

DS21458DK Quad T1/E1/J1 Transceiver Design Kit Daughter Card

www.maxim-ic.com

GENERAL DESCRIPTION

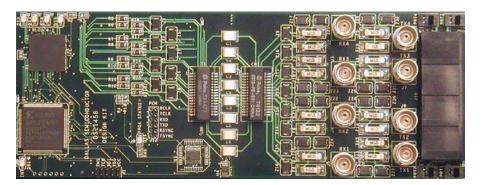
The DS21458DK is an easy-to-use evaluation board for the DS21458 quad T1/E1/J1 transceiver. The DS21458DK is intended to be used as a daughter card with the DK101 motherboard or the DK2000 motherboard. The DS21458DK comes complete with a DS21458 quad SCT, transformers, termination resistors, configuration switches, line-protection circuitry, network connectors, and motherboard connectors. The DK101/DK2000 motherboard and Dallas' ChipView software give point-and-click access to configuration and status registers from a Windows®-based PC. On-board LEDs indicate receive loss-of-signal and interrupt status. An onboard FPGA contains mux logic to connect framer ports to one another or to the DK2000 in a variety of configurations.

Each DS21458DK is shipped with a free DK101 motherboard. For complex applications, the DK2000 high-performance demo kit motherboard can be purchased separately.

Windows is a registered trademark of Microsoft Corp.

DESIGN KIT CONTENTS

DS21458DK Design Kit Daughter Card DK101 Low-Cost Motherboard CD ROM ChipView Software

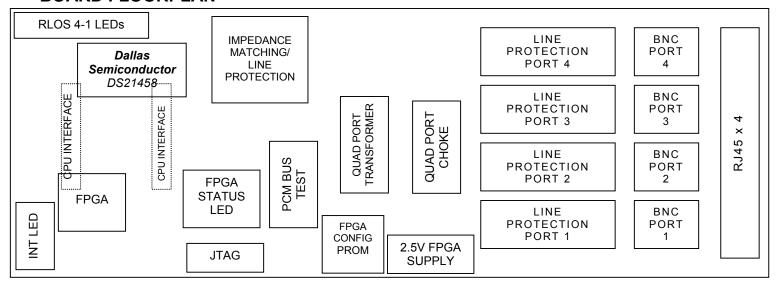

DS21458DK Data Sheet DK101 Data Sheet DS21458 Data Sheet

FEATURES

- Demonstrates Key Functions of DS21458 Quad T1/E1/J1 Transceiver
- Includes DS21458 Quad LIU, Transformers, BNC and RJ45 Network Connectors, and Termination Passives
- Compatible with DK101 and DK2000 Demo Kit Motherboards
- DK101/DK2000 and ChipView Software Provide Point-and-Click Access to the DS21458 Register Set
- All Equipment-Side Framer Pins are Easily Accessible for External Data Source/Sink
- Memory-Mapped FPGA Provides Flexible Clock/Data/Sync Connections Among Framer Ports and DK2000 Motherboard
- LEDs for Loss-of-Signal and Interrupt Status
- Easy-to-Read Silk Screen Labels Identify the Signals Associated with all Connectors, Jumpers, and LEDs
- Network Interface Protection for Overvoltage and Overcurrent Events

ORDERING INFORMATION

PART	DESCRIPTION
DS21458DK	DS21458 Design Kit Daughter Card
DS21456DK	(with included DK101 Motherboard)



1 of 32 REV: 012506

COMPONENT LIST

DESIGNATION QT		DESCRIPTION	SUPPLIER	PART
C1–C8	8	0.22μF, 50V ceramic capacitors	Panasonic	PCF1152CT-ND
C9, C10, C12, C18, C22–C33, C35, C38–C43	23	0.1μF 10%, 16V ceramic capacitors (0603)	Phycomp	06032R104K7B20D
C11, C13-C15	4	0.1μF 10%, 25V ceramic capacitors (1206)	Panasonic	ECJ-3VB1E104K
C16, C17, C19– C21, C34, C36, C45, C46	9	1μF 10%, 16V ceramic capacitors (1206)	Panasonic	ECJ-3YB1C105K
C37, C44	2	10μF 20%, 10V ceramic capacitors (1206)	Panasonic	ECJ-3YB1A106M
CH1	1	Quad-port choke	Pulse Engineering	T8132
DS1	1	LED, red, SMD	Panasonic	LN1251C
DS2-DS6	5	LED, green, SMD	Panasonic	LN1351C
F1–F16	16	1.25A, 250V fuses, SMT	Teccor	F1250T
J1	1	10-pin connectors, dual row, vertical	Digi-Key	S2012-05-ND
J2–J9	8	5-pin BNC connectors, vertical	Cambridge	CP-BNCPC-004
J10	1	8-pin, 4-port jack Right-angle RJ45	Molex	43223-8140
J11, J12	2	50-pin sockets, SMD, dual row, vertical	Samtec	TFM-125-02-S-D-LC
J13	1	12-pin connector, dual row, vertical Not populated	Digi-Key	S2012-06-ND
J14	1	1Mbit flash-based configuration memory	Xilinx	XCF01SV020C
PRT1-PRT4	4	6-pin through-hole slide switches DPDT	Тусо	SSA22
R1, R2, R4, R26, R39, R41, R45	7	10kΩ 5%, 1/10W resistors (0805)	Panasonic	ERJ-6GEYJ103V
R3, R27	2	1.0kΩ 5%, 1/10W resistors (0805)	Panasonic	ERJ-6GEYJ102V
R5–R12, R14– R21, R48	17	0Ω 5%, 1/8W resistors (1206)	Panasonic	ERJ-8GEYJ0R00V
R13, R47	2	Not populated	Panasonic	Not populated
R22-R25	4	51.1Ω 5%, 1/10W resistors (0805)	Panasonic	ERJ-6GEY51R1V
R29-R36	8	61.9Ω 1%, 1/8W resistors (1206)	Panasonic	ERJ-8ENF61R9V
R40, R42–R44, R46, R49	6	330Ω 5%, 1/10W MF resistors (0805)	Panasonic	ERA-6GEY331V
T1	1	SMT 32-pin octal T1/E1 transformer, transmit/receive, 1:2	Pulse Engineering	TX1473
U1	1	2.5V FPGA Spartan (Xilinx) 144-pin TQFP	Xilinx	XC2S50-5TQ144C
U2	1	3.3V T1/E1/J1 quad transceiver 0°C to +70°C, 256-pin BGA	Dallas Semiconductor	DS21458
U3	1	1M PROM for FPGA 44-pin TQFP	Xilinx	Not populated
U4	1	8-pin μMAX, SO 2.5V or Adj	Maxim	MAX1792EUA25
Z1–Z8	8	50A, 6V Sidactor DO214 SMD	Teccor	P0080SAMC
Z9–Z16	8	500A, 25V Sidactor DO214 SMD	Teccor	P0300SCMC
Z17–Z32	16	500A, 170V Sidactor DO214 SMD	Teccor	P1800SCMC

BOARD FLOORPLAN

BASIC CONFIGURATION

This design kit relies upon several supporting files, which are available for downloading on our website at www.maxim-ic.com/telecom. See the DS21458DK QuickView data sheet for these files.

Hardware Configuration

Using the DK101 Processor Board:

- Connect the daughter card to the DK101 processor board.
- Supply 3.3V to the banana-plug receptacles marked GND and VCC_3.3V. (The external 5V connector is unused. Additionally, the TIM 5V supply headers are unused.)
- All processor board DIP switch settings should be in the ON position with exception of the flash programming switch, which should be OFF.
- From the Programs menu, launch the host application named ChipView.EXE. Run the ChipView application. If
 the default installation options were used, click the Start button on the Windows toolbar and select Programs →
 ChipView → ChipView.

Using the DK2000 Processor Board:

- Connect the daughter card to the DK2000 processor board.
- Connect J1 to the power supply that is delivered with the kit. Alternately, a PC power supply may be connected to connector J2.
- From the Programs menu, launch the host application named ChipView.EXE. Run the ChipView application. If
 the default installation options were used, click the Start button on the Windows toolbar and select Programs →
 ChipView → ChipView.

General

- Upon power-up, the RLOS LEDs (green) will not be lit, the INT LED (red) will not be lit, but the FPGA Status LED (green) will be lit.
- When operating in E1 mode, slide SW1–SW4 to E1 Mode (grounding the BNC shell). When operating in T1 mode, slide SW1–SW4 to T1 Mode.

Miscellaneous

- Clock frequencies and certain pin bias levels are provided by a register-mapped FPGA that is on the DS21458 daughter card.
- The definition file for this FPGA is named DS21458DC_FPGA.def. See <u>Table 2</u> for the FPGA Register Map definitions. A drop-down menu on the top of the screen allows for switching between definition files.
- All files referenced above are available for download as described in the *Basic Configuration* section.

