MOSFET – Power, Single, N-Channel, D²PAK 40 V, 116 A

Features

- Low R_{DS(on)}
- High Current Capability
- Low Gate Charge
- AEC-Q101 Qualified and PPAP Capable NVB5405N
- These Devices are Pb-Free and are RoHS Compliant

Applications

- Electronic Brake Systems
- Electronic Power Steering
- Bridge Circuits

MAXIMUM RATINGS (T_J = 25°C unless otherwise stated)

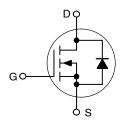
Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V_{DSS}	40	V
Gate-to-Source Voltage	е		V _{GS}	±20	V
Continuous Drain	Steady	T _C = 25°C	I _D	116	Α
Current – R _{θJC}	State T _C = 100°			82	
Power Dissipation – $R_{\theta JC}$	Steady State	T _C = 25°C	P _D	150	W
Continuous Drain	Steady	T _A = 25°C	I _D	16.5	Α
Current – R _{0JA} (Note 1)	State	T _A = 100°C	I _D	11.6	
Power Dissipation – R _{θJA} (Note 1)	Steady State	T _A = 25°C	P _D	3.0	W
Pulsed Drain Current	t _p :	= 10 μs	I _{DM}	280	Α
Operating Junction and Storage Temperature			T _J , T _{STG}	-55 to 175	°C
Source Current (Body Diode) Pulsed			Is	75	Α
Single Pulse Drain-to Source Avalanche Energy – (V_{DD} = 50 V, V_{GS} = 10 V, I_{PK} = 40 A, L = 1 mH, R_G = 25 Ω)			EAS	800	mJ
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			TL	260	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Max	Unit
Junction-to-Case (Drain)	$R_{\theta JC}$	1.0	°C/W
Junction-to-Ambient (Note 1)	$R_{\theta JA}$	50	°C/W

1



ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(ON)} TYP	I _D MAX (Note 1)
40 V	4.9 mΩ @ 10 V	116 A

N-Channel

D²PAK CASE 418B STYLE 2

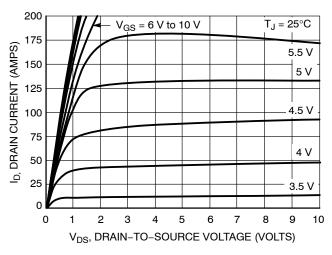
NTB5405N = Specific Device Code
G = Pb-Free Device
A = Assembly Location

Y = Year WW = Work Week

ORDERING INFORMATION

Device	Package	Shipping†				
NTB5405NG	D ² PAK (Pb-Free)	50 Units / Rail				
NTB5405NT4G	D ² PAK (Pb-Free)	800 / Tape & Reel				
NVB5405NT4G	D ² PAK (Pb-Free)	800 / Tape & Reel				

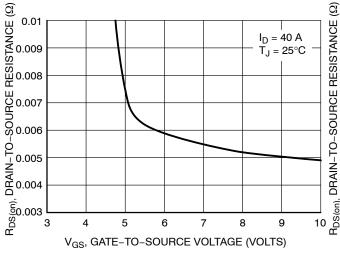
[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


^{1.} Surface mounted on FR4 board using 1 sq in pad size, (Cu Area 1.127 sq in [2 oz] including traces).

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise stated)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS			•				
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu A$		40			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J				39		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V,	T _J = 25°C			1.0	μΑ
		$V_{DS} = 40 \text{ V}$	T _J = 100°C			10	
Gate-to-Source Leakage Current	I_{GSS}	$V_{DS} = 0 V, V_{G}$	_S = ±30 V			±100	nA
ON CHARACTERISTICS (Note 2)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_{D}$	= 250 μΑ	1.5		3.5	V
Gate Threshold Temperature Coefficient	V _{GS(TH)} /T _J				-7.0		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V,	_D = 40 A		4.9	5.8	mΩ
		V _{GS} = 5.0 V,	I _D = 15 A		7.0	8.0	7
Forward Transconductance	g _{FS}	V _{GS} = 10 V,	_D = 15 A		32		S
CHARGES AND CAPACITANCES							
Input Capacitance	C _{ISS}	V _{GS} = 0 V, f = 1.0 MHz, V _{DS} = 32 V			2700	4000	pF
Output Capacitance	C _{OSS}				700	1400	
Reverse Transfer Capacitance	C _{RSS}				300	600	
Total Gate Charge	Q _{G(TOT)}	V _{GS} = 10 V, V _{DS} = 32 V, I _D = 40 A			88		nC
Threshold Gate Charge	Q _{G(TH)}				3.25		
Gate-to-Source Charge	Q _{GS}				9.5		
Gate-to-Drain Charge	Q_{GD}				37		1
SWITCHING CHARACTERISTICS, VC	is = 10 V (Note	3)	-				
Turn-On Delay Time	t _{d(ON)}				8.5		ns
Rise Time	t _r	V_{GS} = 10 V, V_{DD} = 32 V, I_{D} = 40 A, R_{G} = 2.5 Ω			52		
Turn-Off Delay Time	t _{d(OFF)}				55		
Fall Time	t _f				70		1
SWITCHING CHARACTERISTICS, VC	is = 5 V (Note 3)			•	•	•
Turn-On Delay Time	t _{d(ON)}				19		ns
Rise Time	t _r	$V_{GS} = 5 \text{ V}, V_{D}$	n = 20 V.		153		
Turn-Off Delay Time	t _{d(OFF)}	$I_D = 20 \text{ A}, R_G = 2.5 \Omega$			32		
Fall Time	t _f				42		1
DRAIN-SOURCE DIODE CHARACTE	RISTICS		•				
Forward Diode Voltage	V_{SD}	V _{GS} = 0 V,	T _J = 25°C		0.82	1.1	V
		I _S = 20 A	T _J = 100°C		TBD		7
Reverse Recovery Time	t _{RR}	$V_{GS} = 0 \text{ V, } dI_{SD}/dt = 100 \text{ A/}\mu\text{s,}$ $I_{S} = 20 \text{ A}$			66		ns
Charge Time	ta				35		
Discharge Time	t _b				31		1
Reverse Recovery Charge	Q _{RR}				113		nC

