

May 2000

ТΜ

FQD14N15 / FQU14N15 **150V N-Channel MOSFET**

General Description

These N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, planar stripe, DMOS technology.

This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for low voltage applications such as audio amplifire, high efficiency switching for DC/DC converters, and DC motor control, uninterrupted power supply.

Features

- 10A, 150V, R_{DS(on)} = 0.21Ω @V_{GS} = 10 V
 Low gate charge (typical 18 nC)
- Low Crss (typical 22 pF) ٠
- Fast switching
- · 100% avalanche tested
- · Improved dv/dt capability

Absolute Maximum Ratings T_c = 25°C unless otherwise noted

Symbol	Parameter		FQD14N15 / FQU14N15	Units
V _{DSS}	Drain-Source Voltage		150	V
I _D	Drain Current - Continuous ($T_c = 25^{\circ}C$)		10	А
	- Continuous (T _C = 100°C)		6.4	А
I _{DM}	Drain Current - Pulsed	(Note 1)	40	A
V _{GSS}	Gate-Source Voltage		± 25	V
E _{AS}	Single Pulsed Avalanche Energy	(Note 2)	200	mJ
I _{AR}	Avalanche Current	(Note 1)	10	A
E _{AR}	Repetitive Avalanche Energy	(Note 1)	5.0	mJ
dv/dt	Peak Diode Recovery dv/dt	(Note 3)	5.5	V/ns
PD	Power Dissipation (T _A = 25°C) *		2.5	W
	Power Dissipation (T _C = 25°C)		50	W
	- Derate above 25°C		0.4	W/°C
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150	°C
T,	Maximum lead temperature for soldering purposes, 1/8" from case for 5 seconds		300	°C
· L				

Thermal Characteristics

Symbol	Parameter	Тур	Max	Units	
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case		2.5	°C/W	
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient *		50	°C/W	
$R_{ extsf{ heta}JA}$	Thermal Resistance, Junction-to-Ambient		110	°C/W	
* When mounted on the minimum pad size recommended (PCB Mount)					

	Parameter	Test Conditions	Min	Тур	Max	Units
	aractoristics					
BVDee	Drain-Source Breakdown Voltage	Vcs = 0 V. In = 250 µA	150			V
ΔBV _{DSS} / ΔΤ.	Breakdown Voltage Temperature Coefficient	$I_D = 250 \ \mu\text{A}$, Referenced to 25°C		0.14		V/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 150 V, V _{GS} = 0 V			1	μA
		V _{DS} = 120 V, T _C = 150°C			10	μA
GSSF	Gate-Body Leakage Current, Forward	V _{GS} = 25 V, V _{DS} = 0 V			100	nA
GSSR	Gate-Body Leakage Current, Reverse	V _{GS} = -25 V, V _{DS} = 0 V			-100	nA
On Cha	racteristics					
/ _{GS(th)}	Gate Threshold Voltage	V _{DS} = V _{GS} , I _D = 250 μA	2.0		4.0	V
	Static Drain-Source On-Resistance	$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 5.0 \text{ A}$		0.164	0.21	Ω
JFS	Forward Transconductance	$V_{\rm DS} = 40 \text{ V}, \text{ I}_{\rm D} = 5.0 \text{ A}$ (Note 4)		7.4		S
Dynam	ic Characteristics		1			T
C _{iss}	Input Capacitance	V _{DS} = 25 V, V _{GS} = 0 V,		550	715	pF
C _{oss}	Output Capacitance	f = 1.0 MHz		115	150	pF
Switchi	ing Characteristics			7.2	25	ns
Switchi	i ng Characteristics Turn-On Delay Time Turn-On Rise Time	- V _{DD} = 75 V, I _D = 14.4 A,		7.2 90	25 190	ns
Switchi d(on) r d(off)	Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time	V _{DD} = 75 V, I _D = 14.4 A, R _G = 25 Ω		7.2 90 40	25 190 90	ns ns ns
Switchi d(on) r d(off) f	Ing Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time	- V _{DD} = 75 V, I _D = 14.4 A, R _G = 25 Ω (Note 4, 5)	 	7.2 90 40 65	25 190 90 140	ns ns ns ns
Switchi d(on) r d(off) f Q _a	Ing Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge	$V_{DD} = 75 \text{ V}, \text{ I}_{D} = 14.4 \text{ A},$ $R_{G} = 25 \Omega$ (Note 4, 5)	 	7.2 90 40 65 18	25 190 90 140 23	ns ns ns ns nC
Switchi d(on) r d(off) f λ_g λ_{gs}	Image Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge	$V_{DD} = 75 \text{ V}, \text{ I}_{D} = 14.4 \text{ A},$ $R_{G} = 25 \Omega$ (Note 4, 5) $V_{DS} = 120 \text{ V}, \text{ I}_{D} = 14.4 \text{ A},$ $V_{CS} = 10 \text{ V}$	 	7.2 90 40 65 18 3.6	25 190 90 140 23	ns ns ns nc nC
Switchi d(on) r d(off) f Q _g Q _{gs} Q _{gd}	ing Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge	$V_{DD} = 75 \text{ V}, \text{ I}_{D} = 14.4 \text{ A},$ $R_{G} = 25 \Omega$ (Note 4, 5) $V_{DS} = 120 \text{ V}, \text{ I}_{D} = 14.4 \text{ A},$ $V_{GS} = 10 \text{ V}$ (Note 4, 5)		7.2 90 40 65 18 3.6 8.2	25 190 90 140 23 	ns ns ns nC nC
Switchi d(on) r d(off) f Qg Qgs Qgs Qgd Drain-S	ing Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge	$V_{DD} = 75 \text{ V}, \text{ I}_{D} = 14.4 \text{ A},$ $R_{G} = 25 \Omega$ (Note 4, 5) $V_{DS} = 120 \text{ V}, \text{ I}_{D} = 14.4 \text{ A},$ $V_{GS} = 10 \text{ V}$ (Note 4, 5) (Note 4, 5)	 	7.2 90 40 65 18 3.6 8.2	25 190 90 140 23 	ns ns ns nC nC
Switchi d(on) r d(off) f Q _g Q _{gs} Q _{gd} Drain-S s	ing Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge Source Diode Characteristics and Maximum Continuous Drain-Source Diode	$V_{DD} = 75 \text{ V}, \text{ I}_{D} = 14.4 \text{ A},$ $R_{G} = 25 \Omega$ (Note 4, 5) $V_{DS} = 120 \text{ V}, \text{ I}_{D} = 14.4 \text{ A},$ $V_{GS} = 10 \text{ V}$ (Note 4, 5) (Note 4, 5) (Note 4, 5) (Note 4, 5)	 	7.2 90 40 65 18 3.6 8.2	25 190 90 140 23 10	ns ns ns nC nC nC
Switchi d(on) r d(off) f Q _g Q _{gs} Q _{gd} Drain-S S SM	ing Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge Cource Diode Characteristics an Maximum Continuous Drain-Source Diode F	$V_{DD} = 75 \text{ V}, \text{ I}_{D} = 14.4 \text{ A},$ $R_{G} = 25 \Omega$ (Note 4, 5) $V_{DS} = 120 \text{ V}, \text{ I}_{D} = 14.4 \text{ A},$ $V_{GS} = 10 \text{ V}$ (Note 4, 5) nd Maximum Ratings Dede Forward Current Forward Current	 	7.2 90 40 65 18 3.6 8.2	25 190 90 140 23 10 40	ns ns ns nC nC nC A
Switchi d(on) r d(off) f Qg Qgs Qgd Drain-S S SM /SD	Ing Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge Cource Diode Characteristics an Maximum Continuous Drain-Source Diode F Drain-Source Diode Forward Voltage	$V_{DD} = 75 \text{ V}, \text{ I}_{D} = 14.4 \text{ A},$ $R_{G} = 25 \Omega$ (Note 4, 5) $V_{DS} = 120 \text{ V}, \text{ I}_{D} = 14.4 \text{ A},$ $V_{GS} = 10 \text{ V}$ (Note 4, 5)	 	7.2 90 40 65 18 3.6 8.2	25 190 90 140 23 10 40 1.5	ns ns ns nC nC nC A X
Switchi d(on) r d(off) f Qg Qgs Qgs Qgd Drain-S SM /SD rr	ing Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge Cource Diode Characteristics an Maximum Continuous Drain-Source Diode Forward Voltage Reverse Recovery Time	$V_{DD} = 75 \text{ V}, \text{ I}_{D} = 14.4 \text{ A},$ $R_{G} = 25 \Omega$ (Note 4, 5) $V_{DS} = 120 \text{ V}, \text{ I}_{D} = 14.4 \text{ A},$ $V_{GS} = 10 \text{ V}$ (Note 4, 5)	 	7.2 90 40 65 18 3.6 8.2 85	25 190 90 140 23 10 40 1.5 	ns ns ns nC nC nC A A A V v

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx[™] Bottomless[™] CoolFET[™] CROSSVOLT[™] E^2 CMOS[™] FACT[™] FACT Quiet Series[™] FAST[®] FAST[®] FASTr[™] GTO[™] HiSeC[™] ISOPLANAR[™] MICROWIRE[™] POP[™] PowerTrench[®] QFET[™] QS[™] Quiet Series[™] SuperSOT[™]-3 SuperSOT[™]-6 SuperSOT[™]-8 SyncFET[™] TinyLogic[™] UHC[™] VCX[™]

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR INTERNATIONAL.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to

result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.