Quick Setup (Demo Mode)

- The PC will load ChipView offering a choice among DEMO MODE, REGISTER VIEW, and TERMINAL MODE.
 Select Demo Mode.
- The program will request a configuration file. Select among the displayed files, which are DS2155_E1_DSNCOM_DRVR.cfg or DS2155_T1_DSNCOM_DRVR.cfg.
- The Demo Mode screen will appear. Upon external loopback the RLOS indicators will turn green.
- Note: Demo Mode interacts with the device driver, which resides in the DK101/DK2000 firmware. The current
 implementation of this driver is for one device. As such, the demo mode will only interact with Port 1. With
 minor changes, the device driver is extendible to N devices.

Quick Setup (Register View)

- The PC will load ChipView offering a choice among DEMO MODE, REGISTER VIEW, and TERMINAL MODE. Select Register View.
- The program will request a definition file. Select DS21458DC_FPGA.def through the Links section. This will also load DS21458DC.def.
- The Register View Screen will appear, showing the register names, acronyms, and values for the DS21458.
- Predefined Register settings for several functions are available as initialization files.
 - INI files are loaded by selecting the menu File→Reg Ini File→Load Ini File.
 - Load the INI file DS21458_T1_BERT_ESF.ini.
 - After loading the INI file, the following may be observed:
 - o The RLOS LEDs turns green upon external loopback.
 - O All four ports of the DS21458 begin transmitting a Daly pattern. When external loopback is applied, the BERT bit count registers BBC1 to BBC3 and BEC1 to BEC3 may be updated by clearing and setting BC1.LC and clicking the 'Read All' button.

ADDRESS MAP

DK101 daughter card address space begins at 0x81000000

DK2000 daughter card address space begins at:

0x30000000 for slot 0

0x40000000 for slot 1

0x50000000 for slot 2

0x60000000 for slot 3

All offsets given below are relative to the beginning of the daughter card address space (shown above).

Table 1. Daughter Card Address Map

OFFSET	DEVICE	DESCRIPTION
0X0000 to 0X0015	FPGA	Board identification and clock/signal routing
0X1000 to 0X10ff	T1/E1/J1 Transceiver #1	DS21458 T1/E1/J1 transceiver, port 1
0X1100 to 0X11ff	T1/E1/J1 Transceiver #2	DS21458 T1/E1/J1 transceiver, port 2
0X1200 to 0X12ff	T1/E1/J1 Transceiver #3	DS21458 T1/E1/J1 transceiver, port 3
0X1300 to 0X13ff	T1/E1/J1 Transceiver #4	DS21458 T1/E1/J1 transceiver, port 4

Registers in the FPGA can be easily modified using the ChipView host-based user-interface software along with the definition file named "DS21458DC_FPGA.def."

FPGA REGISTER MAP

Table 2. FPGA Register Map

OFFSET	NAME	TYPE	DESCRIPTION
0X0000	BID	Read Only	BOARD ID
0X0002	XBIDH	Read Only	HIGH NIBBLE EXTENDED BOARD ID
0X0003	XBIDM	Read Only	MIDDLE NIBBLE EXTENDED BOARD ID
0X0004	XBIDL	Read Only	LOW NIBBLE EXTENDED BOARD ID
0X0005	BREV	Read Only	BOARD FAB REVISION
0X0006	AREV	Read Only	BOARD ASSEMBLY REVISION
0X0007	PREV	Read Only	PLD REVISION
0X0011	MCSR	Control	DS21458 MCLK Pin Source
0X0012	TCSR	Control	DS21458 TCLK Pin Source
0X0013	SYSCLKT	Control	DS21458 TSYSCLK Pin Setting
0X0014	SYSCLKR	Control	DS21458 RSYSCLK Pin Setting
0X0015	SYNC1	Control	DS21458 TSYNC Source
0X0016	SYNC2	Control	DS21458 TSSYNC Source
0X0017	SYNC3	Control	DS21458 RSYNC Source
0X0018	TSERS	Control	TSER Source
0X0019	PRSER	Control	PCM RSER Source
0X001A	PSYNC	Control	PCM RSYNC/TSYNC Source
0X001B	PCLK	Control	PCM RCLK/TCLK Source

ID REGISTERS

BID: BOARD ID (Offset = 0X0000)

BID is read only with a value of 0xD.

XBIDH: HIGH NIBBLE EXTENDED BOARD ID (Offset = 0X0002)

XBIDH is read only with a value of 0x0.

XBIDM: MIDDLE NIBBLE EXTENDED BOARD ID (Offset = 0X0003)

XBIDM is read only with a value of 0x1.

XBIDL: LOW NIBBLE EXTENDED BOARD ID (Offset = 0X0004)

XBIDL is read only with a value of 0x6.

BREV: BOARD FAB REVISION (Offset = 0X0005)

BREV is read only and displays the current fab revision.

AREV: BOARD ASSEMBLY REVISION (Offset = 0X0006)

AREV is read only and displays the current assembly revision.

PREV: PLD REVISION (Offset = 0X0007)

PREV is read only and displays the current PLD firmware revision.

CONTROL REGISTERS

Register Name: MCSR

Register Description: DS21458 MCLK Pin Source

Register Offset: 0x0011

Bit #	7	6	5	4	3	2	1	0
Name	_	_	_	_	_	_	MSRCB	MSRCA
Default	_	_	_	_	_	_	1	1

Bit 0: DS21458 Port 1 and 3 MCLK Source (MSRCA)

0 = Connect MCLK 1 (controls port 1 and 3) to the 1.544MHz clock 1 = Connect MCLK 1 (controls port 1 and 3) to the 2.048MHz clock

Bit 1: DS21458 Port 2 and 4 MCLK Source (MSRCA)

0 = Connect MCLK 2 (controls port 2 and 4) to the 1.544MHz clock 1 = Connect MCLK 2 (controls port 2 and 4) to the 2.048MHz clock

Register Name: TCSR

Register Description: DS21458 TCLK Pin Source

Register Offset: 0x0012

Bit #	7	6	5	4	3	2	1	0
Name	T4S1	T4S0	T3S1	T3S0	T2S1	T2S0	T1S1	T1S0
Default	0	0	0	0	0	0	0	0

Bit 0 to 1: DS21458 Port 1 TCLK Source (T1S0, T1S1)

The source for TCLK 1 is Defined as shown in Table 3.

Bit 2 to 3: DS21458 Port 2 TCLK Source (T2S0, T2S1)

The source for TCLK 2 is Defined as shown in Table 3.

Bit 4 to 5: DS21458 Port 3 TCLK Source (T3S0, T3S1)

The source for TCLK 3 is Defined as shown in Table 3.

Bit 6 to 7: DS21458 Port 4 TCLK Source (T4S0, T4S1)

The source for TCLK 3 is Defined as shown in Table 3.

Table 3. TCLKx Source Definition

TxS1, TxS0	TCLK CONNECTION
00	Drive TCLK _X with the 1.544MHz clock
01	Drive TCLK _X with the 2.048MHz clock
10	Drive TCLK _X with RCLK _X
11	N/A

Register Name: SYSCLKT

Register Description: DS21458 TSYSCLK Pin Setting

Register Offset: 0x0013

Bit #	7	6	5	4	3	2	1	0
Name	R4S1	R4S0	R3S1	R3S0	R2S1	R2S0	R1S1	R1S0
Default	0	0	0	0	0	0	0	0

Bit 0 to 1: DS21458 Port 1 TSYSCLK Source (R1S0, R1S1)

The source for TSYSCLK 1 is Defined as shown in Table 4.

Bit 2 to 3: DS21458 Port 2 TSYSCLK Source (R2S0, R2S1)

The source for TSYSCLK 2 is Defined as shown in Table 4.

Bit 4 to 5: DS21458 Port 3 TSYSCLK Source (R3S0, R3S1)

The source for TSYSCLK 3 is Defined as shown in Table 4.

Bit 6 to 7: DS21458 Port 4 TSYSCLK Source (R4S0, R4S1)

The source for TSYSCLK 4 is Defined as shown in Table 4.

Table 4. TSYSCLKx Source Definition

RxS1, RxS0	TSYSCLK _x CONNECTION
00	Drive TSYSCLK _X with the 1.544MHz clock
01	Drive TSYSCLK _X with the 2.048MHz clock
10	Drive TSYSCLK _x with 8.192MHz clock
11	Drive TSYSCLK _X with DS21458 Port _X BPCLK

Register Name: SYSCLKR

Register Description: DS21458 RSYSCLK Pin Setting

Register Offset: 0x0014

Bit #	7	6	5	4	3	2	1	0
Name	T4S1	T4S0	T3S1	T3S0	T2S1	T2S0	T1S1	T1S0
Default	0	0	0	0	0	0	0	0

Bit 0 to 1: DS21458 Port 1 RSYSCLK Source (T1S0, T1S1)

The source for RSYSCLK 1 is Defined as shown in Table 5.