Pulse Test: pulse width ≤ 300 μs, duty cycle ≤ 2%.
 Switching characteristics are independent of operating junction temperatures.


TYPICAL PERFORMANCE CURVES

125 $V_{DS} \ge 10 \text{ V}$ ID, DRAIN CURRENT (AMPS) 100 75 50 $T_J = 125^{\circ}C$ 25 T_J = 25°C $T_{.1} = -55^{\circ}C$ 0 0 2 5 6 V_{GS}, GATE-TO-SOURCE VOLTAGE (VOLTS)

Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

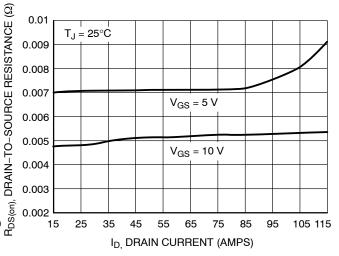
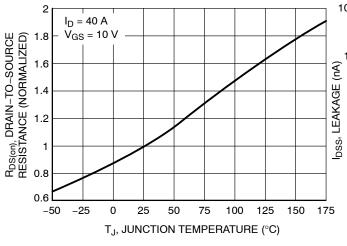



Figure 3. On-Resistance vs. Gate-to-Source Voltage

Figure 4. On-Resistance vs. Drain Current and Gate Voltage

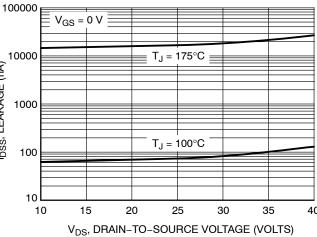
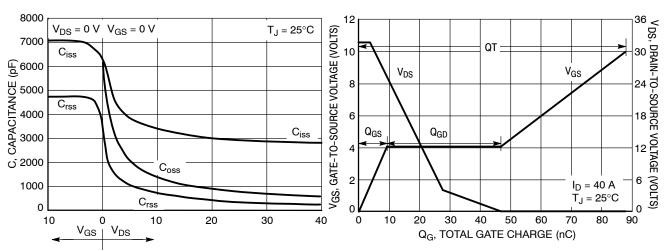



Figure 5. On–Resistance Variation with Temperature

Figure 6. Drain-to-Source Leakage Current vs. Voltage

TYPICAL PERFORMANCE CURVES

GATE-TO-SOURCE OR DRAIN-TO-SOURCE VOLTAGE (VOLTS)

