 11: 20μs			
				Phase shift enable bit.			
1	PS_EN	R/W	0	0: Disable the phase shift function 1: Enable the phase shift function. The rising edge of channel $x + 1$ occurs 40 μ s after channel x (e.g. $x = 1, 2,, 15$)			
				Enable bit.			
0	EN	R/W	0	0: Disable the IC 1: Enable the IC			

Refresh Frequency Setting and OTP Fault Register

	Addr: 0x02					
Bits	Bit Name	Access	Default	Description		
7:3	RESERVED	R	0	Reserved.		
				Over-temperature (OT) fault indication bit.		
2	FT_OTP	R	0	0: An OT fault has not occurred 1: An OT fault has occurred		
1:0	FRFSH[1:0]	R/W		Refresh frequency setting register, 2LSB. If FPWM[1:0] = 01, the PWM dimming frequency is 250Hz. If RFSH[9:0] = 0x000, the RFSH/FLT pin outputs high If FRFSH[9:0] = 0x001 to 0x3FF, $f_{REFRESH}$ can be calculated with the following equation:		
			01	$f_{REFRESH} = \frac{127500}{FRFSH} \times \frac{f_{PWM}}{250}(Hz)$		
				All numbers in the above equation are decimal-based. The refresh frequency does not change until the 8MSB are written. The default frefresh value is 300Hz.		

Refresh Frequency Setting Register

	Addr: 0x03				
Bits	Bit Name	Access	Default	Description	
				Refresh frequency setting register, 2LSB. If FPWM[1:0] = 01, the PWM dimming frequency is 250Hz. If RFSH[9:0] = 0x000, the RFSH/FLT pin outputs high If FRFSH[9:0] = 0x001 to 0x3FF, $f_{REFRESH}$ can be calculated with the following equation:	
7:0	FRFSH[9:2]	R/W	6A	$f_{REFRESH} = \frac{127500}{FRFSH} \times \frac{f_{PWM}}{250} (Hz)$	
				All numbers in the above equation are decimal-based. The refresh frequency does not change until the 8MSB are written. The default frefresh is 300Hz.	

Channel Enable Register (Channels 9–16)

	Addr: 0x04						
Bit	Bit Name	Access	Default	Description			
				Channel 16 enable bit.			
7	CH16EN	R/W	1	0: Disabled 1: Enabled			
		R/W	1	Channel 15 enable bit.			
6	CH15EN			0: Disabled 1: Enabled			
	5 CH14EN R/W		Channel 14 enable bit.				
5		1	0: Disabled 1: Enabled				

4	CH13EN	R/W	1	Channel 13 enable bit. 0: Disabled 1: Enabled
3	CH12EN	R/W	1	Channel 12 enable bit. 0: Disabled 1: Enabled
2	CH11EN	R/W	1	Channel 11 enable bit. 0: Disabled 1: Enabled
1	CH10EN	R/W	1	Channel 10 enable bit. 0: Disabled 1: Enabled
0	CH9EN	R/W	1	Channel 9 enable bit. 0: Disabled 1: Enabled

Channel Enable Register (Channels 1-8)

	Addr: 0x05						
Bit	Bit Name	Access	Default	Description			
_	0110511	D.044		Channel 8 enable bit.			
7	CH8EN	R/W	1	0: Disabled 1: Enabled			
				Channel 7 enable bit.			
6	CH7EN	R/W	1	0: Disabled 1: Enabled			
				Channel 6 enable bit.			
5	CH6EN	R/W	1	0: Disabled 1: Enabled			
		R/W		Channel 5 enable bit.			
4	CH5EN		R/W	1	0: Disabled 1: Enabled		
				Channel 4 enable bit.			
3	CH4EN	R/W	1	0: Disabled 1: Enabled			
				Channel 3 enable bit.			
2	CH3EN	R/W	1	0: Disabled 1: Enabled			
				Channel 2 enable bit.			
1	CH2EN	R/W	1	0: Disabled 1: Enabled			
				Channel 1 enable bit.			
0	CH1EN	R/W	1	0: Disabled 1: Enabled			

Channel Open Fault Register (Channels 9–16)