Bit 2 to 3: DS21458 Port 2 RSYSCLK Source (T2S0, T2S1)

The source for RSYSCLK 2 is Defined as shown in Table 5.

Bit 4 to 5: DS21458 Port 3 RSYSCLK Source (T3S0, T3S1)

The source for RSYSCLK 3 is Defined as shown in Table 5.

Bit 6 to 7: DS21458 Port 4 RSYSCLK Source (T4S0, T4S1)

The source for RSYSCLK 4 is Defined as shown in Table 5.

Table 5. RSYSCLKx Source Definition

TxS1, TxS0	RSYSCLK _x CONNECTION				
00	Drive RSYSCLK _X with the 1.544MHz clock				
01	Drive RSYSCLK _X with the 2.048MHz clock				
10	Drive RSYSCLK _X with 8.192MHz clock				
11	Drive RSYSCLK _X with DS21458 Port _X BPCLK				

Register Name: SYNC1

Register Description: DS21458 TSYNC Pin Source

Register Offset: 0x0015

Bit #	7	6	5	4	3	2	1	0
Name	_	_	_	_	T4SRC	T3SRC	T2SRC	T1SRC
Default	_	_	_	_	0	0	0	0

Bit 0: DS21458 Port 1 TSYNC Source (T1SRC)

0 = TSYNC 1 is an output, tri-state corresponding FPGA driver pin (weak pulldown)

1 = Drive TSYNC 1 with RSYNC 1

Bit 1: DS21458 Port 2 TSYNC Source (T2SRC)

0 = TSYNC 2 is an output, tri-state corresponding FPGA driver pin (weak pulldown)

1 = Drive TSYNC 2 with RSYNC 2

Bit 2: DS21458 Port 3 TSYNC Source (T3SRC)

0 = TSYNC 3 is an output, tri-state corresponding FPGA driver pin (weak pulldown)

1 = Drive TSYNC 3 with RSYNC 3

Bit 3: DS21458 Port 4 TSYNC Source (T4SRC)

0 = TSYNC 4 is an output, tri-state corresponding FPGA driver pin (weak pulldown)

1 = Drive TSYNC 4 with RSYNC 4

Note: When driving TSYNCx with RSYNCx the corresponding DS21458 port should be configured such that TSYNCx is an input (IOCR1.1 = 0) and RSYNCx is an output (IOCR1.4 = 0).

Register Name: SYNC2

Register Description: DS21458 TSSYNC Pin Source

Register Offset: 0x0016

Bit #	7	6	5	4	3	2	1	0
Name	_	_	_	_	T4SRC	T3SRC	T2SRC	T1SRC
Default	_	_	_	_	0	0	0	0

Bit 0: DS21458 Port 1 TSSYNC Source (T1SRC)

0 = Not using transmit-side elastic store, tri-state corresponding FPGA driver pin (weak pulldown)

1 = Drive TSSYNC 1 with RSYNC 1

Bit 1: DS21458 Port 2 TSSYNC Source (T2SRC)

0 = Not using transmit-side elastic store, tri-state corresponding FPGA driver pin (weak pulldown)

1 = Drive TSSYNC 2 with RSYNC 2

Bit 2: DS21458 Port 3 TSSYNC Source (T3SRC)

0 = Not using transmit-side elastic store, tri-state corresponding FPGA driver pin (weak pulldown)

1 = Drive TSSYNC 3 with RSYNC 3

Bit 3: DS21458 Port 4 TSSYNC Source (T4Source)

0 = Not using transmit-side elastic store, tri-state corresponding FPGA driver pin (weak pulldown)

1 = Drive TSSYNC 4 with RSYNC 4

Note: When driving TSSYNCx with RSYNCx the corresponding DS21458 port should be configured such that RSYNCx is an output (IOCR1.4 = 0).

Register Name: SYNC3

Register Description: DS21458 RSYNC Pin Setting

Register Offset: 0x0017

Bit #	7	6	5	4	3	2	1	0
Name	RSOR1	RSOR0	_	_	R4IO	R3IO	R2IO	R1IO
Default	0	0	_	_	0	0	0	0

Bit 0: DS21458 Port 1 RSYNC Setting (R1IO)

0 = RSYNC 1 is an output, tri-state corresponding FPGA driver pin (weak pulldown)

1 = Drive RSYNC 1 with RSYNC_x as shown in Table 6

Bit 1: DS21458 Port 2 RSYNC Setting (R2IO)

0 = RSYNC 2 is an output, tri-state corresponding FPGA driver pin (weak pulldown)

1 = Drive RSYNC 2 with RSYNC_x as shown in Table 6

Bit 2: DS21458 Port 3 RSYNC Setting (R3IO)

0 = RSYNC 3 is an output, tri-state corresponding FPGA driver pin (weak pulldown)

1 = Drive RSYNC 4 with RSYNC_x as shown in Table 6

Bit 3: DS21458 Port 4 RSYNC Setting (R4IO)

0 = RSYNC 4 is an output, tri-state corresponding FPGA driver pin (weak pulldown)

1 = Drive RSYNC 4 with RSYNC_X as shown in Table 6

Note: When driving RSYNCy with RSYNCx the corresponding DS21458 port should be configured such that RSYNCx is an output (IOCR1.4 = 0) and RSYNCy is an input (IOCR1.4 = 1).

Table 6. RSYNCx Function Definition

RSOR1, RSOR0	MASTER RSYNC DESIGNATION
00	RSYNC 1 is used to drive other RSYNC pins (providing $R_XIO = 1$)
01	RSYNC 2 is used to drive other RSYNC pins (providing R _x IO = 1)
10	RSYNC 3 is used to drive other RSYNC pins (providing $R_XIO = 1$)
11	RSYNC 4 is used to drive other RSYNC pins (providing R _x IO = 1)

Register Name: TSERS

Register Description: DS21458 TSER Pin Source

Register Offset: 0x0018

Bit #	7	6	5	4	3	2	1	0
Name	T4S1	T4S0	T3S1	T3S0	T2S1	T2S0	T1S1	T1S0
Default	0	0	0	0	0	0	0	0

Bit 0 to 1: DS21458 Port 1 TSER Source (T1S0, T1S1)

The source for TSER 1 is Defined as shown in Table 7.

Bit 2 to 3: DS21458 Port 2 TSER Source (T2S0, T2S1)

The source for TSER 2 is Defined as shown in Table 7.

Bit 4 to 5: DS21458 Port 3 TSER Source (T3S0, T3S1)

The source for TSER 3 is Defined as shown in Table 7.

Bit 6 to 7: DS21458 Port 4 TSER Source (T4S0, T4S1)

The source for TSER 4 is Defined as shown in Table 7.

Table 7. TSERx Source Definition

TxS1, TxS0	TSER _X CONNECTION
00	Tri-state TSER _X (weak pulldown)
01	Drive TSER _X with RSER _X
10	Drive TSER _X with PCM_TXD bus (DK2000 only)
11	N/A

Register Name: PRSER

Register Description: PCM RSER Source

Register Offset: 0x0019

Bit #	7	6	5	4	3	2	1	0
Name	_	_	_	_	R1EN	R1EN	R1EN	R1EN
Default	_				0	0	0	0

Bit 0 to 1: PCM RSER Source (R1EN)

0 = Do not drive DS21458 Port 1 RSER onto PCM RSER

1 = Logically OR DS21458 Port 1 RSER with selected other RSER pins and drive onto PCM RSER

Bit 2 to 3: DS21458 Port 2 TSER Source (T2S0, T2S1)

0 = Do not drive DS21458 Port 2 RSER onto PCM RSER

1 = Logically OR DS21458 Port 2 RSER with selected other RSER pins and drive onto PCM RSER

Bit 4 to 5: DS21458 Port 3 TSER Source (T3S0, T3S1)

0 = Do not drive DS21458 Port 3 RSER onto PCM RSER

1 = Logically OR DS21458 Port 3 RSER with selected other RSER pins and drive onto PCM_RSER

Bit 6 to 7: DS21458 Port 4 TSER Source (T4S0, T4S1)

0 = Do not drive DS21458 Port 4 RSER onto PCM RSER

1 = Logically OR DS21458 Port 4 RSER with selected other RSER pins and drive onto PCM RSER

Note: PRSER register is for use with the DK2000 only.

Register Name: **PSYNC**Register Description: **PCM RSYNC/TSYNC Source**

Register Offset: 0x001A

Bit #	7	6	5	4	3	2	1	0
Name	_	_	T2SR	T1SR	_	_	R2SR	R1SR
Default	_	_	0	0	_	_	0	0

Bit 0 to 1: PCM_RSYNC Source

R2SR, R1SR	PCM_RSYNC SOURCE
00	PCM_RSYNC is driven by DS21458 port 1 RSYNC
01	PCM_RSYNC is driven by DS21458 port 2 RSYNC
10	PCM_RSYNC is driven by DS21458 port 3 RSYNC
11	PCM RSYNC is driven by DS21458 port 4 RSYNC

Bit 4 to 5: PCM_TSYNC Source

T2SR, T1SR	PCM_TSYNC SOURCE
00	PCM_TSYNC is driven by DS21458 port 1 TSYNC
01	PCM_TSYNC is driven by DS21458 port 2 TSYNC
10	PCM_TSYNC is driven by DS21458 port 3 TSYNC
11	PCM_TSYNC is driven by DS21458 port 4 TSYNC

Note: PSYNC register is for use with the DK2000 only.

Register Name: PCLK
Register Description: PCM RCLK/TCLK Source
Register Offset: 0x001B

Bit #	7	6	5	4	3	2	1	0
Name	_	TCM	T2SR	T1SR	_	RCM	R2SR	R1SR
Default		0	0	0	_	0	0	0

Bit 0 to 2: PCM_RCLK Source

RCM,R2SR, R1SR	PCM_RCLK SOURCE
000	PCM_RCLK is driven by DS21458 port 1 RCLK
001	PCM_RCLK is driven by DS21458 port 2 RCLK
010	PCM_RCLK is driven by DS21458 port 3 RCLK
011	PCM_RCLK is driven by DS21458 port 4 RCLK
100	PCM_RCLK is driven by DS21458 port 1 BPCLK
101	PCM_RCLK is driven by DS21458 port 2 BPCLK
110	PCM_RCLK is driven by DS21458 port 3 BPCLK
111	PCM_RCLK is driven by DS21458 port 4 BPCLK

Bit 4 to 5: PCM_TCLK Source

TCM,T2SR, T1SR	PCM_TCLK SOURCE
000	PCM_TCLK is driven by source used for DS21458 port 1 TCLK
001	PCM_TCLK is driven by source used for DS21458 port 2 TCLK
010	PCM_TCLK is driven by source used for DS21458 port 3 TCLK
011	PCM_TCLK is driven by source used for DS21458 port 4 TCLK
100	PCM_TCLK is driven by DS21458 port 1 BPCLK
101	PCM_TCLK is driven by DS21458 port 2 BPCLK
110	PCM_TCLK is driven by DS21458 port 3 BPCLK
111	PCM_TCLK is driven by DS21458 port 4 BPCLK

Note: PCLK register is for use with the DK2000 only.

FPGA CONTROL EXAMPLES

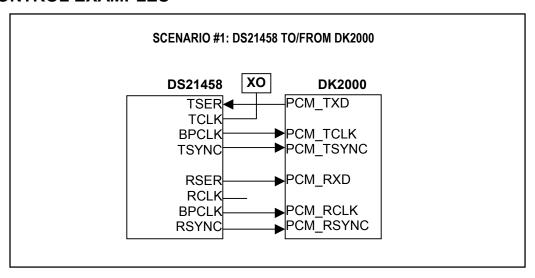


Table 8. FPGA Configuration for Scenario #1 (Port 1, T1 Mode)

REGISTER	SETTING	COMMENT					
MCSR	0X01	Drive DS21458 ports 1 and 3 MCLK with 2.048MHz					
TCSR	0X00	Drive TCLK with 1.544MHz					
SYSCLKT	0X00	Drive TSYSCLK with 1.544MHz					
SYSCLKR	0X00	Drive RSYSCLK with 1.544MHz					
SYNC1	0X00	Tri-state FPGA driver pin for DS21458 TSYNC1					
SYNC2	0X01	Drive TSSYNC1 with RSYNC1					
SYNC3 0X00		Tri-state FPGA driver pin for DS21458 RSYNC					
TSERS	0X02	Drive DS21458 TSER1 with data from PCM bus					
PRSER 0X01 PSYNC 0X00		Drive DS21458 RSER1 onto PCM bus					
		PCM RSYNC and PCM TSYNC are provided by DS21458 port 1 RSYNC and TSYNC (respectively)					
PCLK 0X44		PCM RCLK and TCLK are driven by port 1 BPCLK					

FPGA CONTROL EXAMPLES (continued)

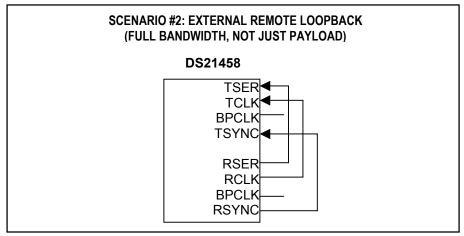


Table 9. FPGA Configuration for Scenario #2 (Port 1, T1 Mode)

REGISTER	SETTING	COMMENT					
MCSR	0X01	Drive DS21458 ports 1 and 3 MCLK with 2.048MHz					
TCSR	0X02	Drive TCLK1 with RCLK1					
SYSCLKT	0X00	Drive TSYSCLK with 1.544MHz					
SYSCLKR 0X00		Drive RSYSCLK with 1.544MHz					
SYNC1 0X01		Drive TSYNC1 with RSYNC1					
SYNC2	0X01	Drive TSSYNC1 with RSYNC1					
SYNC3 0X00		Tri-state FPGA driver pin for DS21458 RSYNC					
TSERS 0X01		Drive DS21458 TSER1 with data from RSER1					
PRSER N/A		Unused					
PSYNC N/A		Unused					
PCLK N/A		Unused					

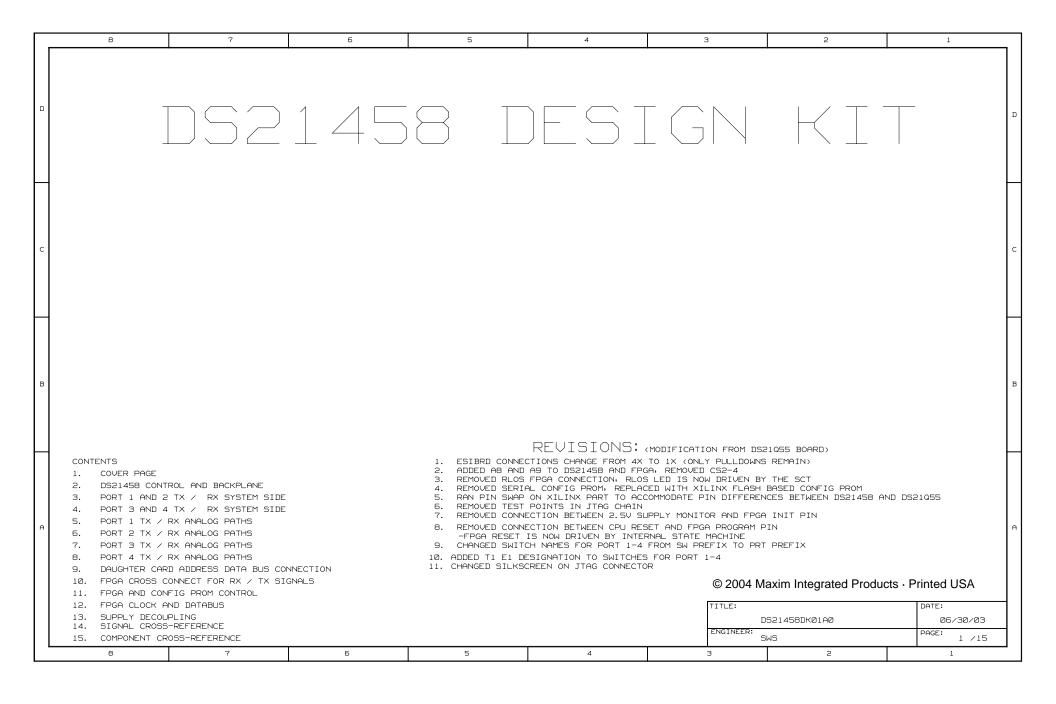
Table 10. DS21458 Partial Configuration for Scenario #2 (Port 1, T1 Mode)