Figure 7. Capacitance Variation

Figure 8. Gate-To-Source and Drain-To-Source Voltage vs. Total Charge

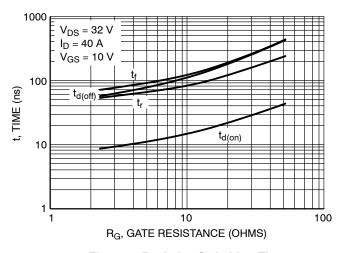


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

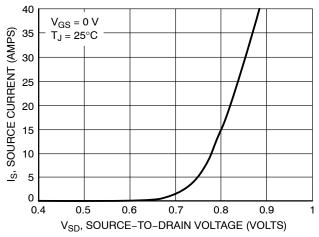


Figure 10. Diode Forward Voltage vs. Current

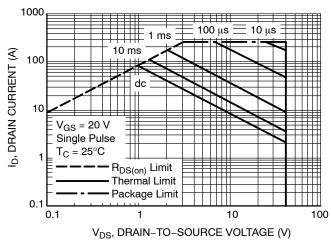


Figure 11. Maximum Rated Forward Biased Safe Operating Area

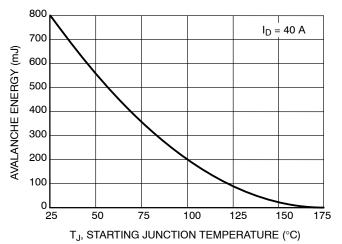


Figure 12. Maximum Avalanche Energy vs. Starting Junction Temperature

TYPICAL PERFORMANCE CURVES

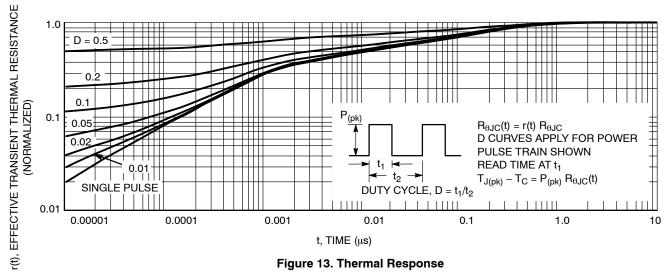
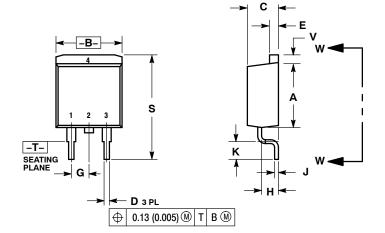
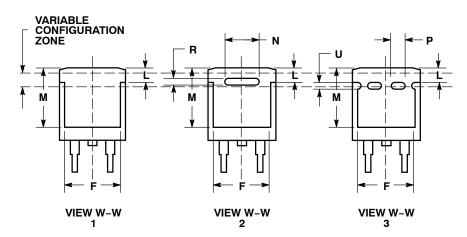


Figure 13. Thermal Response

MECHANICAL CASE OUTLINE



D²PAK 3 CASE 418B-04 **ISSUE L**


DATE 17 FEB 2015

SCALE 1:1

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: INCH.
- 3. 418B-01 THRU 418B-03 OBSOLETE, NEW STANDARD 418B-04.

	INCHES		MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.340	0.380	8.64	9.65	
В	0.380	0.405	9.65	10.29	
C	0.160	0.190	4.06	4.83	
D	0.020	0.035	0.51	0.89	
Е	0.045	0.055	1.14	1.40	
F	0.310	0.350	7.87	8.89	
G	0.100 BSC		2.54 BSC		
Н	0.080	0.110	2.03	2.79	
J	0.018	0.025	0.46	0.64	
K	0.090	0.110	2.29	2.79	
L	0.052	0.072	1.32	1.83	
М	0.280	0.320	7.11	8.13	
N	0.197 REF		5.00 REF		
Р	0.079 REF		2.00 REF		
R	0.039 REF		0.99 REF		
S	0.575	0.625	14.60	15.88	
٧	0.045	0.055	1.14	1.40	

STYLE 1: PIN 1. BASE 2. COLLECTOR
3. EMITTER
4. COLLECTOR

STYLE 2: PIN 1. GATE 2. DRAIN 3. SOURCE 4. DRAIN STYLE 3:

PIN 1. ANODE 2. CATHODE 3. ANODE 4. CATHODE

STYLE 4:

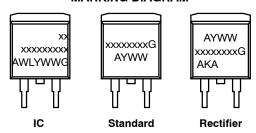
PIN 1. GATE
2. COLLECTOR
3. EMITTER
4. COLLECTOR

STYLE 5:

PIN 1. CATHODE 2. ANODE 3. CATHODE 4. ANODE

STYLE 6:

PIN 1. NO CONNECT
2. CATHODE
3. ANODE
4. CATHODE


MARKING INFORMATION AND FOOTPRINT ON PAGE 2

DOCUMENT NUMBER:	98ASB42761B	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	D ² PAK 3	•	PAGE 1 OF 2	

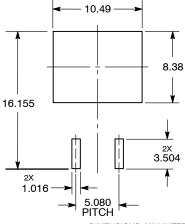
rights of others.

DATE 17 FEB 2015

GENERIC MARKING DIAGRAM*

xx = Specific Device Code A = Assembly Location

 WL
 = Wafer Lot


 Y
 = Year

 WW
 = Work Week

 G
 = Pb-Free Package

 AKA
 = Polarity Indicator

SOLDERING FOOTPRINT*

DIMENSIONS: MILLIMETERS

DOCUMENT NUMBER:	98ASB42761B	Electronic versions are uncontrolled except when accessed directly from the Document Repo Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	D ² PAK 3		PAGE 2 OF 2	

ON Semiconductor and at a trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

^{*}This information is generic. Please refer to device data sheet for actual part marking. Pb–Free indicator, "G" or microdot " ■", may or may not be present.

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales