MAX2450 ## MIXIM ## 3V. Ultra-Low-Power Quadrature Modulator/Demodulator #### **General Description** The MAX2450 combines a quadrature modulator and quadrature demodulator with a supporting oscillator and divide-by-8 prescaler on a monolithic IC. It operates from a single +3V supply and draws only 5.9mA. The demodulator accepts an amplified and filtered IF signal in the 35MHz to 80MHz range, and demodulates it into I and Q baseband signals with 51dB of voltage conversion gain. The IF input is terminated with a 400Ω thinfilm resistor for matching to an external IF filter. The baseband outputs are fully differential and have 1.2Vp-p signal swings. The modulator accepts differential I and Q baseband signals with amplitudes up to 1.35Vp-p and bandwidths to 15MHz, and produces a differential IF signal in the 35MHz to 80MHz range. Pulling the CMOS-compatible ENABLE pin low shuts down the MAX2450 and reduces the supply current to less than 1µA. To minimize spurious feedback, the MAX2450's internal oscillator is set at twice the IF via external tuning components. The oscillator and associated phase shifters produce differential signals exhibiting low amplitude and phase imbalance, vielding modulator sideband rejection of 38dB. The MAX2450 comes in 20-pin SO and QSOP packages. ## Applications Digital Cordless Phones GSM and North American Cellular Phones Wireless LANs Digital Communications Two-Way Pagers ### Pin Configuration #### Features - Combines Quadrature Modulator and Demodulator - ♦ Integrated Quadrature Phase Shifters - ♦ On-Chip Oscillator (Requires External Tuning Circuit) - ♦ On-Chip Divide-by-8 Prescaler - ♦ Modulator Input Bandwidth Up to 15MHz - ♦ Demodulator Output Bandwidth Up to 9MHz - ♦ 51dB Demodulator Voltage Conversion Gain - **♦ CMOS-Compatible Enable** - ♦ 5.9mA Operating Supply Current 1µA Shutdown Supply Current #### Ordering Information | PART | TEMP. RANGE | PIN-PACKAGE | |------------|--------------|-------------| | MAX2450CWP | 0°C to +70°C | 20 Wide SO | | MAX2450CEP | 0°C to +70°C | 20 QSOP* | ^{*} Contact factory for availability. ## Functional Diagram MIXIM Maxim Integrated Products 11-13 11 #### **ABSOLUTE MAXIMUM RATINGS** | Vcc. LO Vcc to GND | 0.3V to +4.5V | |--------------------------------|----------------------------------| | ENABLE, TANK, TANK, I_IN, I_IN | √, Q_IN, | | Q_IN to GND | 0.3V to (V _{CC} + 0.3V) | | IF_IN to GND | 0.3V to +1.5V | | Continuous Power Dissipation (T _A = +70°C) | | |---|---------------| | Wide SO (derate 10.00mW/°C above +70°C) | 800mW | | QSOP (derate 9.1mW/°C above +70°C) | 727mW | | Operating Temperature Range | 0°C to +70°C | | Storage Temperature Range6 | 5°C to +165°C | | Lead Temperature (soldering, 10sec) | +300°C | Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. #### DC ELECTRICAL CHARACTERISTICS $(V_{CC} = LO_V_{CC} = \overline{LO}N_C = 2.7V \text{ to } 3.3V, \text{ ENABLE} = V_{CC} - 0.4, \text{ GND} = LO_GND = 0V, \text{ I_IN} = \overline{I_IN} = Q_IN = \overline{Q_IN} = IF_IN = TANK = OPEN, TA = 0°C \text{ to } +70°C, \text{ unless otherwise noted.})$ | PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX | UNITS | |--|------------------------------------|---------------|-----------|-----------|------|-------| | Supply Voltage Range | Vcc, LO_Vcc | | 2.7 | | 3.3 | V | | Supply Current | (CC(ON) | | | 5.9 | 8.2 | mA | | Shutdown Supply Current | ICC(OFF) | ENABLE = 0.4V | | 2 | 20 | μA | | Enable/Disable Time | ton/off | l | | 10 | | μs | | ENABLE Bias Current | IEN | ENABLE = VCC | | 1 | 3 | μA | | ENABLE High Voltage | VENH | | Vcc - 0.4 | | | V | | ENABLE Low Voltage | VENL | | | | 0.4 | V | | I_IN, I_IN, Q_IN, Q_IN
Self-Bias DC Voltage Level | VI_IN/ <u>I_IN</u> ,
VQ_IN/Q_IN | | 1.25 | 1.5 | 1.75 | V | | Modulator Differential Input
Impedance | ZI_IN/Ī_ĪN.
ZQ_IN/Q_IN | | 35 | 44 | | kΩ | | IF_OUT, IF_OUT DC Bias Voltage | VIF_OUT/IF_OUT | | | /cc - 1.5 | | ٧ | | Demodulator IF Input Impedance | Z _{IF_IN} | T | 320 | 400 | 480 | Ω | | Demodulator I and Q Baseband
DC Offset | | | | ±11 | ±50 | mV | | I_OUT, I_OUT, Q_OUT, Q_OUT VI_OUT/I_ | | | | 1.2 | | V | ### **AC ELECTRICAL CHARACTERISTICS** $(\text{MAX2450 EV kit using MAX2450CWP, V}_{CC} = \text{LO_V}_{CC} = \text{ENABLE} = 3.0V, \\ fl_{O} = 140\text{MHz}, \\ fl_{IN}\overline{\mid IN} = fq_{IN}\overline{\mid IN} = 600\text{kHz}, \\ Vl_{IN}\overline{\mid IN} = VQ_{IN}\overline{\mid Q_{IN}} = 1.2Vp_{p}, \\ fl_{F}IN = 70.1\text{MHz}, \\ Vl_{F}IN = 2.82\text{mVp-p}, \\ TA = +25^{\circ}\text{C}, \\ unless otherwise noted.)$ | PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX | UNITS | |---------------------------------|-----------|---|-----|---------|------|------------------| | DEMODULATOR | • | | | | | | | I and Q Amplitude Balance | | | | < ±0.45 | | dB | | I and Q Phase Accuracy | | | | < ±1.3 | | degrees | | Voltage Conversion Gain | | | | 51 | | dB | | Allowable I and Q Voltage Swing | | (Note 1) | | | 1.35 | V _{p-p} | | Noise Figure | NF | | | 18 | | dB | | I and Q IM3 Level | IM3I/Q | (Note 2) | | -44 | | dBc | | I and Q IM5 Level | IM5I/Q | (Note 2) | | -60 | | dBc | | I and Q Signal 3dB Bandwidth | BWDEMOD | | | 9 | | MHz | | Oscillator Frequency Range | fLO | (Notes 1, 3) | 70 | | 160 | MHz | | LO Phase Noise | | 10kHz offset | | -80 | | dBc/Hz | | PRE_OUT Output Voltage | VPRE_OUT | $R_L = 10k\Omega$, $C_L < 6pF$ | | 0.35 | | V _{p-p} | | PRE_OUT Slew Rate | SRPRE_OUT | $R_L = 10k\Omega$, $C_L < 6pF$, rising edge | | 60 | | V/µs | AC ELECTRICAL CHARACTERISTICS (continued) (MAX2450 EV kit using MAX2450CWP, VCC = LO_VCC = ENABLE = 3.0V, fLO = 140MHz, fLIN/ \overline{L} IN = fQ_IN/ \overline{Q} IN = 600kHz, VI_IN/ \overline{L} IN = VQ_IN/ \overline{Q} IN = 1.2Vp-p, fIF_IN = 70.1MHz, VIF_IN = 2.82mVp-p, TA = +25°C, unless otherwise noted.) | PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX | UNITS | |--|----------------------------|--|------|-----|------|-------------------| | MODULATOR | · . | | | - | | | | Allowable Differential Input Voltage | VI_IN/I_IN,
VQ_IN/Q_IN | (Note 1) | | - | 1.35 | V _{p-p} | | Input Common-Mode Voltage Range | | | 1.25 | | 1.75 | V | | I and Q Signal 3dB Bandwidth | BWMOD | | | 15 | | MHz | | IF Differential Output Voltage | V _{IF_OUT/IF_OUT} | $V_{L}N_{L}N_{L}N_{L}N_{L}N_{L}N_{L}N_{L}N$ | | 65 | | mV _{p-p} | | IF Output IM3 Level | IM3 _{IF} | V _{I_IN/I_IN} = 1.35Vp-p composite (Note 4) | | -60 | | dBc | | IF Output IM5 Level | IM5 _{IF} | VI_IN/I_IN = 1.35Vp-p composite (Note 4) | | -60 | | dBc | | Sideband Rejection | | | | 38 | | dBc | | Carrier Suppression at Modulator
Output | | | | -36 | | dBc | Note 1: Guaranteed by design, not tested. Note 2: $f_{IF} = 2$ tones at 70.10MHz and 70.11MHz. $V_{IF} = 1.41$ mVp-p per tone. Note 3: The frequency range can be extended in either direction, but has not been characterized. At higher frequencies, the modulator IF output amplitude may decrease and distortions may increase. Note 4: Q_IN/Q_IN ports are terminated. fl_IN/I_IN = 2 tones at 550kHz and 600kHz. ## **Typical Operating Characteristics** (MAX2450 EV Kit using MAX2450CWP, VCC = LO_VCC = ENABLE = 3.0V, fLO = 140MHz, fl IN/IN = fQ IN/Q IN = 600kHz, VI IN/I IN = $V_{O,IN/O,IN}$ = 1.2 V_{D-D} , fig. IN = 70.1MHz, Vig. IN = 2.82m V_{D-D} , TA = +25°C, unless otherwise noted.) ## Typical Operating Characteristics (continued) (MAX2450 EV Kit using MAX2450CWP, $V_{CC} = LO_{VCC} = ENABLE = 3.0V$, $f_{LO} = 140MHz$, $f_{L|N/L|N} = f_{Q_L|N/Q_L|N} = 600kHz$, $V_{1_L|N/L|N} = V_{Q_L|N/Q_L|N} = 1.2V_{p-p}$, $f_{1_R} = 70.1MHz$, $V_{1_R} = 2.82mV_{p-p}$, $T_{A} = +25^{\circ}C$, unless otherwise noted.) #### **MODULATOR OUTPUT SPECTRUM** ### Typical Operating Characteristics (continued) (MAX2450 EV Kit using MAX2450 CWP, $V_{CC} = LO_V_{CC} = ENABLE = 3.0V$, $f_{LO} = 140 MHz$, $f_{L_1N/1_IN} = f_{Q_1N/Q_1N} = 600 kHz$, $V_{L_1N/1_IN} = V_{Q_1N/Q_1N} = 1.2V_{D-D}$, $f_{IF_1N} = 70.1 MHz$, $V_{IF_1N} = 2.82 mV_{D-D}$, $T_{A} = +25 °C$, unless otherwise noted.) 11 | _Pin Descrip | tion | | |--------------|------|--| |--------------|------|--| | PIN | NAME | FUNCTION | |-------|---------|---| | 1 | IF_OUT | Modulator IF Output | | 2 | IF_OUT | Modulator IF Inverting Output | | 3, 19 | GND | Ground | | 4 | I_IN | Baseband Inphase Input | | 5 | I_IN | Baseband Inphase Inverting Input | | 6 | Q_IN | Baseband Quadrature Input | | 7 | Q_IN | Baseband Quadrature Inverting Input | | 8 | ENABLE | Enable Control, active high | | 9 | PRE_OUT | Local-Oscillator, Divide-by-8, Prescaled Output | | 10 | LO_Vcc | Local-Oscillator Supply. Bypass separately from VCC. | | 11 | TANK | Local-Oscillator Resonant Tank Input (Figure 4) | | 12 | TANK | Local-Oscillator Resonant Tank Inverting Input (Figure 4) | | 13 | LO_GND | Local-Oscillator Ground | | 14 | Q_OUT | Demodulator Quadrature Inverting Output | | 15 | Q_OUT | Demodulator Quadrature Output | | 16 | I_OUT | Demodulator Inphase Inverting Output | | 17 | I_OUT | Demodulator Inphase Output | | 18 | Vcc | Modulator and Demodulator Supply | | 20 | IF_IN | Demodulator iF Input | Figure 1. Typical Application Block Diagram Figure 2. Local-Oscillator Equivalent Circuit Figure 3. Modulator Output Level vs. Load Resistance ## **Detailed Description** The following sections describe each of the functional blocks shown in the *Functional Diagram*. They also refer to the Typical Application Block Diagram (Figure 1). #### Demodulator The demodulator contains a single-ended-to-differential converter, two Gilbert-cell multipliers, and two fixed gain stages. The IF signal should be AC coupled into IF_IN. Internally, IF_IN is terminated with a 400 Ω resistor to GND and provides a gain of 14dB. This amplified IF signal is fed into the I and Q mixers for demodulation. The multipliers mix the IF signal with the quadrature LO signals, resulting in baseband I and Q signals. The conversion gain of the multipliers is 15dB. These signals are further amplified by 21dB by the baseband amplifiers. The baseband I and Q amplifier chains are DC coupled. #### Local Oscillator The local-oscillator section is formed by an emitter-coupled differential pair. Figure 2 shows the equivalent local-oscillator circuit schematic. An external LC resonant tank determines the oscillation frequency, and the Q of this resonant tank affects the oscillator phase noise. The oscillation frequency is twice the IF frequency, so that the quadrature phase generator can use two latches to generate precise quadrature signals. The oscillator may be overdriven by an external source. The source should be AC coupled into TANK/TANK, and should