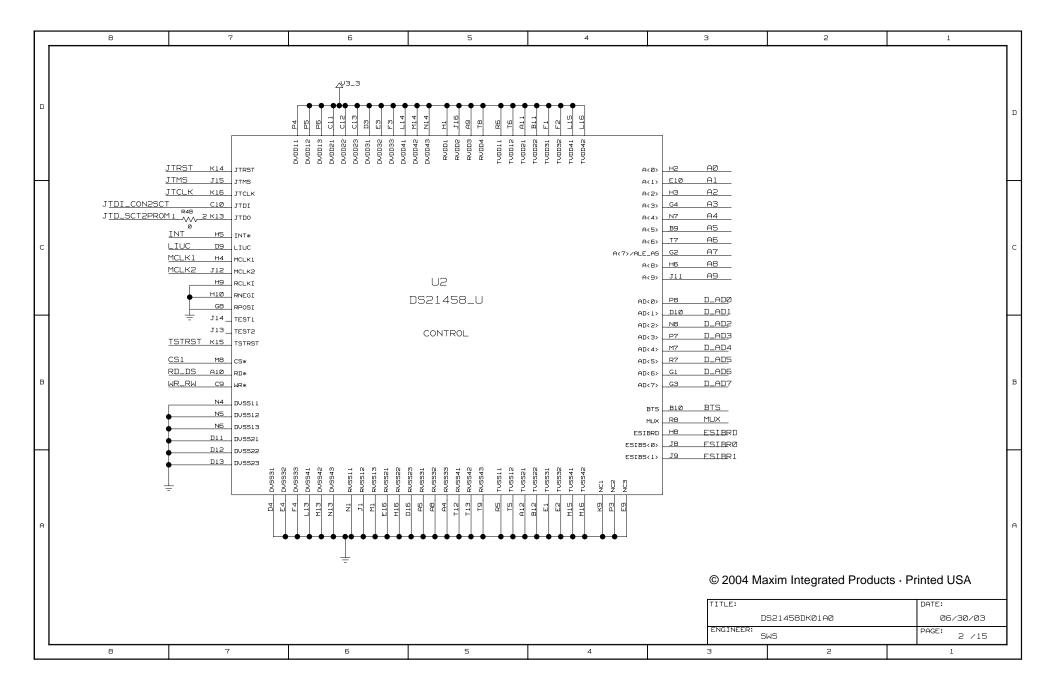
REGISTER	SETTING	COMMENT			
IOCR1	TSIO = 0; RSIO = 0	TSYNC is an input, RSYNC is an output			
ESCR	TESE = 0; RESE = 0	Bypass Rx and Tx elastic stores			
CCR1	TCSS1 = 0; TCSS2 = 0	TCLK is driven by TCLK pin			

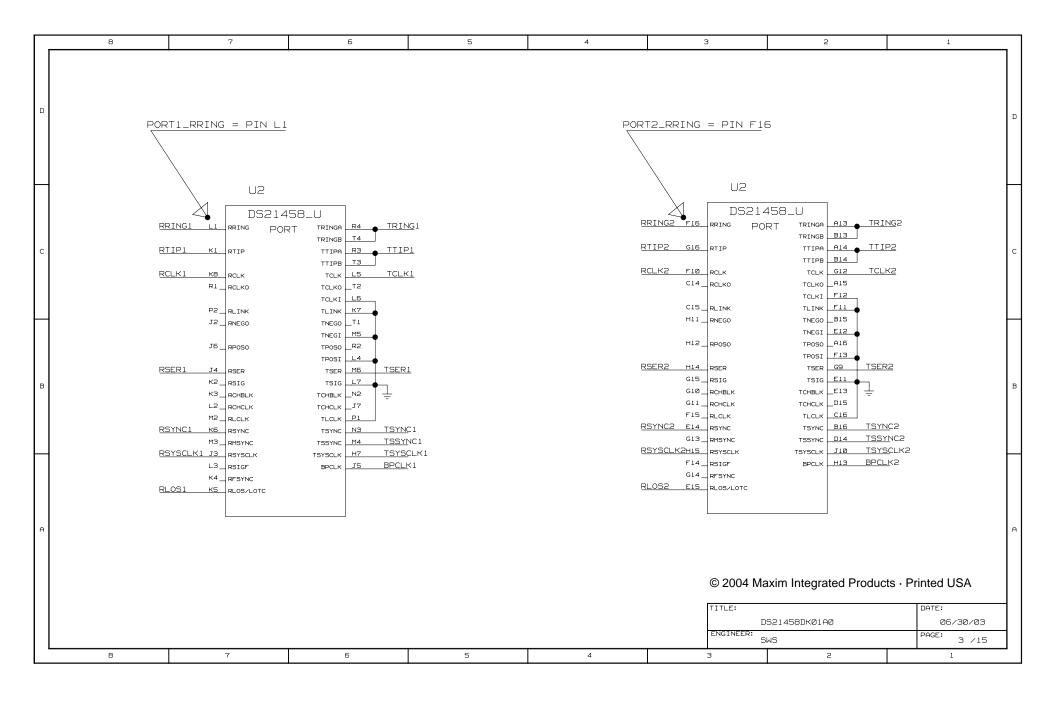
DS21458 INFORMATION

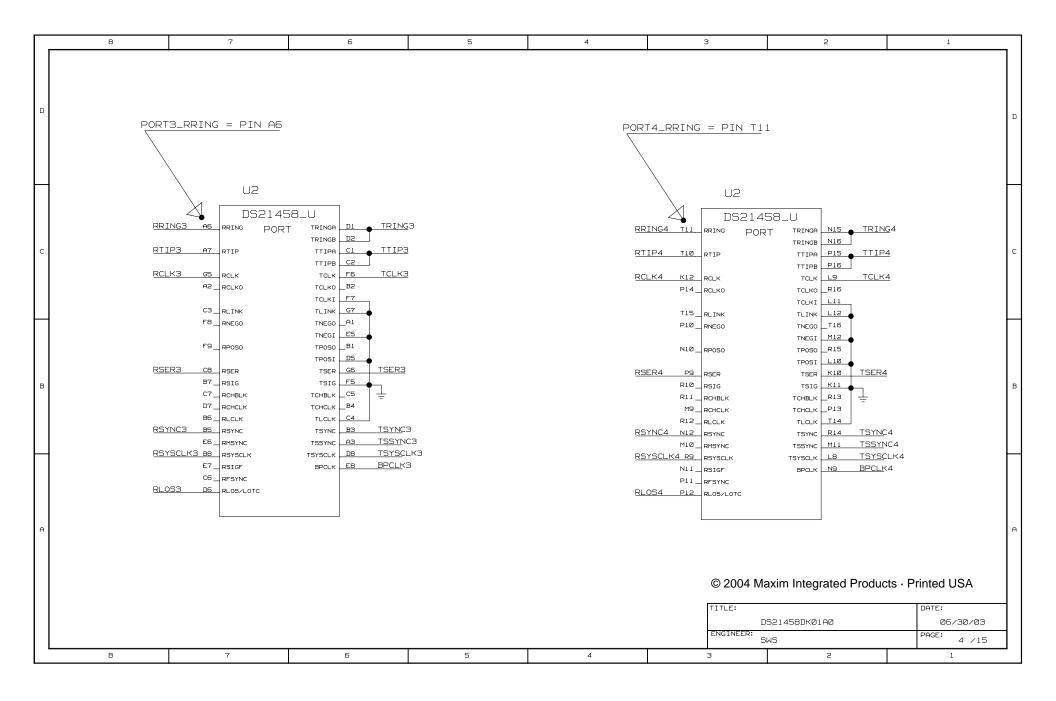
For more information about the DS21458, please consult the DS21458 data sheet available on our website at www.maxim-ic.com/DS21458. Software downloads are also available for this design kit.