	Addr: 0x06						
Bit	Bit Name	Access	Default	Description			
				Channel 16 open-load protection fault flag.			
7	CH16O	R	0	0: No open-load fault has occurred 1: An open-load fault has occurred			
				Channel 15 open-load protection fault flag.			
6	CH15O	R	0	0: No open-load fault has occurred 1: An open-load fault has occurred			
				Channel 14 open-load protection fault flag.			
5	CH14O R	0	0: No open-load fault has occurred 1: An open-load fault has occurred				
			0	Channel 13 open-load protection fault flag.			
4	CH13O R	R		0: No open-load fault has occurred 1: An open-load fault has occurred			
				Channel 12 open-load protection fault flag.			
3	CH12O	R	0	No open-load fault has occurred An open-load fault has occurred			
				Channel 11 open-load protection fault flag.			
2	CH110	R	0	0: No open-load fault has occurred 1: An open-load fault has occurred			
				Channel 10 open-load protection fault flag.			
1	CH10O	R	0	0: No open-load fault has occurred 1: An open-load fault has occurred			
				Channel 9 open-load protection fault flag.			
0	CH9O	R	0	0: No open-load fault has occurred 1: An open-load fault has occurred			

Channel Open Fault Register (Channels 1-8)

	Addr: 0x07						
Bit	Bit Name	Access	Default	Description			
				Channel 8 open-load protection fault flag.			
7	CH8O	R	0	0: No open-load fault has occurred 1: An open-load fault has occurred			
	6 CH7O	R	0	Channel 7 open-load protection fault flag.			
6				0: No open-load fault has occurred 1: An open-load fault has occurred			
				Channel 6 open-load protection fault flag.			
5	CH6O	R	0	0: No open-load fault has occurred 1: An open-load fault has occurred			
		R	0	Channel 5 open-load protection fault flag.			
4	CH5O			0: No open-load fault has occurred 1: An open-load fault has occurred			

	3 CH4O R			Channel 4 open-load protection fault flag.
3		0	0: No open-load fault has occurred 1: An open-load fault has occurred	
				Channel 3 open-load protection fault flag.
2	CH3O	R	0	0: No open-load fault has occurred 1: An open-load fault has occurred
			0	Channel 2 open-load protection fault flag.
1	CH2O	R		0: No open-load fault has occurred 1: An open-load fault has occurred
	0 CH1O	R	0	Channel 1 open-load protection fault flag.
0				0: No open-load fault has occurred 1: An open-load fault has occurred

Channel Short Fault Register (Channels 9–16)

	Addr: 0x08						
Bit	Bit Name	Access	Default	Description			
				Channel 16 short protection fault flag.			
7	CH16S	R	0	0: No short fault has occurred 1: A short fault has occurred			
				Channel 15 short protection fault flag.			
6	CH15S	R	0	0: No short fault has occurred 1: A short fault has occurred			
				Channel 14 short protection fault flag.			
5	CH14S	R	0	0: No short fault has occurred 1: A short fault has occurred			
			0	Channel 13 short protection fault flag.			
4	CH13S	R		0: No short fault has occurred 1: A short fault has occurred			
				Channel 12 short protection fault flag.			
3	CH12S	R	0	0: No short fault has occurred 1: A short fault has occurred			
			0	Channel 11 short protection fault flag.			
2	CH11S	R		0: No short fault has occurred 1: A short fault has occurred			
				Channel 10 short protection fault flag.			
1	CH10S	R	0	0: No short fault has occurred 1: A short fault has occurred			
				Channel 9 short protection fault flag.			
0	CH9S	R	R 0	0: No short fault has occurred 1: A short fault has occurred			

Channel Short Fault Register (Channels 1-8)

	Addr: 0x09						
Bit	Bit Name	Access	Default	Description			
				Channel 8 short protection fault flag.			
7	CH8S	R	0	0: No short fault has occurred 1: A fault has occurred			
				Channel 7 short protection fault flag.			
6	CH7S	R	0	0: No short fault has occurred 1: A fault has occurred			
				Channel 6 short protection fault flag.			
5	CH6S R	R	R 0	0: No short fault has occurred 1: A fault has occurred			
			0	Channel 5 short protection fault flag.			
4	4 CH5S R	R		0: No short fault has occurred 1: A fault has occurred			
				Channel 4 short protection fault flag.			
3	CH4S	R	0	0: No short fault has occurred 1: A fault has occurred			
				Channel 3 short protection fault flag.			
2	CH3S	R	0	0: No short fault has occurred 1: A fault has occurred			
				Channel 2 short protection fault flag.			
1	CH2S	R	0	0: No short fault has occurred 1: A fault has occurred			
				Channel 1 short protection fault flag.			
0	CH1S	R	0	0: No short fault has occurred 1: A fault has occurred			

Channel 1 LED Current Setting Register

	Addr: 0x0A					
Bits	Bit Name	Access	Default	Description		
7:6	RESERVED	R	00	Reserved.		
5:0	ICH1[5:0]	R/W	111111	Channel 1 LED current analog dimming register. The current can be calculated with the following equation: $I_{\text{LED}} = \frac{Code}{63} \times ISET$		

Channel 1 PWM Dimming Duty Setting Register (LSB)

	Addr: 0x0B						
Bits	Bit Name	Access	Default	Description			
7:4	RESERVED	R	0000	Reserved.			
3:0	PWM1[3:0]	R/W	1111	Channel 1 LED current PWM dimming duty setting register, 4LSB. The dimming duty only changes when the 8MSB are written.			

Channel 1 PWM Dimming Duty Setting Register (MSB)

	Addr: 0x0C					
Bits	Bit Name	Access	Default	Description		
7:0	PWM1[11:4]	R/W	11111111	Channel 1 LED current PWM dimming duty setting register, 8MSB. The dimming duty only changes when the 8MSB are written.		

Channel 2 LED Current Setting Register

	Addr: 0x0D						
Bits	Bit Name	Access	Default	Description			
7:6	RESERVED	R	00	Reserved.			
5:0	ICH2[5:0]	R/W	111111	Channel 2 LED current analog dimming register. The current can be calculated with the following equation: $I_{\text{LED}} = \frac{\text{Code}}{63} \times \text{ISET}$			

Channel 2 PWM Dimming Duty Setting Register (LSB)

	Addr: 0x0E					
Bits	Bit Name	Access	Default	Description		
7:4	RESERVED	R	0000	Reserved.		
3:0	PWM2[3:0]	R/W	1111	Channel 2 LED current PWM dimming duty setting register, 4LSB. The dimming duty only changes when the 8MSB are written.		

Channel 2 PWM Dimming Duty Setting Register (MSB)

	Addr: 0x0F					
Bits	Bit Name	Access	Default	Description		
7:0	PWM2[11:4]	R/W	11111111	Channel 2 LED current PWM dimming duty setting register, 8MSB. The dimming duty only changes when the 8MSB are written.		

Channel 3 LED Current Setting Register

	Addr: 0x10						
Bits	Bit Name	Access	Default	Description			
7:6	RESERVED	R	00	Reserved.			
5:0	ICH3[5:0]	R/W	111111	Channel 3 LED current analog dimming register. The current can be calculated with the following equation: $I_{\text{LED}} = \frac{Code}{63} \times ISET$			

Channel 3 PWM Dimming Duty Setting Register (LSB)

	Addr: 0x11						
Bits	Bit Name	Access	Default	Description			
7:4	RESERVED	R	0000	Reserved.			
3:0	PWM3[3:0]	R/W	1111	Channel 3 LED current PWM dimming duty setting register, 4LSB. The dimming duty only changes when the 8MSB are written.			

Channel 3 PWM Dimming Duty Setting Register (MSB)

	Addr: 0x12					
Bits	Bit Name	Access	Default	Description		
7:0	PWM3[11:4]	R/W	11111111	Channel 3 LED current PWM dimming duty setting register, 8MSB. The dimming duty only changes when the 8MSB are written.		

Channel 4 LED Current Setting Register

	Addr: 0x13						
Bits	Bit Name	Access	Default	Description			
7:6	RESERVED	R	00	Reserved.			
5:0	ICH4[5:0]	R/W	111111	Channel 4 LED current analog dimming register. The current can be calculated with the following equation: $I_{\text{LED}} = \frac{Code}{63} \times ISET$			

Channel 4 PWM Dimming Duty Setting Register (LSB)

	Addr: 0x14						
Bits	Bit Name	Access	Default	Description			
7:4	RESERVED	R	0000	Reserved.			
3:0	PWM4[3:0]	R/W	1111	Channel 4 LED current PWM dimming duty setting register, 4LSB. The dimming duty only changes when the 8MSB are written.			

Channel 4 PWM Dimming Duty Setting Register (MSB)

	Addr: 0x15					
Bits	Bit Name	Access	Default	Description		
7:0	PWM4[11:4]	R/W	11111111	Channel 4 LED current PWM dimming duty setting register, 8MSB. The dimming duty only changes when the 8MSB are written.		

Channel 5 LED Current Setting Register

	Addr: 0x16					
Bits	Bit Name	Access	Default	Description		
7:6	RESERVED	R	00	Reserved.		
5:0	ICH5[5:0]	R/W	111111	Channel 5 LED current analog dimming register. The current can be calculated with the following equation: $I_{\text{LED}} = \frac{Code}{63} \times ISET$		

Channel 5 PWM Dimming Duty Setting Register (LSB)

	Addr: 0x17						
Bits	Bit Name	Access	Default	Description			
7:4	RESERVED	R	0000	Reserved.			
3:0	PWM5[3:0]	R/W	1111	Channel 5 LED current PWM dimming duty setting register, 4LSB. The dimming duty only changes when the 8MSB are written.			

Channel 5 PWM Dimming Duty Setting Register (MSB)

	Addr: 0x18				
Bits	Bit Name	Access	Default	Description	
7:0	PWM5[11:4]	R/W	11111111	Channel 5 LED current PWM dimming duty setting register, 8MSB. The dimming duty only changes when the 8MSB are written.	

Channel 6 LED Current Setting Register

	Addr: 0x19						
Bits	Bit Name	Access	Default	Description			
7:6	RESERVED	R	00	Reserved.			
5:0	ICH6[5:0]	R/W	111111	Channel 6 LED current analog dimming register. The current can be calculated with the following equation: $I_{\text{LED}} = \frac{Code}{63} \times ISET$			

Channel 6 PWM Dimming Duty Setting Register (LSB)

	Addr: 0x1A						
Bits	Bit Name	Access	Default	Description			
7:4	RESERVED	R	0000	Reserved.			
3:0	PWM6[3:0]	R/W	1111	Channel 6 LED current PWM dimming duty setting register, 4LSB. The dimming duty only changes when the 8MSB are written.			

Channel 6 PWM Dimming Duty Setting Register (MSB)

	Addr: 0x1B				
Bits	Bit Name	Access	Default	Description	
7:0	PWM6[11:4]	R/W	11111111	Channel 6 LED current PWM dimming duty setting register, 8MSB. The dimming duty only changes when the 8MSB are written.	

Channel 7 LED Current Setting Register

	Addr: 0x1C					
Bits	Bit Name	Access	Default	Description		
7:6	RESERVED	R	00	Reserved.		
5:0	ICH7[5:0]	R/W	111111	Channel 7 LED current analog dimming register. The current can be calculated with the following equation: $I_{\text{LED}} = \frac{Code}{63} \times ISET$		

Channel 7 PWM Dimming Duty Setting Register (LSB)

	Addr: 0x1D						
Bits	Bit Name	Access	Default	Description			
7:4	RESERVED	R	0000	Reserved.			
3:0	PWM7[3:0]	R/W	1111	Channel 7 LED current PWM dimming duty setting register, 4LSB. The dimming duty only changes when the 8MSB are written.			

Channel 7 PWM Dimming Duty Setting Register (MSB)

	Addr: 0x1E					
Bits	Bit Name	Access	Default	Description		
7:0	PWM7[11:4]	R/W	11111111	Channel 7 LED current PWM dimming duty setting register, 8MSB. The dimming duty only changes when the 8MSB are written.		

Channel 8 LED Current Setting Register

	Addr: 0x1F						
Bits	Bit Name	Access	Default	Description			
7:6	RESERVED	R	00	Reserved.			
5:0	ICH8[5:0]	R/W	111111	Channel 8 LED current analog dimming register. The current can be calculated with the following equation: $I_{\text{LED}} = \frac{Code}{63} \times ISET$			

Channel 8 PWM Dimming Duty Setting Register (LSB)

	Addr: 0x20						
Bits	Bit Name	Access	Default	Description			
7:4	RESERVED	R	0000	Reserved.			
3:0	PWM8[3:0]	R/W	1111	Channel 8 LED current PWM dimming duty setting register, 4LSB. The dimming duty only changes when the 8MSB are written.			

Channel 8 PWM Dimming Duty Setting Register (MSB)

	Addr: 0x21				
Bits	Bit Name	Access	Default	Description	
7:0	PWM8[11:4]	R/W	11111111	Channel 8 LED current PWM dimming duty setting register, 8MSB. The dimming duty only changes when the 8MSB are written.	

Channel 9 LED Current Setting Register

	Addr: 0x22					
Bits	Bit Name	Access	Default	Description		
7:6	RESERVED	R	00	Reserved.		
5:0	ICH9[5:0]	R/W	111111	Channel 9 LED current analog dimming register. The current can be calculated with the following equation: $I_{\text{LED}} = \frac{Code}{63} \times ISET$		

Channel 9 PWM Dimming Duty Setting Register (LSB)

	Addr: 0x23						
Bits	Bit Name	Access	Default	Description			
7:4	RESERVED	R	0000	Reserved.			
3:0	PWM9[3:0]	R/W	1111	Channel 9 LED current PWM dimming duty setting register, 4LSB. The dimming duty only changes when the 8MSB are written.			

Channel 9 PWM Dimming Duty Setting Register (MSB)

	Addr: 0x24				
Bits	Bit Name	Access	Default	Description	
7:0	PWM9[11:4]	R/W	11111111	Channel 9 LED current PWM dimming duty setting register, 8MSB. The dimming duty only changes when the 8MSB are written.	

Channel 10 LED Current Setting Register

	Addr: 0x25						
Bits	Bit Name	Access	Default	Description			
7:6	RESERVED	R	00	Reserved.			
5:0	ICH10[5:0]	R/W	111111	Channel 10 LED current analog dimming register. The current can be calculated with the following equation: $I_{\text{LED}} = \frac{Code}{63} \times ISET$			

Channel 10 PWM Dimming Duty Setting Register (LSB)

	Addr: 0x26					
Bits	Bit Name	Access	Default	Description		
7:4	RESERVED	R	0000	Reserved.		
3:0	PWM10[3:0]	R/W	1111	Channel 10 LED current PWM dimming duty setting register, 4LSB. The dimming duty only changes when the 8MSB are written.		

Channel 10 PWM Dimming Duty Setting Register (MSB)

	Addr: 0x27					
Bits	Bit Name	Access	Default	Description		
7:0	PWM10[11:4]	R/W	11111111	Channel 10 LED current PWM dimming duty setting register, 8MSB. The dimming duty only changes when the 8MSB are written.		

Channel 11 LED Current Setting Register

	Addr: 0x28					
Bits	Bit Name	Access	Default	Description		
7:6	RESERVED	R	00	Reserved.		
5:0	ICH11[5:0]	R/W	111111	Channel 11 LED current analog dimming register. The current can be calculated with the following equation: $I_{\text{LED}} = \frac{Code}{63} \times ISET$		

Channel 11 PWM Dimming Duty Setting Register (LSB)

	Addr: 0x29						
Bits	Bit Name	Access	Default	Description			
7:4	RESERVED	R	0000	Reserved.			
3:0	PWM11[3:0]	R/W	1111	Channel 11 LED current PWM dimming duty setting register, 4LSB. The dimming duty only changes when the 8MSB are written.			

Channel 11 PWM Dimming Duty Setting Register (MSB)

	Addr: 0x2A					
Bits Bit Name Access Default Description						
7:0	PWM11[11:4]	R/W	11111111	Channel 11 LED current PWM dimming duty setting register, 8MSB. The dimming duty only changes when the 8MSB are written.		

Channel 12 LED Current Setting Register

	Addr: 0x2B					
Bits	Bit Name	Access	Default	Description		
7:6	RESERVED	R	00	Reserved.		
5:0	ICH12[5:0]	R/W	111111	Channel 12 LED current analog dimming register. The current can be calculated with the following equation: $I_{\text{LED}} = \frac{Code}{63} \times ISET$		

Channel 12 PWM Dimming Duty Setting Register (LSB)

	Addr: 0x2C						
Bits	Bit Name	Access	Default	Description			
7:4	RESERVED	R	0000	Reserved.			
3:0	PWM12[3:0]	R/W	1111	Channel 12 LED current PWM dimming duty setting register, 4LSB. The dimming duty only changes when the 8MSB are written.			

Channel 12 PWM Dimming Duty Setting Register (MSB)

	Addr: 0x2D				
Bits	Bit Name	Access	Default	Description	
7:0	PWM12[11:4]	R/W	11111111	Channel 12 LED current PWM dimming duty setting register, 8MSB. The dimming duty only changes when the 8MSB are written.	

Channel 13 LED Current Setting Register

	Addr: 0x2E					
Bits	Bit Name	Access	Default	Description		
7:6	RESERVED	R	00	Reserved.		
5:0	ICH13[5:0]	R/W	111111	Channel 13 LED current analog dimming register. The current can be calculated with the following equation: $I_{\text{LED}} = \frac{Code}{63} \times ISET$		

Channel 13 PWM Dimming Duty Setting Register (LSB)

	Addr: 0x2F							
Bits	Bits Bit Name Access Default Description							
7:4	RESERVED	R	0000	Reserved.				
3:0	PWM13[3:0]	R/W	1111	Channel 13 LED current PWM dimming duty setting register, 4LS The dimming duty only changes when the 8MSB are written.				

Channel 13 PWM Dimming Duty Setting Register (MSB)

	Addr: 0x30						
Bits Bit Name Access Default				Description			
7:0	PWM13[11:4]	R/W	11111111	Channel 13 LED current PWM dimming duty setting register, 8MSB. The dimming duty only changes when the 8MSB are written.			

Channel 14 LED Current Setting Register

	Addr: 0x31							
Bits	Bit Name	Access	Default	Description				
7:6	RESERVED	R	00	Reserved.				
5:0	ICH14[5:0]	R/W	111111	Channel 14 LED current analog dimming register. The current can be calculated with the following equation: $I_{\text{LED}} = \frac{Code}{63} \times ISET$				

Channel 14 PWM Dimming Duty Setting Register (LSB)

	Addr: 0x32							
Bits	Bits Bit Name Access Default Description							
7:4	RESERVED	R	0000	Reserved.				
3:0	3:0 PWM14[3:0] R/W 1111 Channel 14 LED current PWM dimming duty setting register, 4LS The dimming duty only changes when the 8MSB are written.							

Channel 14 PWM Dimming Duty Setting Register (MSB)

	Addr: 0x33						
Bits Bit Name Access Default				Description			
7:0	PWM14[11:4]	R/W	11111111	Channel 14 LED current PWM dimming duty setting register, 8MSB. The dimming duty only changes when the 8MSB are written.			

Channel 15 LED Current Setting Register

	Addr: 0x34							
Bits	Bit Name	Access	Default	Description				
7:6	RESERVED	R	00	Reserved.				
5:0	ICH15[5:0]	R/W	111111	Channel 15 LED current analog dimming register. The current can be calculated with the following equation: $I_{\text{LED}} = \frac{Code}{63} \times ISET$				

Channel 15 PWM Dimming Duty Setting Register (LSB)

	Addr: 0x35								
Bits	Bits Bit Name Access Default Description								
7:4	RESERVED	R	0000	Reserved.					
3:0	PWM15[3:0]	R/W	1111	Channel 15 LED current PWM dimming duty setting register, 4LSB The dimming duty only changes when the 8MSB are written.					

Channel 15 PWM Dimming Duty Setting Register (MSB)

	Addr: 0x36						
Bits	Bits Bit Name Access Default Description						
7:0	PWM15[11:4]	R/W	11111111	Channel 15 LED current PWM dimming duty setting register, 8MSB. The dimming duty only changes when the 8MSB are written.			

Channel 16 LED Current Setting Register

	Addr: 0x37								
Bits	Bit Name	Access	Default	Description					
7:6	RESERVED	R	00 Reserved.						
5:0	ICH16[5:0]	R/W	111111	Channel 16 LED current analog dimming register. The current can be calculated with the following equation: $I_{\text{LED}} = \frac{Code}{63} \times ISET$					

Channel 16 PWM Dimming Duty Setting Register (LSB)

	Addr: 0x38							
Bits	Bits Bit Name Access Default Description							
7:4	RESERVED	R	0000	Reserved.				
3:0	3:0 PWM16[3:0] R/W 1111 Channel 16 LED current PWM dimming duty setting register, 4LS The dimming duty only changes when the 8MSB are written.							

Channel 16 PWM Dimming Duty Setting Register (MSB)

	Addr: 0x39						
Bits	Bits Bit Name Access Default Description						
7:0	PWM16[11:4]	R/W	111111111	Channel 16 LED current PWM dimming duty setting register, 8MSB. The dimming duty only changes when the 8MSB are written.			

© 2021 MPS. All Rights Reserved.

APPLICATION INFORMATION

LED Current Setting

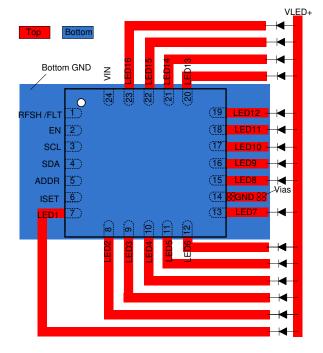
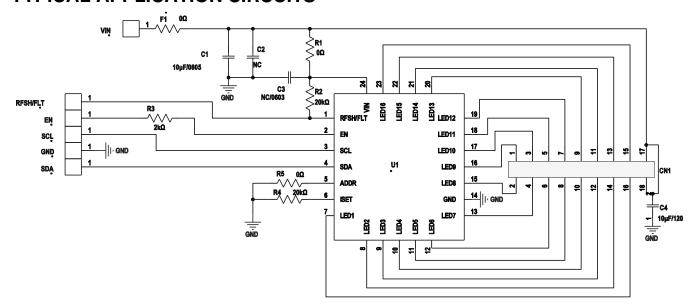
Connect a resistor from the ISET pin to GND to set the LED current for all 16 channels. The LED current (I_{LED}) can be calculated with Equation (5):

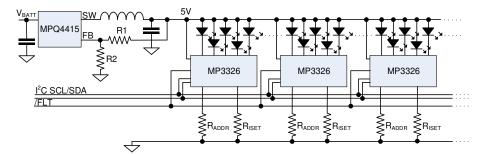
$$I_{LED}(mA) = \frac{500}{R_{ISET}(k\Omega)}$$
 (5)

For a maximum 50mA I_{LED} , ensure that $V_{IN} \ge 4.5V$ to power the IC.

PCB Layout Guidelines

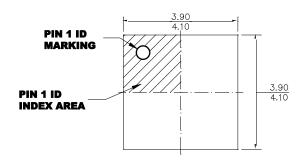
The traces from the LED anode to the LEDx pins must be wide enough to support the set current (up to 50mA) (see Figure 6).

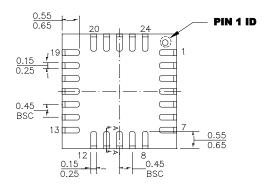




Figure 6: Recommended PCB Layout

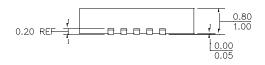
TYPICAL APPLICATION CIRCUITS

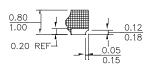
Figure 7: Typical Application Circuit



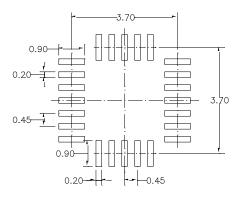

Figure 8: Typical System Application Circuit

PACKAGE INFORMATION


QFN-24 (4mmx4mm) with Wettable Flank



TOP VIEW


BOTTOM VIEW

SIDE VIEW

SECTION A-A

RECOMMENDED LAND PATTERN

NOTE:

- 1) THE LEAD SIDE IS WETTABLE.
- 2) ALL DIMENSIONS ARE IN MILLIMETERS.
- 3) LEAD COPLANARITY SHALL BE 0.08 MILLIMETERS MAX.
- 4) JEDEC REFERENCE IS MO-220.
- 5) DRAWING IS NOT TO SCALE.

CARRIER INFORMATION

Part Number	Package	Quantity/	Quantity/	Reel	Carrier Tape	Carrier
	Description	Reel	Tube	Diameter	Width	Tape Pitch
MP3326GR-Z	QFN-24 (4mmx4mm)	5000	N/A	13in	12mm	8mm

REVISION HISTORY

Revision #	Revision Date	Description	Pages Updated
1.0	1/4/2021	Initial Release	-

Notice: The information in this document is subject to change without notice. Please contact MPS for current specifications. Users should warrant and guarantee that third-party Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not assume any legal responsibility for any said applications.