provide 200mVp-p levels. A choke (typically 2.2 μ H) is required between TANK and TANK. Differential input impedance at TANK/TANK is 10k Ω . For single-ended drive, connect an AC bypass capacitor (1000pF) from TANK to GND, and AC couple TANK to the source. #### **Quadrature Phase Generator** The quadrature phase generator uses two latches to divide the local-oscillator frequency by two, and generates two precise quadrature signals. Internal limiting amplifiers shape the signals to approximate square waves to drive the Gilbert-cell mixers. The inphase signal (at half the local-oscillator frequency) is further divided by four for the prescaler output. #### Prescaler The prescaler output, PRE_OUT, is buffered and swings typically 0.35Vp-p with a 10k Ω and 6pF load. It can be AC-coupled to the input of a frequency synthesizer. #### Modulator The modulator accepts I and Q differential baseband signals up to $1.35V_{p-p}$ with frequencies up to 1.5MHz, and upconverts them to the IF frequency. Since these inputs are biased internally at around 1.5V, I and Q signals should be capacitively coupled into these high-impedance ports (the differential input impedance is approximately $44k\Omega$). The self-bias design yields very low on-chip offset, resulting in excellent carrier sup- 11 pression. Alternatively, a differential DAC may be connected without AC coupling, as long as a common-mode voltage range of 1.25V to 1.75V is maintained. For single-ended drive, connect IN and QND via AC-coupling capacitors (0.1µF) to GND. The IF output is designed to drive a high impedance (> $20k\Omega$), such as an IF buffer or an upconverter mixer. IF_OUT/IF_OUT must be AC coupled to the load. Impedances as low as 200Ω can be driven with a decrease in output amplitude (Figure 3). To drive a single-ended load, AC couple and terminate $\overline{\text{IF}_OUT}$ with a resistive load equal to the load at IF_OUT. #### Master Bias During normal operation, ENABLE should remain above V_{CC} - 0.4V. Pulling the ENABLE input low shuts off the master bias and reduces the circuit current to less than $2\mu A$. The master bias section includes a bandgap reference generator and a PTAT (Proportional To Absolute Temperature) current generator. ### Applications Information Figure 4 shows the implementation of a resonant tank circuit. The inductor, two capacitors, and a dual varactor form the oscillator's resonant circuit. In Figure 4, the oscillator frequency ranges from 130MHz to 160MHz. To ensure reliable start-up, the inductor is directly connected across the local oscillator's tank ports. The two 33pF capacitors affect the Q of the resonant circuit. Other values may be chosen to meet individual application requirements. Use the following formula to determine the oscillation frequency: $$f_{o} = \frac{1}{2\pi\sqrt{L_{EQ}C_{EQ}}}$$ where $$C_{EQ} = \frac{1}{\frac{1}{C1} + \frac{1}{C2} + \frac{2}{C_{VAR}}} + C_{STRAY}$$ and where CSTRAY = parasitic capacitance and LSTRAY = parasitic inductance. To alter the oscillation frequency range, change the inductance, the capacitance, or both. For best phase-noise performance keep the Q of the resonant tank as high as possible: $$Q = R_{EQ} \sqrt{\frac{C_{EQ}}{L_{EQ}}}$$ where REQ $\approx 10k\Omega$ (Figure 2). The oscillation frequency can be changed by altering the control voltage, VCTRL. Figure 4. Typical Resonant Tank Circuit