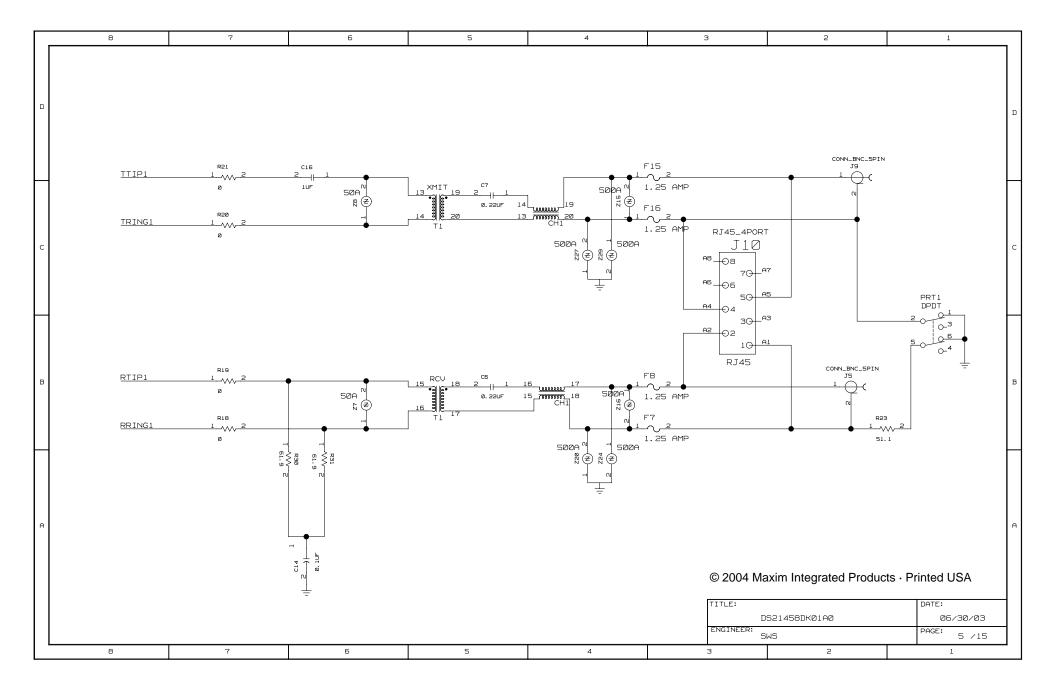
DS21458DK INFORMATION

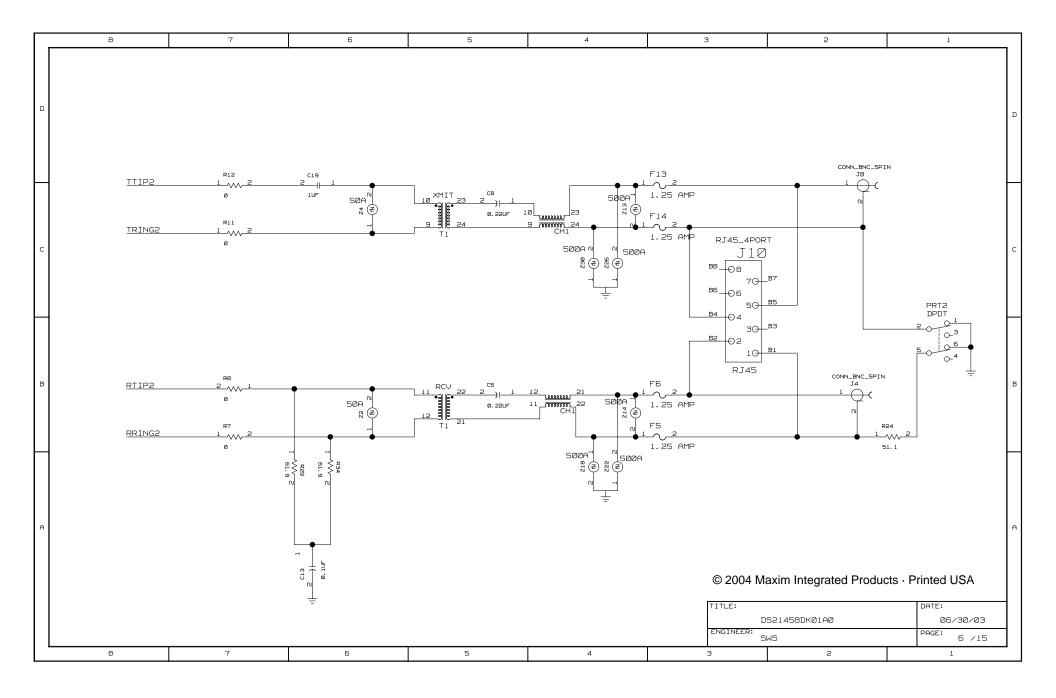

For more information about the DS21458DK, including software downloads, please consult the DS21458DK data sheet available on our website at www.maxim-ic.com/DS21458DK.

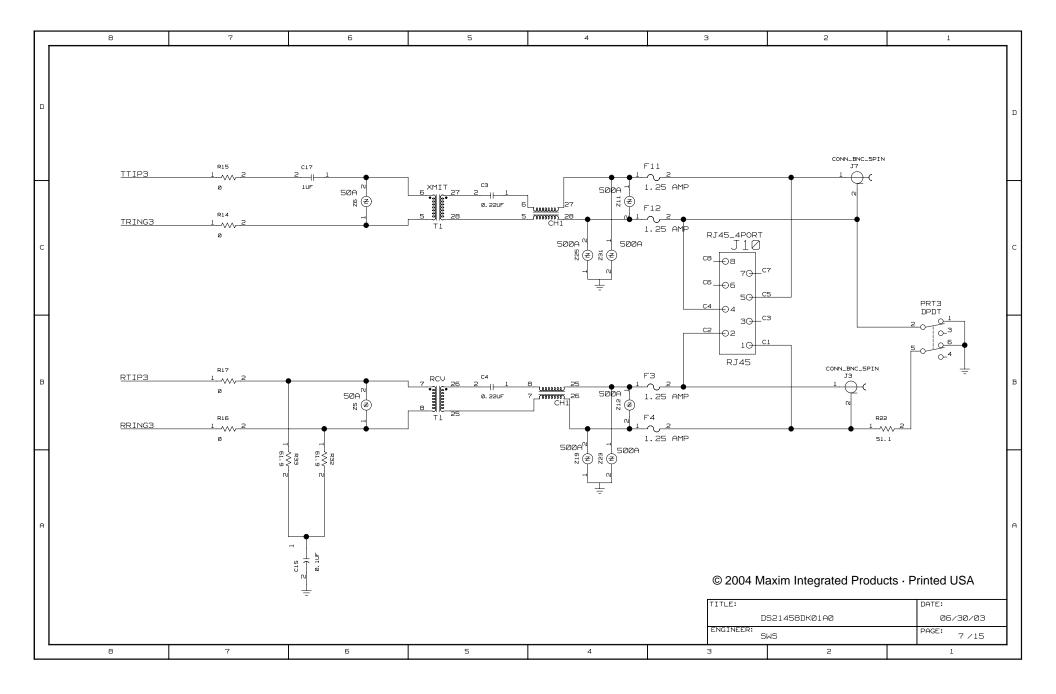

TECHNICAL SUPPORT

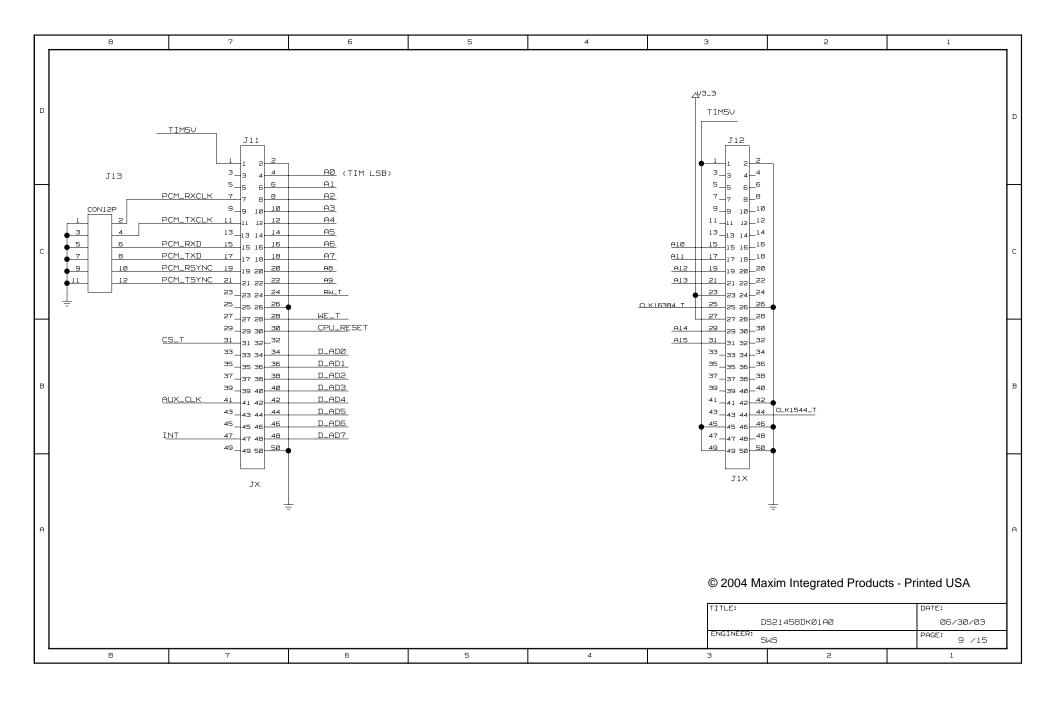

For additional technical support, please e-mail your questions to telecom.support@dalsemi.com.

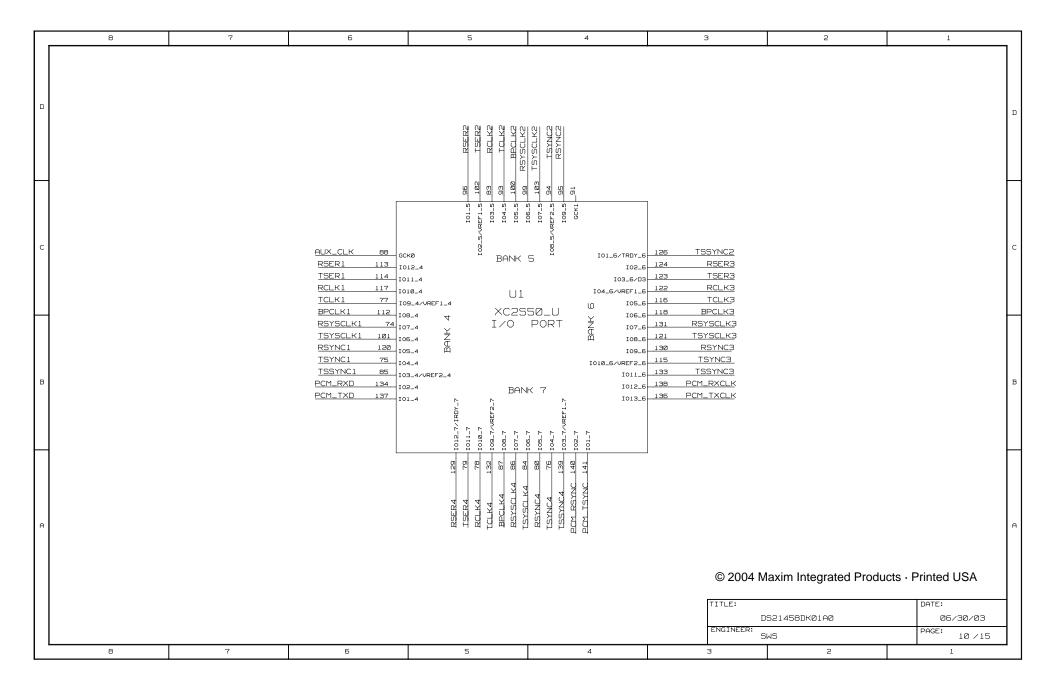

SCHEMATICS

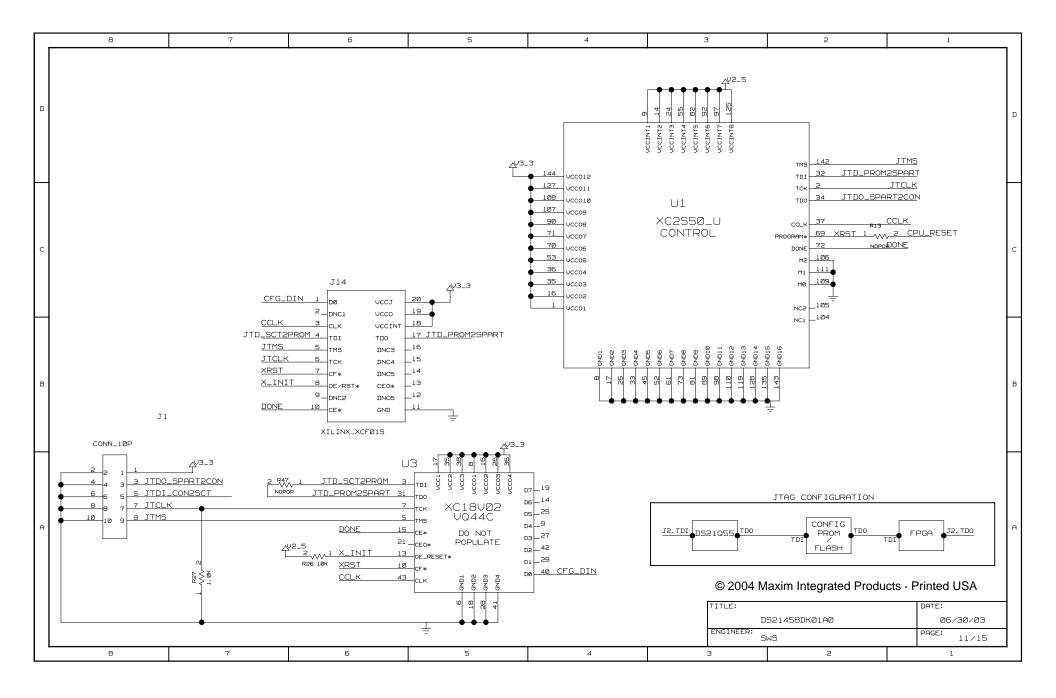

The DS21458DK schematics are featured at the end of this document.

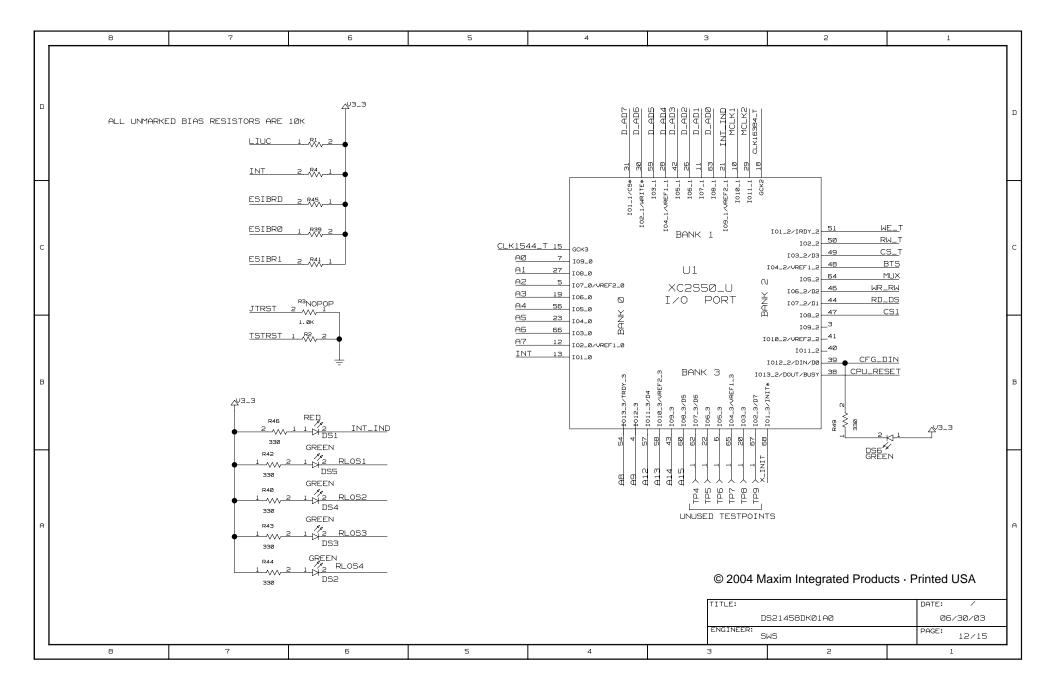


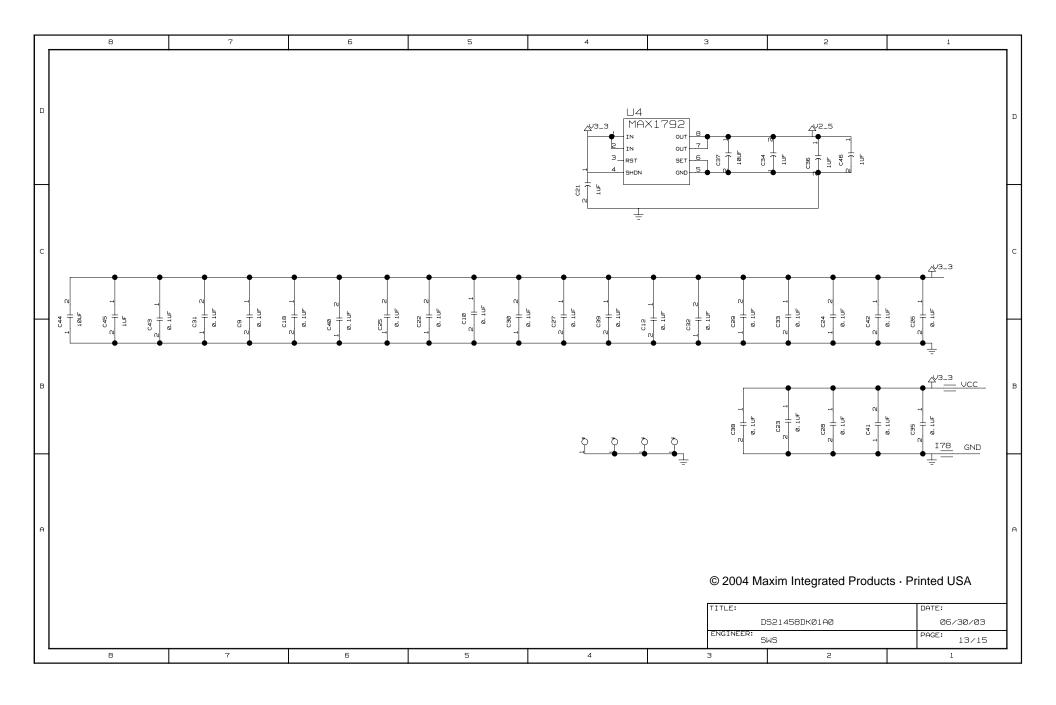


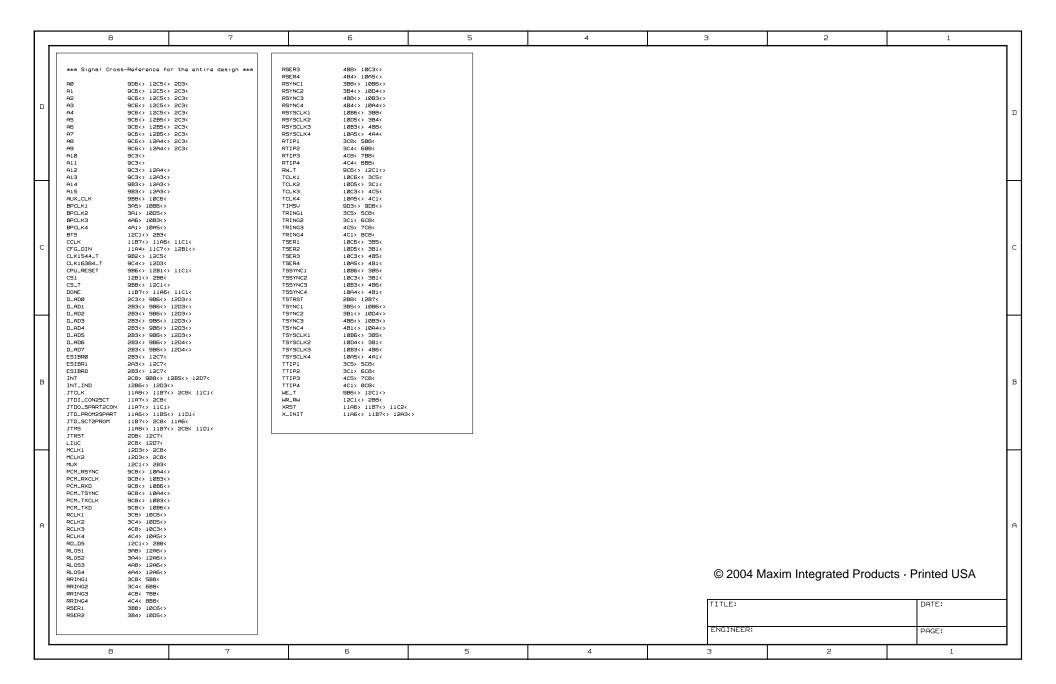












	8	7	6	5		4		3	2	1	
ם	**** Part Cross-Reference for C1	_ 	17 CONN_BNC_SPIN 7D2 18 CONN_BNC_SPIN 5D2 19 CONN_BNC_SPIN 5D2 110 RJ4S_B 5C3 6C3 7C3 8C3 111 CONN_SBP2 9D7 112 CONN_SBP2 9D7 113 CONN_SBP2 9D3 113 CON12P 9D6 114 XILINK_XCF01S 11C5 115 XILINK_XCF01S 11C5 116 XILINK_XCF01S 11C5 117 SWITCH_DPDT_S_LIDE_SP 8C1 117 SWITCH_DPDT_S_LIDE_SP 7C1 11 RESI 12D6 12 RESI 12D6 13 RES 12D6 14 RESI 12D6 14 RESI 12D6 14 RESI 12D6		Z5 SIC Z6 SIC Z7 SIC Z8 SIC Z9 SIC Z10 SIC Z11 SIC Z12 SIC Z13 SIC Z14 SIC Z15 SIC Z15 SIC Z16 SIC Z17 SIC	NACTOR_2 5C6 NACTOR_2 786 NACTOR_2 786 NACTOR_2 786 NACTOR_2 586 NACTOR_2 586 NACTOR_2 884 NACTOR_2 864 NACTOR_2 764 NACTOR_2 764 NACTOR_2 764 NACTOR_2 564 NACTOR_2 564 NACTOR_2 564 NACTOR_2 564 NACTOR_2 584					D
С	C15 CAP 7AB C16 CAP 5DB C17 CAP 7DB C18 CAP 7DB C19 CAP 6C5 C20 CAP 8C5 C21 CAP 1385 C23 CAP 1385 C24 CAP 1382 C24 CAP 1382 C24 CAP 1382 C25 CAP 1381 C26 CAP 1381 C27 CAP 1384 C28 CAP 1384 C28 CAP 1383 C30 CAP 1383 C30 CAP 1383 C31 CAP 1387 C32 CAP 1387 C32 CAP 1387 C32 CAP 1387		S RES BB7 RES BB7 RES BB7 RES BB7 RES BB7 RES BB7 RES BC7 R		Z20 SIC Z21 SIC Z22 SIC Z23 SIC Z24 SIC Z25 SIC Z25 SIC Z27 SIC Z28 SIC Z29 SIC Z29 SIC Z30 SIC	INCTOR.2 564 INCTOR.2 564 INCTOR.2 664 INCTOR.2 664 INCTOR.2 664 INCTOR.2 564					С
В	C34 CAP 13D3 C35 CAP 13B1 C36 CAP 13D3 C36 CAP 13D3 C38 CAP 13B3 C39 CAP 13B3 C39 CAP 13B4 C40 CAP 13B6 C41 CAP 13B2 C42 CAP 13B8 C44 CAP 13B8 C45 CAP 13B8 C46 CAP 13B8 C46 CAP 13B8 C47 CAP 13B8 C48 CAP 13B8 C49 CAP 13B8 C49 CAP 13B8 C40 CAP 13B8 C41 CAP 13B8 C45 CAP 13B8 C46 CAP 13B8 C47 CAP 13B8 C48 CAP 13B8 C49 CAP 13B8 C49 CAP 13B8 C40 CAP 13B8 C40 CAP 13B8 C41 CAP 13B8 C42 CAP 13B8 C43 CAP 13B8 C45 CAP 13B8 C46 CAP 13B8 C47 CAP 13B8 C48 CAP 13B8 C49 CAP 13B8 C40 CAP 13B8 C41 CAP 13B8 C42 CAP 13B8 C43 CAP 13B8 C44 CAP 13B8 C45 CAP 13B8 C46 CAP 13B8 C47 CAP 13B8 C48 CAP 13B8 C49 CAP 13B8 C49 CAP 13B8 C40 CAP 13B8 C40 CAP 13B8 C40 CAP 13B8 C41 CAP 13B8 C42 CAP 13B8 C43 CAP 13B8 C44 CAP 13B8 C45 CAP 13B8 C46 CAP 13B8 C47 CAP 13B8 C48 CAP 13B8 C49 CAP 13B8 C49 CAP 13B8 C40 C	FR F	R24 RES 6B2 R25 RES 8B2 R25 RES 11A6 R27 RESI 11A7 R29 RESI 6A6 R30 RESI 5A6 R31 RESI 5A6 R32 RESI 7A6 R33 RESI 7A6 R34 RESI 6A6 R35 RESI 8A6 R35 RESI 12C6 R40 RESI 12A7 R41 RESI 12A7 R42 RESI 12A7 R43 RESI 12A7 R44 RESI 12A7								В
А	DSS LED 1286 DS6 LED 1282 F1 FUSE 884 F2 FUSE 884 F3 FUSE 784 F4 FUSE 683 F5 FUSE 683 F6 FUSE 584 F8 FUSE 584 F9 FUSE 864 F10 FUSE 864 F11 FUSE 764 F12 FUSE 563 F14 FUSE 563 F15 FUSE 563 F17 FUSE 564 F11 FUSE 764 F12 FUSE 564 F13 FUSE 563 F14 FUSE 563 F15 FUSE 564 J1 CONN_10P 1188 J2 CONN_BNC_SPIN 682 J3 CONN_BNC_SPIN 682 J5 CONN_BNC_SPIN 682	R R R R R R R R R R	BCS P1 TSTPNT_SNG 1383 P4 TESTPOINT 1283 P6 TESTPOINT 1283 P6 TESTPOINT 1283 P7 TESTPOINT 1283 P8 TESTPOINT 1283 P8 TESTPOINT 1283 P8 TESTPOINT 1283 P8 TESTPOINT 1283 P124 TSTPNT_SNG 1384 P125 TSTPNT_SNG 1384 P125 TSTPNT_SNG 1384 P126 TSTPNT_SNG 1384 P125 TSTPNT_SNG 1384 P125 TSTPNT_SNG 1384 P125 TSTPNT_SNG 1384 P125 TSTPNT_SNG 1384 P126 TSTPNT_SNG 1384 P126 TSTPNT_SNG 1384 P136 TSTPNT_SNG 1384 P137 TSTPN					© 2004 Ma.	xim Integrated Product	s · Printed USA	A
							T	ENGINEER:	_	PAGE:	
\bot	8	7	6	5		4		3	2	1	