Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 **Renesas Electronics Corporation**

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

-ot-announ

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

REJ03F0147-0200 Rev.2.00 Jan 30, 2007

Description

The HA16158 is a power supply controller IC combining an AC-DC converter switching controller for power factor correction and an off-line power supply switching controller. The PFC (power factor correction) section employs average current mode PWM and the off-line power supply control section employs peak current mode PWM.

The HA16158 allows the operating frequency to be varied with a single timing resistance, enabling it to be used for a variety of applications.

The PFC operation can be turned on and off by an external control signal. Use of this on/off function makes it possible to disable PFC operation at a low line voltage, or to perform remote control operation from the transformer secondary side.

The PWM controller includes a power-saving function that reduces the operating frequency to a maximum of 1/64 in the standby state, greatly decreasing switching loss.

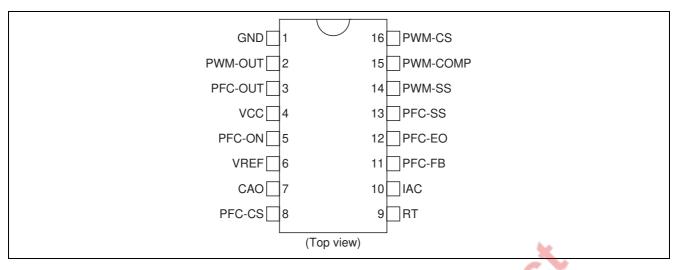
The PFC section and PWM section are each provided with a soft start control pin, enabling a soft start time to be set easily.

Features

<Maximum Ratings>

- Supply voltage Vcc: 24 V
- Operating junction temperature Tjopr: -40°C to +125°C

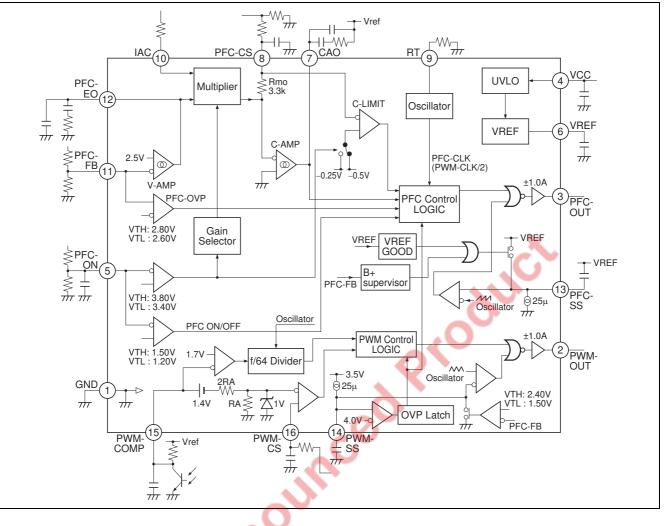
<Electrical Characteristics>


- VREF output voltage VREF: $5.0 \text{ V} \pm 2\%$
- UVLO start threshold VH: $16.0 \text{ V} \pm 1.0 \text{ V}$
- UVLO shutdown threshold VL: $10.0 \text{ V} \pm 0.6 \text{ V}$
- PFC output maximum duty cycle Dmax-pfc: 95% typ.
- PWM output maximum duty cycle Dmax-pwm: 45% typ.

<Functions>

- Synchronized PFC and PWM timing
- PFC function on/off control
- PWM power-saving function (frequency reduced to maximum of 1/64)
- PWM overvoltage latch protection circuit
- Soft start control circuits for both PFC and PWM
- Package lineup: SOP-16/DILP-16

Pin Arrangement



Pin Functions

Pin No.	Pin Name	Pin Functions					
1	GND	Ground					
2	PWM-OUT	Power MOS FET driver output (PWM control)					
3	PFC-OUT	Power MOS FET driver output (PFC control)					
4	VCC	Supply voltage					
5	PFC-ON	PFC function on/off signal input					
6	VREF	Reference voltage					
7	CAO	Average current control error amplifier output					
8	PFC-CS	PFC control current sense signal input					
9	RT	Operating frequency setting timing resistance connection					
10	IAC	Multiplier reference current input					
11	PFC-FB	PFC control error amplifier input					
12	PFC-EO	PFC control error amplifier output					
13	PFC-SS	PFC control soft start time setting capacitance connection					
14	PWM-SS	PWM control soft start time setting capacitance connection					
15	PWM-COMP	PWM control voltage feedback					
16	PWM-CS	PWM control current sense signal input					
	FOR						

Block Diagram

Absolute Maximum Ratings

				$(Ta = 25^{\circ}C)$
Item	Symbol	Ratings	Unit	Note
Power supply voltage	Vcc	24	V	
PFC-OUT output current (peak)	lpk-out1	±1.0	A	3
PWM-OUT output current (peak)	lpk-out2	±1.0	A	3
PFC-OUT output current (DC)	ldc-out1	±0.1	A	
PWM-OUT output current (DC)	ldc-out2	±0.1	A	
Pin voltage	Vi-group1	-0.3 to Vcc	V	4
	Vi-group2	–0.3 to Vref	V	5
CAO pin voltage	Vcao	-0.3 to Veoh-ca	V	
PFC-EO pin voltage	Vpfc-eo	-0.3 to Veoh-pfc	V	
PFC-ON pin voltage	Vpfc-on	–0.3 to 7	V	
RT pin current	Irt	50	μA	
IAC pin current	liac	1	mA	
PFC-CS pin voltage	Vi-cs	-1.5 to 0.3	V	
VREF pin current	lo-ref	-20	mA	
VREF pin voltage	Vref	-0.3 to Vref	V	
Operating junction temperature	Tj-opr	-40 to +125	O° C	6
Storage temperature	Tstg	-55 to +150	٥C	

Notes: 1. Rated voltages are with reference to the GND (SGND, PGND) pin.

- 2. For rated currents, inflow to the IC is indicated by (+), and outflow by (-).
- 3. Shows the transient current when driving a capacitive load.
- 4. Group1 is the rated voltage for the following pins: PFC-OUT, PWM-OUT
- Group2 is the rated voltage for the following pins: PFC-FB, PWM-CS, PWM-COMP, IAC, PFC-SS, PWM-SS, RT
- 6. HA16158P (DILP): θja = 120°C/W
 - HA16158FP (SOP): θja = 120°C/W

0~3

This value is based on actual measurements on a 10% wiring density glass epoxy circuit board (40 mm \times 40 mm \times 1.6 mm).

Electrical Characteristics

	Item	Symbol	Min	Тур	Max	Unit	Test Conditions
Supply	Start threshold	VH	15.0	16.0	17.0	V	
	Shutdown threshold	VL	9.4	10.0	10.6	V	
	UVLO hysteresis	dV_{UVL}	5.2	6.0	6.8	V	
	Start-up current	ls	160	220	280	μA	Vcc = 14.8V
	Is temperature	dls/dTa	_	-0.3	_	%/°C	*1
	stability						
	Operating current	lcc	5.5	7.0	8.5	mA	IAC = 0A, CL = 0F
	Shunt zenner voltage	Vz	25.5	27.5	29.5	V	lcc = 14mA
	Vz temperature stability	dVz/dTa	_	-4	-	mV/°C	lcc = 14mA * ¹
	Latch current	ILATCH	180	250	320	μA	Vcc = 9V
VREF	Output voltage	Vref	4.9	5.0	5.1	V	Isource = 1mA
	Line regulation	Vref-line	-	5	20	mV	Isource = 1mA, Vcc = 12V to 23V
	Load regulation	Vref-load	_	5	20	mV 🧹	Isource = 1mA to 20mA
	Temperature stability	dVref	_	80	-	ppm/°C	Ta = -40 to 125°C *1
Oscillator	Initial accuracy	fpwm	117	130	143	kHz	Measured pin: PWM-OUT
		fpfc	58.5	65	71.5	kHz	Measured pin: PFC-OUT
	fpwm temperature stability	dfpwm/dTa	Ι	±0.1	6	%/°C	Ta = -40 to 125°C * ¹
	fpwm voltage stability	fpwm(line)	-1.5	+0.5	+1.5	%	VCC = 12V to 18V
	Ramp peak voltage	Vramp-H	- /	3.6	4.0	V	PFC *1
	Ramp valley voltage	Vramp-L	3	0.65	-	V	PFC * ¹
	CT peak voltage	Vct-H	-	3.2	_	V	PWM * ¹
	CT valley voltage	Vct-L	1.50	1.60	_	V	PWM * ¹
	RT voltage	Vrt	0.85	1.00	1.15	V	Measured pin: RT
Supervisor	PFC on voltage	Von-pfc	1.4	1.5	1.6	V	
	PFC off voltage	Voff-pfc	1.1	1.2	1.3	V	
	PFC on-off hysteresis	dVon-off	0.2	0.3	0.4	V	
	Input current	lpfc-on	_	0.1	1.0	μA	PFC-ON = 2V
	PFC OVP set voltage	Vovps-pfc	2.65	2.80	2.95	V	Input pin: PFC-FB
	PFC OVP reset voltage	Vovpr-pfc	2.45	2.60	2.75	V	Input pin: PFC-FB
	PFC OVP hysteresis	dVovp	0.10	0.20	0.30	V	
	B+ good voltage	Vb-good	2.25	2.40	2.55	V	Measured pin: PFC-FB
	B+ fail voltage	Vb-fail	1.4	1.5	1.6	V	Measured pin: PFC-FB
OVP latch	Latch threshold voltage	Vlatch	3.76	4.00	4.24	V	Input pin: PWM-SS
	Latch reset voltage	Vcc-res	6.1	7.1	8.1	V	
Power saving	Power saving on voltage	Von-save	1.53	1.70	1.87	V	Measured pin: PWM-COMP
for PWM	Minimum frequency at light load	fpwm-min	_	2	_	kHz	PWM-COMP = 1.5V Measured pin: PWM-OUT * ¹

Note: 1. Reference values for design.

Electrical Characteristics (cont.)

 $(Ta = 25^{\circ}C, Vcc = 12 V, RT = 200 k\Omega)$

Item		Symbol	Min	Тур	Max	Unit	$\frac{25^{\circ}\text{C}, \text{ Vcc} = 12 \text{ V}, \text{ RT} = 200 \text{ k}\Omega}{\text{Test Conditions}}$
Soft start for Soft start time		tss-pwm		4.2	IWIAX	ms	PWM-SS = 0V to Vct-h *1
PWM	Source current	lss-pwm	-20.0	-25.0	-30.0	μA	Measured pin: PWM-SS
	High voltage	Vh-ss	3.25	3.5	3.75	μA V	Measured pin: PWM-SS
Soft start for	Soft start time	tss-pfc		5.7	-	ms	PFC-SS = Vref to Vramp-I * ¹
PFC	Source current	Iss-pic	+20.0	+25.0	+30.0	μA	Measured pin: PFC-SS
PWM	Delay to output	td-cs	+20.0	210	300	ns	PWM-EO = 5V,
current sense	Delay to output	10-03		210	500	115	PWM-CS = 0 to 2V
PFC current	Threshold voltage	VLM1	-0.45	-0.50	-0.55	V	PFC-ON = 2V
limit	Threshold voltage	VLM2	-0.22	-0.25	-0.28	V	PFC-ON = 4V
	Delay to output	td-LM	-	280	500	ns	PFC-CS = 0 to -1V
PFC-VAMP	Feedback voltage	Vfb-pfc	2.45	2.50	2.55	V	PFC-EO = 2.5V
	Input bias current	lfb-pfc	-0.3	0	0.3	μA	Measured pin: PFC-FB
	Open loop gain	Av-pfc	-	65	-	dB	*1
	High voltage	Veoh-pfc	5.0	5.7	6.4	V	PFC-FB = 2.3V, PFC-EO: Open
	Low voltage	Veol-pfc	_	0.1	0.3	V	PFC-FB = 2.7V, PFC-EO: Open
	Source current	Isrc-pfc	_	-90	-	μA	PFC-FB = 1.0V, PFC-EO: 2.5V * ¹
	Sink current	Isnk-pfc	_	90	0	μА	PFC-FB = 4.0V, PFC-EO: 2.5V * ¹
	Transconductance	Gm-pfcv	150	200	250	μ A /V	PFC-FB = 2.5V, PFC-EO: 2.5V
PFC-OUT	Minimum duty cycle	Dmin-pfc	_	_	0	%	CAO = 4.0V
	Maximum duty cycle	Dmax-pfc	90	95	98	%	CAO = 0V
	Rise time	tr-pfc	-	30	100	ns	CL = 1000pF
	Fall time	tf-pfc	- /	30	100	ns	CL = 1000pF
	Peak current	lpk-pfc	-	1.0	-	А	$CL = 0.01 \mu F^{*1}$
	Low voltage	Vol1-pfc		0.05	0.2	V	lout = 20mA
		Vol2-pfc) =	0.5	2.0	V	lout = 200mA
		Vol3-pfc	_	0.03	0.7	V	lout = 10mA, VCC = 5V
	High voltage	Voh1-pfc	11.5	11.9	-	V	lout = -20mA
		Voh2-pfc	10.0	11.0	-	V	lout = -200mA
PWM-OUT	Minimum duty cycle	Dmin-pwm	-	_	0	%	PWM-COMP = 0V
	Maximum duty cycle	Dmax-pwm	42	45	49	%	PWM-COMP = Vref
	Rise time	tr-pwm	-	30	100	ns	CL = 1000pF
-	Fall time	tf-pwm	-	30	100	ns	CL = 1000pF
	Peak current	lpk-pwm	-	1.0	-	Α	$CL = 0.01 \mu F^{*1}$
	Low voltage	Vol1-pwm	_	0.05	0.2	V	lout = 20mA
	•	Vol2-pwm	_	0.5	2.0	V	lout = 200mA
		Vol3-pwm	_	0.03	0.7	V	lout = 10mA, VCC = 5V
	High voltage	Voh1- pwm	11.5	11.9	-	V	lout = -20mA
		Voh2- pwm	10.0	11.0	_	V	lout = -200mA

Note: 1. Reference values for design.

Gain selector

Min Unit Item Symbol Тур Max PFC-CAMP Input offset voltage Vio-ca mV _ ±7 *1 Open loop gain Av-ca 65 dB High voltage Veoh-ca 5.0 5.7 6.4 ٧ Veol-ca ٧ Low voltage 0.1 0.3 _ μA $CAO = 2.5V^{*1}$ Source current Isrc-ca -90 _ — $CAO = 2.5V^{*1}$ Sink current Isnk-ca 90 μA _ *1 Transconductance Gm-pfcc 150 200 250 μA/V IAC/Multiplier IAC pin voltage Viac 0.7 1.0 1.3 ٧ $IAC = 100 \mu A$ Imo-offset1 -67 -90 -113 IAC = 0A, PFC-ON = 2VTerminal offset μA

Imo-offset2

lmo1

Imo2

Imo3

Imo4

Rmo

VK-H

VK-L

dVK

-60

_

_

_

_

3.60

3.20

0.30

Electrical Characteristics (cont.)

 $(Ta = 25^{\circ}C, Vcc = 12 V, RT = 200 k\Omega)$

IAC = 0A, PFC-ON = 4V

Measured pin: PFC-ON

Measured pin: PFC-ON

PFC-EO = 2V, IAC = $100\mu A^{*1,2}$

PFC-EO = 4V, IAC = $100\mu A^{*1,2}$

 $PFC-EO = 2V, IAC = 100\mu A^{*1,2}$

 $PFC-EO = 4V, IAC = 100\mu A^{*1,2}$

Test Conditions

Notes: 1. Reference values for design.

current

Output current

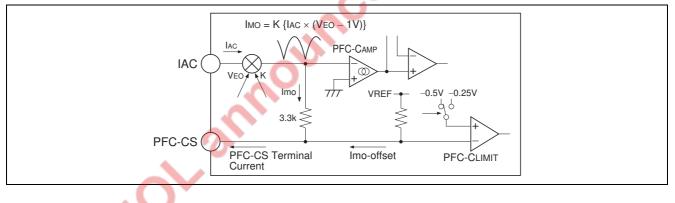
Output current

(PFC-ON = 2.0V)

(PFC-ON = 4.0V)

PFC-CS resistance

Threshold voltage


for K = 0.05Threshold voltage

for K = 0.25

VK hysteresis

2. Imo1 to Imo4 are defined as:

Imo = (PFC-CS pin current) - (Imo-offset)

-100

_

_

_

_

_

4.00

3.60

0.50

μA

μA

μA

μA

μA

kΩ ٧

V

٧

*1

*1

-80

-20

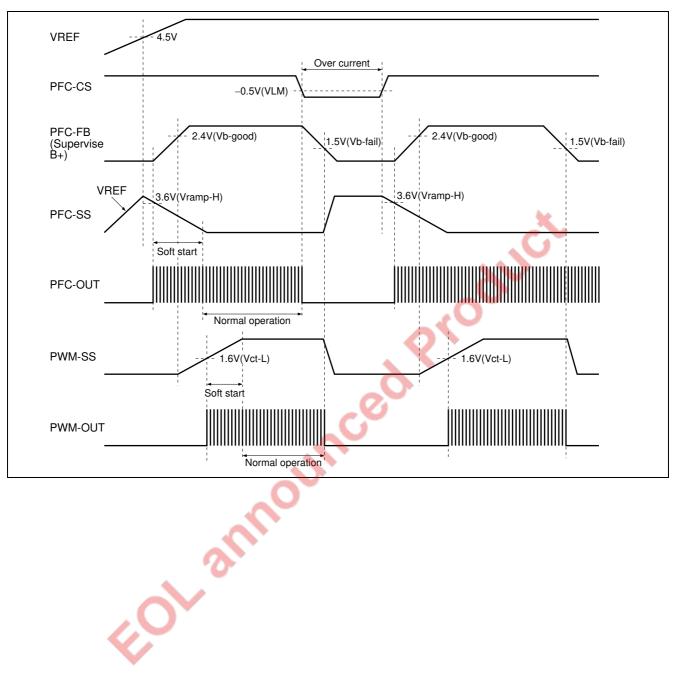
-60

-5

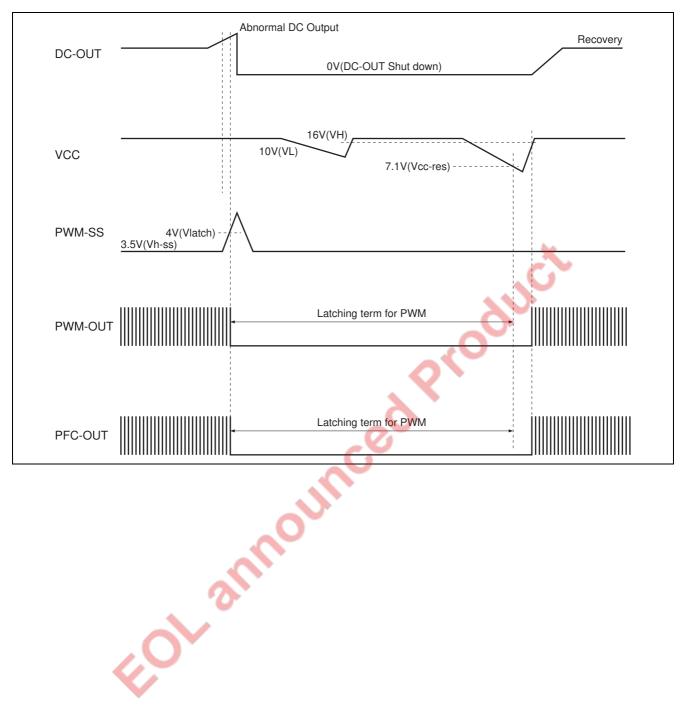
-15

3.3

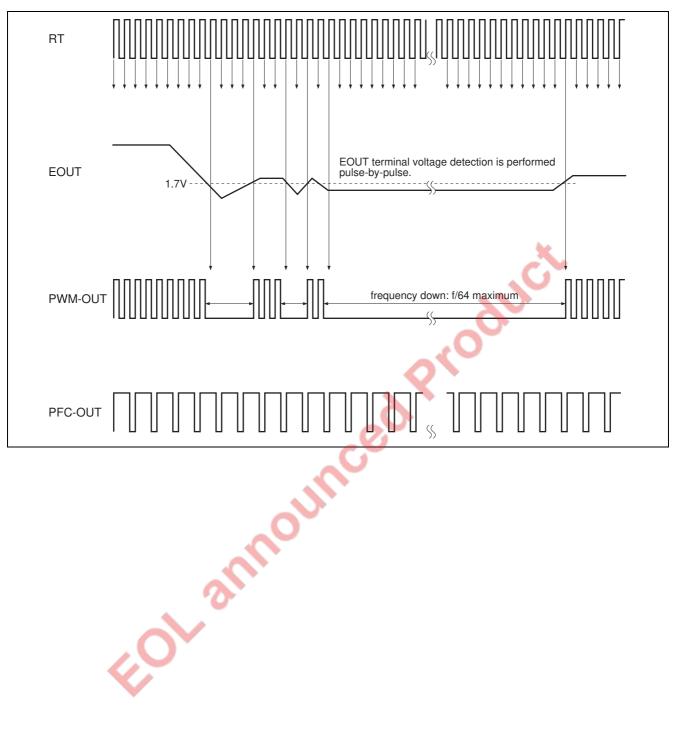
3.80


3.40

0.40

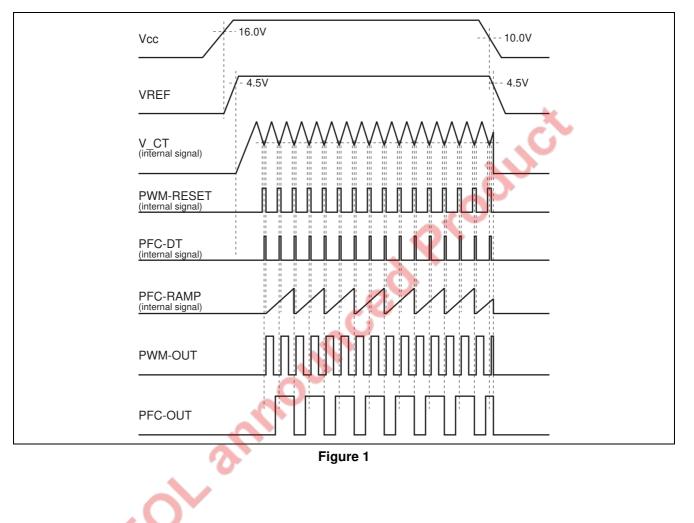

Timing Diagram

1. Start-up Timing



2. PWM OVP Latch

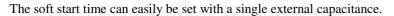
3. PWM Power Saving


Functional Description

1. UVL Circuit

The UVL circuit monitors the Vcc voltage and halts operation of the IC in the event of a low voltage.

The voltage for detecting Vcc has a hysteresis characteristic, with 16.0 V as the start threshold and 10.0 V as the shutdown threshold.


When the IC has been halted by the UVL circuit, control is performed to fix driver circuit output low and halt VREF output and the oscillator.

2. Soft Start Circuit (for PWM Control)

This function gradually increases the pulse width of the PWM-OUT pin from a 0% duty cycle at start-up to prevent a sudden increase in the pulse width that may cause problems such as transient stress on external parts or overshoot of the secondary-side output voltage.

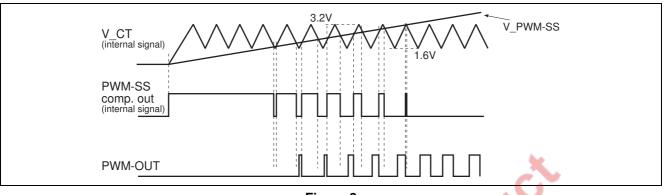


Figure 2

Soft start time tss-pwm is determined by PWM-SS pin connection capacitance Css-pwm and an internal constant, and can be estimated using the equation shown below.

Soft start time tss-pwm is the time until the PWM-SS pin voltage reaches upper-end voltage 3.2 V of the IC-internal CT voltage waveform after VREF starts up following UVLO release.

Soft start time tss-pwm when Css-pwm is 3.3 nF is given by the following equation.

$$\begin{split} \text{tss-pwm} &= \frac{\text{Css-pwm} \times \text{Vct-H}}{\text{Iss-pwm}} = \frac{33 \; [\text{nF}] \times 3.2 \; [\text{V}]}{25 \; [\mu\text{A}]} \\ &\approx 4.2 \; [\text{ms}] \end{split}$$

* Iss-pwm: PWM-SS pin source current, 25 μA typ.

3. Soft Start Circuit (for PFC Control)

This function gradually increases the pulse width of the PFC-OUT pin from a 0% duty cycle at start-up to prevent a sudden increase in the pulse width that may cause problems such as transient stress on external parts or overshoot of the PFC output voltage (B+ voltage).

The soft start time can easily be set with a single external capacitance.

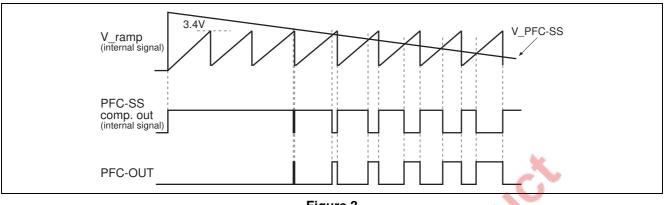


Figure 3

Soft start time tss-pfc is determined by PFC-SS pin connection capacitance Css-pfc and an internal constant, and can be estimated using the equation shown below.

Soft start time tss-pfc is the time until the PFC-SS pin voltage reaches lower-end voltage 0.65 V of the IC-internal RAMP voltage waveform after VREF starts up following UVLO release.

Soft start time tss-pfc when Css-pfc is 3.3 nF is given by the following equation.

tss-pfc =
$$\frac{\text{Css-pfc} \times (\text{VREF} - \text{Vramp-L})}{\text{Iss-pwm}} = \frac{33 \text{ [nF]} \times (5 - 0.65)}{25 \text{ [}\mu\text{A}\text{]}}$$

\$\approx 5.7 [ms]

* Iss-pfc: PFC-SS pin sink current, 25 μA typ.

or s

In addition, when you do not use a soft start function, please ground this terminal.

4. PFC On/Off Function

On/off control of the PFC function can be performed using the PFC-ON pin.

If an AC voltage that has undergone primary rectification and has been divided by an external resistance is input, it is possible to halt PFC operation in the event of a low input voltage. On/off control is also possible by using a logic signal.

When the PFC function is turned on/off by using the PFC-ON pin, however, the PFC-SS pin cannot be reset. Therefore, a soft start is not operated at the start-up by the PFC-ON pin.

The figure below illustrates an example of circuit for simultaneous reset of the PFC-SS pin and PWM-SS pin.

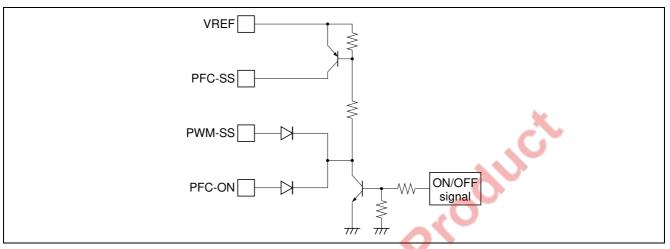
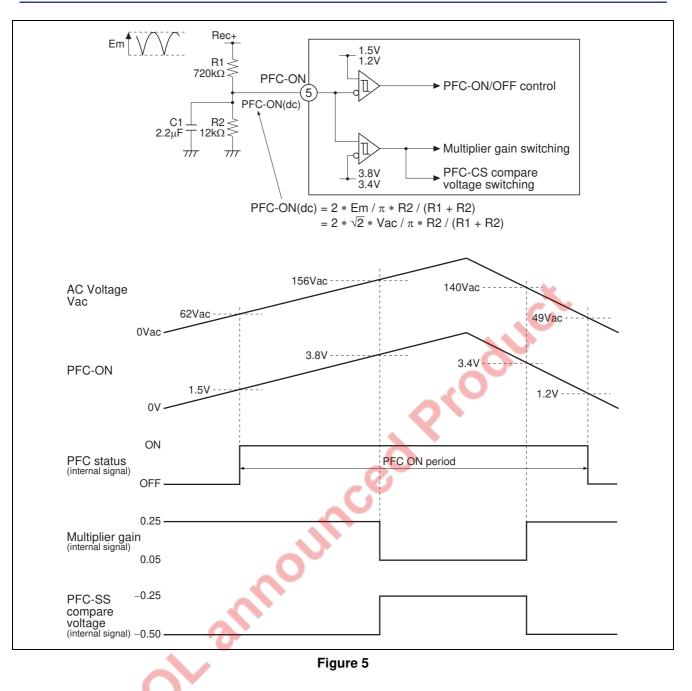
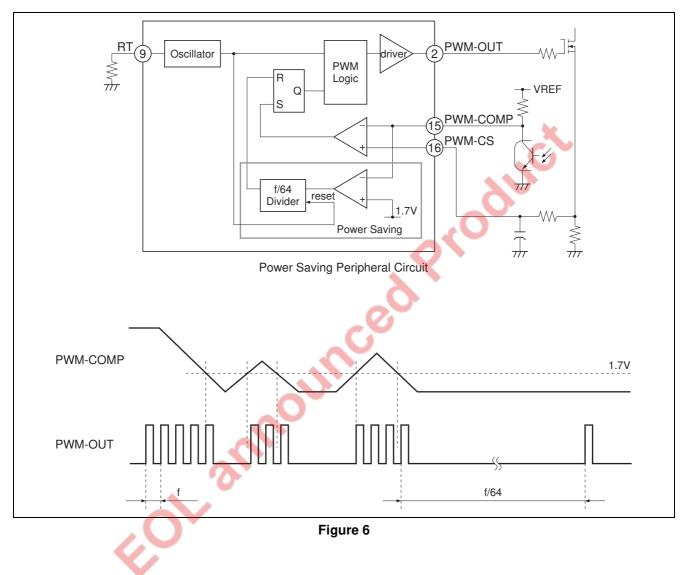



Figure 4 Example of Circuit Configuration to Turn On/Off PFC & PWM Functions

This IC also incorporates a function that automatically detects a 100 V system or 200 V system AC voltage at the PFC-ON pin, and switches multiplier gain and the PFC-CS comparison voltage.

These functions simplify the design of a power supply compatible with worldwide input.

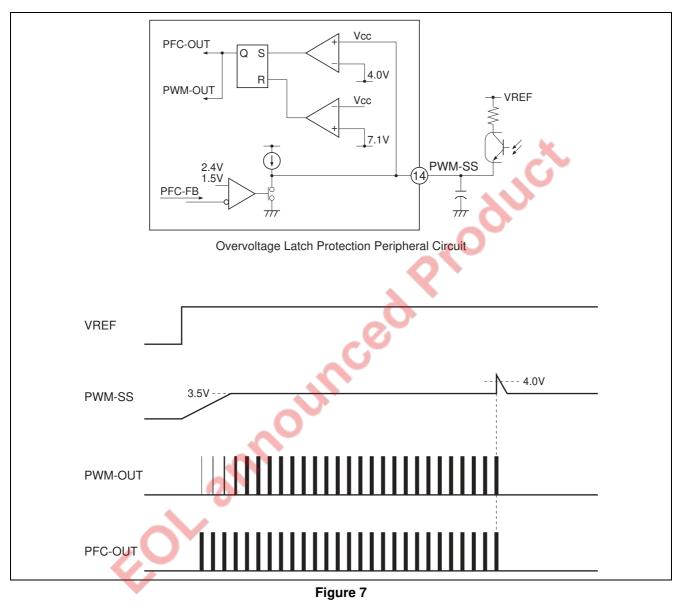


5. Power Saving in Standby State (for PWM Control)

When the output load is light, as in the standby state, the operating frequency of the PWM control section is automatically decreased in order to reduce switching loss.

Standby detection is performed by monitoring the PWM-COMP voltage, and the operating frequency is decreased to a maximum of 1/64 of the reference frequency determined by an external timing resistance.

As standby detection is performed on a reference frequency pulse-by-pulse basis, the frequency varies gently according to the output load.



6. Overvoltage Latch Protection (for PWM Control)

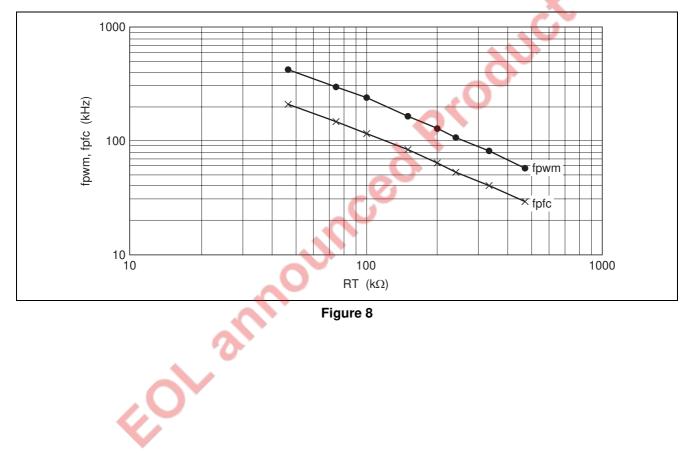
This is a protection function that halts PWM-OUT and PFC-OUT if the secondary-side PWM output voltage is abnormally high.

Overvoltage signal input is shared with the PWM-SS pin. When this pin is pulled up to 4.0 V or higher, the control circuit identifies an overvoltage error and halts PWM-OUT and PFC-OUT.

The power supply is turned off, and the latch is released when the VCC voltage falls to 7.1 V or below.

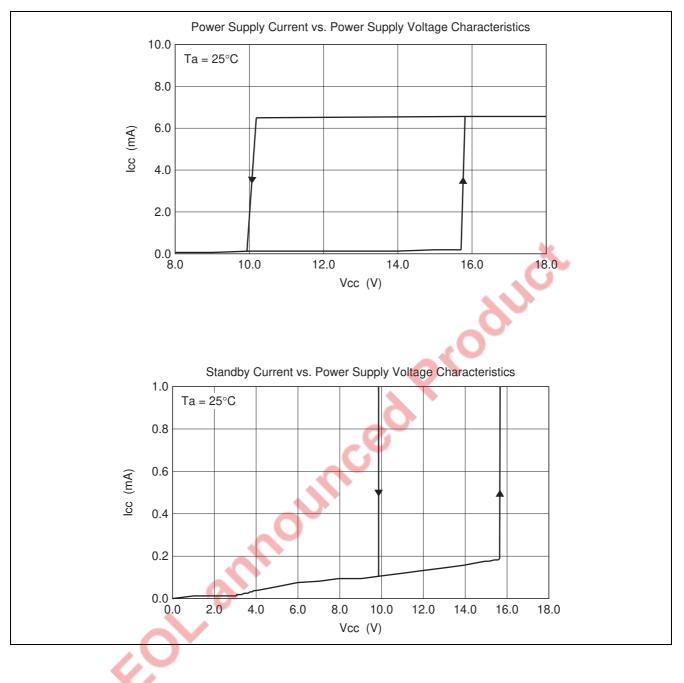
7. Operating Frequency

The operating frequency is adjusted by timing resinstance RT.

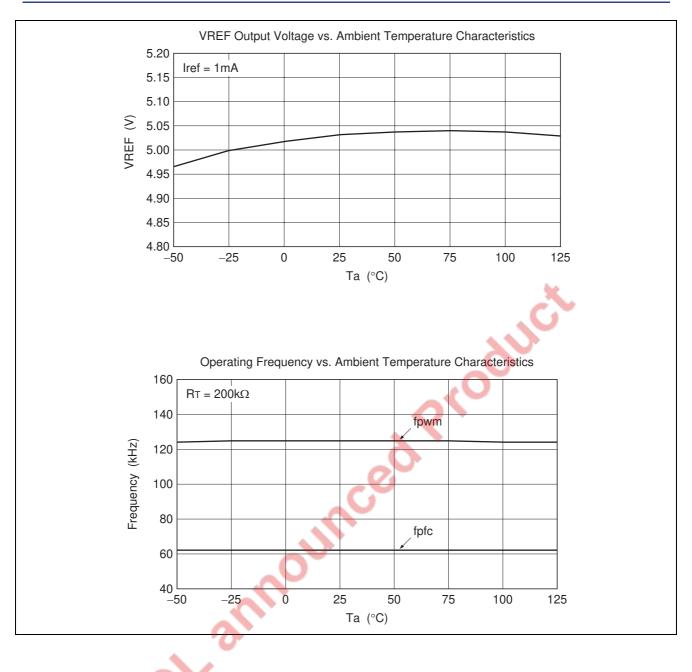

Adjustment examples are shown in the graph below. The operating frequency fpwm in the PWM section is determined by the RT. The operating frequency fpfc in the PFC section is half the value of fpwm.

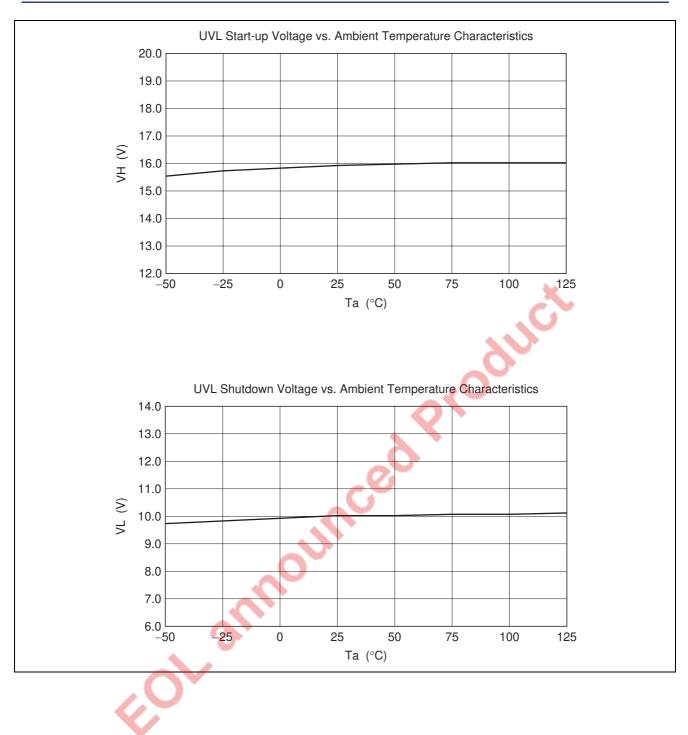
The operating frequency in the PWM section can be estimated using the approximate equation shown below. $RT = 200 \text{ k}\Omega$:

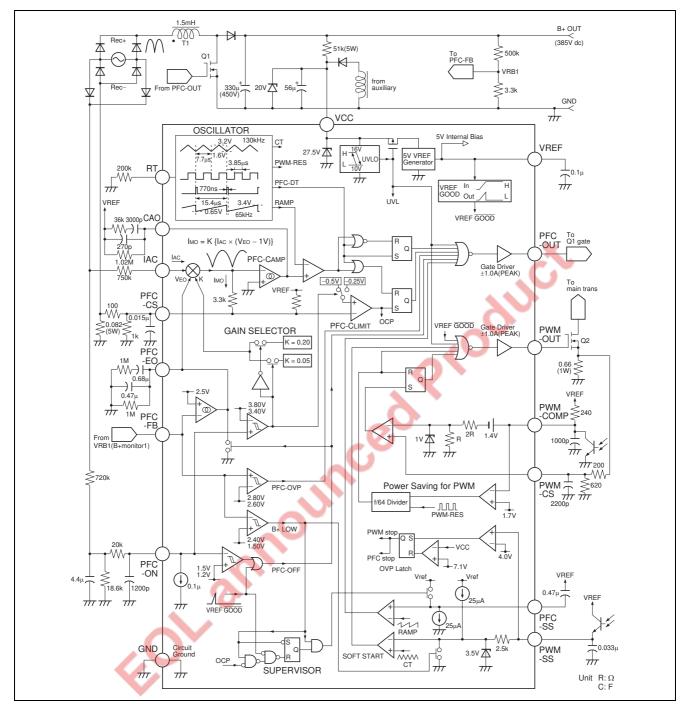
$$fpwm \approx \frac{2.60 \times 10^{10}}{RT} = 130 \text{ [kHz]}$$
$$fpfc = \frac{fpwm}{2} = 65 \text{ [kHz]}$$

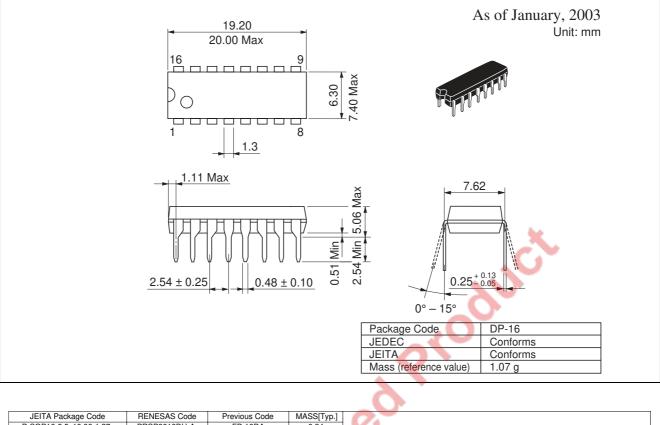

This is only an approximate equation, and the higher the frequency, the greater will be the degree of error of the approximate equation due to the effects of the delay time in the internal circuit, etc.

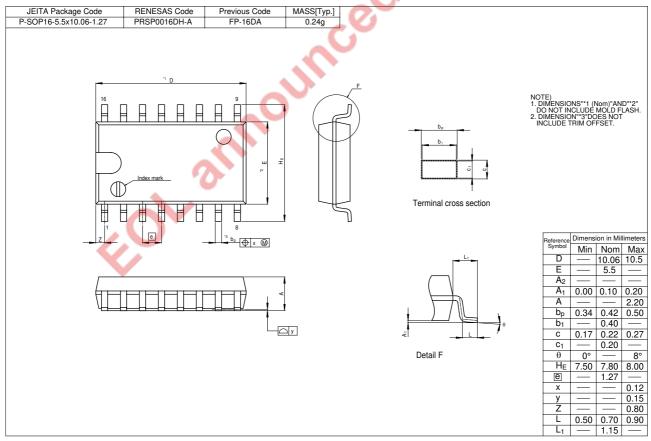
When the operating frequency is adjusted, it is essential to confirm operation using the actual system.




Characteristic Curves






Application Circuit Example

Package Dimensions

RenesasTechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Menesas Technology Corp. Sales Strategic Planning Di. Ngon Bidg., 2-6-2, Otte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
 Merzianics or representations with respect 10 the accuracy or completeness of the information on this document nor grants any license to any intellectual property or other rights or any other rights of the Renessas real have no liability for damages or infingement of any intellectual property or other rights or any other rights of the data, diagrame, charts, programs, algorithms, and application forcuit examples.
 Pous should not use the products or the technology described in this document for the purpose of military applications such as the development of weapons of mass and tender to the data. Gargame, charts, programs, algorithms, and application circuit examples, is current as of the date this document, such as product data. Gargame, charts, programs, algorithms, and application circuit examples, is current as of the date this document is such. Such thormation, the vestel. (http://www.refreasa.com)
 Bother Hates products or the technology described from this document.
 When using or otherwise required by the data. Gargame, charts, programs, algorithms, and application circuit examples, is current as of the date this document.
 When using or otherwise required by the data. Gargame, charts, programs, algorithms, and application circuit examples, is current as of the date this document.
 When using or otherwise required by the data diagrame, charts, programs, algorithms, and application and reput data.
 When using or otherwise required by the data diagrame, charts, programs, algorithms, and carguitational and different information to the subscription and use of the information in this document.
 When using or otherwise required by the data distration on the data distration on the subscription on the information in this document.
 When using or otherwise required by the data distration on the data distration on t

RENESAS SALES OFFICES

http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd. Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7898

Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2730-6071

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology Singapore Pte. Ltd. 1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510